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COMBINATORIAL PROOF OF AN IDENTITY ON GENOCCHI

NUMBERS

BEÁTA BÉNYI AND MATTHIEU JOSUAT-VERGÈS

Abstract. In this note we present a combinatorial proof of an identity involving poly-
Bernoulli numbers and Genocchi numbers. We introduce the combinatorial objects,
m−barred Callan sequences and show that the identity holds in a more general man-
ner.

1. Introduction

In this paper, we present a combinatorial proof of an identity that establish an interesting
relation between the C-poly-Bernoulli numbers and Genocchi numbers. The Genocchi
numbers Gn can be defined for instance by the generating function [13, Exercise 5.8]:

∞
∑

n=0

Gn

tn

n!
=

2t

et + 1
.

The first values are

0, 1,−1, 0, 1, 0,−3, 0, 17, 0,−155, . . .

(see A036968 in [12]).

The Poly-Bernoulli numbers B
(k)
n are defined for k ∈ Z by

Lik(1− e−t)

1− e−t
=

∞
∑

n=0

B(k)
n

tn

n!
,(1)

where Lik(z) is the polylogarithm function given by

Lik(z) =

∞
∑

m=1

zm

mk
(|z| < 1).

For negative k indices, the poly-Bernoulli numbers are integers (A099594 in [12]). Several
combinatorial objects are enumerated by these numbers, as for instance lonesum matri-
ces [7], matrices uniquely reconstructible from their row and column sum vectors. For
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further objects see [3, 4]. It is proven in [2] analytically and in [3] combinatorially that
n

∑

j=0

(−1)jB
(−j)
n−j = 0.(2)

Arakawa-Kaneko introduced a C-version of poly-Bernoulli numbers in [1] as

Lik(1− e−t)

et − 1
=

∞
∑

n=0

C(k)
n

tn

n!
.(3)

In particular, C
(1)
n is the ordinary Bernoulli numbers Bn defined by

t

et − 1
=

∞
∑

n=0

Bn

tn

n!
.

For negative k, these numbers C
(k)
n are again positive integers. They are the array A136126

in [12], see also Table 1 below. In [4], this integer array is introduced as the number of
lonesum matrices without any all-zero columns.

Kaneko - Sakurai - Tsumura [10] proved the C-version of the identity (2) using analytical
methods.

n
∑

j=0

(−1)jC
(−j−1)
n−j = −Gn+2 (n ≥ 0).(4)

In this note we present a combinatorial proof of the identity (4).
Recently, Matsusaka [11] showed that both (2) and (4) are special cases of a more

general polynomial identity between symmetrized poly-Bernoulli numbers and Gandhi-
polynomials.

2. Definitions

In this section we give the necessary definitions and notation. To prove the identity, we
establish a connection between barred Callan sequences and Dumont permutations of the

first kind defined in [8].
In [12], Callan defines a permutation class that are enumerated by the poly-Bernoulli

numbers. Essentially the same are Callan sequences that were defined in [6]. Based on
this notion, the authors introduced in [5] barred Callan sequences. We recall here these
definitions.

Let k, n ≥ 0 and consider the sets K = {1, . . . , k} ∪ {∗} (referred to as blue elements),
and N = {1, . . . , n} ∪ {∗} (referred to as red elements).

Definition 1. A Callan sequence of size k × n is a sequence

(B1, R1)(B2, R2) · · · (Bm, Rm)(B
∗, R∗),

for some m with 0 ≤ m ≤ n, such that:

• {B1, . . . , Bm, B
∗} form a set partition of K into m+ 1 non-empty blocks,

• {B1, . . . , Bm, B
∗} form a set partition of N into m+ 1 non-empty blocks,

http://oeis.org/A136126
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• ∗ ∈ B∗, and ∗ ∈ B∗.

Note that a Callan sequence can be encoded in an obvious way by the following data:

• an integer m with 0 ≤ m ≤ n,
• an ordered partition (B1, . . . , Bm) of some subset K ′ ⊂ {1, . . . , k},
• an ordered partition (B1, . . . , Bm) of some subset N ′ ⊂ {1, . . . , n}.

