
ar
X

iv
:2

01
0.

13
78

1v
1 

 [
m

at
h.

H
O

] 
 2

6 
O

ct
 2

02
0 =

=

Laws Of Form and the Riemann Hypothesis

J. M. Flagg

(George Spencer-Brown)

Louis H. Kauffman

Department of Mathematics, Statistics, and Computer Science,

851 South Morgan Street,

University of Illinois at Chicago,

Chicago, IL 60607-7045

and

Department of Mechanics and Mathematics,

Novosibirsk State University

Novosibirsk,

Russia

kauffman@uic.edu

Divyamaan Sahoo

Sound Department,

School of the Art Institute of Chicago,

112 S Michigan Ave, Suite 512,

Chicago, IL 60603

dsahoo@artic.edu

i

http://arxiv.org/abs/2010.13781v1


RH

The Riemann Hypothesis (RH) is a conjecture first made by Bernhard Riemann in Ueber die

Anzahl der Primzahlen unter einer gegebenen Grösse, “On the Number of Primes Less Than

a Given Magnitude”, 1859 [42]. The conjecture is about the “zeros” of the zeta function, ζ,

whose domain is the complex numbers, s ∈ C:

ζ(s) =

∞∑

1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ ...,

where a, b ∈ R, and i =
√
−1.

By convention, the trivial zeros of ζ are the integers −2,−4,−6,−8, ... . These are understood

to be zeros via analytic continuation1. The remaining zeros of ζ are called the non-trivial zeros.

Riemann conjectured that the non-trivial zeros of zeta are always of the form s = 1
2 + bi, i.e.,

that the “real part” a of the non-trivial zero s, is 1
2 .

1In Section 1.4, “The Function ζ(s)”, Riemann’s Zeta Function [11], H. M. Edwards writes: “The view

of analytic continuation in terms of chains of disks and power series convergent in each disk descends from

Weierstrass and is quite antithetical to Riemann’s basic philosophy that analytic functions should be dealt with

globally, not locally in terms of power series”. Edwards notes that “Riemann does not speak of the “analytic

continuation” of the function Σn−s beyond the halfplane Re s > 1, but speaks rather of finding a formula for

which it “remains valid for all of s”. In Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse [42],

Riemann indeed writes: “The function of the complex variable s which is represented by these two expressions

(the two halves of the Euler product identity), wherever they converge, I denote by ζ(s). Both expressions

converge only when the real part of s is greater than 1; at the same time an expression for the function can

easily be found which always remains valid” (transl. Wilkins, 1998 [42]).
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RH 2

Euler first studied the zeta function in the domain of the real numbers2, R. In Variae obser-

vationes circa series infinitas (1737) [16], he derived a fundamental relationship between the

zeta function and the prime numbers:

ζ(s) =
∑

n

1

ns
=

1

1s
+

1

2s
+

1

3s
+ ... =

1

(1 − 1
2s )(1− 1

3s )(1 − 1
5s )...

=
∏

p

1

1− p−s
.

Riemann extends ζ to the complex domain by using the factorial function, notated Π(s) due

to Gauss in Disquisitiones generales circa seriem infinitam (1813) [18]. Originally attributed

to Euler in De progressionibus transcendentibus seu quarum termini generales algebraice dari

nequeunt(1730) [17]3, the factorial function for n ∈ N,

n! =

∫ ∞

0

e−xxndx

can be extended to the real numbers > −1. Due to Gauss [18] we have

Π(s) =

∫ ∞

0

e−xxsdx, (s > −1).

Abel’s Solution de quelques problemes a l’aide d‘integrales définies (1823) [1] and Chebyshev’s

Sur la fonction qui détermine la totalité des nombres premiers inferieurs à une limite donnée

(1852) [7] give us the following identity for real values of s, s > 1:

ζ(s) =
∞∑

1

1

ns
=

Π(−s)
2πi

∫ +∞

+∞

(−x)s
ex − 1

.
dx

x
.

2In Section 1.2 “The Euler Product”, Riemann’s zeta function [11], H. M. Edwards writes, “it seems

certain that Riemann’s use of the Euler product formula was influenced by Dirichlet” and “Dirichlet, unlike

Euler, used the formula (1) with s as a real variable and, also unlike Euler, he proved rigorously that (1) is true

for all real s > 1” (Page 7, Edwards). Edwards provides Dirichlet’s remarks in a footnote: “Since the terms p−s

are all positive, there is nothing subtle or difficult about this proof – it is essentially a reordering of absolutely

convergent series – but it has the important effect of transforming (1) from a formal identity true for various

values of s to an analytical formula true for all real s > 1” (Dirichlet, page 7, footnote by Edwards). We know,

of course, that Riemann went even further, broadening the scope of ζ to include all complex s, s 6= 1. Here,

formula (1) is the Euler product formula provided above.

3Euler wrote it as follows: y = e−x and n! =
∫ 1
0 (log 1

y
)ndy
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The contour integral in Π(−s)
2πi

∫ +∞
+∞

(−x)s

ex−1 .
dx
x

clearly converges for all values of s, real or complex,

since ex grows faster than xs as x → ∞. Since Π(s) is an analytic function of the complex

variable s, which has simple poles at s = −1,−2,−3, ..., Π(−s) has poles at s = 1, 2, 3, ... . We

know ζ(s) converges for s = 2, 3, 4, ... (à la Euler et al), so by Cauchy’s theorem, the integral

must have a zero which cancels the pole of Π(−s) at s = 2, 3, 4, ... . Thus, ζ(s) =
∑∞

1
1
ns =

Π(−s)
2πi

∫ +∞
+∞

(−x)s

ex−1 .
dx
x

is analytic at all points of the complex s-plane except for a simple pole at

s = 1 (Edwards, Section 1.4, “The Function ζ(s)” [11]).

On page 2-3 of Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse (transl. Wilkins,

1998) [42], Riemann continues, “thus a relation between ζ(s) and ζ(1− s), which through the

use of known properties of the function Π, may be expressed as follows” and that “remains

unchanged when s is replaced by 1− s”:

Π

(
s

2
− 1

)

π− s

2 ζ(s) = Π

(
1− s

2
− 1

)

π− 1−s

2 ζ(1 − s).

Riemann considers this symmetrical statement as the natural statement of the functional equa-

tion. The function Π( s2 − 1)π− s

2 ζ(s) in symmetrical form, has poles at s = 0 and s = 1.

Riemann then introduces ξ, an analytic function defined for all values of s, by multiplying the

simpler left hand side of the functional equation of ζ by s(s−1)
2 to get4

ξ(s) = Π

(
s

2

)

(s− 1)π− s

2 ζ(s)

Given a convergent infinite product can only be zero if one of its factors is zero, ζ(s) =

Πp(
1

1−p−s )
−1 cannot have zeros for Re s > 1. Since the factors other than ζ(s) in ξ(s) =

∏
( s2 )(s − 1)π− s

2 ζ(s) only have the simple zero at s = 1, we know that none of the roots ρ of

ξ(ρ) = 0 lie in the Re s > 1. Due to the functional equation, we know ρ is a root iff 1 − ρ

is a root, so we also know that none of the roots ρ of ξ(ρ) = 0 lie in the half-plane Re s < 0.

Hence, all the roots ρ of ξ(ρ) = 0 lie in the strip 0 ≤ Re ρ ≤ 1 (Edwards, Section 1.9 “The

Roots ρ of ξ” [11]).

4Adopting Landau’s notational convention for ξ, Edwards remarks “Actually Riemann uses the letter ξ to

denote the function which it is now customary to denote by Ξ, namely, the function Ξ(t) = ξ( 1
2
+ it), where ξ

is defined as above.” (Edwards, footnote on page 16 [11])
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The following product representation of ξ(s) was proved by Hadamard in Étude sur les Pro-

priétés des Fonctions Entières et en Particulier d’une Fonction Considérée par Riemann (1893)

[21]5:

ξ(s) = ξ(0)
∏

ρ

(

1− s

ρ

)

,

where ρ “ranges over” the roots of the equation ξ(ρ) = 0 and multiple roots are to be counted

with multiplicities. Recall that a polynomial p(s) can be expanded as a finite product:

p(s) = p(0)
∏

ρ

[

1− s

ρ

]

,

where ρ ranges over the roots of the equation p(ρ) = 0. Thus, ξ(s) is “like a polynomial of

infinite degree6” (H. M. Edwards, Section 1.10, “The Product Representation of ξ(s)” [11]).

