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ASYMPTOTICS ON A CLASS OF LEGENDRE FORMULAS

BRIAN DIAZ

Abstract. Let f : R → R be positive over R and let n!f denote its associated Legendre
formula, defined as

n!f =
∏

p∈P

p

∑

k≥0

⌊

n

f(p)pk

⌋

,

where ⌊·⌋ denotes the floor function. In this paper, we will show, subject to certain
criteria, that n!f is an abstract factorial that satisfies a weak Stirling approximation. As
an application, we will give weak approximations to the Bhargava factorial over the set of
primes and to a less well-known Legendre formula.

1. Introduction

The factorial function is a fundamental object of utmost importance, finding itself in
various disciplines, including combinatorics, number theory, ring theory, and many others.
These include, but are not limited to, being a building block for binomial coefficients, used
to count the number of permutations of a collection of objects, and contributes a major
part to Taylor series expansions. The study of obtaining asymptotics to n! date back to the
17th and 18th century, where, in particular, Abraham De Moivre showed that [1]

n! ∼ Ke−nnn+1/2

for some constant K. Later, in the 18th century, James Stirling [2] was able to specify the
constant: K =

√
2π.

At the turn of the 21st century, Manjul Bhargava introduced a generalization of the
factorial in [3], n!S with S ⊆ Z, that satisfies four properties analogous to the factorial:

(1) For any nonnegative integers k and l, (k + l)!S is a multiple of k!Sl!S .
(2) Let f be a primitive polynomial of degree k and let d(S, f) = gcd {f(a) | a ∈ S}.

Then d(S, f) divides k!S .
(3) Let a0, a1, . . . , an ∈ S be any n+ 1 integers. Then the product

∏

i<j

(ai − aj)

is a multiple of 0!S1!S · · ·n!S.
(4) The number of polynomial functions from S to Z/nZ is given by

n−1
∏

k=0

n

gcd (n, k!S)
.
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Manjul Bhargava in [3] remarks the following:

Question 31: What are analogues of Stirling’s formula for generalized factorials?

Upon further investigation, each of the Bhargava factorials discussed in [3] yield a Le-
gendre formula that can be expressed as

(1)
∏

p∈P

p
∑

k≥0

⌊

n

f(p)pk

⌋

,

for some real-valued map f . In addition, other classes of Legendre formulas fall under this
pattern: for example, the sequence

1, 6, 360, 45360, 5443200, 359251200, . . .

which can be found under A202367 in [4]. While this sequence may not be obviously related
to the Bhargava factorial, interestingly in [5], N. Mathur devised an algorithm to show, for
any sequence under specific criteria, we can determine a set S′ ⊆ Z associated with the
sequence. From this, we can determine a set S′ associated with sequence A202367. As a
consequence of this pattern, this prompted an investigation in (1).

In Section 2, we will define the associated Legendre formula, or alternatively f -factorial
for a real-valued map f and prove specific properties about them: this includes showing
when the f -factorial takes on a natural number and show that, analogous to the factorial
and under specific conditions, the f -factorial is an abstract factorial, as defined in [6].

In Section 3, we will prove, under certain criteria for f , an asymptotic formula for the
f -factorial. Due to the lack of assumptions on f , f may be continuous or discontinuous, so
we consider classes of functions f that can be approximated ”well-enough” by polynomials,
which we will explain further in this section.

In Section 4, we will apply our results to certain classes of Legendre formulas obtained
from the Bhargava factorial, including over P and S′ discussed earlier.

2. Preliminaries

Before we proceed, we let ⌊x⌋ and ⌈x⌉ denote the floor function and ceiling function for
a real number x, respectively; P denote the set of primes; log denote the natural logarithm;
{x} denote the fractional part of a real number x; N denote the natural numbers (or, alter-
natively, the positive integers Z

+) {1, 2, 3, . . . }; and P (s) denote the prime zeta function,
which is defined as

P (s) =
∑

p∈P

1

ps

and converges for ℜ(s) > 1 (see [7]). For the precise definition of the f -factorial, we require
f to be positive over P.

Definition 1. Let f : R → R such that f is positive over P. The associated Legendre
formula, or f-factorial, is defined as

n!f =
∏

p∈P

p
∑

k≥0

⌊

n

f(p)pk

⌋

.
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Example 2.1. Let f(p) = p be the identity map; by Legendre’s formula, we have

n!p = n! =
∏

p∈P

p
∑

k≥0

⌊

n

pk+1

⌋

,

with the sequence {n!p}n≥0 = {1, 1, 2, 6, 24, 120, . . . }.