This is done by letting K ′ = K \B∗ and N ′ = N \B∗.
To deal with these objects, it will be convenient to use the following terminology:

• B∗ and R∗ are called extra blocks, while Bi and Ri are called ordinary blocks,
• each pair (Bi, Ri) or (B∗, R∗) is a Callan pair, moreover, the former are called
ordinary pairs and the latter is called the extra pair.

A Callan sequence is thus a linear arrangement of Callan pairs, with the extra pair at
the end.

Example 2. The Callan sequences with k = 2 and n = 2 are:

(12∗, 12∗), (12, 12)(∗, ∗), (1, 12)(2∗, ∗), (2, 12)(1∗, ∗), (12, 1)(∗, 2∗),

(12, 2)(∗, 1∗), (1, 1)(2∗, 2∗), (2, 1)(1∗, 2∗), (1, 2)(2∗, 1∗), (2, 2)(1∗, 1∗),

(1, 1)(2, 2)(∗, ∗), (1, 2)(2, 1)(∗, ∗), (2, 1)(1, 2)(∗, ∗), (2, 2)(1, 1)(∗, ∗).

Definition 3. A barred Callan sequence of size k × n is a sequence obtained by inserting
a bar (denoted |) into a Callan sequence of size k × n, with the restriction that the bar
cannot be at the end of the sequence. We denote by Ckn the set of barred Callan sequences
with k blue elements and n red elements.

Example 4. The 7 barred Callan sequence for k = 2 and n = 1 are

|(12∗, 1∗); |(12, 1)(∗, ∗); |(2, 1)(1, ∗, ∗); |(1, 1)(2, ∗, ∗);

(1, 1)|(2, ∗, ∗); (2, 1)|(1, ∗, ∗); (12, 1)|(∗, ∗).

It is shown in [5] that the number of barred Callan sequences of size k × n is the

C-poly-Bernoulli number C
(−k−1)
n . To avoid negative indices in what follows, we denote

Ck
n = C

(−k−1)
n . In particular, we have Ck

n = |Ckn|.
Table 1 gives the first few values of the numbers Ck

n. Note that the symmetry Ck
n = Cn

k

is clear from the combinatorial interpretation in terms of barred Callan sequences, as one
can exchange red and blue blocks to get a n × k Callan sequence from a k × n Callan
sequence.

Remark 5. We note here that Callan sequences are equivalent to the special class of partial
permutations where elements greater than n are excedances and the elements smaller
than or equal to n are deficiencies. The number Ck

n also counts alternative tableaux of
rectangular shape k × n, and other tableaux of rectangular shapes that are in bijection
with alternative tableaux such as permutation tableaux or tree-like tableaux. See [3, 4] for
details.
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0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 3 7 15 31 63
2 1 7 31 115 391 1267
3 1 15 115 675 3451 16275
4 1 31 391 3451 25231 164731
5 1 63 1267 16275 164731 1441923

Table 1. C-poly-Bernoulli numbers Ck
n.

The other number sequence that is involved in the identity we want to prove are the
Genocchi numbers. Genocchi numbers can be defined in different ways, here we focus on the
combinatorial point of view. There are several combinatorial objects that are enumerated
by the Genocchi numbers. The first known interpretation was Dumont permutations of
the first kind.

Definition 6 ([8]). A Dumont permutation of the first kind is a permutation π ∈ S2n,
such that each even entry begins a descent and each odd entry begins an ascent or ends
the string, i.e., for every i = 1, 2, . . . , 2n:

π(i) even =⇒ i < 2n and π(i) > π(i+ 1),

π(i) odd =⇒ i < 2n and π(i) < π(i+ 1), or i = 2n.

Let D2n denote the set of Dumont permutations on 2n elements.

Example 7. For 2n = 4 we have D4 = {2143, 3421, 4213}. For 2n = 6 we have

D6 = {642135, 634215, 621435421365, 342165, 214365, 564213, 563421, 562143,

216435, 435621, 215643, 436215, 364215, 421563, 356421, 421635.}

In general, we have the following:

Theorem 8 (Dumont [8]). The cardinality of D2n is (−1)n+1G2n+2.