5Since the function log ξ(s) has logarithmic singularities at the roots ρ of ξ(s) and no other singularities,

it has the same singularities as the formal sum
∑

ρ log(1 − s
ρ
). If this sum converges and is well behaved with

respect to log ξ(s) near ∞, then
∑

ρ log(1 − s
ρ
) differs from log ξ(s) by at most an additive constant. Setting

s = 0 gives log ξ(0), which upon exponentiating gives us the identity (H. M. Edwards, Section 1.10 “The Product

Representation of ξ(s)” [11]).

For any fixed s, the ambiguity in the imaginary part of log [1 − s
ρ
] disappears for large ρ. Hence, the

sum
∑

p log (1 − s
ρ
) is defined except for a finite multiple of 2πi which drops out when one exponentiates the

ξ identity above. Furthermore, “one can ignore the imaginary parts altogether”, the real parts of the terms of
∑

p log (1− s
ρ
) “are unambiguously defined and their sum is a harmonic function which differs from Re log ξ(s)

by a harmonic function without singularities, and if this difference function can be shown to be constant, it

will follow that its harmonic conjugate is constant also” (Edwards, Section 1.10 “The Product Representation

of ξ(s)” [11]).

There are two problems associated with
∑

ρ log(1− s
ρ
), the first being the “determination of the imaginary

parts of the logarithms it contains”, and the second associated with its convergence, for the sum is “in fact

a conditionally convergent sum, and the order of the series must be specified in order for the sum to be well

determined”, i.e., it suffices merely to stipulate that each term be paired with its “twin” ρ ↔ 1− ρ. (Edwards,

Section 1.10 “The Product Representation of ξ(s)” [11])
6The identity ξ(s) =

∑∞
n=0 a2n(s− 1

2
)2n also suggests that ξ(s) is a polynomial of infinite degree, and a

finite number of terms of this series representation of ξ(s), presented in Riemann’s second proof of the functional

equation, gives a very good approximation in any finite part of the plane.
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The J function7 can be introduced via Stieltjes integrals. Using the identity

log(1− x) = −x− 1
2x

2 − 1
3x

3..., the Euler product formula can be reformulated:

log ζ(s) =
∑

p

[
∑

n

(
1

n

)

p−ns

]

=
∑

p

∑

n

(
1

n

)

p−ns =

∫ ∞

0

x−sdJ(x)

“where J(x) is the function which begins at 0 for x = 0 and increases by a jump of 1 at primes

p, by a jump of 1
2 at prime squares p2, by a jump of 1

3 at prime cubes, etc” (Edwards, Section

1.11, “The Connection Between ζ(s) And Primes” [11]). Assuming the notation π (attributed

to Landau, Handbuch, 1909 [28]) for the number of primes less than a given magnitude, we

have the following two identities:

J(x) = π(x) +
1

2
π(x

1
2 ) +

1

3
π(x

1
3 ) + ...+

1

n
π(x

1
n ) + ...

π(x) =

∞∑

n=1

µ(n)

n
J(x

1
n ) = J(x) − 1

2
J(x

1
2 )− 1

3
J(x

1
3 )− 1

5
J(x

1
5 ) +

1

6
J(x

1
6 )− ...

It is of special interest to note that
1

ζ(s)
=
∏

p

(

1− 1

ps

)

.

In the Euler product of (1− 1
ps ), we see the general term is (−1) raised to the number of factors,

a product of distinct prime factors. This leads to the definition µ(n) = (−1)k, where k is the

number of distinct prime factors of n, and n has no higher order of factors, with µ(n) = 0

otherwise8.

Thus, we have
1

ζ(s)
=

∞∑

n=1

µ(n)

ns
.

7“Riemann denoted this function f(x), and most other writers denote it Π(x). Since f(x) now is commonly

used to denote a generic function, I have taken the liberty of introducing a new notation J(x) for this function”

(Edwards, Section 1.11, footnote, page 22 [11]).

“Let F (x) be equal to this number when x is not exactly equal to a prime number; but let it be greater by 1
2
when

x is a prime number, so that, for any x at which there is a jump in the value in F (x), F (x) =
F (x+0)+F (x−0)

2
.

If in the identity log ζ(s) = −
∑

log(1− p−s) =
∑

p−s + 1
2
p−2s + 1

3
p−3s + ... one now replaces

p−s by s

∫ ∞

p

x−s−1ds, p−2s by s

∫ ∞

p2
x−s−1ds, ... , one obtains

log ζ(s)

s
=

∫ ∞

1
f(x)x−s−1dx, if one denotes F (x) +

1

2
F (x

1
2 ) +

1

3
F (x

1
3 ) + ... by f(x).

This equation is valid for each complex value a+ bi of s for which a > 1” (page 5-6, Ueber die Anzahl der

Primzahlen unter einer gegebenen Grösse, Riemann, transl. Wilkins, 1998 [42]).
8The classical Möbius function found in Uber ein besondere Art von Umkehrung der Reihen (1832) [35]

is defined as follows: g(m) =
∑

n|d f(n) and f(m) =
∑

n|d g(n)µ(
m
n
)
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In his second proof of the functional equation, Riemann performs the change of variable x =

n2πx in Euler’s integral for Π( s2 − 1). For Re s > 1, he arrives at

Π( s2 − 1)π− s

2
1
ns =

∫∞
0
e−n2πxx

s

2
dx
x
. Summation over n (for Re s > 1) gives:

Π

(
s

2
− 1

)

π− s

2 ζ(s) =

∫ ∞

0

ψ(x)x
s

2
dx

x

where ψ(x) =
∑∞

n=1 e
−n2πx. In order to prove that the function above is unchanged by

the substitution s = 1 − s, Riemann uses the form of the functional equation of Jacobi’s

theta function, referring to Section 65 of Jacobi’s Fundamenta Nova Theoriae Functionum

Ellipticarum, in particular “Suites des notices sur les fonctions elliptiques” (1828) [27]. The

following form is attributed by Jacobi to Poisson:

1 + 2ψ(x)

1 + 2ψ( 1
x
)
=

1√
x

We see that ψ(x) approaches zero very rapidly as x→ ∞. This shows in particular that ψ(x)

is like 1
2 (x

− 1
2 − 1) for x near zero. Hence

∫∞
0
ψ(x)x

s

2
dx
x

is convergent for s > 1. Thus9, for

s > 1:

ξ(s) = Π

(
s

2
− 1

)

π− s

2 ζ(s) =

∫ ∞

1

ψ(x)[x
s

2 + x
1−s

2 ]
dx

x
− 1

s(s− 1)
.

Since ψ(x) decreases more rapidly than any power of x as x→ ∞, the integral in this formula

converges for all s. This gives, therefore, another formula for ζ(s) which is “valid for all s”

other than s = 0, 1, i.e., it gives an alternate proof of the fact that ζ(s) can be analytically

continued. Since both sides of the above equation are analytic, the equation holds for all s.

Further,
∫∞
1
ψ(x)[x

s

2 + x
1−s

2 ]dx
x

− 1
s(s−1) is unchanged by the substitution s = 1 − s, which

proves the functional equation of the zeta function (Edwards, Section 1.7. ”Second Proof of

the Functional Equation” [11]). We have the following series representation10 for ξ(s), for

s = 1
2 + bi:

ξ(s) =

∞∑

n=0

a2n

(

s− 1

2

)2n

, where a2n = 4

∫ ∞

1

d[x
3
2ψ′(x)]

dx
x−

1
4

(12 log x)
2n

(2n)!
dx.

9Riemann reformulates
∫∞
0 ψ(x)x

s

2
dx
x

=
∫ ∞
1 ψ(x)[x

s

2 + x
1−s

2 ]dx
x

+ 1
2

∫∞
1 [x−

s−1
2 − x

−s

2 ]dx
x
; since

∫∞
1
x−a dx

x
= 1

a
for a > 0, so 1

2

∫∞
1

[x−
s−1
2 − x

−s

2 ] dx
x

= 1
2

[

1
s−1
2

− 1
s

2

]

= 1
s(s−1)

.