Example 2.2. Let f(p) = log p; we have

n!log p =
∏

p∈P

p
∑

k≥0

⌊

n

pk log p

⌋

,

with the sequence {n!log p}n≥0 = {1, 2, 840, 1862340480, . . . }.

While the above examples produce interesting and known-examples of Legendre formulas,
there are other examples for which n!f is not well-defined.

Example 2.3. Let f(p) = sin p; we have

n!sin p =
∏

p∈P

p
∑

k≥0

⌊

n

pk sin p

⌋

.

However, since csc p ≥ 1, we have

n!sin p ≥
∏

p∈P

pn,

where the product diverges for n ≥ 1. Thus, n!sin p is not defined for all n.

Example 2.4. Let f(p) = p for p ≡ 1 mod 4 and 1/p for p ≡ 3 mod 4. Denote P1,4 and
P3,4 for primes p that are 1 mod 4 and 3 mod 4, respectively; we have

n!f =
∏

p∈P

p
∑

k≥0

⌊

n

pkf(p)

⌋

=
∏

p∈P1,4

p
∑

k≥0

⌊

n

pk+1

⌋

∏

p∈P3,4

p
∑

k≥0

⌊

n

pk−1

⌋

Observe that we have,

n!f ≥
∏

p∈P3,4

ppn,

where the product diverges for n ≥ 1, since there are infinitely many primes that are 3 mod 4.
Thus, n!f is not defined for all n.

Based on this, we find, whenever f is unbounded over P, except on a finite subset of P,
we have its f -factorial n!f is natural. As a matter fact, one of the interesting facts about
n!f is the equivalence between its naturality and the first exponential term, in addition to
showing n!f is natural whenever we consider the classes of functions f mentioned previously.

Theorem 1. Let f : R → R such that it is positive over P. The following are equivalent:

(1) the sum
∑

p∈P

log p

⌊

n

f(p)

⌋

converges to log k for some natural k.

(2) n!f is a natural number.
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Proof. For (1) =⇒ (2), suppose that the sum

∑

p∈P

log p

⌊

n

f(p)

⌋

converges to log k for some natural k. We will appeal to the following lemma:

Lemma 1. Let bk ≥ 0 denote a strictly decreasing sequence of non-negative integers; then
the sequence defined by

ak =
∏

p∈P

pbk ,

with a0 assumed to be finite, is a strictly decreasing sequence of naturals such that aN =
aN+1 = · · · = 1 for some N .

Since bk is strictly decreasing, we have ak is strictly decreasing; furthermore, since bk is
a strictly decreasing sequence of non-negative integers, by the pigeon-hole principle, there
exists an N such bN = bN+1 = · · · = 0. Then, consequently, we have aN = aN+1 = · · · = 1,
as desired.

Let bk =
⌊

n
f(p)pk

⌋

; then

ak =
∏

p∈P

p

⌊

n

f(p)pk

⌋

,

and a0 is finite by our assumption. By Lemma 1, we have then n!f = a1a2 . . . aN−1, which
is a product of naturals. Thus, n!f is natural, as desired.

For (2) =⇒ (1), since n!f is natural, n!f admits the unique factorization n!f =
pa11 pa22 · · · parr ; this implies the f -factorial has the closed form

(2)
∑

p∈P

log p
∞
∑

k=0

⌊

n

f(p)pk

⌋

= log
∏

1≤i≤r

paii .

Since the sum converges, and the right-sum hand sum in (2) is a logarithm of a natural, all
of the terms in the right-sum are finite, which implies the sum

∑

p∈P

log p

⌊

n

f(p)

⌋

is finite. As a consequence of convergence, the terms must converge to 0; in other words,
for any ǫ > 0, there is some natural, call it nf , such that for all primes p ≥ nf , we have
⌊

n

f(p)

⌋

< ǫ/ log p. We choose nf large enough such that there is an ǫ satisfying ǫ < log p;

then

⌊

n

f(p)

⌋

= 0, so that the sum is

∑

p∈P

log p

⌊

n

f(p)

⌋

= log
∏

p<nf

p

⌊

n
f(p)

⌋

,

which implies (1), as desired. �

As mentioned previously, we have the following relationship between the classes of un-
bounded functions f and their f -factorials.
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Theorem 2. If f is unbounded over P except on a finite subset, then n!f is a natural
number for all n.