3. Main result

Using our notation, the identity (4) can be reformulated as follows:

Theorem 9 ([10]). For n ≥ 0, there holds

n
∑

j=0

(−1)jCj
n−j = −Gn+2.(5)

We introduce some combinatorial objects, that will be at the core of our combinatorial
proof of a generalization of the identity above. They can be seen as barred Callan sequences
with extra structure. We could say, that they interpolate in a certain sense between barred
Callan sequences and Dumont permutations.
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Definition 10. Let Ckn(m) denote the set of sequences defined by the following conditions.
First, the elements in the sequence are such that:

• It contains m blue bars labelled with 1, . . . , m, and m + 1 red bars, labelled with
0, . . . , m.

• If we ignore labelled bars, what remains is a k×n Callan sequence where all elements
are shifted up by m.

Second, these elements (labelled bars and Callan pairs) are ordered in a way such that:

• A blue bar with label i is followed by a bar with label strictly smaller than i.
• A red bar with label i is followed either by a Callan pair, or by a bar with label
strictly greater than i.

The elements of Ckn(m) are called m-barred Callan sequences, and the cardinality of Ckn(m)
is denoted Ck

n(m).

Remark 11. The objects m-barred Callan sequences are defined otherwise in [5], we call
our special objects m-barred Callan sequence for the sake of convenience.

Remark 12. The numbers Ck
n(1) are the so-called poly-Bernoulli D-relatives, also intro-

duced in [4] as the number of lonesum matrices that do not contain any all-zero column
and any all-zero row.

Note that a bar is always followed by another element in the sequence, so the last
element of the sequence is a Callan pair (more precisely, it is necessarily the extra pair of
the underlying Callan sequence). For example, an element of C6

4(3) is:

|3|2|1|2(5, 45)|3(79, 7)(4, 6)|1|0(68∗, ∗).

Remark 13. Sometimes it is convenient to think that each Callan pair is associated to
the (possibly empty) sequence of consecutive bars preceding it. In the previous example,
we have the four “groups”:

|3|2|1|2(5, 45) |3(79, 7) (4, 6) |1|0(68∗, ∗).

Moreover, the last bar of each group is a red bar.

Let us first record some properties that are simple consequences of the definition.

Proposition 14. We have the following identities:

Ck
n(m) = Cn

k (m),(6)

Ck
n(0) = Ck

n,(7)

C0
0 (m) = (−1)m+1G2m+2.(8)

Proof. There is a simple bijection between Ckn(m) and Cnk (m): it consists in exchanging
blue blocks with red blocks in each Callan pair. As a consequence, we get the first identity.

The elements in Cnk (0) contain a unique bar, |0. We thus have a simple bijection between
Cnk (0) and Cnk by changing |0 into |. Hence, we get the second identity.

The elements in C0
0(m) contains a unique Callan pair, namely (∗, ∗), in last position.

This Callan pair is preceded by |m, as there is no label strictly greater than m. Now, there
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is a simple bijection between C0
0(m) and D2m: remove |m(∗, ∗), transform |i into 2i and |i

into 2i+ 1. �

Our main result is that the numbers Ck
n(m) also have an alternating sum equal to

Genocchi numbers:

Theorem 15. For n,m ≥ 0, we have:
n

∑

j=0

(−1)jCj
n−j(m) = (−1)m+1Gn+2m+2.(9)

Note that when n is odd, both sides of (9) are 0 (the sum has an even number of terms,
and they can be paired using the symmetry Ck

n(m) = Cn
k (m)). So only the case where n

is even is of interest. Remark that:

• The case m = 0 in the previous theorem is precisely Theorem 9.
• When n = 0, this result is the third equation in Proposition 14.

Using this, Theorem 15 and therefore Theorem 9 are consequences of the particular case
n = 0 together with the following proposition, which gives a recursion for the left-hand
side of (9).

Proposition 16. For n ≥ 2 and m ≥ 0, we have:

n
∑

j=0

(−1)jCj
n−j(m) = −

n−2
∑

j=0

(−1)jCj
n−2−j(m+ 1)(10)

The combinatorial proof of the previous proposition will be done in the next two sections.

4. The bijection φ

We use here the map introduced in [3] in order to prove (2). We slightly modify this
map, to reformulate it on the set of m-barred Callan sequences. This map is a bijection
between some subsets of m-barred Callan sequences.