10Riemann states that this series representation of ξ(s) as an even function of s − 1
2

“converges very

rapidly”.
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Riemann applies Fourier11 inversion to the formula (for Re s > 1):

log ζ(s)

s
=

∫ ∞

0

J(x)x−s−1dx

to obtain: J(x) =
1

2πi

∫ a+i∞

a−i∞
log ζ(s)xs

ds

s
.

Here, it is understood that the improper integral above “means the limit as T → ∞ of the

integral over the vertical line segment from a− iT to a+ iT ” (Edwards, page 23 [11]). The im-

proper integral given above is only conditionally convergent and an “order of summation” must

be specified. Conditionally convergent integrals and series are very common in Fourier analy-

sis, and it is always understood that such integrals and series are summed in their “natural12

order” (Edwards, Section 1.12 “Fourier Inversion” [11]).

On page 86 of Riemann’s Partielle Differentialgleichungen (ed. Hattendorf) (1876) [41], Rie-

mann’s use of “Fourier’s theorem” is revealed to be simply Fourier inversion. The reader is

encouraged to review Paper XII of Riemann’s Collected Papers, namely Abhandlungen der

Königlichen Gesellschaft der Wissenschaften zu Göttingen, vol. 13, “On the representation

of a function by a trigonometric series” [43]. A remark by Fourier threw new light on the

topic of the analytic representation of arbitrary functions: for the trigonometric series f(x) the

coefficients an and bn can be determined by the formula below and this method can also be

applied if f(x) is any arbitrary function:

f(x) =







a1 sinx+ a2 sin 2x+ ...

+ 1
2b0 + b1 cosx+ b2 cos 2x+ ...

an =
1

π

∫ π

−π

f(x) sinnxdx, bn =
1

π

∫ π

−π

f(x) cosnxdx.

In Riemann’s words, “the applications of Fourier series are not restricted to research in the

physical sciences. They are now also applied with success in an area of pure mathematics,

number theory” (Riemann, Collected Papers, page 229 [43]).

11A “master of evaluating and estimating definite integrals” (Edwards, Section 1.9), Riemann was also “a

master of Fourier analysis and his work in developing this theory must certainly be counted among his greatest

contributions to mathematics” (Edwards, Section 1.12 “Fourier Inversion” [11]).
12Edwards provides some examples:

∑∞
n=−∞ cneinx means limN→∞

∑N
n=−N cneinx, and

∫∞
−∞ f(y)eiyxdy means limT→∞

∫ T
−T

f(y)eiyxdy.
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On page 5 [42], Riemann states that the number of roots of ξ(t) = 0 whose real parts lie

between 0 and T is equal to the integral of ξ′(s)ds
2πiξ(s) around the boundary of the rectangle

{0 ≤ Re s ≤ 1, 0 ≤ Im s ≤ 1, } and this integral is equal to T
2π log T

2π − T
2π with a relative error

of 1
T
. The fact that the vertical density of the roots ρ is in some sense a constant times log ( T

2π )

was stated by Riemann without proof (Edwards, Section 1.10 “The Product Representation of

ξ(s)” [11]). A proof of Riemann’s estimate for the number of roots of ξ(t) = 0 whose real parts

lie between 0 and T was first provided by von Mangoldt in Zur Verteilung der Nullstellen der

Riemannschen Funktion ξ(t) (1905) [33].

For Riemann, ξ(t) is ξ(s) with s replaced by 1
2+ti. On page 5 (transl. Wilkins, 1998), Riemann

originally states: “The number of roots of ξ(t) = 0, whose real parts lie between 0 and T is

approximately: = T
2π log T

2π − T
2π because the integral

∫
d log ξ(t), taken in a positive sense

around the region consisting of the values of t whose imaginary parts lie between 1
2 i and − 1

2 i

and whose real parts lie between 0 and T , is (up to a fraction of the order of magnitude of the

quantity 1
T
) equal to (T log T

2π − T )i; this integral however is equal to the number of roots of

ξ(t) = 0 lying within this region, multiplied by 2πi. One now finds indeed approximately this

number of real roots within these limits, and it is very probable that all roots are real” (Riemann

[42]). As Bombieri remarks in Problems of the Millennium: The Riemann Hypothesis [3], the

Riemann Hypothesis is the statement:

All zeros of the function ξ(t) are real.

The Riemann Hypothesis remains unproven to this day.
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The conjecture of Gauss and Legendre13 remained unproven till in 1896, Hadamard (in Sur

la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques [22]) and C.

J. de la Vallée Poussin (in Recherches analytiques sur la théorie des nombres premiers [51]),

using complex analytic methods, independently proved what is now referred to as the “Prime

Number Theorem” (PNT), i.e.,

lim
x→∞

π(x)
x

log x

= 1

In 1949, Selberg (An elementary proof of the prime number theorem [45]) and Erdös (On a new

method in elementary number theory which leads to an elementary proof of the prime number

theorem [14]) discovered “elementary” proofs of the prime number theorem, without using ζ(s)

or complex function theory.

The idea of furnishing an elementary proof of the prime number theorem “caused a sensation

in the mathematical world” (Apostol, page 9 [2]). Before Selberg and Erdös published their

findings, Hardy addressed the Mathematical Society of Copenhagen in 1921, ruling out the

possibility of an elementary proof of the prime number theorem, asserting that “some theorems

“lie deep” and others nearer to the surface”, and that “if anyone produces an elementary proof

of the prime number theorem, he will show that these views are wrong, that the subject does

not hang together in the way we have supposed, and that it is time for the books to be cast

aside and for the theory to be rewritten” (Hardy, as quoted by Goldfield in The Elementary

Proof of the Prime Number Theorem: An Historical Perspective, 2003 [20]).

13In “Historical Introduction”, Introduction to Analytic Number Theory [2], Apostol traces the history

of π(n) back to Legendre (in Essai sur la Theorie des Nombres, 1798 [30]) and Gauss (in “Letter to Encke”,

dated 24, December, 1849 [19]). Apostol provides a table with columns x, π(x), x
log x

, and π(x)
x

log x

, suggesting

that though the distribution of the prime numbers is irregular, “by examining large blocks of primes one finds

that their average distribution seems to be quite regular” (page 8, Apostol [2]). Thus, Gauss and Legendre

correctly conjecture that as x→ ∞,
π(x)

x

log x

→ 1, but lack the means to provide a proof. In 1851, Chebyshev [7]

proved that if the ratio does tend to a limit, then this limit must be 1.
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In Landau’s Handbuch der Lehre von der Verteilung der Primzahlen [28], or simply “Hand-

buch”, hailed by Hardy (in the obituary of Landau he wrote for the London Mathematical

Society [24]) as the first time the analytic theory of numbers is presented “not as a collection

of a few beautiful scattered theorems, but as a systematic science”, one may flip through the

first few pages to see that Landau begins this systematic science with two simple functions,

namely the Möbius function, µ, and the Liouville function, λ.

The Möbius function, µ(n), is defined as (−1)k, if n is the product of k distinct primes and 0

otherwise; the Liouville Function λ(n), on the other hand, is defined as (−1)k, if n is a product

of k primes (including multiplicities). Remarkably, µ and λ are closely related to ζ. On

page 12 of The Theory of the Riemann Zeta-Function [49], Titchmarsch provides the following

relationships between ζ and µ (equation 1.1.4, Titchmarsch [49]), and ζ and λ (equation 1.2.11,

Titchmarsch [49]), for s = a + ib, with a > 1, as follows, the second identity attributed to

Lehman (On Liouville’s Function, 1960 [31]):

1

ζ(s)
=

∞∑

n=1

µ(n)

ns

ζ(2s)

ζ(s)
=

∞∑

n=1

λ(n)

ns

In Chapter 3 “Averages of arithmetical functions”, Introduction to Analytic Number Theory [2],

Apostol says that the statement “µ(n) has average order 0”, i.e., “
∑

n→∞
µ(n)
n

converges and

has sum 0”, is equivalent to the PNT. Further, as referenced by Spencer-Brown in Appendix

9 [48], by Edwards in Section 12.3, “Miscellany” [11], by Apostol in Exercise 4 of Chapter 13

(page 301) [2], and by Derbyshire as Theorem 15-2, “Big Oh14 and Möbius Mu” [10], RH is

equivalent to M(x) = O(x
1
2
+ǫ), ∀ǫ > 0, where M(x) =

∑

n≤x µ(n).

