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THE MODULI SPACE OF LIMIT LAWS FOR ¢-HOOK FORMULAS
SARA C. BILLEY AND JOSHUA P. SWANSON

ABSTRACT. In [BKS20], Billey-Konvalinka—Swanson studied the asymptotic distribution
of the coefficients of Stanley’s ¢g-hook length formula, or equivalently the major index on
standard tableaux of straight shape and certain skew shapes. We extend those investigations
to Stanley’s g-hook-content formula related to semistandard tableaux and g-hook length
formulas of Bjorner—Wachs related to linear extensions of labeled forests. We show that, while
their coefficients are “generically” asymptotically normal, there are uncountably many non-
normal limit laws. More precisely, we introduce and completely describe the compact closure
of the moduli space of distributions of these statistics in several regimes. The additional
limit distributions involve generalized uniform sum distributions which are topologically
parameterized by certain decreasing sequence spaces with bounded 2-norm. The closure of
the moduli space of these distributions in the Lévy metric gives rise to the moduli space of
DUSTPAN distributions. As an application, we completely classify the limiting distributions
of the size statistic on plane partitions fitting in a box.
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1. INTRODUCTION

The famed Frame—Robinson—Thrall hook length formula is a rational product formula
for counting the number of standard Young tableauz of a given partition shape A [FRT54],
denoted SYT(A). Stanley’s g-analogue of the hook length formula [Sta99, Cor. 7.21.5] is a
remarkably simple generalization for the polynomial generating function of the major index
statistic on SYT(A). His g-hook length formula replaces each integer n with the corresponding
g-integer [n], =1+ ¢q+---+¢" !, times an overall shift of ¢"™ where r(\) == 3.0 (i — 1)\

- nl,!
(1) Z qmaJ(T) _ qr()\) [ ]q

Consequently, (1) encodes probabilistic information concerning the distribution of the major
index statistic when sampling from SYT(A) uniformly at random.

In [BKS20], the present authors and Konvalinka considered the distribution of maj on
SYT()A). Given a sequence of partitions, we were able to completely determine when
the corresponding sequence of standardized random variables converges in distribution.
Equivalently, we determined the asymptotic distribution of the coefficients of Stanley’s ¢-hook
length formula. For these random variables, countably many continuous limit laws are
possible: one gets the normal distribution “generically” and, in certain degenerate regimes,
the Irwin-Hall distributions. A key technical tool in [BKS20] is an exact formula for the
cumulants of the underlying random variables, which follows easily from work of Chen—
Wang-Wang [CWWO08] and Hwang—Zacharovas [HZ15] together with Stanley’s g-hook length
formula (1).

The present work generalizes the explorations of [BKS20] to the next most famous ¢-
analogues of the hook length formula: Stanley’s g-hook-content formula for semistandard
tableaux, and formulae of Bjorner-Wachs for linear extensions of labeled forests. See Table 1
for a summary of the ¢g-hook-type formulas we use. The limit laws in these cases turn out
to be much more intricate, with uncountably many possible limits. Complicated limit laws
such as these can be seen elsewhere in the literature in different contexts, see for example the
work of Chatterjee and Diaconis [CD14].

An unexpected but key step in our characterization of all possible limit laws arising from
hook length formulas is the introduction of certain compact “moduli spaces” of continuous
distributions. Constructing moduli spaces with desirable properties is a classical and powerful
operation in algebraic geometry and algebraic topology [BZ08]. Projective space itself is a
fundamental example of this philosophy in action. We provide several new moduli spaces
in this paper. The same broad idea has appeared in other probabilistic contexts, such as
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Statistic(s) | set | ¢-hook formula(s) | cumulant expression(s)
. r nlq! n.
maj SYT(XA) q (A)m Y I = Yuea
rank SSYT<n(N)| ¢ [T,cs [’m%]q S ea(m e )t — b
, A= AjHji—i VI
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: inv(Pw) [n]q!
v 4 Mucplls

TABLE 1. Summary of combinatorial objects, statistics, ¢-hook formulas, and
cumulant expressions used in this paper. Cumulants are obtained from cumulant
expressions by multiplying by % for d > 1. See Section 2 for details.

Prohkorov’s Theorem [Bil99, §1.5]. It is also the starting point of the field of information
geometry [ANOO]; see Remark 1.18 for further discussion.

In Section 1.1, we summarize the results of [BKS20] and reframe them in terms of moduli
spaces as a prelude to our new, more technical results on semi-standard tableaux and forests.
To keep this introduction to a manageable length and avoid frequent digressions, we assume
familiarity with tableaux combinatorics and cumulants. Detailed background on these topics
is provided in [BKS20, §2] or [Sta99, Ch.7]. The main new results in this paper are outlined
in Section 1.2 and Section 1.3. See Section 2 for background necessary for the new material.

1.1. Standard tableaux. Let X)[maj] denote the random variable associated with maj on
SYT()), sampled uniformly at random. Then the probability P(Xy[maj] = k) = a3/ f* where
SYT(M\)™(q) = >~ apg® and f* = SYT(X)™(1) is the number of standard Young tableaux
of shape A. Hence, studying the distribution of the random variable X)\[maj] and the sequence
of coefficients {a} : k > 0} for SYT(\)™#(q) are essentially equivalent. Furthermore, any
polynomial in ¢ with nonnegative integer coefficients can be associated to a random variable
in a similar way.

For the sake of understanding limiting distributions, we typically standardize the random
variables involved so they have mean (0 and variance 1. In general, given any random variable
X with mean p and standard deviation o > 0, let X* := (X — p)/o denote the corresponding
standardized random varitable with mean 0 and variance 1. To avoid overemphasizing
trivialities, we implicitly ignore degenerate distributions with ¢ = 0 throughout the paper
without further comment, so every distribution we consider does have a standardization.
Write X, = X to mean that the sequence X, converges in distribution to X. Let N (u, 0?)
denote a normal distribution and let ZH ,; denote the Mth Irwin-Hall distribution, obtained
by summing M independent continuous uniform [0, 1] random variables. These distributions
are also referred to as uniform sum distributions in the literature. Note that the normal and
Irwin—Hall distributions are continuous, while each of the random variables coming from
g-hook formulas below determine discrete distributions.

We may completely describe the possible limit distributions of X)[maj|* using a simple
auxiliary statistic on partitions, aft. In particular, let aft(\) :== |A| — max{\, A} }.
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Theorem 1.1. [BKS20, Thm. 1.7] Let A\, X be a sequence of partitions where | \NV)| —
oo as N — o0.

(i) Xy [majl* = N(0,1) if and only if aft(A\M)) — oo.

(1) Xy [maj* = TH s if and only if aft(AN)) — M < .

Theorem 1.1 shows that the set Zso U {oco} parameterizes the set of all possible limit
distributions associated to the g-hook length formulas and the standardized random variables
Xy\[maj]*. If we instead parameterize the limit distributions by {% ‘n e Z21} U {0}, we get
a parameter space and a distribution space which are homeomorphic as topological spaces.
Hence, we introduce the notion of a moduli space of standardized distributions.

Definition 1.2. The moduli space of Irwin—Hall distributions is
Mzy ={TH}, : M € Z>o},
and the moduli space of SY'T distributions is
Mgyt = {X\[maj]* : A € Par, f* > 1}.

Endow M7y and Mgyt with the topology inherited from the topology of distributions of
real-valued random variables under the Lévy metric, which is characterized by convergence
in distribution [Bil95, Ex. 14.5].

By the Central Limit Theorem, Mzy = Mz U {N(0,1)}. In light of Theorem 1.1, we
have the following very precise description of the minimal compactification of the moduli
space of SYT distributions.

Corollary 1.3. In the Lévy metric,
(2) Msyr = Mgyt U Mzy,
which s compact. Moreover, the set of limit points of Mgyt is exactly Mzy.

Remark 1.4. Here and throughout the paper, we use the term “moduli space” to mean a
topological space whose points are objects of interest, which are parametrized by a more
familiar set with a related topological structure [BZ08|. The nomenclature “moduli spaces
of limiting distributions” at first was a way to unify some of our initial results and later it
guided our research. It forced us to look for appropriate limit laws on both the distribution
side and the parameter space side. The moduli spaces presented here are the solutions to
probabilistic classification problems, and hence we put emphasis on complete classification
whenever possible. All of our moduli spaces of distributions will be metric spaces under the
Lévy metric.

When the set parametrizing a moduli space has a natural topology, one might hope that it
is homeomorphic to the moduli space. For example, let

1
PI’H = {— n e ZZI}
n

be the Irwin-Hall parameter space. We endow P73, C [0, 1] with the topology of pointwise
convergence, so Pry = Pry U {0}. Since TH3, = N(0,1) as M — oo, the bijection
Pzy; — Mgy given by ﬁ — IH3, and 0 — N(0,1) is a homeomorphism. It is less clear
how to impose a topology on standard Young tableaux, but a characterization of the multiset
of hook lengths would be a key consideration. See [BKS20, Thm. 7.1].
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Remark 1.5. Recent work of Kim-Lee identified certain normal [KL20b] and bivariate
normal [KL20a| distributions as limits of normalizations of des and (des, maj) over conjugacy
classes in the symmetric group. In their context, the moduli space of limit distributions is
parameterized by real numbers in [0, 1].

1.2. Semistandard tableaux and plane partitions. Stanley’s hook-content formula is a
rational product formula for counting the set SSYT<,,(\) of semistandard tableaux of shape
A with entries at most m. He gave a natural g-analogue of this formula, which by work of
Stembridge [Ste94] is in fact the polynomial generating function for the rank statistic on
SSYT<,,(A). See Section 2.2 for details. He also showed that the natural g-analogue of this
formula is the polynomial generating function for the rank statistic on SSYT<,,(\). A second
rational product formula for rank on SSYT<,,()\) with important representation-theoretic
meaning is given by the type A case of the ¢-Weyl dimension formula. Explicitly,

(3) S g = O] m +culs _ 11 M= A+i—idy

TeSSYT<pm(N) UEN [hu]q 1<i<ji<m [j - Z]q

Let X, [rank] denote the random variable associated with the rank statistic on SSYT<,, (),
sampled uniformly at random. In Section 2, we derive simple explicit cumulant formulas
from these rational expressions which allow us to study the possible limiting distributions
for X, [rank]*. While the closures Mgyt and Mzy, are completely characterized above, the
closure of the moduli space of SSY'T distributions,

Mggyt == {X\m[maj]” : A € Par, £(\) < m},

is much more complicated. In particular, we show that the following generalization of the
Irwin—Hall distributions are related to limit laws for X, [rank]*.

Definition 1.6. Given a finite multiset t of non-negative real numbers, let

t t
4 S = Uul——,-1,
(@) = 54
where we assume the summands are independent and U|a, b] denotes the continuous uniform
distribution supported on [a,b]. If t consists of M copies of 1, then S + % =1Hy. By
convention, we consider the multiset t as a weakly decreasing sequence of real numbers
t={t; >ty > - > t,} where t,, > 0. We call the distribution associated to S; a finite
generalized uniform sum distribution.

Certain sequences of random variables X, [rank]* which converge to a finite generalized
uniform sum distribution are completely characterized by an auxiliary multiset called the
distance multiset. This auxiliary set also comes up in the Turnpike Reconstruction Problem,
which is essentially the problem of identifying all possible sequences t from the following
multiset At, which has applications in DNA sequencing and X-ray crystallography [Wei95,
Sect. 10.5.1]. The Turnpike Reconstruction Problem is a potential candidate for being in
NP-Intermediate. See [LSS03| for further computational complexity considerations.

Definition 1.7. The distance multiset of t = {t; >ty > --- > t,,,} is the multiset

At ={t;—t;: 1 <i<j<m}.
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To avoid highly cluttered notation coming from the terms in a sequence indexed by a
parameter N = 1,2, ..., we will often drop the explicit dependence on N. For example, let A
and m denote a sequence of partitions AV, A®_ ... and a sequence of values m), m® ...
respectively. If we assume £(AM) < m®) for each N, we will simply write /() < m. Also,
|\| = n means there is another sequence n*, n(®, ... such that the size of the partition [A\(N)| =
n®™) thus |A| = oo and n — oo both imply |A™)| — 0o as N — oco. Similarly, let Xj.,, [rank]
denote the sequence of uniform random variables associated with SSYT v (AV))rank(g).

Theorem 1.8. Let A be an infinite sequence of partitions with £(\) < m where A\;/m3 — cc.
Let t(A) = (t1,...,tm) € [0,1]™ be the finite multiset with tj = :\\—’1“ for 1 <k <m. Then
Xym[rank]* converges in distribution if and only if the multisets At(\) converge pointwise.
In that case, the limit distribution is N'(0,1) if m — oo and S} where At(\) — d if m is
bounded.

Theorem 1.8 suggests we consider the moduli space of distance distributions

(5) Mpist = | J{SAc it ={l=t; >+ >t, =0}}

m>2

and its associated parameter space Ppigt defined in Section 3.4. By padding with 0’s, we
consider Ppigt C RY as a sequence space with the topology of pointwise convergence. The
moduli space of distance distributions is significantly more complex than the moduli space
of Irwin—Hall distributions. Nonetheless, a careful analysis involving the topology of the
parameter space of distance multisets done in Section 3.4 yields the following results. We
will show that both Ppigt and Mpigt have natural one point compactifications,

PDIST = PDIST U {0} and MDIST = MDIST U {N(Oa 1)}7

where 0 is the infinite sequence of 0’s. Furthermore, in analogy with Remark 1.4, we will
show that the map Ppisr — Mpist given by d — S} and 0 — N(0,1) is a homeomorphism
between sequentially compact spaces. See Theorem 3.32. Therefore, Theorem 1.8 and
Theorem 3.32 combine to give the following complete characterization of the possible limit
laws for a particular family of semistandard tableaux in analogy with Corollary 1.3.

Corollary 1.9. For any fixed € > 0, let
M., ssyT = {Xm[rank]* : £(\) < m and \;/m* > (J]A] +m)} C Mgsyr.
Then
(6) M. ssyr = Messyr U Mpisr,
which is compact. Moreover, the set of limit points of Mcsgyr 15 MpisT.

Corollary 1.9 already indicates that the limiting distributions associated to semistandard
tableaux are much more varied than the case of standard Young tableaux. See Summary 4.20
for a synopsis of all of the asymptotic limits we have identified for &) ,,,[rank]*. This includes
several “generic” asymptotic normality criteria and a partial analogue of aft, called weft,
which controls asymptotic normality in many cases of interest. A complete description of the
closure of Mggyt akin to Theorem 1.1 and Corollary 1.3 remains open.