Proof. Since f is unbounded over P except on a finite subset, denoted as A, for every n,
there exists a prime p′ such that for primes p ≥ p′, f(p) > n. Partition P = Pf ∪ P

′
f , where

Pf = {p ∈ P | f(p) ≤ n},
and P

′
f is its complement. Observe that Pf is finite, i.e. |Pf | ≤ p′. Since it may or may

not be the case A ⊆ Pf , partition A = A1 ∪A2 such that A1 ⊆ Pf and A2 ⊆ P
′
f ; then our

original sum can be decomposed as

∑

p∈P

log p

⌊

n

f(p)

⌋

= log
∏

p∈Pf∪A2

p

⌊

n
f(p)

⌋

.

Since |Pf | and |A| are finite, |Pf ∪A2| is finite, so that our sum converges to log k for some
natural k. By Theorem 2, we have n!f is natural, as desired. �

For the rest of the paper, we will assume that n!f is natural and that f is positive over
P. An important property of the f -factorial n!f is that it is an abstract factorial whenever
f(p) ≤ p; for an extensive discussion on abstract factorials, see [6]. Abstract factorials
obey certain properties that a factorial satisfies; in particular, the definition of an abstract
factorial is the following:

Definition 2. An abstract (or generalized) factorial is a function !a : N → Z
+ that satisfies

the following conditions:

(1) 0!a = 1.
(2) For every non-negative integers n, k, 0 ≤ k ≤ n, the generalized binomial coefficients

(

n

k

)

a

=
n!a

(n− k)!a k!a
∈ Z

+.

(3) For every natural n, n! divides n!a.

We will now prove n!f is an abstract factorial:

Theorem 3. Let n!f be the f -factorial for f such that 0 < f(p) ≤ p. Then n!f is an
abstract factorial.

Proof. For property (1), by construction, we have 0!f = 1. For property (2), let n, k be
arbitrary integers satisfying 0 ≤ k ≤ n; by the subadditivity of the floor function, we have

⌊

n

f(p)

⌋

−
⌊

n− k

f(p)

⌋

−
⌊

k

f(p)

⌋

≥ 0,

so that the sequence al, defined as

al =
∏

p∈P

p

⌊

n

f(p)pl

⌋

−

⌊

n−k

f(p)pl

⌋

−

⌊

k

f(p)pl

⌋

,

gives us, by Lemma 1, n!f = mk!f (n− k)!f , i.e.
(

n

k

)

a

=
n!a

(n− k)!a k!a
∈ Z

+,



6 BRIAN DIAZ

as desired. For property (3), since f(p) ≤ p, we have
⌊

n

f(p)pk

⌋

−
⌊

n

pk+1

⌋

≥ 0,

so that the sequence ak, defined as

ak =
∏

p∈P

p

⌊

n

f(p)pk

⌋

−

⌊

n

pk+1

⌋

,

gives us, by Lemma 1, n! |n!f , as desired. �

In Lemma 13 in [3], M. Bhargava noted that if T, S are two subsets of Z and n!T , n!S
are their respective Bhargava factorials such that T ⊆ S, then n!S |n!T for every n ≥ 0. We
derive a similar result for the f -factorials.

Theorem 4. Let f ,g satisfy f(p) ≤ g(p) and let n!f , n!g denote their respective f -factorials;
then n!g |n!f .
Proof. By the subadditivity of ⌊·⌋, we have

⌊

n

f(p)

⌋

−
⌊

n

g(p)

⌋

≥ 0,

so that the sequence ak, defined as

ak =
∏

p∈P

p

⌊

n

f(p)pk

⌋

−

⌊

n

g(p)pk

⌋

,

gives us, by Lemma 1, n!g |n!f , as desired. �

As an example, if f(p) = p − 1 and g(p) = p, we have n!f = (n + 1)!P and n!g = n!, so
that n! | (n+1)!P. We conclude this section to note, since we have shown n!f is an abstract
factorial for 0 ≤ f(p) ≤ p, various properties follow, including the irrationality of the sum

∞
∑

n=0

1

n!f
,

all of which are extensively discussed in [6].

3. Asymptotic Formula

The question of when n!f would admit an asymptotic expansion for arbitrary f seems
out of reach due to the various classes of functions f that we would need to consider, as
they can potentially be discontinuous; as an example, the set S′ discussed earlier has an
f -factorial corresponding to f(p) = ⌈(p− 1)/2⌉, which is a discontinuous map. For our
purposes, we will consider maps that can be approximated ”well enough” by polynomials
in the following sense:

Theorem 5. Let f be real-valued and positive over P. Assume that f satisfies the following
condition:

(1) there exists a polynomial q(x), with zero constant term and coefficients b1, b2, · · · , bm,
such that f satisfies the inequality

0 ≤ 1

f(p)
− q

(

1

p

)

≤ C

pδ
,
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for some C > 0, δ > 1.