Similarly, Theorem 1.4 in The Riemann Hypothesis (Borwein et al, 2006) [4], states that the

PNT is equivalent to the statement limn→∞
λ(1)+λ(2)+...+λ(n)

n
= 0. Further, as also referenced

by Spencer-Brown on page 209 [48], and Borwein et al on page 6 (Theorem 1.2) [4], RH15

is equivalent to limn→∞
λ(1)+λ(2)+...+λ(n)

n
1
2
+ǫ

= 0, for any fixed ǫ > 0. Both of these results are

attributed to Landau in his dissertation (1899) [29].

14We say f(x) is O(g(x)) or ”big-O of g(x)” if there are positive constants C and x0 such that |f(x)|≤
C|g(x)| whenever x > x0.

15Spencer-Brown reiterates here that upon subsituting n for n
1
2
+ǫ one obtains the much weaker PNT.
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Let dM be the Stieltjes measure such that if 1
ζ(s) =

∑∞
n=1

µ(n)
ns , (for Re s > 1),

1

ζ(s)
=

∫ ∞

0

x−sdM(x),

where M(x) =
∫ x

0 dM is a step function which is zero at x = 0, which is constant except at

positive integers, and which has a jump16 of µ(n) at n (Edwards, Section 12.1, “The Riemann

Hypothesis and the Growth of M(x)” [11]). Integration by parts for Re s > 1, gives:

1

ζ(s)
=

∫ ∞

0

d[x−sM(x)]−
∫ ∞

0

M(x)d(x−s) = lim
X→∞

[

X−sM(X) + s

∫ X

0

M(x)x−s−1dx

]

= s

∫ ∞

0

M(x)x−s−1dx

because the inequality |M(x)|≤ x implies that x−sM(x) → 0 as x→ ∞ and
∫∞
0
M(x)x−s−1dx

converges, both provided Re s > 1. If M(x) grows less rapidly than xa for some a > 0, then

this integral for 1
ζ(s) converges for all s in the halfplane {Re (a − s) < 0} = {Re s > a}. By

analytic continuation, the function 1
ζ(s) is analytic in this halfplane. Since 1

ζ(s) has poles on

the line Re s = 1
2 ,

M(x) does not grow less rapidly than xa for any a < 1
2 .

Moreover, it shows that in order to prove the Riemann hypothesis, it would suffice to prove

that M(x) grows less rapidly than x
1
2
+ǫ for all ǫ > 0 (Edwards, Section 12.1, page 260-261

[11]). Littlewood in Quelques conséquences de l’hypothèse que la fonction ζ(s) n’a pas de zéros

dans le demi-plan Re (s) > 1
2 (1912) [32] proved that this sufficient condition for the Riemann

hypothesis is also necessary, hence proving the following theorem, attributed to Hardy:

The Riemann Hypothesis (RH) is equivalent to the statement that

for every ǫ > 0,
M(x)

x
1
2
+ǫ

approaches zero as x→ ∞.

This theorem will be very important for the rest of the paper. On the one hand, it is the

source of speculation for RH and coin-tossing and on the other hand, it is the central aspect

with which Spencer-Brown writes Appendix 9 of Laws Of Form.

16The value of M at a jump is by definition 1
2
[M(n− ǫ) +M(n+ ǫ)] =

∑n−1
j=1 µ(j) +

1
2
µ(n).
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An argument for the plausibility of RH can be found in Chapter 12, “Miscellany” of Edwards’

Riemann’s Zeta Function, in Section 12.3, “Denjoy’s Probabilistic Interpretation17 of the Rie-

mann Hypothesis” [11]. On page 268, Edwards reasons as follows: “Suppose an unbiased coin

is flipped a large number of times, say N times. By the Moivre-Laplace theorem the proba-

bility that the number of heads deviates by less than KN
1
2 from the expected number of 1

2N

is nearly equal to
∫ ( 2K2

π
)
1
2

−( 2K2

π
)
1
2

exp(−πx2)dx in the sense that the limit of these probabilities as

N → ∞ is equal to this integral. Thus if the total number of heads is subtracted from the

total number of tails, the probability that the resulting number is less than 2KN
1
2 in absolute

values is nearly equal to 2
∫ 2K2

π

1
2

0 exp(−πx2)dx. The fact that this approaches 1 as N → ∞
can be regarded as saying that with probability one the number of heads minus the number of

tails grows less rapidly than N
1
2
+ǫ” (Edwards, page 268, Section 12.3 [11]).

If we consider a very large square-free integer n, then µ(n) = ±1. “But then the evaluation of

M(x) would be like flipping a coin once for each square-free integer less than x and subtracting

the number of heads from the number of tails. It was shown above that for any given ǫ > 0

the outcome of this experiment for large18 number of flips is, with probability nearly one, less

than the number of flips raised to the power 1
2 + ǫ and a fortiori less than x

1
2
+ǫ” (Edwards,

page 268, Section 12.3 [11]).

17In pages 195 - 196 of Probabilités confirmant l’hypothèse de Riemann sur les zéros de ζ(s) [9], we find

Denjoy’s original statement: “En outre µ(1) = 1.

Posons, ∆(n) =
n
∑

1

µ(i).g(s) =
∞
∑

1

∆(n)[n−s − (n+ 1)−s] ∼ s
∑

∆(n)n−1−s,

| s |−1| g(s) |≤
∑

| ∆(n) | n−1−σ

Il suffrait donc de prouver que limn→∞ log∆(n)/log n = 1
2
(l’inégalité < 1

2
est impossible) pour que l’hypothèse

de Riemann soit justifiée.” Also, “Si s = σ + it, | σ et t étant réels, la série et le produit infini convergent

absolument pour σ > 1” (Denjoy, page 195 [9]).
18“The number of flips goes to infinity as x→ ∞ because, among other reasons, there are infinitely many

primes, hence a fortiori infinitely many square-free integers (products of distinct primes)” (original footnote,

Edwards, page 268).
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On page 268, Section 12.3, “Denjoy’s Probabilistic Interpretation of the Riemann Hypothesis”

[11], Edwards, however, goes on to write, “it is perhaps plausible to say that successive eval-

uations of µ(n) = ±1 are “independent” since knowing the value of µ(n) for one n would not

seem to give any19 information about its values for other values of n.”

As pointed out by Spencer-Brown, it would be remiss to consider successive evaluations of

µ(n) = ±1 as independent of one another. In Essai sur la théorie des nombres [30], Legendre

reformulates the prime counting function π(n) as a function of π(
√
n) using the Möbius function

µ. Spencer-Brown rectifies this formula for d = 1 and offers a simple recursive formula to

compute µ(n), thus showing that subsequent values of µ(n) = ±1 are not “independent”.

The Spencer-Brown Formula20 Möbius Mu(n) is presented as follows: for n > 1,

µ(n) = −
(

n− 1 +

n−1∑

d=2

µ(d)
[n

d

] )

= 1− n−
n−1∑

d=2

µ(d)
[n

d

]

,

where the bracketed variable [n
d
] denotes the integer part of this fraction.

19an exception to this statement is that for any prime p, µ(pn) is either −µ(n) or zero. However, this

principle can only be applied once for any p because µ(p2n) = 0 and this “information” really says little

more than that µ is determined by a formula and is not, in fact, a random phenomenon (original footnote by

Edwards).
20“There are two Spencer-Brown formulae Mu(n). They are both algebraic and connected by the sign of

equality: ‘ =′. It should be observed that both formulae are sensitive to parentheses. If we remove the paren-

theses from the first formula, the minus sign distributes and converts the formula into the second. Conversely,

if we add parentheses and a minus sign the second formula converts once more into the first. The formula was

designed specifically to prove RH. It is a modification of procedures employed by Legendre and Sierpinski” (J.

M. Flagg in Conversations with GSB, Oct 8, 2012 ).
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The sixth English edition of “Laws of Form” (2015) [48] includes George Spencer-Brown’s

most recent version of “Appendix 9: A proof of Riemann’s hypothesis using Denjoy’s equiva-

lent theorem”. It begins with a “Description of the proof”, which states that “The Riemann

hypothesis is true if and only if the numbers of positive and negative signs of µ(n) are asymp-

totically21 equal”, referencing Denjoy’s probabilistic interpretation22, that “RH is equivalent

to the proposition that any square-free number, taken at random, has an equal probability

of containing an odd or an even number of (different) prime divisors” (page 203, “Laws of

Form”, 2015 [48]). We note that Spencer-Brown is undoubtedly referring to the full technical

statement that M(x) = O(x
1
2
+ǫ).