Open Problem 1.10. Describe Mggyr in the Lévy metric. What are all possible limit
points? Is the closure compact?
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By studying one more special family of semistandard tableaux, we will show that the
Irwin—Hall distributions are also among the limit points. Thus, the strongest statement we
have shown for the moduli space of limit laws for Stanley’s ¢g-hook-content formula is

Mssyt U Mpist U Mzy U {N(0,1)} C Mssyr.

Using a well-known bijection, the two product formulas in (3) imply product formulas for
the generating function of the size statistic on the set PP(a x b x ¢) of plane partitions fitting
in a box. See the second and third rows of Table 1. Let X,xpx[size] similarly denote the
random variable associated with the size statistic on PP(a x b x ¢). In the theorem below,
we give a complete characterization of the limit laws for plane partitions and {X, «px.[size|*}.
This leads to an analog of Corollary 1.3 for the moduli space of plane partition distributions,
denoted Mpp = { X, xpxc[size]*}.

Theorem 1.11. Let a,b, ¢ each be a sequence of positive integers.
(1) Xaxoxelsize]* = N(0,1) if and only if median{a,b, c} — oco.
(11) Xaxpxelsize]* = THy if ab — M < 0o and ¢ — oc.

Corollary 1.12. In the Lévy metric,
(7) Mpp = Mpp LU M7y,
which s compact. Moreover, the set of limit points of Mpp is exactly Mzy.

1.3. Linear extensions of forests. Knuth [Knu73, p. 70| gave a rational product formula
for counting the set £(P) of linear extensions of a forest P, analogous to the Frame-Robinson—
Thrall hook length formula. Using a fixed bijection w: P — [n], one may interpret L£(P)
as a set of permutations L(P,w) C S, and consider the distribution of the major index
or inversion number statistics on these permutations. Stanley [Sta72] and Bjorner—Wachs
[BW89] gave g-analogues of Knuth’s formula for major index and number of inversions using
certain labelings w. All of these statistics agree up to an overall shift. See the fourth row of
Table 1 and Section 2.3 for details.

Let Xp denote the random variable associated with the maj or inv statistic on L(P, w)
where w is order-preserving. The distribution of X} is independent of the choice of statistic
and the choice of w. Let

Mprorest = {Xp : P is a forest}

be the moduli space of forest distributions. We show that the behavior of the possible
limiting distributions for X'j breaks into two distinct regimes. The first “generic” regime
exhibits classic asymptotic normality, while the second “degenerate” regime allows even
more continuous limit laws than have appeared in the theory for standard or semistandard
tableaux.

Let rank(P) denote the length of a maximal chain in P. Let |P| denote the number
of vertices. For example, the rank of a complete binary tree with 2" — 1 vertices is n, so
rank(P) = log, | P|. Typically, rank(P) is much smaller than |P|, so the following theorem
covers the “generic” regime.

Theorem 1.13. Given a sequence of forests P, the corresponding sequence of random
variables X} is asymptotically normal if

rank(P)

—— < L.
1P|

|P| — oo and lim sup
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In the “degenerate” regime, rank(P) ~ |P|, so the number of vertices not in a chosen
maximal chain is relatively small. We completely describe the possible limit distributions
when | P| — rank(P) = o(|P|/?). To do so, we generalize both the distance distributions and
the Irwin—Hall distributions to the distributions associated to countable sums of independent,
continuous, uniform random variables with finite mean and variance. We call these generalized
uniform sum distributions. Again we can reduce to sums of independent centralized random
variables S; exactly as in (4), except now we consider countably infinite multisets t = {¢; >
to > ...} of nonnegative real numbers. See Section 3.1 for details such as cumulants, the
density function, and the relation to pointwise convergence in RY.

The variance of a uniform sum random variable S; is closely related to the 2-norm of t,

1/2
|t|2 = <Z t2> .
tet

In this notation, Var[S;] = £2|t|3, where By = & is a Bernoulli number. Thus, in order

for S¢ to be well defined, it must have finite variance, so |t|s < oo is required. Let 0y =
{t = (t1,t2,...) : t1 >ty > -+ > 0,[t]a < oco}. The standardized general uniform sum
distributions are indexed by the decreasing sequences t € £y such that 1 = Var[S;] = 22|t

2
so [t]2 = B% = 12. Thus, we will see the number 12 coming up in several places. In particular,

define the hat-operation on t € Zg with positive 2-norm by

(8) T Vi2-s

P
so that Var[S;] = 1.

Now, we can return to the limiting distributions of forests in the “degenerate” regime.
We show in Remark 2.22 that it suffices to consider only standardized trees in order to
characterize all of Mpgest.- In Definition 5.7, we associate to each tree P an elevation multiset
e depending on a maximal chain in P. These multisets determine a new type of limiting
distribution related to the generalized uniform sum distributions, but with another normal
summand.

Theorem 1.14. Let P be an infinite sequence of standardized trees with |P| — rank(P) =
o(|P|*?). Then X} converges in distribution if and only if the multisets € converge pointwise to

some element t € ly. In that case, the limit distribution is Sy+N'(0, 0?) where |t|3/12+0% = 1.

Inspired by Theorem 1.14, we begin the study of DUSTPAN distributions associated
to random variables of the form S; + A (0,0?), assuming the two random variables are

independent, t € ZQ, and 0 € R>y. The nomenclature DUSTPAN refers to a distribution
associated to a uniform sum for t plus an independent normal distribution. The generalized
uniform sum distributions with variance 1 are the special case when ¢ = 0. Let

(9) PDUST = {t € ZZ . |t’g < 12}

be the standardized DUSTPAN parameter space, considered as a sequence space with the
topology of pointwise convergence. Define the moduli space of standardized DUSTPAN
distributions to be

(10) Mpust = {S; + N(0,0?) : [t|3/12 + 0% = 1}.
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The standardized DUSTPAN parameter space Ppysr is a closed subset of the sequence
space {5 C RY considered as a Fréchet space (rather than a Banach space). See e.g. [MV97,
Ex. 5.18(1)] for more details on this structure. In fact, Mpygr is closed as well, and we will
show we have the following homeomorphism of compact spaces.

Theorem 1.15. The map ®: Ppysr — Mpusr given by t — Si + N(0,0?) where o =
V1 —|t|3/12 is a homeomorphism between compact spaces.

Corollary 1.16. The limit laws for all possible standardized general uniform sum distributions
Mguwms = {S; : t € £y} is exactly the moduli space of DUSTPAN distributions,

Msums = Mpusr-

Corollary 1.17. For any fived € > 0, let ¢ TREE be the set of standardized trees P for which
|P| — rank(P) < \P\%*E. Let M rreg = {X} : P € ¢ TREE} C Mpyest be the corresponding
moduli space of distributions. Then

(11) M. treE = McrrEE U MpusT,

which is compact. Moreover, the set of limit points of M. rregr S Mpust.

Remark 1.18. The foundational idea of information geometry is to endow spaces of distri-
butions with the structure of Riemannian manifolds. Consequently, one may be tempted to
recast Theorem 1.15 in the context of manifold theory. However, the infinite-dimensional case
is generally “not mathematically easy” [Amal6, §2.5, p.39]. Here, ¢; is a Hilbert manifold
and a Banach manifold under the /o>-norm, as well as a Fréchet manifold under pointwise
convergence. There does not appear to be a generally agreed-upon Hilbert, Banach, or Fréchet
manifold structure which the closed subset Ppygr inherits from ¢5, though it could perhaps be
thought of as a manifold with corners. In any case, the inherited Hilbert and Banach topology
on Ppygr disagrees with the Fréchet topology, so for our purposes, Theorem 1.15 requires us
to use the Fréchet structure of pointwise convergence. It is consequently unclear if a useful
differentiable structure exists in this context. This is one of our main reasons for introducing
the “moduli space” terminology here, with its attendant meaning as in Remark 1.4.

As with MggyT, it remains an open problem to completely classify all possible limit points
of Mggrest- The strongest results we have proven for g-hook length formulas for forests show
Mgorest U Mpust C Mpgrest, implying there are an uncountable number of possible limit laws
for distributions associated to forests. In the case of forests, the underlying distributions are
always symmetric and unimodal, in contrast to Mgyt which are not always unimodal, see
[BKS20, Conj. 8.1]. So, Mpyest does not contain Mgyr-.

More generally, it is natural to ask which limit laws are possible for the coefficients of
arbitrary g-hook-type formulas, namely polynomials with nonnegative integer coefficients of
the form [[;_,[a]s/[bi]4- In [BS20], we call such g-integer quotients cyclotomic generating
functions (CGF’s) and study their properties from a variety of algebraic and probabilistic
perspectives. Let Mogr denote the corresponding moduli space of standardized distributions.
By Prohkorov’s Theorem, M¢qr is compact.

Open Problem 1.19. Describe Mcgr in the Lévy metric. What are all possible limit points?
Is Mcgr U Mpust the moduli space of limit laws for q-hook formulas, referring back to the
title of this article?
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1.4. Paper organization. The rest of the paper is organized as follows. In Section 2, we
provide background for the hook and cumulant formulas summarized in Table 1. In Section 3,
we analyze the moduli space of generalized uniform sum distributions and its variations in
order to prove Theorem 1.15 and it’s analog for the distance distributions. The analysis of
Mgsyr and Mpp is in Section 4. The analysis of Mpgyest is in Section 5. Some additional
open questions and avenues for future work are listed in Section 6.

2. BACKGROUND

In this section, we briefly recall statements from the literature we will need related to
asymptotic distributions, semistandard tableaux and forests. All of our arguments for
determining asymptotic distributions use the Method of Moments/Cumulants. Using work of
Hwang—Zacharovas, we explain a key insight for this paper, namely that rational product
formulas such as appear in Table 1 give rise to explicit formulas for cumulants of the
corresponding distributions. See [BKS20, §2-3| for a more extensive exposition aimed at an
audience familiar with enumerative combinatorics. See [Bil95] for background in probability.

2.1. Asymptotic distributions. Let X be a real-valued random variable. For d € Z~, the
dth moment X is

g = E[X).
The moment-generating function of X is

My(t) = B[] = 3 pagy.
d=0 )

which for us will always have a positive radius of convergence. The characteristic function of
X is

ox(t) = E[e"Y],
which exists for all ¢ € R and which is the Fourier transform of the density or mass function
associated to X'. We will need the following technical details for the proofs in future sections.

Remark 2.1. The characteristic function ¢x(s) = E[e**¥] in general converges only for
s € R. However, if there is a complex analytic function ¢ (s) defined in an open ball |s| < p
such that ¢x(s) = ¢(s) for —p < s < p, then ¢x(s) exists and is analytic in some strip
—f < Im(s) < a where «a, § > p. Moreover, for [s| < p, ¢x(s) = 1(s). In particular, the
moment-generating function E[e!Y] converges for —p < t < p, so X has moments of all orders
and is determined by its moments. See e.g. [Luk70, Thm. 7.1.1, pp.191-193] and [Bil95,
Thm. 30.1] for details.

The cumulants k1, ks, . . . of X are defined to be the coefficients of the exponential generating
function

Kx(t) = Z Ky = log My (t) = log E[e'¥].
d=1 '

Hence, they satisfy the recurrence

d—1 d—1
(12) LIRSS (m B 1) Fomfld—m;

so the moments can similarly be recovered from the cumulants and vice versa. In particular,
(12) implies x; = pu; = p = E[X] and ky = Var[X] = 0. The cumulants also satisfy



THE MODULI SPACE OF LIMIT LAWS FOR ¢-HOOK FORMULAS 11

(1) (Homogeneity): the dth cumulant of cX is c¢?ky for ¢ € R, and
(2) (Additivity) the cumulants of the sum of independent random variables are the sums
of the cumulants.

For d > 4, the moments of independent random variables are not necessarily sums of the
moments, so cumulants work much better for our purposes. By homogenenity and additivity,
the associated standardized random variable X* = (X — u)/o has cumulants ki = 0,
X _
kg =1, and
X X
x+ _ kg ka
= —— — >

(13) Ky i = ()i for d > 2.
Example 2.2. The normal distribution N(0,1) is the unique distribution with x; = 0,
ky =1, and kg = 0 for d > 3. Therefore, N'(u, 0?) is the unique distribution with cumulants
K1 = [, ko = 02, and kg = 0 for d > 3.

Example 2.3. Let U = U[0, 1] be the continuous uniform random variable whose density
takes the value 1 on the interval [0, 1] and 0 otherwise. Then the moment generating function

is My (t fo edr = (e — 1)/t, so the cumulant generating function log My (t) coincides

with the exponential generating function for the divided Bernoulli numbers % for d > 1.
Their exponential generating function Ep(t) satisfies

Byt? el —1
Ep(t) ::Zfazlog< . )

d>1

Hence, the d"" cumulant for U is k4 = By/d for d > 1. Recall from Section 1, ZH,, is the
Irwin—Hall distribution obtained by adding m independent [0, 1] random variables. By
additivity, the dth cumulant of ZH,, is mB,/d. More generally, let S == >"" | U[oy, Bx] be
the sum of m independent uniform continuous random variables. Then the dth cumulant of
Sford>2is

(14) 5= 22 (on— )"
k=1

by the homogeneity and additivity properties of cumulants.

The Method of Moments/Cumulants is based on the following theorem. All random
variables we encounter will have moments of all orders.

Theorem 2.4 (Frechét—Shohat Theorem, [Bil95, Theorem 30.2]). Let X, X, . .. be a sequence
of real-valued random variables, and let X be a real-valued random wvariable. Suppose the
moments of X,, and X all exist and the moment generating functions all have positive radius
of convergence. If

(15) lim py™ =py  Vd € Zs,
n—oo -

then X1, Xs, ... converges in distribution to X. Similarly, if

(16) lim k;" = k) Vd € Zs,
n—oo -

then X1, Xs, ... converges in distribution to X .
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Corollary 2.5. A sequence X1, Xs,... of real-valued random variables on finite sets is
asymptotically normal if for all d > 3 we have

Xn

; X0 d__ _
() = B ey =

For a positive integer n, define the associated g¢-integer to be the polynomial [n], =
l+q+¢+-+q¢1=(1-q")/(1 —q). The g-integers factor into cyclotomic polynomials
over the integers. Therefore, the hook length formulas considered in this paper are all
products of cyclotomic polynomials. Because these rational product formulas are polynomial,
all cancellation can be done efficiently by taking the multiset difference between the numerator
and denominator of the cyclotomic factors.

In a forthcoming paper [BS20], we investigate general properties of generating functions
which are products of cyclotomic polynomials with nonnegative coefficients. For this paper,
we just need two facts. The first theorem first appeared explicitly in the work of Hwang—
Zacharovas [HZ15, §4.1] building on the work of Chen—Wang—Wang [CWWO08, Thm. 3.1],
who in turn used an argument going back at least to Sachkov [Sac97, §1.3.1].