Definition 17. Let Ckn(m, ∗) denote the subset of Ckn(m) containing elements α such
that the extra red block is empty (by convention, this means it contains only ∗). Let
Ckn(m,R∗) = Ckn(m)\Ckn(m, ∗) denote the complementary subset.

Following the previous convention, let Ck
n(m, ∗) (respectively, Ck

n(m,R∗)) denote the
cardinality of Ckn(m, ∗) (respectively, C

k
n(m,R∗)).

Suppose that n ≥ 1 and k ≥ 0 are fixed throughout this section. We define the map

φ : Ckn(m,R∗) → Ck+1
n−1(m, ∗)

as follows. Let α be an m-barred Callan sequence with a non-empty extra red block,
α ∈ Ckn(m,R∗). The general idea is to remove the maximal red element m+ n and add a
new blue element m′ = m+ k + 1. Distinguish four cases according to the location of the
maximal red element m+ n:

A1) m+ n is in the extra block as a singleton, R∗ = {m+ n, ∗}.
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A2) m+ n is in the extra block with other red elements, R∗ \ {m+ n} = R′ 6= {∗}.
B1) m+ n is in an ordinary block as a singleton, i.e., there is an ordinary pair (Bi, Ri)

with Ri = {m+ n}.
B2) m+ n is in an ordinary block with other red elements, i.e., there is an ordinary

pair (Bi, Ri) with m+ n ∈ Ri and Ri \ {m+ n} = R′ 6= ∅.

Accordingly, φ(α) is defined as the result of the following procedure:

A1) Delete m+ n and add the new element m′ to the first Callan pair.
A2) Replace the extra red block R∗ with {∗}, and place ({m′}, R′) in front of the Callan

sequence as the first element.
B1) The several steps are as follows:

– replace the extra red block R∗ with {∗},
– replace Ri = {m+ n} with R∗\{∗},
– move the new pair (Bi, R

∗\{∗}) in front of the Callan sequence, together with
the group of bars to its left (as in Remark 13),

– add m′ to the (i + 1)st blue block (this means either Bi+1, or the extra blue
block B∗ if Bi was in the last ordinary pair).

B2) The several steps are as follows:
– replace the extra red block R∗ with {∗},
– replace (Bi, Ri) with two pairs (Bi, R

∗\{∗}) and ({m′}, R′),
– move the new pair (Bi, R

∗\{∗}) in front of the sequence, together with the
group of consecutive bars preceding it (as in Remark 13).

Example 18. Suppose that m,n, k are such that we remove 9 and add 8. The four cases
can be illustrated as follows:

(5, 35)|1(47, 247)|1|0(23, 68)(6∗, 9∗) → (58, 35)|1(47, 247)|1|0(23, 68)(6∗, ∗)

(5, 35)|1(47, 2)|1|0(23, 68)(6∗, 479∗) → (8, 47)(5, 3, 5)|1(47, 2)|1|0(23, 68)(6∗, ∗)

(5, 358)|1(47, 24)|1|0(23, 9)(6∗, 67∗) → |1|0(23, 67)(5, 358)|1(47, 24)(68∗, ∗)

(5, 38)|1(47, 4)|1|0(23, 259)(6∗, 67∗) → |1|0(23, 67)(5, 38)|1(47, 24)(8, 25)(6∗, ∗)

Definition 19. For n ≥ 0 and k ≥ 1, let Ckn(m, ∗, |m
′) denote the subset of Ckn(m, ∗),

containing elements α such that the maximal blue element m′ = m+ k is in an ordinary
Callan pair as a singleton, and there is at least one bar preceding this pair. Following the
previous convention, let Ck

n(m, ∗, |m
′) denote the cardinality of Ckn(m, ∗, |m

′).

Note that when k = 0 and n > 0, we have C0
n(m, ∗) = ∅. Indeed, the only 0× n Callan

sequence is (∗, 123 . . . n∗), which has a nonempty extra red block. Accordingly, we also
take the convention C0

n(m, ∗, |m
′) = ∅.