The Legendre/Spencer-Brown formula for the prime counting function π(n) is a recursive

function that calculates the number of primes ≤ n by referring to π(
√
n). The formula only

uses primes up to
√
n, what Spencer-Brown calls “small” primes, to sieve the remaining primes

up to n, what Spencer-Brown calls the “large” primes. The Legendre formula, rectified by

Spencer-Brown, is presented as follows:

π(n) = π(
√
n) +

√
n

∑

d=1

µ(d)
[n

d

]

.

Specifically for d = 1, Spencer-Brown rectifies the dividend to
[
n−1
d

]
. Note that the integer

part of the function
[
n
d

]
is often written as the “floor” function

⌊
n
d

⌋
. Every number up to

√
n

factors into a product of primes. We sum over all d up to
√
n but µ(d) = 0 when there are

repeated prime factors. Therefore we need only sum over those d that have single prime factors

up to
√
n number of factors.

21Historically credited to Paul Bachmann in Die Analytische Zahlentheorie “Analytic Number Theory”,

1894, the big O notation currently used to describe orders of magnitude was first clearly defined by Landau.

”More specifically, the f(x) ∼ g(x) relation for two functions f, g : R → R means that limx→∞ ( f(x)
g(x)

) = 1.

Under these conditions, the two functions are said to be asymptotically equivalent (or simply asymptotic).

Alternatively, we say that f(x) is O(g(x)) (pronounced ”big-O of g(x)”) if there are positive constants C and

x0 such that |f(x)|≤ C|g(x)| whenever x > x0. It is not too difficult to see that f(x) ∼ g(x) implies that f(x)

is O(g(x)) and g(x) is O(f(x))” (Tou, in Math Origins: Orders of Growth [50]).
22Probabilités confirmant l’hypothèse de Riemann sur les zéros de ζ(s). Note (∗) de M. Arnaud Denjoy,

Membre de l’Académie, in “Conclusions tirées d’une forme donnée au développement de ζ(2s)
ζ(s)

” [9]
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for n = 100,

π(100) = π(10) +

√
100∑

d=1

µ(d)

[
100

d

]

.

The small primes are all primes up to
√
100 = 10, which are 2, 3, 5, and 7. They combine to

form products that divide 100. They can be organized by collecting the doubles, triples, and

so on:

︷ ︸︸ ︷

2, 3, 5, 7,
︷ ︸︸ ︷

(2.3), (2.5), (2.7), (3.5), (3.7), (5.7),
︷ ︸︸ ︷

(2.3.5), (2.3.7), (2.5.7), (3.5.7), (2.3.5.7)

Hence,

√
100∑

d=1

µ(d)

[
100

d

]

=

(

µ(1)

[
100− 1

1

]

+ µ(2)

[
100

2

]

+ µ(3)

[
100

3

]

+ µ(5)

[
100

5

]

+ µ(7)

[
100

7

]

+µ(2.3)

[
100

2.3

]

+ µ(2.5)

[
100

2.5

]

+ µ(2.7)

[
100

2.7

]

+ µ(3.5)

[
100

3.5

]

+ µ(3.7)

[
100

3.7

]

+µ(5.7)

[
100

5.7

]

+ µ(2.3.5)

[
100

2.3.5

]

+ µ(2.3.7)

[
100

2.3.7

]

+ µ(2.5.7)

[
100

2.5.7

]

+µ(3.5.7)

[
100

3.5.7

]

+ µ(2.3.5.7)

[
100

2.3.5.7

])

=

(

µ(1)

[
99

1

]

+ µ(2)

[
100

2

]

+ µ(3)

[
100

3

]

+ µ(5)

[
100

5

]

+ µ(7)

[
100

7

]

+µ(2.3)

[
100

6

]

+ µ(2.5)

[
100

10

]

+ µ(2.7)

[
100

14

]

+ µ(3.5)

[
100

15

]

+ µ(3.7)

[
100

21

]

+µ(5.7)

[
100

35

]

+ µ(2.3.5)

[
100

30

]

+ µ(2.3.7)

[
100

42

]

+ µ(2.5.7)

[
100

70

]

+µ(3.5.7)

[
100

105

]

+ µ(2.3.5.7)

[
100

210

])

=

(

+

[
99

1

]

−
[
100

2

]

−
[
100

3

]

−
[
100

5

]

−
[
100

7

]

+

[
100

6

]

+

[
100

10

]

+

[
100

14

]

+

[
100

15

]

+

[
100

21

]

+

[
100

35

]

−
[
100

30

]

−
[
100

42

]

−
[
100

70

]

−
[
100

105

]

+

[
100

210

])
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= +99− 50− 33− 20− 14

+16 + 10 + 7 + 6 + 4 + 2

−3− 2− 1− 0 + 0

= 21

Hence, according to LSB (Legendre/Spencer-Brown), π(100) = π(10) + 21. But we know

π(10) = 4, when we listed out all the small primes 2, 3, 5, and 7.

π(100) = π(10) + 21

= 4 + 21 = 25.

The Legendre/Spencer-Brown formula can be tested for any n and the formula “works correctly

because its summation term yields the number of numbers ≤ n that are not struck out by the

Eratosthenes procedure of striking out those of them that are divisible by a prime q that is

‘small’ in relation to n, i.e., such that 2 ≤ q ≤ n
1
2 ” (page 203, Spencer-Brown, 2015 [48]). In

every application of the Legendre procedure, the small primes, i.e., the primes up to
√
n, are

needed to count the large primes, i.e., primes up to n. Two important observations:

When the divisor d exceeds n, the ‘floored’ quotient
[
n
d

]
returns 0 and so f(d) = µ(d)

[
n
d

]
=

µ(d).0 = 0. We saw this with divisors 3.5.7 = 105 and 2.3.5.7 = 210 in the Legendre/Spencer-

Brown demonstration for n = 100 on the previous page.

When a square-free divisor d exceeds n
2 but remains ≤ n, however, the quotient

[
n
d

]
yields 1,

and f(d) = µ(d)
[
n
d

]
is simply µ(d). This important observation leads Spencer-Brown to call

the square-free numbers ≤ n
2 the “upper section”, and the square-free numbers > n

2 but ≤ n

the “lower section”. On page 205, Spencer-Brown writes, “in the lower section the sum of the

terms is exactly the sum of the µ(d) in the section. Call a series of such terms an LSB series”

(page 205, Appendix 9 [48]).
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“The fact that with d unrestricted, the formula
∑
µ(d)[n

d
] = 1 is true for all n was first noted

by Meissel in Observationem quaedam in theoria numerorum, Berlin 1850, and proved by

Sierpiński in Elementary theory of numbers, Warsaw 1964, pp 180 and 181” (Spencer-Brown,

footnote on page 204 [48]). The point here is that instead of summing from 1 to
√
n in the

Legendre summation, one can sum from 1 to n so one has
∑n

d=1 µ(d)[
n
d
] = 0, by using Spencer-

Brown’s adjustment. On page 204, he provides an illustration of the use of Legendre’s formula

to calculate π(n) for n = 20:

d f(d) = µ(d)[n
d
]

1∗ +20

2∗ −10

3∗ −6

5 −4

6∗ +3

7 −2

10 +2

11 −1

13 −1

14 +1

15 +1

17 −1

19 −1
∑

+1

∑
µ(d∗)[ n

d∗
] = 7

7− 1 + π(n
1
2 ) = 8 = π(20)

The (d∗) are the denominators with no large

prime in their decomposition. The small

primes 2, 3 must be known explicitly, then the

number of large primes 5, 7, 11, 13, 17, 19 can

be calculated without any of them being iden-

tified.

In Spencer-Brown’s words: “Since 1 is not struck out by the sieve of Eratosthenes and is also

included in the count of “primes” calculated by the section
∑
µ(d)[n

d
], the count must be

reduced by one in either case, and then to get the complete answer the number of small primes

(q) used as strikers must be added to the total” (Spencer-Brown, on page 204). “Notice I have

used all (d) that yield an f(d) other than zero, and the sum of these, for any n, must always be

1, since only one number, 1 itself, remains unstruck if we use all the primes” (Spencer-Brown,

on page 204 [48]).
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“We thus further rectify the procedure by making the following change: use f(d) = µ(d)[n−1
d

]

for d = 1, and use f(d) = µ(d)[n
d
] for all other values of d” (Spencer-Brown, page 205 [48]).