Theorem 2.6. [HZ15, §4.1] Suppose {a1,...,an} and {b1,... by} are multisets of positive
integers such that

a m

(18) P(q) = H 1:3% H [[Z:}]z = chqk € Zxolg)-

k=1

Let X be a discrete random variable with P[X = k| = ¢ /P(1). Then the dth cumulant of X
18

B m
x _ Pd }: d d

where By is the dth Bernoulli number (with By = %)

The following corollary is proved in [BS20]. It also follows from the tail decay bound in
[HZ15, Lemma 2.8]. We need this for our current investigations for hook length formulas.

Lemma 2.7 (Converse of Frechét—Shohat for CGF’s). Suppose X1, Xs, ... is a sequence of
random variables corresponding to polynomials of the same form as (18). If X* = X for
some random variable X, then X is determined by its cumulants and, for all d € Z>q,

. Xy X

i 8 =
2.2. Semistandard Young tableaux and plane partitions. We briefly recall the defi-
nition and notation for Schur functions, semistandard tableaux and plane partitions. For
more information on symmetric functions and their connection with the enumeration of plane
partitions and tableaux, see [Sta99, Ch. 7].

A partition A = (A} > Ag > -+ > \;) is a finite decreasing sequence of positive integers.
Let £(\) = k denote the length of \. We think of X in terms of its Young diagram, which is a
left justified array of £(\) rows with A; cells on row ¢ and index the cells in matrix notation.

A semistandard Young tableau, or just semistandard tableau for short, of shape A is a filling
of the cells of A\ with positive integer labels, possibly repeated, such that the labels weakly
increase to the right in rows and strictly increase down columns. The set of semistandard
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Young tableaux of shape A is denoted SSYT(A). The subset of SSYT()) filled with integers
no greater than m is denoted SSYT<,,(\), which is a finite set. The type of a semistandard
tableau 7" is the composition o(7T') = (a1, as,...) where q; is the number of times ¢ appears

in T'. The Schur function
sxy(x1, z9,...) = Z x(T)

TESSYT(N)
is the type generating function for all semistandard tableaux of shape A, where x* =
[ e D)
1’1 :,E2 LI

The rank of a semistandard tableau 7" is a nonnegative integer statistic depending only on
the type. It is defined by

rank(7T") = rank(a) = Z(z — 1Da.

i>1

For example, for a fixed partition A, the smallest possible rank of any 7" € SSYT(\) occurs
for the tableau with all 1’s in the first row, all 2’s in the second row, etc. in the diagram of .
Therefore, the minimal rank is ) (7 — 1)\;, which we denote as rank()). The rank generating
function for SSYT(A) is given by the principal specialization of the Schur function,

S,\(l, q, q27 .. ) = SSYT()\)rank(q) _ Z qrank(T)
TeSSYT(N)

sx(1,q,¢% ..., ¢™ ") = SSYT<,,(A)™™(q) Z k()

TESSYT(A) <

The motivation for considering this particular specialization comes from the g-analog of the
Weyl dimension formula in representation theory. Stembridge [Ste94, §2.2-2.3, Prop. 2.4]
put a ranked poset structure on the weights of a semisimple Lie algebra, which in type A
reduces to rank(a). The following rational product formula for s)(1,q,q?,...,¢™ ') in terms
of the g-integers is due to Littlewood. It follows easily from the classical ratio of determinants
definition of Schur polynomials.

Theorem 2.8 ([Lit40, §7.1], [Sta99, (7.105)]). For any partition A and positive integer
m > £(N),

Ni—XNj+j—1i
(20) SA(L q, q27 o 7qm—l) _ qrank()\) H [ .] +] Z]l]‘
Stanley gave an alternate rational product formula for sy(1,q,...,¢™ '), which is called

the g-hook-content formula. Here the content of a cell v in row 4, column j in A is defined as
Cu = J — 1. Also, the hook length of cell u, denoted h,,, is the number of cells directly east of
u, plus the number of cells directly south of u in the diagram of \.

Theorem 2.9 ([Sta99, Thm. 7.21.2]). For any partition \ and positive integer m > £(N),

(21) (L ) = g T s
UEN [h“]q
The two product formulas for s)(1,¢,...,¢™ ') are each useful in different circumstances.

The product in (20) involves (7)) terms, whereas the product in (21) involves |A| terms. One
can observe from these formulas that s)(1,q,...,¢™ ') is symmetric about the mean nonzero
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coefficient. From the representation theory of GLy(C), it is known that sy(1,q,...,¢™ )

is also unimodal. See [GOS92] for a combinatorial proof relying on the unimodality of the
Gaussian polynomials.

Recently, Huh—Matherne-Mészéaros—St.Dizier [HMMD19] showed that Schur polynomials
are strongly log-concave. However, we note that s)(1,q,...,¢™ 1) is not always log-concave.
For example,

sen(1,¢,¢%.¢%) = ¢ +2¢° +4¢® + 5¢" + 7¢° + 7¢° + 7¢* + 5¢° + 4¢° + 2¢" + 1,

which is not log-concave since 5% < 4 - 7.

Combining Theorem 2.6 and Theorem 2.9, we get an exact formula for the cumulants of
the random variable associated to the rank function on semi-standard Young tableaux on the
alphabet [m] chosen uniformly. This cumulant formula is the key to analyzing the asymptotic
distributions.

A;m

Corollary 2.10. Fiz a partition X. If k7" is the dth cumulant of the random variable
associated to rank on SSYT<,,(X), then, ford > 1,

(22) @*”:%( > (/\¢—>\j+j—i)d—(j—i)d)

1<i<j<m

(23) = % (Z(m +cy)? — hﬁ) :

UEN

Observe, the summands in (23) can be negative, but the summands in (22) are each clearly
positive. Thus, lié\;m has the same sign as the Bernoulli number B, namely it is negative if
and only if d is divisible by 4, and mg‘;m = B; = 0 if and only if d > 1 and odd.

Definition 2.11. A plane partition is a finite collection of unit cubes in the positive orthant
of R? stacked towards the origin. More formally, it is a finite lower order ideal in Z3, under
the component-wise partial order. We may imagine a plane partition p as a matrix with
entry p;; recording the number of cells with z-coordinate 7 and y-coordinate j. The size of a
plane partition p is the number of cubes, denoted |p| = > p;;. We write PP(a x b x ¢) for
the set of all plane partitions fitting inside an a by b by ¢ rectangular prism.

There is a straightforward bijection between plane partitions and semistandard Young
tableaux of rectangular shape,

PP(a x b x ¢) = SSYT<,..((b%))

(24) .
p — T where T;; = ¢ — p;; + 1.

All T and p in the bijection are rectangular arrays with a rows and b columns with entries
labeled using matrix indexing conventions. Letting [T := >_, ; Ti;, note that |T'| = rank(T) +
ab and |T'| + |p| = abc + b(a;rl) is constant. Hence, the unique element of minimal size in
PP(a x b x ¢), namely @, maps to the unique maximal rank tableau in SSYT<,..((b*)) with
values ¢ — 7 in row ¢ for each 1 <7 < q.

By Theorem 2.8 and Theorem 2.9, we know SSYT(\)™"%(q) is symmetric up to an overall
g-shift. Similarly, PP(a x b x ¢) is closed under box complementation, so it follows from the
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bijection and (20) that

(25) PP(a x b x €)™ (q) = ¢~ ™™V SSYT<q (")) (q)
@ —;1;1 R
o) 11 e

i=1 j=1
2 I e

The later two product formulas are originally due to MacMahon. See the proof of [Sta99,
Thm. 7.21.7] for more details and [Sta99, pp. 402-403] for historical references. In particular,
the cumulants of size on PP(a x b x ¢) are given by (22) or (23) where A = (b*) and m = a+c.

2.3. Linear extensions of forests. Next, we summarize the relevant terminology and
results from [BW89]. Briefly recall, a tree is a finite, connected simple graph with no cycles.
A forest is a finite disjoint union of trees. A tree is rooted if it has a distinguished vertex,
called the root. A forest is rooted if each of its trees is rooted. The Hasse diagram of a
partially ordered set (poset) P is the graph with vertex set P where there is an edge between
x and y if y covers x, i.e. * <p y and there does not exist u € P such that v <p u <p y. We
refer to a poset as a forest if its Hasse diagram is a forest with roots as maximal elements, or
equivalently if every element of P is covered by at most one element.

Definition 2.12. Let P be a finite partially ordered set. The rank of P is the maximum
number of elements in any chain u; < us < --- < uy in P. For instance, if P is a singleton,
its rank is 1. Note that this definition is one larger than the standard definition in [Stal2,
Ch.3], but it is more convenient for our purposes.

Definition 2.13. Let P be a poset. A labeling of P is a bijection w: P — [n], and a labeled
poset is a pair (P,w) where w is a labeling of P. A labeling w of P for which w(p) < w(q)
whenever p <p ¢ is called a natural labeling. A labeling w of P is reqular if for all x <p z
and y € P, if w(z) < w(y) < w(z) or w(z) > w(y) > w(z) then x <p y or y <p z. Regular
labelings of forests include the postorder, preorder, and inorder labelings, which are commonly
used in computer science.

Definition 2.14. A linear extension of P is an ordered list pq,...,p, of the elements of P
such that ¢ < j whenever p; <p p;. If (P,w) is a labeled poset, a linear extension can be
thought of as the permutation i — w(p;) of [n]. The set L(P,w) is the set of all permutations
obtained in this fashion from linear extensions of the labeled poset (P, w).

It is often convenient to use a natural labeling w of P so that id € L(P,w). Choosing
labelings which are not natural forces inversions to appear in any o € L(P,w). Finding
the minimum number of inversions in any linear extension of an arbitrarily labeled poset
motivates the following analogues related to inversions and descents in permutations.
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FIGURE 1. A naturally labeled poset (P,v) on the left and another labeling of
the same diamond poset (P,w) on the right which is not natural or regular.

Definition 2.15. Let (P, w) be a labeled poset. Set

Inv(P,w) = {(w(x),w(y)) : * <py and w(z) > w(y)} (inversion set)

inv(P,w) = | Inv(P,w)| (inversion number)

Des(P,w) = {w(x) : w(z) > w(y),y covers x € P} (descent set)

maj(P,w) = Z iy (magor index)
w€Des(P,w)

where the hook length of an element x € P is
(29) hy =#{teP:t<pux}.

Example 2.16. For the first labeled poset (P, v) in Figure 1, we have £(P,v) = {1234, 1324},
Inv(P,v) = Des(P,v) = 0, and inv(P,v) = maj(P,v) = 0. For the second labeled poset (P, w)
in Figure 1, we have £L(P,w) = {3142,3412}, Inv(P,w) = {(3,1),(3,2),(4,2)}, Des(P,w) =
{3,4}, inv(P,w) = maj(P,w) = 3. The hook lengths of the diamond poset are 1,2, 2, 4.

Remark 2.17. One can consider a partition A as a poset on its cells where (u,v) < (z,y) if
and only if v < z and v < y. However, the hook lengths of A\ do not agree with (29) except
when ) is a single row or column. For example, the hook lengths for the partition (2,2) are
1,2, 2,3, while the hook lengths for the diamond poset are 1, 2,2, 4.

Mallows and Riordan first studied the inversion enumeration on labeled rooted trees [MR68],
and connected it to cumulants of the lognormal distribution. Knuth gave a hook length
formula for |£(P,w)| [Knu73, p. 70] for posets which are forests. Bjorner—Wachs [BW89]
and Stanley [Sta72]| generalized Knuth’s result to g-hook length formulas using the inv and
maj statistics on £(P,w). Stanley considered only the case when w is natural, i.e. when
inv(P, w) = maj(P,w) = 0, for the maj generating function.

Theorem 2.18 ([BW89, Thm. 1.1-1.2, Cor. 3.1, Thm. 6.1-6.2]). Let (P,w) be a labeled poset
with n elements. Then

. n),!
E(P w maJ — qmaJ(Tr) maJ(P,w) [ q
WGLZPw HuGP[hU]q

if and only iof P 1s a forest. Similarly,
n),!
,C(P U} 1nv — qan(Tl' _ 1nv(P,w) [ q
= 2 T,

meL(Pw) uep[hu]q
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4 3
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FIGURE 2. A naturally labeled poset (P,v) on the left and another labeling of
the same forest poset (P, w) on the right which is not natural.

["] q:

ueP[h1 } has

if and only if (P,w) is a regularly labeled forest. Moreover, if P is a forest, Tt
symmetric and unimodal coefficients.

Example 2.19. For the first labeled poset (P, v) in Figure 2, we have £(P,v) = {1234, 2134},
Inv(P,v) = Des(P,v) = (), and inv(P,v) = maj(P,v) = 0. For the second labeled poset (P, w)
in Figure 2, we have £(P,w) = {2413,4213}, Inv(P,w) = {(2,1), (4,1), (4,3)}, Des(P,w) =
{2,4}, inv(P,w) = 3, maj(P,w) = 2. Note L(P,w)™ = ¢*> + ¢3, and L(P,w)™ = ¢* + ¢*.
The hook lengths of the underlying poset are 1,1,3,4. One can verify the formulas in
Theorem 2.18 hold in each of these cases, but they don’t hold for the diamond poset.

Given a forest P, define the polynomial

(30) Lp(q) = [n]g!/ [ IR

ueP
and let X'p the associated random variable. Note, the distribution of X'» does not depend
on the choice of labeling of the vertices of P since Lp(q) depends only on the unlabeled
poset structure. We also get simple formulas for the associated cumulants in the next two
statements.

Remark 2.20. By the unimodality result in Theorem 2.18, we know Lp(q) := [n]¢!/ [ L,cplPulq
has nonzero coefficients in an interval, so it has no internal zeros. The degree of Lp(q) is

I

ueP
and the mean of Xp is half the degree.

Corollary 2.21. Let P be a forest with n elements. Suppose d € Zsy. Let k% denote the
dth cumulant of the random variable Xp. Then,

P Bd L4 hd)
gblie>
Remark 2.22. In order to characterize all possible limit laws for the standardized random
variables associated with maj and inv on labeled forests, we only need to consider the set
of all distributions associated with standardized trees as follows. Given any forest P, we
may turn P into a tree by adding a new vertex covering the roots of all the trees of P. It is
easy to see that the quotient in (30) is unchanged, so the cumulants and the corresponding
distributions are the same. Similarly, if P is a tree and the root has exactly one child, we
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may delete the root while preserving the fact that P is a tree, and the quotient in (30) is
again unchanged. Consequently, we say a forest is standardized if it is a tree and the root
has at least two children. Therefore,

Mporest = {Xp : P is a forest} = {X} : P is a standardized tree}.
2.4. Riemann integral estimates. Many of our theorems depend on approximations using
a mixture of combinatorics and analysis. In particular, we return to certain basic sums over

and over again. Let hy(a,b) = Z;l:o a’b® 7 denote the complete homogeneous symmetric
function on two inputs.