Then log n!f , up to o(n), is asymptotic to

βfn+
∑

p∈P

∑

k≥0

log p

(

b1

⌊

n

pk+1

⌋

+ b2

⌊

n

pk+2

⌋

+ · · ·+ bm

⌊

n

pk+m

⌋)

,

for some non-negative constant βf .

Proof. Let q(x) = bmxm + bm−1x
m−1 + · · · + b1x. Let µ denote the counting measure and

define a sequence of functions {hn(p, k)}n≥1 as

hn(p, k) =
log p

n

(⌊

n

f(p)pk

⌋

− b1

⌊

n

pk+1

⌋

− b2

⌊

n

pk+2

⌋

− · · · − bm

⌊

n

pk+m

⌋)

.

Since ⌊nx⌋/n → x pointwise for any real x, it follows that hn(p, k) → h(p, k) pointwise,
where

h(p, k) =
log p

pk

(

1

f(p)
− q

(

1

p

))

.

We are interested in passing the limit under the integrals

lim
n→∞

∫

P

∫

Z≥0

hn,k(p) dµ(k) dµ(p) =

∫

P

∫

Z≥0

hk(p) dµ(k) dµ(p),

which will require a doubly application of the dominated convergence theorem. By our
assumption, we have the series of inequalities

hn(p, k) ≤
log p

n

(⌊

b1n

pk+1
+ · · ·+ bmn

pk+m
+

Cn

pk+δ

⌋

− b1

⌊

n

pk+1

⌋

− · · · − bm

⌊

n

pk+m

⌋)

≤ log p

n

(

b1n

pk+1
− b1

⌊

n

pk+1

⌋

+ · · ·+ bmn

pk+m
− bm

⌊

n

pk+m

⌋

+
Cn

pk+δ

)

≤ log p

n

(

b1

{

n

pk+1

}

+ · · ·+ bm

{

n

pk+m

}

+
Cn

pk+δ

)

≤ log p

pk

(

q

(

1

p

)

+
C

pδ

)

,

which implies

(3) hn,k(p) ≤
log p

pk

(

q

(

1

p

)

+
C

pδ

)

.

This upper bound in (3) is integrable; in particular, we have
∫

Z≥0

log p

pk

(

q

(

1

p

)

+
C

pδ

)

dµ(k) =
∑

k≥0

log p

pk

(

q

(

1

p

)

+
C

pδ

)

=
p log p

p− 1

(

q

(

1

p

)

+
C

pδ

)

,

so that, by the dominated convergence theorem, we can pass the limit under the inner
integral. For the outer integral, we consider

(4)

∫

Z≥0

hn,k(p) dµ(k) =
log p

n

∑

k≥0

(⌊

n

f(p)pk

⌋

− b1

⌊

n

pk+1

⌋

− · · · − bm

⌊

n

pk+m

⌋)
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By our assumption, (4) has the upper bound
∫

Z≥0

hn,k(p) dµ(k) ≤
log p

n

∑

k≥0

⌊

n

f(p)pk

⌋

≤ log p

n

∑

k≥0

⌊

n

pk

(

b1
p

+
b2
p2

+ · · ·+ bm
pm

+
C

pδ

)⌋

≤ log p

n

∑

k≥0

⌊

n

pk

(

b1p
m−1 + b2p

m−2 + · · ·+ bm + C

pm

)⌋

≤ log p

n

∑

k≥0

⌊

n(b1 + b2 + · · ·+ bm +C)

pk+1

⌋

≤ log p

n

∑

k≥0

⌊

nK

pk+1

⌋

,(5)

where K is a natural bounding b1+ b2+ · · ·+ bm+C. The upper bound in (5) is integrable,
since, by Legendre’s formula, we have

∫

P

log p

n

∑

k≥0

⌊

nK

pk+1

⌋

dµ(p) =
1

n

∑

p∈P

log p
∑

k≥0

⌊

nK

pk+1

⌋

=
1

n
log (nK)!.

Since

∫

Z≥0

hn,k(p) →
∫

Z≥0

hk(p) pointwise, as we have previously shown, by the dominated

convergence theorem, we have

lim
n→∞

∫

P

∫

Z≥0

hn,k(p) dµ(k) dµ(p) =

∫

P

∫

Z≥0

hk(p) dµ(k) dµ(p),

where

(6)

∫

P

∫

Z≥0

hk(p) dµ(k) dµ(p) =
∑

p∈P

p log p

p− 1

(

1

f(p)
− q

(

1

p

))

.