This rectification ensures:
n∑

d=1

f(d) = 0, where f(d) = µ(d)
⌊n

d

⌋

, and for d = 1, f(d) = µ(d)

⌊
n− 1

d

⌋

.

“My Denjoy proof, in summary, runs as follows:

1. What Professor Denjoy showed is that the RH is equivalent to the proposition that the

number of primes in a square-free d ≤ n of any size is even or odd with equal probability.

2. I rectify Legendre’s method of counting large primes in n and then corrupt it to give the

answer zero for all (n).

3. I split the rectified Legendre terms into two sections, upper and lower, so that the lower

sections eventually include all values of µ(d) for square-free (d) > 1.

4. I show that the average algebraic sum, i.e., the sum divided by the number of LSB terms

displayed, in each section varies around and is asymptotic to zero as n for the f(d) terms

increases without limit.

5. Since the lower sections eventually include the values of µ(d) for all square-free (d) > 1,

and their signs are by the previous proposition equiprobable in the limit, the RH, quod erat

demonstrandum, must be true.

6. In addition, since the upper sections eventually contain all the values of µ(d) for square-free

(d) but magnified by various factors ranging from 2 to n− 1, that are independent of the signs

of µ(d), and the average differences between the plus and minus values of these magnified terms

also tend to zero as n increases, this fact constitutes a second proof of Riemann’s hypothesis,

since if an average set of magnified differences tends to zero, then the average of the same set

of differences unmagnified must also tend to zero” (page 214, Appendix 9 [48]).

The negative feedback property of µ(n) is used by Spencer-Brown to argue that the cumula-

tive Möbius function varies around zero and that its asymptotics are sufficient, by Denjoy’s

interpretation, to prove the Riemann Hypothesis (RH), which is equivalent to the relation

M(x) = O(x
1
2
+ǫ), ∀ǫ > 0, where M(x) =

∑

n≤x µ(n).

This argument of George Spencer-Brown deserves further investigation.
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We are presented with The Spencer-Brown Formula23 Möbius Mu(n), which can be seen to

follow as a consequence of the Legendre/Spencer-Brown formula for π(n). The Spencer-Brown

Formula Möbius Mu(n) (J. M. Flagg, Conversations with GSB, Oct 8, 2012):

µ(n) = −
(

n− 1 +

n−1∑

d=2

µ(d)
⌊n

d

⌋)

= 1− n−
n−1∑

d=2

µ(d)
⌊n

d

⌋

= −
(

n−1∑

d=1

µ(d)
⌊n

d

⌋
)

,

since for d = 1, we make the Spencer-Brown adjustment, rectifying [n
d
] to [n−1

d
].

Start with µ(1) = +1.

µ(2) = −(µ(1)[ 2−1
1 ]) = −1.

µ(3) = −(µ(1)[ 3−1
1 ] + µ(2)[ 32 ]) = −(2− 1) = −1.

µ(4) = −(µ(1)[ 4−1
1 ] + µ(2)[ 42 ] + µ(3)[ 43 ]) = −(3− 2− 1) = 0.

µ(5) = −(µ(1)[ 5−1
1 ] + µ(2)[ 52 ] + µ(3)[ 53 ] + µ(4)[ 54 ]) = −(4− 2− 1 + 0) = −1.

µ(6) = −(µ(1)[ 6−1
1 ] + µ(2)[ 62 ] + µ(3)[ 63 ] + µ(4)[ 64 ] + µ(5)[ 65 ]) = −(5− 3− 2 + 0− 1) = +1.

23

(for n > 1), µ(n) = −
(

n− 1 +

n−1
∑

d=2

µ(d)
[n

d

] )

= 1− n−
n−1
∑

d=2

µ(d)
[n

d

]

,

where the bracketed variable
[

n
d

]

denotes the integer part of n
d
.

19
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Spencer-Brown’s cascade (pages 215-216) [48] is a tabular arrangement: The first column lists

the square-free numbers d ≤ n. The second column lists f(d) = µ(d)
⌊
n
d

⌋
(where, for d = 1, n

d

is rectified to n−1
d

). The third column lists
∑
f(d), or what Spencer-Brown calls the “running

total”.

for n = 2,

d f(d)
∑
f(d)

1 + 1 + 1

µ(2) = −1 0

for n = 3,

d f(d)
∑
f(d)

1 + 2 + 2

2 − 1 + 1

µ(3) = −1 0

for n = 4,

d f(d)
∑
f(d)

1 + 3 + 3

2 − 2 + 1

3 − 1 0

µ(4) = 0 0

for n = 5,

d f(d)
∑
f(d)

1 + 4 + 4

2 − 2 + 2

3 − 1 + 1

µ(5) = −1 0

for n = 6,

d f(d)
∑
f(d)

1 + 5 + 5

2 − 3 + 2

3 − 2 0

5 − 1 − 1

µ(6) = +1 0
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On page 217, Spencer-Brown says: “All the cascade requires is what previous cascades have

told it. We also see that there is no need to list the final term for any n, since the answer must

be the penultimate term in the running total with the sign reversed”. Thus, the penultimate

term in
∑
f(d) with reversed sign

= −
( n−1∑

d=1

f(d)

)

= f(n) (= the final f(d) term = µ(n)).

For Spencer-Brown’s cascade on pg. 215-217 [48], note that the final term of
∑
f(d) = 0. In

his Letter to Moshe Klein, Spencer-Brown provides a variation of the cascade on pg. 215-216

where the final term of
∑
f(d) = µ(n). Consider,

d n = 2,

−1 − 1

∴ µ(2) = −1

d n = 3

−2 − 2

2 +1 − 1

∴ µ(3) = −1

d n = 4

−3 − 3

2 +2 − 1

3 +1 0

∴ µ(4) = 0

d n = 5

−4 − 4

2 +2 − 2

3 +1 − 1

∴ µ(5) = −1

d n = 6

−5 − 5

2 +3 − 2

3 +2 0

5 +1 + 1

∴ µ(6) = +1
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We may now see how Spencer-Brown rectifies Legendre’s method of counting large primes in

n and then corrupts it to give the answer zero for all (n). By this he precisely means the

cascading algorithm used in pg. 215-216 [48], in which the final term of the “running total” or
∑
f(d) is zero. Recall that Spencer-Brown splits n ≤ d into two sections at n

2 , calling d <
n
2

the upper section and n
2 < d ≤ n the lower section, since for the lower section µ(d)

⌊
n
d

⌋
= µ(d).

Thereupon, Spencer-Brown says that “any difference between the upper and the lower sections

can be seen to be self-annihilating, because of the negative feedback between the two sections”

(page 206, [48]). For any square-free number n, such as n = 20, since the final f(d) term,

f(n) = µ(n) equals 0, if we use the cascading algorithm in Appendix 9,

n∑

d=1

f(d) = 0.

By using the generalizable example of n = 20, and doubling n to 2n = 40, and then doubling

2n to 4n = 80, and so on, the lower sections eventually include all values of µ(d) for square-free

(d) > 1” (page 214, Appendix 9 [48]), and the “average algebraic sum, i.e., the sum divided by

the number of LSB terms displayed, in each section varies around and is asymptotic to zero”

(page 214, Appendix 9, [48]), since the LSB series, or Spencer-Brown’s cascade, establishes

a negative feedback relation between the final f(d) term and penultimate
∑
f(d) term (with

reversed sign). Thus, if µ(n) is the nth term of f(d), and µ(n) = f(n) = ±1, then the (n− 1)th

term of
∑
f(d) = ∓1, for square-free n.
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We first explore the identity that (1+p1)(1+p2) . . . (1+pn) = the sum of all possible products

of pi with exactly one or no appearance of each pi. This implies that the sum of their µ values

is equal to (1 + (−1))N = 0 (here N is the number of primes being considered). Recall that

the Legendre/Spencer-Brown (LSB) formula24 requires the primes up to
√
n to find the primes

up to n. For the sake of computing π(n), build all square-free divisors d ≤ n, by starting with

the first square-free divisor 1. Call:

{pi} = {pi|“pi is prime” and “1 ≤ i ≤ π(
√
n)”}

{pi.pj} = {(pi.pj)|“pi, pj are prime” and “1 ≤ i < j ≤ π(
√
n)”}

{pi.pj .pk} = {(pi.pj .pk)|“pi, pj , pk are prime” and “1 ≤ i < j < k ≤ π(
√
n)”}

...