Lemma 2.23. For positive integers a,b, and d > 1, we have

a+b
Cli[(a+b —a'] < Z G4 [(a+b)*—a’] + (a+b)* " —a’".
j=a+1
Equivalently,
b a+b
Ehdla—i—ba Z] < = hd 1(a+b,a)+bhyo(a+b,a).
j=a+1
Proof. Use a Riemann integral estimate. O

2.5. Standard notation for approximations. We use the following standard Bachmann-—
Landau asymptotic notation without further comment. We write f(n) = ©(g(n)) to mean
there exist constants a,b > 0 such that for n large enough, we have ag(n) < f(n) < bg(n).
If f(n) = O(g(n)), then there exists a constant ¢ > 0 such that for all n large enough, we

have f(n) < cg(n). On the other hand, if f(n) = o(g(n)), then as n — oo, we have £ — 0.

g(n)
Similarly, f(n) = w(g(n)) implies ((”3 — 00 as n — oo, and f(n) ~ g(n) implies E"; — 1 as

n — o0.

3. MODULI SPACES RELATED TO UNIFORM SUM DISTRIBUTIONS

Motivated by applications to MggyT and Mg..est in the next two sections, we first analyze
the distributions of finite and infinite sums of uniform continuous random variables. We
parameterize these distributions using certain sequence spaces and precisely relate weak
convergence of the underlying distributions to pointwise convergence of the parametrizing
sequences. The closure of the space of all possible distributions associated to standardized
sums of independent uniform random variables leads us to define the moduli space of
DUSTPAN distributions. We also describe a closed subset of the DUSTPAN distributions
related to distance multisets, which appear in the study of Mggyr.

3.1. Generalized uniform sum distributions and decreasing sequence space. The
Irwin—Hall distributions, also known as uniform sum distributions, are the distributions
associated to finite sums of independent, identically distributed, uniform random variables
supported on [0, 1]. First, we relax the requirement that they be identically distributed, and
then we relax the requirement that they are finite sums.

Consider a random variable defined as the sum of m independent uniform continuous
random variables of the form S = " U[ay, Bx] with oy, < [ for each k. We call the
distribution of S a generalized uniform sum distribution. See Figure 3 for example density
functions. We note that each of the generalized uniform sum distributions is non-normal,
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though the histograms may look quite similar. By Example 2.3, the dth cumulant of S for
d>21s

(31) d:%z&k—ﬁk )
k=1

which only depends on the differences t;, = ay — fi. It is useful to compare (31) to the
cumulants in (19).

The random variable § can be expressed as a constant overall shift ¢ = % S (o + Br)
plus a uniform sum random variable associated to t

(32) S, ._Zu{ b t’“},

where t = {t; >ty > ... > t,,} is a multiset of non-negative real numbers written in
decreasing order. Thus, up to an overall constant shift, in order to classify all possible finite
generalized uniform sum distributions, it suffices to classify finite sums of independent central
continuous uniform random variables of the form (32).

L L
-10 -5 5 10

F1aure 3. Plots of density functions for the distributions Sy with t = (6,5, 1)
and t = (6,5,5,5,1).

Example 3.1. Consider the 1/2-power sequence t = (1,1/2,1/4,1/8,...). The density
function for the distribution St in Figure 4 has a rather flat top like the sum of two uniform
distributions, in contrast to the harmonic sequence t = (1,1/2,1/3,1/4,1/5,...).

0.5 1.0 -1.0 -05

FIGURE 4. Plots of density functions for the distributions &
with ¢t = (1,1/2,1/4,1/8,1/16,1/32,1/64,1/128,1/256) and t =
(1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9).

We will show below that a similar classification holds for the distributions associated
to countable sums of independent continuous uniform random variables, which are defined
provided the expectation and variance are finite. Again we have a nice formula for the
cumulants of infinite sums of uniform random variables simply by letting m — oco. Observe
that (31) is very similar to the definition of the p-norm for a real vector space.
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Definition 3.2. Let t = (¢, t2,...) be a sequence of non-negative real numbers. For p € Rsy,
the p-norm of t is |t], = (D -, tﬁ)l/p. We also set [t|s = supy tx.

The p-norm has many nice properties. In particular for d > 2 and t = (¢4, ...,%,,), we have
By — B
S d d
(3) = S ) = el
k=1

It is well-known (e.g. [MV97, Ex. 7.3, p.58]) that if 1 < p < ¢ < oo, then [t|, > |t|,, and that
if |t|, < oo, then lim, , |t|, = |t]c- Thus if t is weakly decreasing, |t|., = sup, tx = t;.

The sequence space with finite p-norm £, = {t = (t1,t,...) € RY; : |t|, < 0o} is commonly
used in functional analysis and statistics. Here we define a related concept for analyzing
sums of central continuous uniform random variables.

Definition 3.3. The decreasing sequence space with finite p-norm is
Oy={t = (t1,ty,...) ity >ty > - >0, |t], < oo}

The elements of EH may equivalently be thought of as the set of countable multisets of non-
negative real numbers with finite p-norm. Any finite multiset of non-negative real numbers can
be considered as an element of Zp with finite support by sorting the multiset and appending
0’s. The multisets in Zp are uniquely determined by their p-norms. In fact, any subsequence
of p-norm values injectively determines the multiset provided the sequence goes to infinity.

Lemma 3.4. Let t,u € Ep for some 1 < p < oo. Suppose [t|,, = |u],, for some sequence
pj — 0o. Then t =u.

Proof. We have

t1 = supty = [t|oo = lim [t],, = lim |u|,, = |u|e = supu = u1.
k J—00 J]—00 k

We may remove the first elements from both t and u to obtain multisets (t2,ts,...) and
(ug,us, . ..) which are both in £, and have equal p;-norms again. While removing these largest
elements alters the p;-norms, it does so by the same amount for both t and u. Repeating the
argument, t; = u; for all 7, so t = u. [l

Theorem 3.5. Finite generalized uniform sum distributions are bijectively parameterized by
R x {t € {5 : t has finite support}.

Proof. As noted above, every such distribution is defined by a random variable of the form
¢+ S for some ¢ € R and t = (¢1,...,6,,0,0,...) € {y. To show uniqueness, suppose
St = Su. By (33), we know
By By
|t’d* Ztk*“d = Ky" *72
k=1
Therefore, since the even Bernoulh numbers are non-zero, we have [t|; = |ulq for each d even,
which is a sequence approaching infinity. Hence, by Lemma 3.4, t = u. U

The probability density functions (PDF) for any finite generalized uniform sum distributions
can be determined as a convolution. We will not need this formula in the rest of this paper,
but we note it here for completeness. It was used to generate Figure 4.
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Lemma 3.6. Let t = {t, > ... > t,, > 0}. Then PDF(S;; x) is given by

1 €1t1 + -+ Emtm m-1 €1t1 —+ .4 Emtm
2m— )ty -t Z €1 €y <x—|— 5 ) sgn <x—|— 5 .
€1,....emE{E1}

Proof. For the case m =1,

PDF(U[—t1/2, t1/2]: 7) = 2% (sgn <:1:' + %) _sen (x - %1)) |

Let * denote convolution. One can check that for all u > 0, we have the convolution identity

1
2Fsgn(z) * 3 (sgn(z +u) —sgn(z —u))
1
Ck+1
The probability density function of the sum of independent random variables is the convolution

of their density functions. Therefore, the general case of the lemma now follows by applying
the m = 1 case and the convolution identity inductively. 0

((z 4+ u)sgn(z + u) — (x — u)'sgn(z — u)) .

Remark 3.7. When t; = --- =1, = 1, the formula in Lemma 3.6 collapses to

PDF(TH,,—m/2 z) m ki:()(—nk <TZ) (x 4 mT_k - g)m_l sen (a: 4 mT_k - g) |

Hence we recover the density formula for the Irwin—Hall distributions [JKB94, p. 296]

PDF(ZH,,;z) = m Z(_l)k (TIZ) (x — k’)m_l sgn(x — k).
" k=0

Remark 3.8. A similar formula for the cumulative distribution function of S; as a sum over
the vertices of the hypercube is given in [BS79]. See also [JKB94, p. 298-300] for relevant
discussion.

We now turn to infinite sums of independent uniform continuous random variables. Our next
goal is to generalize Theorem 3.5 to this setting. To do so, we must first extend the uniform-
sum distributions St to countably infinite multisets t, and discuss the basic properties of these
random variables including existence, characteristic functions, and cumulants. Existence
depends on the following well-known result, which often appears in treatments of the law of
large numbers. See, for example, [Durl0, Thm. 2.5.3].

Theorem 3.9 (Kolmogorov’s Two-Series Theorem). Let X}, Xs, ... be a sequence of inde-
pendent real-valued random variables. Suppose E[Xy] = 0 and >~ Var[Xy] < co. Then
Y re Xy converges almost surely.

Almost sure convergence implies convergence in distribution. Therefore, by Kolmogorov’s
Two-Series Theorem, we are lead to the following definition.

Definition 3.10. A generalized uniform sum distribution is any distribution associated to
a random variable with finite mean and variance given as a countable sum of independent
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continuous uniform random variables. As in the finite case, such random variables are given
by a constant overall shift plus a uniform sum random variable

for some t = (£, s, ...) € l5. Kolmogorov’s Theorem applies since Var[U[—t/2,t/2]] = Day2
and >°77 | Var[[—tx/2,t1,/2]] = 22[t]3 < oc.

Conversely, Kolmogorov’s stronger Three-Series Theorem [Durl0, Thm. 2.5.4] shows that if
Yoot = oo, then > 7 U[—t;/2,t;/2] diverges with positive probability, so the assumption
t|2 < oo is essential. In this way we also see that uncountably many non-zero summands of
independent continuous uniform random variables must diverge. Thus, we cannot extend
Definition 3.10 beyond countable sums. N

We claim that each uniform sum random variable S; for t € /5 gives rise to a distinct
distribution. In order to prove the claim, we need to verify the relationship between the
p-norms and the cumulants of the infinite sums is as expected. To do so, we describe the

characteristic and moment-generating functions of ;.

Lemma 3.11. Let t = (t1,1q,...) € ly. Then S exists, has moments of all orders, and is
determined by its moments. The characteristic function is the entire function

(34) ¢s,(s) = [ [ sinc(st/2),  seC.
k=1
Moreover, E[S;] = 0, Var[S;] < oo, and for each d € Z>o,

. Bi>,, B
(35) Kot = ¥ Zti = 7|t|§-
k=1

Proof. As mentioned above, the assumption t € ZQ and Theorem 3.9 together imply S exists.
The characteristic function of U[—x, x| is

36 Our—wal(S L et dt = i sin(s7) = sinc(sz),
[~=,a]

2x 2isx ST

—x

where sinc(0) := 1. Consequently, the nth partial sum S, = > _, U [—%“, %’“] has character-
istic function ¢g, (s) = [[,_, sinc(stx/2). Almost sure convergence implies convergence in

distribution, so S,, = S;. Thus, by Lévy’s Continuity Theorem, we have for each s € R that
¢s,(s) = [ [ sinc(str/2).
k=1

By Lemma 3.12 below, the product form for ¢g, is entire and hence complex analytic on an
open ball, so (35) follows from Remark 2.1. Likewise, S¢ has moments of all orders and Sy is
determined by its moments.

Since the entire functions ¢g, (s) converge uniformly on compact subsets of C to ¢g,(s), it
follows that the d"* moment can be determined by the constant term of the d* derivative of
the characteristic function
lim E[Sy] = lim i ¢§)(0) = i~'95)(0) = E[S{]

n—o0
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for all d > 1. The moments of any random variable determine its cumulants and vice versa.
Therefore, the cumulant formula now follows from (33), including the first two moments. [

Lemma 3.12. Let t = (t1,t2,...) € ly. As a function of s, the infinite product

H sinc(st; /2)

converges to an entire function in the complex plane. Moreover, for |s| < 1/|t|s,

H sinc(st; /2)| <
i=1

Proof. For each D > 0, the entire function % is bounded on |z| < D by some constant

C > 0. Thus
|1 — sinc(2)| < Oz for |z| < D.
Consequently, for |s| < 2D/ sup{t;}, we have

C
|1 — sinc(st;/2)] < Z\s|2t?.

Hence
o0

Z |1 — sinc(st;/2)| < %|s|2|t|g < 00.
i=1
Thus, the sum converges uniformly on compact subsets of {|s| < 2D/sup{t;}}. Taking
D — oo, the sum converges uniformly on compact subsets of all of C. The result now follows
by standard criteria for infinite product convergence such as [Rud87, Thm. 15.6].

For the growth rate bound, it is straightforward to check that when D = 1/2, we may use
C' = 4. Since [t|z > |t|o = sup{t;}, for |s| < 1/|t|2, we have

H sinc(st;/2)

H|1—(1—smc (sti/2))] H 1+ |1 — sinc(st;/2)])
=1 i=1

<[J@+s) < Hexp s|*t?)
=1

= exp (|s[*[t]3) < exp (1) =e.
]

Theorem 3.13. Generalized uniform sum distributions are bijectively parameterized by R x 0.
In particular, if t,u € ly with t # u, then S # Su. Furthermore, 8¢ = S if and only if t,u
differ by a scalar multiple.

Proof. The first and second claims follow exactly as in Theorem 3.5 using the cumulant
formula in Lemma 3.11. For the third claim, we can assume |t|, = |u|s by rescaling if
necessary and §§ = &;;. From Lemma 3.11 and the general properties of cumulants, it follows
that for all d even,

[t12/[t]5% = [uld/uly>.
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Taking dth roots and the limiting sequence of positive even integers d, this implies

bl _ o bl o Jule _ Juls
[ty dveo g2 Ao uly® July?

Since [t|oo = |u|o, We have |t|o = |ulz, which hence gives |t|; = |u|, for all d even. Again by
Lemma 3.4, we have t = u. O

Example 3.14. Infinite sums of independent continuous uniform random variables have ap-
peared elsewhere in the literature, though rarely. For instance, when t = (1,1/2,1/4,1/8,...),
the cumulative distribution function of S = Y 7, U[—1/2% 1/2*] is the so-called Fabius
function, [Fab66], which is a known example of a C'*°-function on an interval which is nowhere
analytic. The characteristic function is nonetheless entire by Lemma 3.12.