Denote (6) as βf ; to see βf is a non-negative constant, from our assumption, βf ≥ 0.
Furthermore, we have

∑

p∈P

p log p

p− 1

(

1

f(p)
− q

(

1

p

))

≤ C
∑

p∈P

log p

pδ−1(p − 1)
≤ 2C

∑

p∈P

log p

pδ
= −2CP ′(δ),

where P ′(δ) is the derivative of the prime zeta function, which converges for δ > 1. By
the monotone convergence theorem, βf is finite. Thus, we find log n!f is asymptotic, up to
o(n), to

βfn+
∑

p∈P

∑

k≥0

log p

(

b1

⌊

n

pk+1

⌋

+ b2

⌊

n

pk+2

⌋

+ · · ·+ bm

⌊

n

pk+m

⌋)

,

as desired. �

4. Applications

We are interested in discussing applications of Theorem 4 to various Legendre formulas,
in particular focusing on the Bhargava factorials over the set of primes and to the Legendre
formula discussed under A202357.
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4.1. Bhargava factorial over the set of primes. Recall the Bhargava factorial n!S as
defined in [3]; M. Bhargava found an analogous Legendre’s formula for n!P, in particular
deriving

n!P =
∏

p∈P

p
∑

k≥0

⌊

n−1

(p−1)pk

⌋

.

Let f(p) = p − 1; then, choosing q(p) = p, the criteria for Theorem 4 is satisfied, with
n!f = (n + 1)!P. We have

log(n+ 1)!P = log n! + Cn+ o(n),

where C is

C =
∑

p∈P

log p

(p − 1)2
= 1.2269688 . . . .

n log(n+ 1)!P log n! + Cn
1 .6931.. 1.2269...
2 3.1780... 3.1470...
3 3.8712... 5.4726...
4 8.6586... 8.0859...
5 9.3518... 10.9223...
6 14.8812... 13.9410...
7 15.5744... 17.1139...
8 21.0550... 20.4203...
9 21.7482... 23.8445...
10 26.6310... 27.3741...
100 471.9704... 480.6040...
1,000 7,119.5084... 7,130.9600...
5,000 43,759.7980... 43,726.0000...
10,000 94,417.8375... 94,378.6000...

Table 1. Table of values comparing log(n+ 1)!P and log n! + Cn.

Interestingly, the constant C occurs in the study of the Carmichael function λ(n), which

is defined to be the smallest positive integer satisfying aλ(n) ≡ 1 (modn) for every integer
a between 1 and n coprime to n. In particular, for all numbers m but o(m) positive integers
such that n ≤ m, we have

λ(n) =
n

(log n)log log logn+A+o(1)
,

where A = C − 1 (see [8]).

4.2. LCM of a class of a polynomials. Consider the least common multiple of the
denominators of the coefficients of polynomials pm(n) defined by the recursion

pm(n) =

n
∑

i=1

i2p(m−1)(i),

for m ≥ 1, with p0(n) = 1; this generates the sequence

(7) 1, 6, 360, 45360, 5443200, . . . ,
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which is sequence A202367. In [4], Vladimir Shevelev and Peter Moses noted that it is
conjectured the sequence in (7), which we will denote as a(n), is

a(n) =
∏

p∈P

p
∑

k≥0

⌊

n−1

⌈(p−1)/2⌉pk

⌋

.

Let f(p) = ⌈(p− 1)/2⌉; choosing q(p) = 2p, the criteria for Theorem 4 is satisfied, with
n!f = a(n + 1). We have

log a(n+ 1) = 2 log n! + βfn+ o(n),

where

βf =
∑

p∈P

log p

(p− 1)

(

p

⌈(p − 1)/2⌉ − 2

)

= 1.0676431....

n log a(n+ 1) 2 log n! + βfn
1 1.7917... 1.0676...
2 5.8861... 3.5215...
3 10.7223... 6.7864...
4 15.5098... 10.6266...
5 19.6995... 14.9131...
6 29.4033... 19.5643...
7 31.1951... 24.5238...
8 39.5089... 29.7503...
9 48.3882... 35.21244...
10 56.4899... 40.88525...
100 982.0880... 834.243...
1,000 14,288.7934... 12,891.9000...
5,000 87,486.3657... 80,520.5000...
10,000 188,805.0729... 174,894.0000...

Table 2. Table of values comparing log a(n+ 1) and 2 log n! + βfn.
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