Note how the small primes up to
√
n combine uniquely to form a large (but finite) collection of

square-free divisors d = {1, {pi}, {pi.pj}, {pi.pj.pk}, ...}. The last item in this list is the product

of all the primes up to
√
n. By definition of the Möbius function, we know that µ(1) = +1,

µ(pi) = −1, µ(pi.pj) = +1, µ(pi.pj.pk) = −1, ..., for all primes pi, pj , and pk. We wish to

keep track of the +1’s and −1’s contributed by these square-free divisors. Let {pi} have m

elements. What is the total number of elements of {pi.pj}?

Let #S = the number of elements of a set S. For m = 5,

24The Legendre formula, rectified by Spencer-Brown, is presented as follows:

π(n) = π(
√
n) +

√
n

∑

d=1

µ(d)
[n

d

]

.

Specifically for d = 1, Spencer-Brown rectifies the dividend to
[

n−1
d

]

. We take the bracketed variable
[

n
d

]

to

mean the floored quotient
⌊

n
d

⌋

. Further, d is any number ≤ n that can be expressed as a product of primes up

to
√
n.

23
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#{pi} = #{2, 3, 5, 7, 11} = 5 = m, in general.

#{pi.pj} = #2{3, 5, 7, 11} = #{2.3, 2.5, 2.7, 2.11}= 4 = (m− 1) elements, in general.

+#3{5, 7, 11},=#{3.5, 3.7, 3.11}= 3 elements

+#5{7, 11},=#{5.7, 5.11} = 2 elements

+#7{11} = #{7.11} = 1 element.

Note that {pi.pj} has 1+2+3+4 elements, and in general, #{pi.pj} = 1+2+3+ ...+(m−1).

#{pi.pj.pk} = #2







3{5, 7, 11} = #{2.3.5, 2.3.7, 2.3.11}= 3 = (m− 2) elements

5{7, 11} = #{2.5.7, 2.5.11} = 2 elements

7{11} = #{2.7.11} = 1 element

+#3







5{7, 11} = #{3.5.7, 3.5.11} = 2 elements,

7{11} = #{3.7.11} = 1 element

+#5

{

7{11} = #{5.7.11} = 1 element.

Note that {pi.pj .pk} has 1 + (1 + 2) + (1 + 2 + 3) elements, and in general,

#{pi.pj.pk} = 1 + (1 + 2) + (1 + 2 + 3) + ...+ (1 + 2 + 3 + ...+ (m− 2)).

Recall that #{pi.pj} = 1+2+3+ ...+(m− 2)+ (m− 1). Notice how this sum, can be broken

up into two parts, 1 + 2+ 3+ ...+ (m− 2), and (m− 1). Take the first part. It is equal to the

largest collection in {pi.pj.pk} with (1 + 2 + 3 + ...+ (m− 2)) elements.

Similarly, recall that #{pi} = m. We can break this sum into two parts (m− 1) and 1. Take

the first part. It equals the second part (m−1) of {pi.pj}. The second part, 1 of {pi}, however,
is equal to the first square-free divisor 1.

As we collect all square-free products of pi, pj, pk, ... into {1, {pi}, {pi.pj}, {pi.pj .pk}, ...}, we see
the 1 giving µ(1) = +1, the {pi} giving µ(pi) = −1, the {pi.pj} giving µ(pi.pj) = +1, and so

on, and we observe how one collection of +1’s cancels out a preceding or successive collection

of −1’s in our set of divisors.
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{1} has 1 element.

{pi} has m elements = (m− 1) + 1

{pi.pj} has 1+2+3+. . . +(m− 2) +(m− 1) elements.

{pi.pj .pk} has

1

+1+2

+1+2+3

+...

+1+2+3+. . . +(m− 3)

+ 1+2+3+. . . +(m− 2) elements.

{pi.pj .pk.pl} has 1 +
1

+1+2
+

1

+1+2

+1+2+3

+ ... +

1

+1+2

+1+2+3

+. . .

+1+2+3+. . . +(m− 4)

+

1

+1+2

+1+2+3

+. . .

+1+2+3+. . . +(m− 3)

elements.
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Notice how the total number of divisors in each collection correspond to the counts of the

vertical columns of Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

We see how column 1 corresponds to the total number of divisors in {pi},
column 2 corresponds to the total number of divisors in {pi.pj},
column 3 corresponds to the total number of divisors in {pi.pj .pk},
column 4 corresponds to the total number of divisors in {pi.pj .pk.pl},
...

Column 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + ... = #{pi} with µ(d) = −1.

Column 2 = 1+ 2+ 3+4+5+ 6+ ... = #{pi.pj} with µ(d) = +1. If we look at the 6 in this

list, it is the sum of all the entries of column 1 till 5, i.e., 1 + 1 + 1 + 1 + 1 + 1 = 6.

Column 3 is the sum of triangular numbers = 1 + 3 + 6 + 10 + 15 + ... = #{pi.pj.pk} with

µ(d) = −1. If we look at the 15 in this list, it is the sum of all entries of column 2 till 10, i.e.,

1 + 2 + 3 + 4 + 5 = 15.

Column 4 is the sum of tetrahedral numbers = 1+4+10+20+35+ ...= #{pi.pj .pk.pl} with

µ(d) = +1. If we look at the 20 in this list, it is the sum of all entries of column 3 till 10, i.e.,

1 + 3 + 6 + 10 = 20.

Column 5 is the sum of pentatope numbers = 1 + 5 + 15 + 35 + 70 + ... = #{pi.pj .pk.pl.pm}
with µ(d) = −1. If we look at the 15 in this list, it is the sum of all entries of column 4 till 5,

i.e., 1 + 4 + 10 = 15.
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Note: Pascal referred to this self reference as a “hockey stick pattern”. When the numbers are

arranged in Pascal’s form, the rows and columns are interchangeable as follows:

1 1 1 1 1 1 1

1 2 3 4 5 6 ...

1 3 6 10 15 ...

1 4 10 20 ...

1 5 15 ...

1 6 ...

1 ...

The “hockey stick pattern” that Pascal is referring to is identical to the dovetailing identities

we saw in the previous page. If we look at the 6 in Column 2, it is the sum of all numbers in

the previous Column 1 up to 6 itself. This gives us the identity 1+1+1+1+1+1 = 6, which

is the same as what we had on the previous page. Similarly, if we look at the 15 in Column 3,

it is the sum of all numbers in the previous Column 2 up to 15 itself. This gives us the identity

1 + 2 + 3 + 4 + 5 = 15, which is the same as what we had on the previous page. Similarly, if

we look at the 20 in Column 4, it is the sum of all numbers in the previous Column 3 up to

20 itself. This gives us the identity 1 + 3 + 6 + 10 = 20. The 15 in Column 5 is the sum of all

numbers in the previous Column 4 up to 15 itself, giving us the identity 1 + 4 + 10 = 15. The

6 in Column 6 is the sum of all numbers in the previous Column 5 up to 6 itself, giving us the

identity 1 + 5 = 6. Finally, the 1 in the last Column 7 equals the adjacent 1 in the previous

Column 6:

1 + 1 + 1 + 1 + 1 + 1 = 6

1 + 2 + 3 + 4 + 5 = 15

1 + 3 + 6 + 10 = 20

1 + 4 + 10 = 15

1 + 5 = 6

1 = 1
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Pascal said25,“In every arithmetical triangle each cell is equal to the sum of all the cells of

the preceding row from its column to the first, inclusive”. Since the rows and columns are

interchangeable, we also have “In every arithmetical triangle each cell is equal to the sum of

all the cells of the preceding column from its row to the first, inclusive”.