Example 3.15. Another interesting case arises from t = (1,1/2,1/3,1/4,...). Since |t|s =
Yoo 1/k* <00, S = > 5o, U[-1/(2k),1/(2k)] converges almost surely. For d > 1, we have

Bug~ 1 _ Bu

== — = 2d).
wa =g 2 = g ¢
Using the known identity
Bog(27)%d
2d) = (—1)d+1 22 2")
C(2d) = (<1 2

it follows that

00 k

s
log ¢s, (s) = E H’“E
k=1 ’

which is valid in a complex neighborhood of s = 0. This last expression is similar to the
left-hand side of the known identity

i ¢(2d)s* = —g cot(ms).
d=0

Example 3.16. Let o € R. and set t™) = (1/N®,1/N®,...,1/N®,0,...) where there are
1
N non-zero terms. Then [t™V)|, = N»7*. So, for 1 < p < oo,

0 ifp>1/a
dim [t =01 ifp=1/a
oo ifp<1/a.

On the other hand, for each k& we have limy_so tECN) = 0, independent of a. Hence we have a
large family of sequences which each converges pointwise to (0,0, ...), but which have different
limiting p-norms. In particular, when o = 1/2 we have limy_,o0 [t™)], =1 # 0 = |(0,0,...)]2,
so the limit of the 2-norms is not the 2-norm of the limit. The interplay between convergence
in /5 and convergence of generalized uniform sum distributions is consequently somewhat
subtle, which we treat in the next subsection.
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3.2. Pointwise convergence and convergence in even norms. The decreasing sequence
space 5 has a natural notion of pointwise convergence. In this subsection, we relate pointwise
convergence to convergence of p-norms for all positive even p > 4, assuming the 2-norms are

bounded.

Lemma 3.17. Fiz M € R. Let t™) € {5 be a countable sequence of sequences such that
t™M2 < M for each N and

lim ’t(N)|2d = Toq
—00

exists for all d € Z>o. Then
(1) limg o0 Toq exists,
(1) impy 00 th) exists,
(117) limg_so0 Tog = limpy o0 th) = lmy_e0 [t oo, and

(iv) t™N) converges pointwise to t = (t1,ta,...) € £y where t; = limy_,o0 tEN).

Proof. For (i), if d < e < oo then [t™)|yq > [t™™)],, by properties of the p-norm. Therefore,
Tog = Toe > 0 and limy_, o, T4 exists.

For (ii), observe that since t™) is a decreasing sequence in £, we know [tV |, = ¢\ > t;
for all 7. Therefore, for all d € Z>;, we have

e = Z(tf“)?d
< Z 2(d 1) N))z

< <t§ ORRRy

(N)

Combining this with the fact that th) < [t™)]44 by definition of the p-norm, one has

(37) 1 <60 < (1)1 M

Taking N — oo in (37) gives

(38) limsup(t™) < g < lij\rfn inf(¢") 14 . M2,
N—oo —0

Taking d — oo in (38) gives

(39) limsup(tY)) < lim 754 < liminf(¢™)),
d—o0 N—o00

N—oo

so limpy o0 th) = limg_,o To¢ Which implies the limit exists by (i). Part (iii) also follows from
(39) and the fact that |t™) | = ¢!
Part (iv) follows by an inductive argument. By (i), t1 = imy o0 th) exists. Define another

sequence of sequences u) = {th) > th) -+ }, so that [u™]3 = |t™)]3 — (th))2 <M
and
1
[uM) 24 = (V)24 _ (¢N)y2d = lim [u™)]yy = (759 — £]7)27 exists
N—o00

by the hypotheses on t™N). By (iii) applied to u® )ty = lmy oo ugN) =limy_ o0 th) exists.
Repeating the argument, t%) converges pointwise to (¢, %s,...). O
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Lemma 3.18. Suppose tV) ¢ 0y with [tM)|2 < M converges pointwise to t € 0. Then
t|3 < M and for all d > 2,

— | (V)
[toa = lim [ ]oq.
Proof. By Fatou’s Lemma applied to the counting measure on Zs1,
|t]2 < liminf [t™V)|2 < M.
N—o0
Fix d > 2. For each N, we have th) > th) >0 > tEN) > .... Thus
M > ()2 4 (1) > )2,

which implies

Since Y7, - converges for d > 2, the sequence (th))Qd is dominated by the integrable

function (%)d over the positive integers. By Lebesgue’s Dominated Convergence Theorem,

since lim N_m(t(N))zd t24_ we have
lim [t —t™)]yg = = lim [t)]q = [t]ag.
N—o0 N—o0

O

Corollary 3.19. Suppose t™V) € Uy with [tM)2 < M. Then t™) converges pointwise to t if
and only if |t|oq = imy_e0 [t |og for all d > 2.

Proof. The proof follows directly from Lemma 3.17 and Lemma 3.18. O

Observe that Corollary 3.19 says nothing about the 2-norm of the sequences. It is possible
for t™V) — t pointwise, even if [t|2 # limy_ o [tV)|3, as the next example and lemma
illustrate.

Example 3.20. In the Irwin—Hall case, we have ZH y = Sy + N/2 where

t™ = (1,...,1,0,...).
——
N copies
Since [t(™V)|2 = N, after standardizing, ZH} = S Where
£ = (VI2/N,...,\/12/N,0,..),

N coples

which converges pointwise to t = (0,0,...). Nonetheless, [t|3 = 0 < 12 = \t/(ﬁ)@ and
THy = N(0,1).

Lemma 3.21. For every t = (ty,ty,...) € by and every M > |t|2, there exists a sequence
N) of finitely supported decreasing sequences such that \t(N)\g =M and t'N) — t pointwise.

Proof. Define a sequence of sequences tV) € £y with [t™)|2 = M as follows. Let
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For each N > 1, choose my € Z>; large enough so that ex/my < % Set

t(N) = (tl,tg,...,tN,eN/mN,...,eN/mN,O,O,...).

—~
2 .
m N copies

As claimed, t™") — t pointwise and

N
V)2 = z‘zlt? +md (%)2 — M.
O
Example 3.22. Consider again t = (1,1/2,1/3,...) so [t[3 = 372 (3)* = 72/6 ~ 1.6449.
Let ex == 1/2 — S°N (1)2. For each N > 1, set
V) = (1,1/2,...,1/N,ex/N, ..., ex/N,0,0,...).

~
N2 copies

Clearly t™™) — t pointwise and

N

2
tME =3¢ N2-<€—N> — 9.
| |2 p Z+ N

However, [t|2 = 72/6 # 2 = limy_,o [tV |2,

(V) € 0y converges pointwise to t € y with [t™V)]2 — 75 < 0o. Then

Sivy = S¢ —f-N(O, 0'2)
where 0 = \/Ty — [t|3/12 and the sum is independent.

Proof. By Lemma 3.18, limy o0 [tV |og = [tV |5q for all d € Zs,, so for all d > 3,

Lemma 3.23. Suppose t

S 2
£(IV) Se S+ N(0,0?)

since /-@9/(0’02) = 0. As for d = 2,

S o
Rt = 1y = [62/12 + 02 = kot VO,
The result follows by the Method of Moments/Cumulants. U

In light of Lemma 3.23, pointwise convergence in 05 leads to us to study an additional
family of sums of random variables. Note, the sum of two generalized uniform sum random
variables is another generalized uniform sum of random variables. Also, the sum of two
normal distributions is normal, so we have reached a natural limit to the generalizations.

Definition 3.24. A DUSTPAN distribution is a distribution associated to a uniform sum for
t plus an independent normal distribution Sy + N(0,0?), assuming the two random variables
are independent, t € Zg, and o € Rxy.

Example 3.25. Consider the 1/n-sequence t = (1,1/2,1/3,...) again. Let 0 = /12 — 72/6.

The distribution S; has a small variance compared to N(0,02), so S; + N (0,5?) looks like a
fat normal distribution. See the approximation in Figure 5.
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FIGURE 5. Histograms of the distributions S, N (0,0), and S; + N (0, 0) with
b= (1,55 11 1) and g~ 3.22.
3.3. The moduli space of DUSTPAN distributions. Recall the moduli space of DUST-
PAN distributions,
Mpust = {St + N(0,0) : [t|3/12 4+ 0* = 1},
along with the DUSTPAN parameter space

PDUST = {t S 22 : |t|g S 12} .

We will show below that Ppyst and Mpyst are homeomorphic closed sets in their respective
topologies of pointwise convergence and convergence in distribution, thus completing the
task of completely characterizing all possible limit laws of standardized general uniform sum
distributions.

From Definition 3.24, it follows that the characteristic functions of DUSTPAN distributions
have nice properties. Recall that a normal family of holomorphic functions in some open set
U C C is one where every infinite sequence has a subsequence which converges uniformly on
compact subsets of U.

Lemma 3.26. The set of characteristic functions {¢s(s) : S € Mpuyst} is a normal family
of entire functions.

Proof. Let S = S + N(0,0) € Mpygr. By definition, the characteristic function of a
DUSTPAN distribution is the product of the corresponding characteristic functions for the
normal and generalized uniform sum distributions,

bs(s) = exp(—a?/2) H sinc(sty) /2.

1

i3, We have

By the growth bound in Lemma 3.12, for |s| <

|exp(—0c?/2) H sinc(st) /2] < exp(1).

i=1

Thus {¢s(s) : S € Mpusr} is a family of bounded analytic functions on |s| < &. By Montel’s
Theorem, it is a normal family in that domain. The bound in Lemma 3.12 may be extended
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to any bounded domain using the same argument, so it is in fact a normal family of entire
functions. U

Lemma 3.27 (Converse of Frechét—Shohat for DUSTPAN’s). Suppose a sequence of DUST-
PAN distributions Xy = Sy +N(0,0(N)) € Mpuyst converges in distribution to some
X. Then E[X? < oo ezists for all d € Zs1, X is determined by its moments, and
limpy_,o E[XE] = E[X)].

Proof. By Lévy’s Continuity Theorem, ¢x, (s) = ¢x(s) for all s € R. By Lemma 3.26, we
may replace X if necessary with a subsequence for which ¢, (s) converges uniformly on
compact subsets so that we can assume ¢y (s) is entire. Therefore, the moment generating
function of X has positive radius of convergence, moments of all order exist, X’ is determined
by its moments, and the limit of the moments is the moment of the limit. O

We may now restate and prove Theorem 1.15 from the introduction.

Theorem 1.15. The map ®: Ppyst — Mpust given by t — Sy + N (0,0) where o =
V1 —|t|3/12 is a homeomorphism between sequentially compact spaces.

Proof. The parameter space Ppygr is closed under pointwise convergence by Lemma 3.18.
Moreover, it is sequentially compact under pointwise convergence, either by Tychonoft’s
Theorem applied to [0, \/E]N or by a simple diagonalization argument. Since Ppygt and
Mpyst are metrizable and @ is a bijection by Theorem 3.13, we need only show that

t™) — t in P pointwise & Sevy + N(0,0™)) = S, + N(0,0).

The forwards direction follows from Lemma 3.18 and the Method of Moments/Cumulants
exactly as in the proof of Lemma 3.23. The backwards direction follows from Lemma 3.27
and Lemma 3.17. U

Corollary 3.28. The moduli space of DUSTPAN distributions Mpuyst 1s compact, hence it
1s closed and bounded in the space of distributions under the Lévy metric.

Proof. Ppuyst is a compact subset of '[2 under pointwise convergence, so Mpyst is compact
under the Lévy metric as well by Theorem 1.15. U

Corollary 3.29. The closure of the moduli space {Sy : t € Uy, |[t|2 = 12,t is finite} in the
Lévy metric is Mpyst.

Proof. Since {S; : t € Zz, [t|2 = 12,t is finite} C Mpygr by definition and Mpygr is closed
by Corollary 3.28, we know

{St :te zQ, |t|% =12,t is ﬁnite} C Mpyst = Mpust.

For the other inclusion, we just need to show each t € f5 with [t|2 < 12 is the pointwise limit

of a sequence t™) € £, with [t |2 = 12 and t finite by Theorem 1.15. As noted above, this
follows from Lemma 3.21. O

3.4. The moduli space of distance distributions. For convenience, we recall some of
the definitions and notation from the introduction. For each t € ¢y with [t|s > 0, let

o Vit

[t
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be the rescaled sequence such that [t|2 = 12 and S; = Sf. By definition of the hat-
operation, t € Ppysr and ®(t) = S + N(0,0) = S = S;. The distance multiset of
t={t; >ty >--->t,} is the multiset

At ={t,—t;:1<i<j<m},

and the moduli space of distance distributions is

(40) Mpist = {Sg 1t ={1=t; > >t, =0}}.
Thus, the parameter space of distance multisets, mentioned in Section 1, is defined as
(41) PDISTZ:{A\titz{lztlzn'ztm:()}}

By padding with 0’s, consider Ppigt C Ppyst C Zg as a sequence space with the topology of
pointwise convergence.

Lemma 3.30. The closure of Ppist is Ppist LI {0}.

Proof. Let d®) € Ppigr be a sequence converging pointwise to d. By Theorem 1.15, we
can assume d € Ppygr. By definition, each d) = W for some finite sequence of real
numbers t&) = {1= th) > e > tfﬁ?w = 0}.

Suppose limsupy_,.. mY) < co. We may pass to a subsequence for which m®™) = m is
constant. We may pass to a further subsequence for which t") € [0, 1]™ converges pointwise
tosomet = {1 =t >--->t, =0} € [0,1]™ and where [t™|, converges. Clearly the
distance multiset operator A: [0, 1]™ — [0, 1](75
dW) = W — A\t, so At = d which implies d € Ppisr.

Now suppose limsupy_,., m™) = co. Again, we may pass to a subsequence if necessary so

is continuous, so AtY) — At, and moreover

we may assume m™) — co. Since th) =1 and tﬁl)v) = 0 for each N, we have
N N
AtV = S (Y )
1<i<j<mV)
> 3 A= -0y
1<t<m(N)
1 m
> —=——1.
D
1<t<m(N)
Therefore, limpy_o ﬁ — 0, so pointwise At(V) — 0. O

. . NS N
Corollary 3.31. Any pointwise convergent sequence At™N) with tOV) = {1= tg ) > >

tfﬁz)w = 0} converges to 0 if and only if m™) — co.

Theorem 3.32. The map (I)DIST: PDIST — MDIST = MDIST L {N(O, 1)} gz’ven by d— Sd
and 0 — N(0,1) is a homeomorphism between (sequentially) compact spaces.