Note also that Ck0 (m, ∗, |m
′) = ∅. Indeed, the only k× 0-Callan pair is (123 . . . k∗, ∗), so

it is not possible to have m′ as a singleton in an ordinary pair.

Lemma 20. The map φ defined as above is a bijection between the sets Ckn(m,R∗) and

Ck+1
n−1(m, ∗) \ C

k+1
n−1(m, ∗, |m

′).
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Proof. Let us first check that φ(α) ∈ Ck+1
n−1(m, ∗). Note that each group of consecutive bars

is unchanged (though these groups are possibly permuted in case B1 and B2), so we only
need to check that the pairs form a valid Callan sequence. This is straightforward.

Then, let us check that φ(α) /∈ Ck+1
n−1(m, ∗, |m

′). In cases A1 and B1, the blue element m′

is added to a blue block (which is nonempty by definition) so m′ is not a single element in
its block. In cases A2 and B2, m′ is in a singleton block, so we need to check that there
is no bar preceding the pair containing m′. In case A2, this is because this pair is at the
beginning of the sequence. In case B2, the new pair ({m′}, R′) is created with another pair
to its left, and since this pair is moved together with the associated group of bars, there is
again another pair to the left of ({m′}, R′) in φ(α).

In the previous paragraph, we observed the following properties in φ(α):

• m′ is in the first pair iff the sequence was obtained from the cases A1 or A2.
• m′ is alone in its block iff the sequence was obtained from the cases A2 or B2.

So, the 4 cases are mutually exclusive. In each case, knowing the position of m′ it is
straightforward to describe the inverse procedure, so that φ is injective. �

The bijection φ can be used to obtain pairwise cancellations in the alternating sums,
and we get the following:

Lemma 21. We have:

n
∑

j=0

(−1)jCj
n−j(m) =

n
∑

j=0

(−1)jCj
n−j(m, ∗, |m

′).

Proof. The set Cjn−j(m) can be splitted as

Cjn−j(m) = Cjn−j(m,R∗)
⊎

(

Cjn−j(m, ∗) \ C
j
n−j(m, ∗, |m

′)
)

⊎

Cjn−j(m, ∗, |m
′),(11)

so that
n

∑

j=0

(−1)jCj
n−j(m) =

n
∑

j=0

(−1)j |Cjn−j(m,R∗)|+
n

∑

j=0

(−1)j
∣

∣

∣

(

Cjn−j(m, ∗) \ C
j
n−j(m, ∗, |m

′)
)
∣

∣

∣

+

n
∑

j=0

(−1)jCj
n−j(m, ∗, |m

′).

The bijection φ readily shows that the first and second sum cancel each other out, upon
checking the boundary terms.

The first boundary term is j = n in the first sum. The set Cn0 (m,R∗) is empty (as
there are no red element besides ∗, the extra red block cannot be nonempty), so the
corresponding term is 0. The second boundary term is j = 0 in the second sum. As noted
after Definition 19, C0

n(m, ∗) is empty, C0
n(m, ∗) \ C0

n(m, ∗, |m
′) is empty as well, and the

corresponding term is 0.
�
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Using the previous lemma, to prove Proposition 16 it remains only to show:

n
∑

j=0

(−1)jCj
n−j(m, ∗, |m

′) = −
n−2
∑

j=0

(−1)jCj
n−2−j(m+ 1).(12)

This will be done in the next section.

5. The bijection ψ

To prove (12), it is convenient to use another set.

Definition 22. We define Ckn(m, ∗, |m+ 1) like Ckn(m, ∗, |m
′) in Definition 19, but with

m+ 1 instead of m′ = m+ k. As before, denote Ck
n(m, ∗, |m+ 1) = |Ckn(m, ∗, |m+ 1)|.

There is a bijection from Ckn(m, ∗, |m
′) to Ckn(m, ∗, |m+ 1), via a relabelling of blue ele-

ments that exchanges m+ k and m+ 1. Using this, (12) is clearly equivalent to:

n
∑

j=0

(−1)jCj
n−j(m, ∗, |m+ 1) = −

n−2
∑

j=0

(−1)jCj
n−2−j(m+ 1).(13)

In order to show (13), we give a bijection ψ between the sets Ckn(m, ∗, |m+ 1) and
Ck−1
n−1(m+1) for n, k ≥ 1. Note that Ck0 (m, ∗, |m+ 1) = C0

n(m, ∗, |m+ 1) = ∅, following the
remarks after Definition 19.