Proof. First note that Ppisr C Ppust and Mpist C Mpuyst by construction, so ®pigr is the
restriction of ® : Ppyst — Mpuyst. Therefore, by Theorem 1.15, ®pigt is a homeomorphism.
Since closed subsets of compact spaces are compact, we know Ppgr is compact by Lemma 3.30.
Furthermore, ®(Ppist) = Mpist L {N(0, 1)} is closed and compact. O



THE MODULI SPACE OF LIMIT LAWS FOR ¢-HOOK FORMULAS 31

4. MODULI SPACES RELATED TO SSYT<,,(\) DISTRIBUTIONS

We next consider the family of generating functions for semistandard tableaux given
by the principal specialization of Schur polynomials, or equivalently the rank statistic on
SSYT<,,()), as described in Section 1.2 and Section 2.2. An interesting special case is given
by MacMahon’s formula for the size statistic on the set PP(a x b x ¢) of plane partitions inside
an (a x b x ¢) box, given in (25). In particular, we will prove Theorem 1.8 and Theorem 1.11.
We provide a wide variety of limit law classification results for these statistics in various
regimes. The subsections are divided into four natural special cases: n/m — 0, n/m — oo,
cases based on the number of distinct parts of A\, and plane partitions. See Summary 4.20 for
a summary.

4.1. Limit laws with |\|/m — 0 and uniform sums. We begin classifying the limit laws
for semistandard Young tableaux. Throughout this section, we tacitly assume ¢(\) < m,
so SSYT<,,(A) # @. Furthermore, if A,, > 0, the first A, columns of 7" € SSYT<,,()\) are
forced to each be 1,2,...,m. Hence, up to a ¢ shift, SSYT(\)™%(q) equals SSYT()"**(q)
where p; = A\; — . In order to classify limit laws for SSYT<,,(A)™*(q), it thus suffices to
assume throughout that ¢(\) < m and A, = 0.

We begin with a simple analogue of Theorem 1.1. This will be our only use of the hook-
content-based cumulant formula; all of our other results rely on the ¢-Weyl dimension-based
cumulant formula.

Theorem 4.1. Let A denote an infinite sequence of partitions with |X\| = n. If  — 0, then
for each fized d € Z>y, the corresponding sequence of cumulants is

‘ B
(42) Ky~ Fdnmd.

Furthermore, we can characterize convergence in distribution in the case ;- — 0 depending
on the limiting value of n.

(1) If n converges to a finite value N, then Xy[rank|* converges in distribution to TH},.
(ii) If n — oo, then Xy[rank| is asymptotically normal.

Proof. For each cell u € A, the trivial bounds 0 < ¢, < n and 1 < h, < n give
m® —n? < (m+c,)*—he < (m+n)t
Summing over all u € X\ and dividing through by nm? gives

1- (ﬁ)d < Zualm )t —hy (1+ ﬁ)d.

m nmd m

When n/m — 0, the lower and upper bounds each tend to 1. The cumulant formula (42)
now follows from (23).

By (42), (k)™)* ~ (Ba/d)/(Bz/2)%?-n'~%2 which eliminates m from the limits. If n — N,
then (Bg/d)/(By/2)¥?-n'=%? approaches the d** cumulant of ZH} by (13) and Example 2.3,
proving (i). If n — oo, then (By/d)/(Bs/2)%? - n'=%? tends to 0 for d > 3, which are the
cumulants of N (0, 1), hence (ii) follows from Corollary 2.5. O

Example 4.2. Consider a constant sequence of partitions A™) = X\ and let m — oco. By
Theorem 4.1(i), Xy [rank]” = TH},, which depends only on |A|. On the other hand, if the
sequence AV is chosen such that [A\™)| — oo and m™) ~ |AM)|2 the limit is N(0,1) by
Theorem 4.1(ii).



32 SARA C. BILLEY AND JOSHUA P. SWANSON

Corollary 4.3. For any fixed € > 0, let
M, = { X\, [rank]* : [A] < m' ™} C Mgsyr.
In the Lévy metric,
(43) M, = M, UMz,
which is (sequentially) compact. Moreover, the set of limit points of M, is Mzy,.

Proof. Given a sequence in M., if m is bounded, then so is n = |\|, so there are only finitely
many distinct (A, m) in the sequence and convergence occurs if and only if the sequence is
eventually constant. On the other hand, if m — oo, then n < m'~¢ yields > <m “—0,s0
(43) follows immediately from Theorem 4.1.

By these observations, every infinite sequence of distinct points in M, has a limit point
in Mz, so M, consists entirely of isolated points and Mz, consists entirely of limit points.
Sequential compactness is similarly clear. 0

4.2. Limit laws with |[\|/m — oo and distance distributions. At the other extreme,
we may consider the case when |A|/m — co. As we will see, the possible behavior is vastly
more varied in this limit. Among the sequences of partitions A with |A|/m — oo, the easiest
case to consider is when \;/m?® — oo. This includes the case where m converges to a fixed
finite value and |\| — oo.

For a partition A = (Aq,..., \y), recall from Theorem 1.8 that
t

);
(\) = (t1, ... ) € [0,1]™
A

is the finite multiset with t; := £ for 1 < j < m. By Definition 1.7, the corresponding
distance multiset is

Lemma 4.4. Let X denote an infinite sequence of partitions with () < m and |\ = n. If
2 — 00 1n such a way that Ai1/m3 — oo, then for each fived d € Z>s,
Am
Ka

A

~ (Ba/d)| At(MN)]3,

which is the d™* cumulant of the rescaled uniform sum Satn/Ar-
Proof. Note that
A=A =m? <\ =N+ =) = (=) < (N =N +m)”.
Divide through by A¢ and consider the upper bound. Setting t; := i—i for 1 < j <m, we find
(A — Aj +m)?

= (tz — tj + m/)\l)d
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Summing over all 1 < i < j < m and considering both bounds gives

2 (ti_tj)d_@)'(@ < ZasicizmNi AA;J—Q —(j i)

< > (N2

Since A;/m* — oo, we have (})(m/A;) — 0. Furthermore, for each k > 1,

(Tg) (m/A1)F < m2TF/NE < mk/0E 0,

It follows that

Ai — Aj + — (73—
Zl<z<]<m( /\d .] ) (j ) -~ Z (tz N tj)d.
1 1<i<j<m

The result now follows from (22) and (33). O

We use the results on generalized uniform sum distributions from Section 3 to characterize
convergence in distribution in the next theorem. It is a more explicit statement of Theorem 1.8.

Theorem 4.5. Let A denote an infinite sequence of partitions, with £(A) < m and |\| = n.
If 2 — oo in such a way that A1/m? — oo, then for each fized d € Zss, the standardized
cumulants are approrimately

(44) (547) ~ DA BT = 5y

Furthermore, we can characterize convergence in distribution when it occurs.
(1) If m is bounded, then X\, [rank]|* converges in distribution if and only if the multisets

At(A) converge pointwise to some multiset d, in which case, the limiting distribution
18 Sd and d € PDIST;
(i1) The sequence m — oo if and only if X\, [rank]* is asymptotically normal.

Proof. By hypothesis, \;/m? — oo, so Lemma 4.4 implies k)™ ~ (By/d)|At(\)|¢ for all
d > 2. Thus, the standardized cumulants are given by

v (BafdIANE Ba/d (1860 Baje
)~ (a2 AN )2 <Bz/2>d/2(rAt<A>|2) g 1At

by the definition of the hat-operation (8). By (33), Z2[At(A)|4 is the d* cumulant for the

uniform sum random variable & —— TN

By the Method of Moments/Cumulants (Theorem 2.4) together with its converse in this
context (Lemma 2.7), the sequence X, [rank]* converges in distribution to some X if and only

Ay x

if the limit of the standardized cumulants (k,™)* — k7 < oo for each d > 1, which happens

if and only if /'idAtO\ — Ky for each d > 1. By the Method of Moments/Cumulants and its

converse for DUSTPAN distributions (Lemma 3.27), this occurs if and only if S o= X.

Finally, by Theorem 3.32, this occurs if and only if At()\) converges pomtw1se to some
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d € Ppisr. The result follows from Corollary 3.31. In particular, if m is bounded (i) holds,
and if m — oo (ii) holds. O

Example 4.6. Fix a partition A and a positive integer m > £()). Pick a sequence r™¥) — oo
of row scale factors, so that )\EN) = rM); and m™) = m. Clearly )\gN)/(m(N))3 — 00, so by
Theorem 4.5(i), we have &, ), [rank]* = SX,.

Example 4.7. Consider the sequence of partitions with AN = (2¥=1 2N=2 " 1) and
m) = N. Strictly speaking, /(A™) = N = m) here, so recall we can delete the first

column and consider the auxiliary sequence p™) = (2¥-1 —1,2¥=2 1 ... 0). Now
(V) N-1
H1 _ 2 —1
(m(N))S o N3 — 0

and m™ = N — oco. Thus Xon-19v-2 _1y.n[rank] is asymptotically normal by Theo-
rem 4.5(ii).

4.3. Limit laws based on distinct values in \ and the weft statistic. We now describe
a very general test for asymptotic normality of X, [rank] based on a new statistic we call
weft in analogy with aft for standard Young tableaux. This test depends on the number of
distinct values in a partition, so we switch to exponential notation. Note, throughout the
rest of this section k& will denote the number of distinct values in .

Definition 4.8. We may write a nonempty partition in exponential notation A = (7" --- (;*
where /7 > -+ > {;, > 0 and e¢; > 0, meaning A has e; rows of length ¢;. In our earlier
notation, m =e; +---+ e, and n = eyly + - - + eply.

Lemma 4.9. Take a partition A = (A, ..., Ap) = €5 - 0. Then, uniformly for all d > 2,

D N IO D e e )i

1<i<j<m

(45)
=0 ( Z (fa — Eb)eaeb(fa — fb -1+ €qt+ -+ €b)d_1> .

1<a<b<lk

Proof. Observe that we may restrict the sum in (45) to just the indices with A\; # A;. Hence,
we group the terms according to the distinct values \; = ¢, and \; = ¢, for 1 <a < b < k.
The contribution to the sum in (45) for all \; = ¢, and \; = ¢, for a fixed a < b is

(46) D (la =) (la — by + § — )"
where the sum is over 7, j such that ey +---+e, 1+1 <1< e+ e, and e+ - +e,_1+1 <
j<ei+---+e,. Reindexing withp=e,—(i—e;—---—e, 1)+ 1landg=j—e;— - —ep_1,
the sum in (46) becomes
(47) (la—0) Y (la—Lly+p+q—1+equr+--+ep)

1<p<ea

1<q<ey
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Next, note that for fixed d > 2, (u+v+w)? = O(u? +v¢ +w?) uniformly for all u, v, w > 0,
since then
u + 0"+ w? < (u+ v+ w)?
< (3max{u, v, w})* = 3" max{u?, v?, w?}
< 3% (u 4+ v 4+ w).
Letting u = p, v =4, — by + €411+ -+ €1 — 1, and w = ¢, we see the sum in (46) and
(47) is © of

(o — ) Z [(ba— b+ €ar1 + -+ epg — 1)+ p" 1+ ¢

1<p<eq
1<q<ey

= (ly — ) |€as(la — b+ €as1 + -+ +ep1 — DT+ ¢ Z P e, Z .

1<p<eq 1<g<ey
Since d > 2, >3, . p*" = O(el) uniformly for all u € Zx; by the sum bounds in
Lemma 2.23, and similarly >, <p<es ¢! = O(e). Consequently, the preceding sum and also
the sum in (46) are © of
(éa - Eb) |:6a€b(€a - gb +eqt1+ e — ]-)d_l + 61762 + eaelﬂ

- (ga - gb)eaeb [(ga - gb +eap1+ -+ epo1 — 1)d_1 + eg_l + ezl—l}

=0 ((ga — ﬁb)eaeb(ﬁa — &, -1+ g+ -+ €b>d71) .
The result follows by summing over all 1 < a < b < k, since the preceding bounds were all
uniform. O

Theorem 4.10. Let A = (5" --- {;* denote an infinite sequence of partitions with ((X) < m,
by >0y > - >/l >0 and each e; > 0. Then, for d > 2 even,

(48) K" =0 ( > (la—ly)eaes(la — by — 1+ eq+ -+ + eb)d_1> .

1<a<b<lk
Furthermore, X, [rank] is asymptotically normal if

Z1<a<b<k(£a gb)eaeb(ga — by —14+e, +---+ eb)
4 weft()\) = ZlSesbs |
(49) eft(\) o h Ty

Proof. Tn general, u? — v? = (u —v) Y00 ufv® =1 = (u — v)hy_ (u,v), so (22) gives
I{il\;m = Z (/\z - )\j)hd—l()\i - /\j +j — Z,] - l)
1<i<j<m

For fixed d > 2 even and u > v > 0, we have hy_;(u,v) = O(u?!) since
D T B e RN s e T SVEDURRIN S R AU
Consequently,

k)™ =0 ( P O O i)d1> .

1<i<j<m
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Hence, (48) holds by Lemma 4.9.
We use the cumulant formula in (48) to prove the asymptotic normality result. Write
Tap = by — lp)eqep and yop ==Ly — by — 144+ -+ ¢, for 1 <a < b < k. By (48), we have

for all d > 2 even
d—1
Ay 219 b<k Lab¥ap
(K ):@<( : d/2>'

Zl§a<b§k xabyab)
Note that Y1z > Yav, S0 Jab = Yav/Y1x < 1. Hence §% "' < gy and

Z xabggljl < Z xab@ab'

1<a<b<k 1<a<b<k

Consequently,

d—1 d—1 ~d—1
Zl§a<b§k LabYap Yk Zl§a<b§k LabYap

(21§a<b§k xabyab) i Ve J

Y1k (Zl§a<b§k 5’7abyab)d/2

] 1-d/2
< 1—d/2< Z l’ab@ab)

Y1k 1<a<b<k
1-d/2
= ( Z xabyab/y%k> .
1<a<b<k
The latter parenthesized quantity equals the weft(\) statistic in (49) by construction. Thus,
. 1
50 L Ao ) (——
(50) (5™ (weft()\)d/2—1)
When d > 4, weft(\) — oo implies (ng;m)* — 0. Thus, asymptotic normality follows from
Corollary 2.5 since all of the odd Bernoulli numbers for d > 3 are zero. O
Example 4.11. Let AN = §y .= (N —1,N —2,...,2,1,0) be the staircase partition for
N >1. Wehavee; =---=ey=1and {1 =N —1,..., ¢y = 0. In this case, (49) simplifies
to

— 2
weft(AV) = 2 1<achen 2(b—a) , N+1

2N —2)2 O 24(N-1)
Thus, as N — oo this statistic goes to infinity, so Xjs,.v[rank] is asymptotically normal by
Theorem 4.10.

The characterization in Theorem 4.10 is powerful enough to prove asymptotic normality in
many cases of interest. We will use the criteria in the next corollary to further simplify the
arguments in the examples below and the applications to plane partitions. As mentioned in
the introduction to this section, we can assume ¢(\) < m without loss of generality. We may
include the case £(\) = m if desired by replacing ¢; with ¢; — ¢, in the following result.

Corollary 4.12. Let A = (5" --- {}* denote an infinite sequence of partitions with {(X) < m,
so Ny =Ly >l > >, =0, and each e; > 0. Then Xy, [rank] is asymptotically normal
in the following situations.

. m2
(z)m—ﬂ)andk—)oo
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(i1) % — 00, where e denotes the second largest element among e, . . ., ey

(iii) F9% — oo,

Proof. For (i), suppose — 0 and k£ — oco. We have

_m?
%ty (k-+01)

> (la—l)eaer(la — by — L+ eg+ - + )

1<a<b<k
> Z [(br = Lp)erep(by — b, =1 +er 4+ +ep) + lpeper(ly — 1+ e, + -+ + ex)]
1<p<k
> Y (b= 6) (= b+ p = 1) + 66, + k= p)]
1<p<k

> Z [(61 - gp)(gl - gp + k/4) + gp(gp + k/4)]

k 3k
Z+1<p<7

= > [B =200, + 20 + Kty /4],

k 3k

Set x;, := €,/¢; and divide the preceding inequality by ¢3. Suppose k > 4. The final expression
becomes

> 2w+ 220+ k/(A0)] > Y [1/24k/(40)]

Erl<p<® E1<p<t
> (k/2=2)(1/2+ k/(4£1))
> k/16 - (1 + k/y).

Consequently,

k/16 - (1 + k/¢y)
vl 2 - 1) /)2
> ik&(lﬂ + gl)
— 16 (41 +m)?
1 (Eb(k+6) kb (k+0)
1_6““”{ @6)2 T (2m)? }

6_4m m2

v

v

)

m?2

SINCE 7 k)

— 0 and k — oo by hypothesis. The result now follows from Theorem 4.10.
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For (ii), suppose % — 00. By definition, el? < m — e, for all i. Thus,

Z (ga _Eb)eaeb(ga _Eb_ 1 +ea+ +€b)

1<a<b<k
2 2
> E €,6b + €46y
1<a<b<k

=Y et te)+ D> (et +ei)e]

1<i<k 1<i<k

=S e

1<i<k

> el Z ef.

1<i<k

If f >---> fy >0, then

(it t f) =ft+fit2 Y fif

1<i<j<k
<t fir2 Y f
1<i<j<k
k
= (1+2(k—0)f]
=1

k
<2k Z 2.
i=1

This latter bound is independent of the actual order of the f;. Consequently,
2

2] 2 2
e Zez_e o

1<i<k
Clearly (¢; — £, — 1 +m)? < (¢; + m)?. Hence
B 21§a<b§k(€a — @b)eaeb(fa —ly—14+e,+ -+ eb)
B (61 — b, — 1+ m)?
o212 o2

> =
“ Gt m)?  2k(bjm 12 O

weft(A)

% — 00. The result again follows from Theorem 4.10.
lie

For (iii), suppose ﬁllef — 00. We have

since k(

(51 — €k>€1€k<€1 — gk —1 + m)
(b1 — 0 — 1 +m)?

weft(\) >

The result again follows from Theorem 4.10.
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Example 4.13. Suppose A is a sequence of partitions with distinct parts and ¢(\) — oo.
2

Then &y > k =m and 707 < £ — 0. By Corollary 4.12(i), the sequence X, [rank] is

asymptotically normal.

Example 4.14. Suppose X is a sequence of partitions with m = ¢; and k& — oco. Then
Wi&) < + — 0. Again by Corollary 4.12(i), the sequence Xy, [rank] is asymptotically
normal.

Remark 4.15. The limit shape of a randomly chosen partition of n as n — oo is well-known
to be the curve ) )

e Vil 4e il =1
where (z,y) corresponds to (i/y/n, A\i/+/n) [Ver96, Thm. 4.4, p.99]. One consequently expects
A1 & y/n, and certainly k — oo. It seems natural to use m = N} & y/n, in which case

2 2
m =~ v < l — 0.
kXi(k+ M) kyn(k+n) ~ k

Thus, one heuristically expects X\, [rank] to be asymptotically normal for randomly chosen
partitions. We do not attempt to make this precise.

Question 4.16. Suppose A is a sequence of partitions with ((A\) < m and k is the number of
distinct parts of X. Does k — 0o ensure Xy, [rank]| is asymptotically normal?

4.4. Limit laws for plane partitions. We may use Corollary 4.12(ii) to deduce the complete
characterization of the asymptotic limits for plane partitions in a box from the introduction.
The following is a restatement of Theorem 1.11.

Theorem 4.17. The size statistic on PP(a x b X ¢) is asymptotically normal if and only if
median{a, b, ¢} — 0.
If ab converges and ¢ — oo, the normalized limit law is the Irwin-Hall distribution TH.,.

Proof. From the discussion in Section 2.2, we have

XPP(aXch) [size]* = XSSYT§a+c((b“)) [rank]*.
Let A= (b*) =00, son=ab, k=2,0; =b, (=0, e; = a, ea = ¢, and m = a + ¢. Suppose
median{a, b, c} — o0o. Without loss of generality, we may suppose b < a < ¢, s0 a — 00. In

. el? a a
this case, el? = a and b/(a + ¢) < 1/2. Hence NI = et 2~ o° and
asymptotic normality follows from Corollary 4.12(ii).

On the other hand, if median{a, b, ¢} is bounded, we may suppose a < b < ¢, so that
n = ab is bounded. If ¢ — oo, then the standardized limit distribution is ZH, provided ab

converges by Theorem 4.1(i). The result follows. O

We conclude this section by giving some sample applications of the preceding results to
three natural scaling limits of partitions obtained by stretching rows and/or columns by scale
factors tending to oo.

(N) — 00 of column scale

Example 4.18. Continuing Example 4.6, instead pick a sequence ¢
factors, so that
AN = (A Ay A,

C(N) C(N>
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m®™ = cMm, (N =7 &™) = (Mg, and (e™)2 = ¢Mel2 Thus
()2 (V)12 V)12

(S ) 112 kO (@®m) + 127k

so by Corollary 4.12(ii), X{.av) vy, [rank] is asymptotically normal.

— 00,

Example 4.19. Combining Example 4.6 and Example 4.18, use both row and column scale
factors simultaneously. We see

EgN)egN)eggN) M) (cMN))2 ) e e
= 00
KSN) —I—TTL(N) T(N))\l —|—c(N)m ’

so by Corollary 4.12(iii), &) (o) yrye)m [rank] is asymptotically normal. In particular, this
includes the case when ¢™) = (™) — o0 and A1) is obtained from A by replacing each cell

with a ¢™) x ™) grid of cells.

4.5. Summary. Here we collect the known cases when X, [rank]|* converges in distribution.
Let n = |A|, without loss of generality suppose £(\) < m, let k& be the number of distinct row
lengths of A (including 0 since ¢(\) < m), let e; be the multiplicity of the ith largest row
length, and let e? be the second-largest element amongst e1, es, . . . , €.

Summary 4.20.

(i) In the following situations, Xy, [rank]* = N(0,1).
(a) = — 0 and n — oo (Theorem4 1(ii))
(b) X, 1/m3 — oo and m — oco. Moreover, a converse holds. (Theorem 4.5(ii))
(c) \V) = (2N=1 oN=2" 1) and m"™) = N (Ezample 4.7)
(d) \V) =6y = (N —1,N —2,...,2,1,0) and mN) = N (Ezample 4.11)
(e) weft(\) — oo (Theorem 4.10)
(f) Mﬁig — 0 and k — oo (Corollary 4.12(1))

(9) Ml/i[n]ﬂ)g — oo (Corollary 4.12(ii))
(h) egii’; — o0 (Corollary 4.12(iii))
(i) e1=--=ep=1and k — oo (Example 4.13)
(j) m = )\1 and k — oo (Example 4.14)
(k) A= (b*), m = a+ ¢, and median{a,b,c} — oo (Theorem 1.11)
(1) If the sequence X is obtained by successively scaling the columns by a factor ¢ — oc.
(Example 4.18)
(m) If the sequence \ is obtained by successively scaling the rows and columns by factors
of r,c — oo. (Example 4.19)
(11) In the following situations, Xy,,[rank|* = TH},.
(a) n/m — 0 and n — M. (Theorem 4.1(i))
(b) A= ("), m=a+c, ab— M, and ¢ — oo (Theorem 1.11)
(111) In the following situations, X\,,[rank]* = Sj.
(a) A\i — oo, m is bounded, and At(\) — d where x; == \;/\1. Moreover, a converse
holds. (Theorem 4.5(i))
(b) If the sequence A is obtained by successively scaling the rows by a factor r — oo,

and d = AX. (Example 4.6)
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5. MODULI SPACES RELATED TO FOREST DISTRIBUTIONS

In this section, we consider the two ¢-analogs of the number of linear extensions of
posets which come from trees and forests using variations on the inv and maj statistics
for permutations as given by Bjorner—Wachs in [BW89]. Recall the background for these
g-analogs from Section 2.3. As summarized in Section 1.3, we will show that the coefficients in
the corresponding polynomials “generically” are asymptotically normal, but that the moduli
space of DUSTPAN distributions Mpyst characterizes all possible limit laws in a certain
degenerate regime. In particular, we prove Theorem 1.13, Theorem 1.14, and Corollary 1.17.

5.1. Generic asymptotic normality for trees and forests. Recall from Section 2.3 that
for any forest P, there is an associated ¢g-hook length polynomial

Lo() = )Y/ T A,
ueP
and random variable X'p. Here we show that the sequences of random variables Xp for forests
P are asymptotically normal if certain numerical conditions hold; see Theorem 1.13. This
covers the “generic cases”. We begin by describing a family of trees which maximize the sum
of the hook lengths over all trees of rank r with n elements. We use this family of trees to
identify good approximations for the cumulants corresponding with all trees.

Definition 5.1. Suppose n € Z>; and 1 <r < n. Let H,, be the tree obtained by starting
with a rooted chain C' with r elements and adding n — r elements each as children of the
second-smallest node in the chain. See Figure 6.

Cq

C3

|
C2
‘ \\
&1 d1 d2

FIGURE 6. The poset Hg4. The chain C' = {c1, ¢, 3, ¢4} of length 4 has 2
additional descendants added to the second-smallest element cs.

Lemma 5.2. Among all trees P with n elements and rank 1 < r < n, H,, is the unique

mazimizer of y_. . p hy. Consequently, the degree of Lp(q) is

(51) gk—Zhuzik— Zhvz("_;”rl)

ueP k= UEHn,r

Proof. Let C' be a maximal chain of P with r > 1 elements and second-smallest element .
If P# H,,, let € P—C be a leaf of P which is not a child of y. Let P’ be the result of
moving x to be a descendant z’ of y, which preserves the rank and number of vertices. Since
C' is maximal, we can easily determine the change in the sum of the hook lengths: it increases
by #{v € P":v' € C;v' >y} =|C| —1=r —1 and decreases by #{v € P:v >z} <r—1.
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This procedure always weakly increases the sum of the hook lengths and arrives at H, , after
a finite number of iterations, so the maximality claim follows.

Observe the procedure strictly increases the sum of the hook lengths unless #{v € P : v >
x} =r — 1. In this case, let z be the unique cover of x in P. By construction, z ¢ C. After
applying the procedure to x to get P’, applying the procedure again to all of z’s children and
then to z will strictly increase the sum of hook lengths. Thus, P has strictly smaller sum of
hook lengths than H,, ,, and the uniqueness claim follows.

For the equality in (51), we find

> hy=1-(n—r+1)+ Zk_Zk

vEHp k=n—r+2 k=n—r+1

Therefore,

Zk;— S h, _Zk:— Z k= Zk_(”_TH)

vEHp k=n—r+1

U

Lemma 5.3. Suppose 0 < a < 1 and fir d € Z>y even. Uniformly for all trees P with n
elements and rank 1 < r < an, we have

5| = O(n).

Ezplicitly, for a fixred d € Z>q,

a nd+l < d d l d+1
(52) Zk Zh_(d+1 >n

ueP

where x = [(L)Q — 1} >1,a=1/x, andb=1/(x+1), s00<a,b<1.

11—«

Proof. Recall from Corollary 2.21 that 7 = Z¢ (377 k=3 phd) so |kf] = ©(nH)
provided the lower bound and upper bound in (52) hold. The upper bound follows from the
upper bound in Lemma 2.23.

For the lower bound, construct a labeling w of P by iteratively building up P as follows.
Begin by labeling the root of P with 1 in w. At each step, increment all existing labels
in w, pick an element of P which has not been labeled whose parent has been labeled,
and label it with 1. Observe that the resulting labeling w: P — [n] is natural. Consider
the quantity w(u) — h, during this procedure. When u has initially been labeled, we have
w(u) — h, =1 —1=0. After u has been labeled, when adding a new vertex v, if v < u
then both w(u) and h, are incremented, while if v £ u then only w(u) in incremented.
Consequently, the final value of w(u) — h, counts the number of elements v added after u
such that v £ w. In particular, w(u) — h, > 0.

Using the real numbers a, b, z defined in the statement of the lemma, let M = {u € P :
w(u) — hy > bn}. We claim #M > an. To prove the claim, suppose to the contrary that
#M < an. By definition, 0 < a,b < 1. Consequently,
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dowlu) —hy =Y (wlw) = hy) + Y (wlu) = hy)

ueP ueM ugM
<H#M - -n+(n—H#M)-bn
=bn®+#M - (1—b)n
<bn®+a(l —b)n* = (a+ b — ab)n’.

One may easily check that a +b—ab = 2/(x +1) = (1 — a)?/2. Since r < an, we have
n—r > (1 —a)n, so that

Zw(u)—hu<@n2§@§ <n—;+1)7

ueP

contradicting Lemma 5.2 and verifying the claim. Using the claim and the lower bound on
the sum in Lemma 2.23, we now find

Zjd =) b= (w(w) — k)

> Z (w(u) — hy)hg_1(w(u), hy) > Z (bn)w(u)d_l
ue Yy ue
> bn - Zjdfl

> bn - (_ M)*/d > (ba?/d) n*t.
O

Now, we are prepared to address the question of asymptotic normality for sequences of
random variables associated to trees and forests. Recall the following theorem from the
introduction.

Theorem 1.13. Given a sequence of forests P, the corresponding sequence of random
variables Xp is asymptotically normal if

rank(P)

—— < L.
1P|

|P| = o0 and lim sup

Proof. By Remark 2.22; it suffices to assume P is a tree. For d > 2 even, we know |k}| =
O(n%) by Lemma 5.3, so |(k})*| = |kF|/|k}|¥? = ©(n'~%2?) — 0. By Corollary 2.21, the
odd cumulants vanish. Therefore, the result again follows from Corollary 2.5. 0

Remark 5.4. One expects most random forest generation techniques to yield a rank which
is logarithmic in the number of nodes with high probability, in which case Theorem 1.13
applies. This is the sense in which we consider Theorem 1.13 to cover “generic” trees and
forests.