We do this in two steps, i.e., as the composition of two operations: ψ = ψr ◦ψb. The first
map ψb takes the blue element m+ 1 out of a Callan pair and changes it into a labeled
blue bar |m+1. The second map ψr does the same with m+ 1 and |m+1.

Definition 23. For α ∈ Ckn(m, ∗, |m+ 1), note that α contains an ordinary pair (m+ 1, R).
Let w1 (respectively, w2) denote the maximal subsequence of consecutive bars that are
directly to the left (respectively, to the right) of (m+ 1, R). Note that w1 is nonempty by
definition, but w2 is possibly empty. We define ψb(α) as follows.

• Replace w1 (m+ 1, R) w2 with w2 |m+1 w1 in the sequence.
• Replace the extra red block {∗} with R ∪ {∗}.

Example 24.

(4, 9)(58, 25)|1(2, 347)|1|0(37, 68)(6∗, ∗) →ψb
(4, 9)(58, 35)|1|0|2|1(37, 68)(6∗, 347∗)

Note that an element in the image of ψb has a nonempty extra red block.

Definition 25. Let α ∈ im(ψb). We define ψr(α) by the following procedure, distinguishing
two cases:

• If m+ 1 ∈ R∗, replace the extra pair (B∗, R∗) with two consecutive elements |m+1

and (B∗, R∗ \ {m+ 1}).
• Otherwise, m+ 1 is in an ordinary pair (Bi, Ri). Replace the pair (Bi, Ri) with two
consecutive elements |m+1 and (Bi, R

∗ \ {∗}), then replace the extra pair (B∗, R∗)
with (B∗, R′ ∪ {∗}) where R′ = Ri \ {m+ 1}.
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Example 26.

(583, 46)(29, 35)|1|0(47, 2)(3∗, 17∗) →ψr
(583, 46)(29, 35)|1|0(47, 2)|1(3∗, 7∗)

(583, 1)(29, 35)|1|0(47, 46)(3∗, 27∗) →ψr
|1(583, 27)(29, 35)|1|0(47, 46)(3∗, ∗)

Lemma 27. For n, k ≥ 1 and m ≥ 0, the map ψ = ψr ◦ ψb is a bijection between the sets

Ckn(m, ∗, |m+ 1) and Ck−1
n−1(m+ 1).

Proof. First, we can check that ψ(α) with labelled bars removed is a (k−1)×(n−1) Callan
sequence where labels are shifted up by m + 1. As noted above, ψb(α) has a nonempty
extra red block. In the second case of the definition of ψr, we thus see that R∗ \ {∗} 6= ∅

so that (Bi, R
∗ \ {∗}) is a valid Callan pair.

Secondly, we check that the labelled bars in ψ(α) sastisfy the conditions so that ψ(α) ∈
Ck−1
n−1(m+ 1). We begin with labelled bars in ψb(α). There are two locations to check:

• The element after |m+1 should be a labelled bar with label strictly smaller than
m + 1. This element is the first one of w1, as w1 is nonempty. By definition, it
satisfies the required properties.

• If w2 is empty, either |m+1 begins the sequence or it is preceded by a Callan pair.
Otherwise, the last element of w2 is a bar |i with i ≤ m, as it is followed by a Callan
pair in α. In both cases, this is a valid configuration.

Then, ψ(α) is obtained by adding |m+1 to the left of a Callan pair. Thus, either it is a new
group of bars in itself, or it is added at the end of an existing group of bars. In the second
case, as the last element of this group is a red bar with label i at most m, the configuration
|i|m+1 is valid.

We thus have ψ(α) ∈ Ck−1
n−1(m+1). Now it remains to describe the inverse bijection ψ−1

and check that it is indeed the left and right inverse of ψ. In the definition of ψr, the cases
can be distinguished: the first one (respectively, second one) results in |m+1 being to the
left of the extra pair (respectively, of an ordinary pair). Using that, the inverse bijection
is straightforward to describe explicitly. �
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