Remark 5.5. More precisely, we may use the explicit bounds in Lemma 5.3. Setting o := r/n,
(l_a)Q(dJrl)

Wnd“. Since 0 < a < 1, the denominator can be ignored.

the lower bound becomes



44 SARA C. BILLEY AND JOSHUA P. SWANSON

Considering the d = 4 case for simplicity, we find

“Z:O(WFO(ﬁ):O(#)

Thus asymptotic normality follows when —i1z — oo, or equivalently when n —r = w(n/12),

By contrast, Theorem 1.14 classifies limit laws when n — 7 = o(n'/?). Analyzing the possible
asymptotic behavior between these extremes is still an open problem.

5.2. Degenerate forests and DUSTPAN distributions. We now consider sequences
of random variables associated to the “degenerate” trees with n —r = o(n'/?). Note,
n —r = o(n'/?) implies r/n — 1, so these sequences are not covered by Theorem 1.13. For
such trees, we give a simple numerical estimate for the cumulants in terms of multisets of
elevations, and use them to characterize asymptotic normality as well as the other limiting
distributions in terms of the moduli space of DUSTPAN distributions Mpygr.

Remark 5.6. To avoid certain redundancies, we restrict to standardized trees in the sense
of Remark 2.22. As an example of behavior which is prohibited by this assumption, consider
the trees H,,,_j for fixed k, which are not standardized. This sequence of trees has rank
r=n—k,solimr/n =1asn — oo, and Theorem 1.13 does not apply. Indeed, it is easy to
see that

Lt () = I = [t 1)
ek HueHnyn,k [hu]q !
Therefore, X7; ~  has the same discrete distribution for all n > &, so the limit distribution
is discrete.

On the other hand, if n — r — oo, the length of the support of Xp tends to co by
Remark 2.20 and Lemma 5.2. Hence each distribution appears only finitely many times
in such a sequence. Moreover, since the coefficients are unimodal, any sequence X} with
n —r — oo cannot converge to a discrete distribution.

We begin with a series of estimates relating the cumulants % to the following auxiliary
combinatorial quantity on P.

Definition 5.7. Let C' be a fixed maximal chain in a forest P with |C| = r. For each
u € P — C, define the elevation of u to be

e =#{veC ugv}

See Figure 7. Let sx(P,C) be the number of elements in P — C' with elevation at least
E—n+r,

sk(P,C) =#{ueP—-C:e, >k—n+r}.

For example, if u is attached to the root of the tree which is the maximal element of C,
then the elevation is e, = r — 1. If u is attached to the second-smallest element of C', then
ey, = 1. We see that e, = r if and only if u is not connected by a path to C'. Thus, if P is a
tree, then 1 <e, <7, so s,_.(P,C)=n—r, and s,(P,C) = 0.

If P is a tree and C' is a chain in P, then P — C is a forest so both have associated

cumulants. We may relate x and s~ using the numbers s,(P, C) as follows.
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FIGURE 7. A tree P with maximal chain C' = {¢g < ¢; < ¢3 < ¢3 < ¢4} and
elevations of P — C' labeled.

Lemma 5.8. Let C' be a mazimal chain in a tree P with n elements and |C| = r. Then for
each d € Z>1,

n—r-+ey

¢, Ba
(53) lidP = lig ¢ + 7 Z Z hd_l(k, k— Sk)

ueP—-C k=n—r+1

Proof. Let C' =v, >v,_1 > -+ > v,_,11. Note that for u € P — C, we have u < vy if and
only if e, < k —n + r. Consequently, for all n —r < k < n we have

hy,=k—n+r+#{uecP—-C:u<uv}
=k—-n+r+#{ueP-C:e,<k—n+r}
=k—n+r+n—r—#ueP-C:e,>k—n+r})

=k — Sk
Thus,
Sk —hg = Y (k= hy)ha (kD)
k=n—r+1 k=n—r+1
= Z Skhd_l(k?, k‘ — Sk)
k=n—r+1
= Y #HueP-C:iey>k—n+r}-ho(kk— s
k=n—r+1
n—r4eq
= > Y hea(kk—sp)
ueP—C k=n—r+1
Therefore, (53) follows from the cumulant formula in Corollary 2.21. O

If P is a standardized tree with maximal chain C' of size |C| = r > 1, it has an element
u€ P—Cwithe, =r—1,s0e,/r ~ 1 for r large. As we saw in Section 3.1, renormalizing
a multiset by the maximum value is a useful technique while not changing the corresponding
standardized general uniform sum distribution. Consequently, we consider the re-scaled
multiset of elevations e/r = {e,/r : u € P — C}, which are then related to the rescaled
cumulants &% /r?.
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Lemma 5.9. Suppose we have a sequence of standardized trees P such that the number of
elements n — oo and the rank r satisfies n —r = o(n'/?), i.e. (n —r)/n'/? — 0. Let C be a
mazimal length chain in P. Then, for each d € Z>1,

kP-C n — r)dt+l P
”;nd —O(%)—)O and _ZN Z( > |e/r|§.

Proof. Since n—r = o(n'/?) and n — oo, we find n ~ 7, and so n —r = o(r'/?). Consequently,
(n —7r)?/r — 0, and more generally (n — )4t /rd — 0 for all d > 1. Therefore,

rP-C n—r d+1
rd Td Z rd
k=1 uEP C

Consider the formula for % /r¢ obtained from (53) by dividing both sides by r¢. The first
term goes to 0 by the argument above. The second term is bounded above and below by

n—r+eqy n—r+eqy n—r+eqy
DD SRR S DI VRS EEVE S S O
ueP—C k=n—r+1 ueP—C k=n—r+1 ueP—-C k=n—r+1

In Lemma 5.10 and Lemma 5.11 below, we will show that, after dividing by r?, both bounds
in (54) are asymptotic to >, p o (2 ) Thus, &5 /1% ~ > cp_c (%)d. O
Lemma 5.10. With the same hypotheses as Lemma 5.9,

n—r+eqy,
d d—1 ey \ 4
=D DD DRI D G- I
T T
ueP—-C k=n—r+1 ueP-C

Proof. From Lemma 2.23, we have

(55)

> () - ()] <5 xS e

ueP-C ueP—-C k=n—r+1

n—r e,\" n—r\* d n—r e,\" " n—r\*t
< _u _ e _u _ )
<2 () () e () ()
ueP—-C ueP—-C
Consider the lower bound in (55). By Lemma 5.9, >~ ., . (";T)d (":& — 0 for all
d > 1. Furthermore,

() 2RO 6

ueP-C
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The first term in the upper bound in (55) is dominant by a similar argument. Therefore,
since the upper and lower bound in (55) asymptotically converge to the same sum, it follows
that

n—r-+eqy,

d
d-1 _ Cu
S e 3 (%)
ueP—C k=n—r+1 ueP—C
0]
Lemma 5.11. With the same hypotheses as Lemma 5.9,
n—r-+eq
eu\?
SN kst 3 (%)
uEP C k=n—r+1 ueP—-C
Proof. Consider the expansion
n—r+eqy n—r+ey
E S SR ST Dl
uGP C k=n—r+1 ueP— C k n—r+1

ueP— C k: n—r+1

Since s, by definition counts a subset of P — C, we have s, < n — r. Thus, for each
lgigd—l,wehave

n—r+eqy
DI SRR S LET IR SIS
uGPfC k n—r+1 ueP—-C k=n—r+1
:d(n_rﬂ—l Z kdzl
k=n—r+1
ZO(M.TM) ZO(M)_
r Tt
By Lemma 5.9, M — 0, and so by Lemma 5.10, it follows that
n—r+eqy n—r-+eq, e d
TYOY e Y Y ke ()
uEP C k=n—r+1 ueEP—-C k=n—r+1 ueP-C

O

We may combine the preceding results to prove the following more explicit form of
Theorem 1.14 from the introduction.

Theorem 5.12. Let P denote an infinite sequence of standardized trees with n elements and
maximal chains C of rank v such that n — oo andn —r = o(n'/?). Lete = {e, :u € P—C}
be the multiset of elevations for P and C. Then for each fixed d € Z>o even, the cumulants
of Xi are approximately

. Ba/d_ (le/rla\" _ Bi.
(56) Wy ~ s ( Bigyy
(B2/2)% \le/r]2
The sequence of random variables X} converges in distribution if and only if the multisets
e converge pointwise to some multiset t € Ppugr, in which case the limiting distribution




48 SARA C. BILLEY AND JOSHUA P. SWANSON

is St + N(0,0) € Mpysr where o == /1 — |t|3/12. In particular, the sequence of random
variables Xp are asymptotically normal if and only if

(57) o= Y <67u>2—>oo.
ueP-C

Proof. Fix d > 2 even. By hypothesis, n —r = o(n'/?), so Lemma 5.9 shows that

IiP Bd
(58) —7~le/rl
Therefore, by (13)
(KDY ~ Bufd [ le/rla\"
o (Be/2)22 \e/rls)

Since e/r is finite, |e/r|y exists, so the hat-operation is defined on e/r and e/r = € after
cancellation. Hence, (56) follows from the definition of the hat-operation in (8).

By the Method of Moments/Cumulants (Theorem 2.4) together with Lemma 2.7, the
sequence X converges in distribution to some X if and only if %|§|g converges to k7 for
each d € Z>;. By Corollary 3.19 and the fact that |€|3 = 12 by definition, this occurs if and
only if € converges pointwise to some t. Therefore, by Theorem 3.32, we have t € Ppygr and
X has the associated DUSTPAN distribution ®(t) = S + N (0, 0).

In particular, the limiting distribution of X} is A(0, 1) if and only if € — 0. Now € — 0
if and only if |e/r|./|e/r|o = 1/|e/r|s — 0 since standardized trees have an element of
elevation r — 1. In particular, the limit is N'(0, 1) if and only if |e/r|; — oo. O

Remark 5.13. We note that considering only standardized trees in Theorem 5.12 is essential
for the “if and only if” conditions to hold. For example, consider a sequence of trees H,, , with
maximal chain C of size 7 such that n — oo and n—r = o(n'/?). Since Lp, ,(q) = [n—r+1],!
and n—r — oo, Xy, . is asymptotically normal by [Fel45]. However, we have elevation e, = 1
for all w € H,, — C. Therefore, -, (eu/r)* = (n —7)/r* — 0 rather than occ.

Remark 5.14. One can construct sequences of standardized trees with n —r = o(n'/?) where
e/r converges to any prescribed finite multiset t = (¢; >ty > -+ > t,,,) € {5 with |t|, = 1.
For each N =m+3,m+4,..., let ry = N —m. To construct the tree Py, start with a
chain Cy = (vg < vy < -+ < vyy_1), and for each nonzero value 1 =t; >ty > -+ > t,,, add
a child to vf(,,—1),]- Finally, for each ¢; = 0, add one additional child to v;. As constructed
n=|Py| =N, r=ry—1and n—r = mis constant. Since ¢; = 1 by assumption, the
root of Py has at least one child so it is a standard tree. Furthermore, m = |Py — Cy|
so the elevation multiset of Py has exactly m elements. By construction, the multisets
e/r = {en/rn : u € Py — Cy} approaches t as N — oo. Therefore, S; is the limiting
distribution of A5 . By Corollary 3.29, we know that the closure of {S; : t € {5, t is finite}
is Mpust. Thus, Mggrest U Mpust C Mpgrest @s claimed in Section 1.

Corollary 1.17. Let ¢ TREE be the set of standardized trees P for which |P| — rank(P) <

|P|%, Let Metree = {A&} : P € ¢ TREE} C Mpqest be the corresponding moduli space of
distributions. Then

(59) M. rrer = McTrEE U MpUST,

which is (sequentially) compact. Moreover, the set of limit points of M. rreg 1S MpusT-
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Proof. By the construction in Remark 5.14, we know M.treg O Mpust, and Mpysr is
closed by Corollary 3.28. Furthermore, we have (|P| — rank(P))/|P|'/? < |P|=¢ — 0, so
Theorem 5.12 applies. Thus, for every sequence of trees P € ¢ TREE with |P| — oo such
that the corresponding random variables Xp € M. rgg converge in distribution, we know
the distribution must be a DUSTPAN distribution. On the other hand, for every sequence of
trees P € e TREE such that the corresponding random variables Xp € M, rgg converge in
distribution but |P| is bounded, we must have a subsequence where n = |P| is eventually
constant. There are only a finite number of standardized trees of size n in ¢ TREE, so we can

further restrict to a sequence where each P is a particular tree, in which case the limiting of
X;; is itself X;; € 1VI6 TREE- O

6. FUTURE WORK

In addition to the open problems mentioned in Section 1 and Question 4.16, we pose the
following questions for future study.

Question 6.1. Suppose we have a sequence of standardized trees such that n — oo where
n —r grows at least as fast as n*/? but no faster than n*'/12 in the sense that n —r & o(n'/?)
and n —r ¢ w(n''12). When is the corresponding sequence of distributions asymptotically
normal? What non-normal limit laws are possible?

Question 6.2. Does weft(\) — oo if and only if X\, [rank] is asymptotically normal? See
(49).

Question 6.3. Consider the set of rooted, unlabeled forests with n vertices, sampled uniformly
at random. What s the expected value of the rank r, i.e. the mazimum length of a path
starting at a oot of a tree in the forest? How does r compare to n asymptotically as n — oo ?

See [Pit94] for growth rates of the form r ~ logn for certain random tree generation
techniques. For the number of rooted, unlabeled forests with n vertices, t trees, and rank 7,
see [OEI20, A291336].

In [Swa20], the following ¢, t-analogue of the hook length formula (1) is given. Let (r,¢c) € A
denote a cell in row r and column c. Then

r—1 c—1
q +tq
(60) 4
(rc =2

is the generating function for a pair of statistics (maj, neg) on standard supertableaux of
shape A\. The ¢t = 0 case of (60) yields (1). While (60) is not literally a quotient of ¢-integers,
it is evidently “nearly” such a quotient. Computational evidence suggests the distributions
are “typically” bivariate normal with non-trivial covariance, which is strikingly similar to
the distributions encountered by Kim-Lee [KL20a] for (des, maj) on permutations in fixed
conjugacy classes. See Figure 8 for sample data.

Question 6.4. What are the possible limiting distributions of the coefficients of the q,t-hook
length formula (60)¢ What is the support of (60)?
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FIGURE 8. Plots of coefficients of the g,t-hook length formula (60) with
A=(25,4,3,3,1,1,1,1,1).
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