In collecting all square-free divisors from a set of prime numbers {pi} of size m, we notice that

the count of all possible combinations of square-free divisors generated by the set {pi}, when
collected combinatorially in collections of {pi}, {pi.pj}, {pi.pj .pk}, . . . , correspond exactly to

the counts in the columns of Pascal’s triangle. If the columns of Pascal’s triangle are assigned

− or + in an alternating way, i.e., if Column 1 is assigned −, Column 2 is assigned +, Column 3

is −, Column 4 is +,..., then not only do these columns correspond to the counts of square-free

divisors for each collection {pi}, {pi.pj}, {pi.pj .pk}, ..., but also each column now corresponds

to the cumulative sum of Möbius values of the square-free divisors that correspond to that

column, contributing a positive Möbius sum for columns 2, 4, 6, 8, ... or negative Möbius sum

for columns 1, 3, 5, 7, ... .

Column 1, which now represents the singular prime count up to m, gives µ(d) = −1 throughout

the column. So, if we sum all members of Column 1, we are summing the Möbius values of

each of the divisors that Column 1 corresponds to, which is simply #{pi}. Column 2, which

represents all possible (pi.pj) combinations, gives µ(d) = +1. So, if we sum all members of

Column 2, we are summing the Möbius values of each of the divisors that Column 2 corresponds

to, which is simply #{pi.pj}. Column 3, which represents all possible (pi.pj .pk) combinations,

gives µ(d) = −1. So, if we sum all members of Column 3, we are summing the Möbius values

of each of the divisors that Column 3 corresponds to, which is simply #{pi.pj .pk}.

Pascal’s “hockey stick pattern” shows us that the alternating sum of all columns of a finite

Pascal’s triangle equals -1. One may verify this for a Pascal’s triangle of any size. For a Pascal’s

triangle of size m = 7, the alternating sum of all 7 columns

= −(1 + 1+ 1+ 1+ 1+ 1+ 1) + (1 + 2+ 3+ 4+ 5+ 6)− (1 + 3+ 6+ 10 + 15)+ (1 + 4+ 10 +

20)− (1 + 5 + 15) + (1 + 6)− 1 = −1.

Column 1 has one remaining element p∗ that survives as all the other columns cancel each

other out in the alternate sign summation of all columns of Pascal’s triangle. We know µ(p∗) =

−1. We see that p∗ could be none other than the first prime 2, as shown in the first Pascal

25https://www.cut-the-knot.org/arithmetic/combinatorics/PascalTriangleProperties.shtml

https://www.cut-the-knot.org/arithmetic/combinatorics/PascalTriangleProperties.shtml
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arrangement, or the m-th prime as seen in Pascal’s original arrangement26. This taken together

with µ(1) = +1 will always give us a total Möbius sum of zero for all square-free divisors

generated by a finite set of primes, including the set of primes and the first square-free divisor

1.

Theorem 1. A. Let n be a natural number. Let p1, p2, p3, ..., enumerate the primes

up to
√
n.

Let d be a square-free divisor in {1, {pi}, {pi.pj}, {pi.pj .pk}, ...}, where
{pi} := {pi|“pi is prime” and “1 ≤ i ≤ π(

√
n)”},

{pi.pj} := {(pi.pj)|“pi, pj are prime” and “1 ≤ i < j ≤ π(
√
n)”}

{pi.pj.pk} := {(pi.pj.pk)|“pi, pj , pk are prime” and “1 ≤ i < j < k ≤ π(
√
n)”}, ...

Then,
∑

d

µ(d) = 0.

B. Let n be a natural number. Let p1, p2, p3, ..., pn be any collection of n primes.

Let d be a square-free divisor in {1, {pi}, {pi.pj}, {pi.pj .pk}, ...}, where
{pi} := {pi|“pi is prime” and “1 ≤ i ≤ n”},
{pi.pj} := {(pi.pj)|“pi, pj are prime” and “1 ≤ i < j ≤ n”}
{pi.pj.pk} := {(pi.pj.pk)|“pi, pj , pk are prime” and “1 ≤ i < j < k ≤ n”}, ...

Then,
∑

d

µ(d) = 0.

We see how any collection of n primes can form divisors d in {1, {pi}, {pi.pj}, {pi.pj .pk}, ...}
and that #{pi},#{pi.pj},#{pi.pj.pk}, ... correspond exactly to the columns (or rows) of Pas-

cal’s triangle. The “alternating sums of subsequent columns (or rows) in Pascal’s triangle” is

{1, 0, 0, 0, , ...}, which gives a total Möbius sum of -1. Since µ(1) = +1,

∑

d

µ(d) = µ(1)− 1 = 0.

26http://oeis.org/wiki/Pascal triangle

http://oeis.org/wiki/Pascal_triangle
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The Liouville function λ maps to values +1 or −1. If the sum of the powers of the prime

components of a number n is even, λ(n) = +1, and if the sum of the powers of the prime

components of n is odd, λ(n) = −1.

Consider, the set of primes {2, 3}. Write the “Pascal form” or “triangular form” of the collection

of divisors of the maximal product of elements in that set, as:




2 3

2.3



. This is the collection

of all square-free products generated by {2, 3}.

Now consider,







2(2) 3(3)

2.3




2 3

2.3











=







22 32



22.3 2.32

22.32










.

We see how a simple product of each entry of this Pascal form (with itself or its corresponding

Pascal form), helps us generate all the possible combinations of {2, 3} of degree 2. Call the

degree27 of a number the degree of the highest-degree-prime in the number’s prime factorization.

For instance, the degree of 45 = 32.5 is 2.

Now consider Degree 3 collections:









2(2(2)) 3(3(3))

2.3







2(2) 3(3)

2.3




2 3

2.3




















=










23 33






23.3 2.33



23.32 22.33

23.33




















Degree 4 collections:












2(2(2(2))) 3(3(3(3)))

2.3










2(2(2)) 3(3(3))

2.3







2(2) 3(3)

2.3




2 3

2.3
































=













24 34

2.3










23 33

2.3







22 32

2.3




2 3

2.3
































27This type of definition has a similar sense to the “degree” of a polynomial.
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=













24 34









24.3 2.34






24.32 22.34



24.33 23.34

24.34
































Degree 5 collections:















2(2(2(2(2)))) 3(3(3(3(3))))

2.3













2(2(2(2))) 3(3(3(3)))

2.3










2(2(2)) 3(3(3))

2.3







2(2) 3(2)

2.3




2 3

2.3















































=
















25 35

2.3













24 34

2.3










23 33

2.3







22 32

2.3




2 3

2.3















































=
















25 35












25.3 2.35









25.32 22.35






25.33 23.35



25.34 24.35

25.35















































If we were to replace every divisor in these collections with o for “odd”, when λ(d) = −1 and

e for “even”, when λ(d) = +1, we have:
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Degree 0 : e

Degree 1:




o o

e





Degree 2:







e e



o o

e











Degree 3:










o o






e e



o o

e




















Degree 4:













e e









o o






e e



o o

e
































and Degree 5:
















o o












e e









o o






e e



o o

e















































We wish to sum the λ values over these collections:

Degree 0 is simply e or +1, and Degree 1, by Theorem 1, sums to o or −1. Degree 2 sums to

e, Degree 3 sums to o, Degree 4 sums to e, Degree 5 sums to o, ...

Consider, now, the set of primes {2, 3, 5}. The degree 1 divisors are









2 3 5

2.3 2.5

3.5

2.3.5










,
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the degree 2 divisors are:

























22 32 52

2.3




2 3

2.3



 2.5




2 5

2.5





3.5




3 5

3.5





2.3.5










2 3 5

2.3 2.5

3.5

2.3.5


































,

and the degree 3 divisors are:












































23 33 53

2.3







22 32

2.3




2 3

2.3











2.5







22 52

2.5




2 5

2.5











3.5







32 52

3.5




3 5

3.5











2.3.5

























22 32 52

2.3




2 3

2.3



 2.5




2 5

2.5





3.5




3 5

3.5





2.3.5










2 3 5

2.3 2.5

3.5

2.3.5














































































If we were to replace every entry in these collections with o for “odd”, when λ(d) = −1 and e

for “even”, when λ(d) = +1, we have:
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Degree 0 : e

Degree 1:










o o o

e e

e

o










Degree 2:

























e e e



o o

e








o o

e








o o

e














e e e

o o

o

e


































Degree 3:













































o o o






e e



o o

e

















e e



o o

e

















e e



o o

e



































o o o



e e

o








e e

o








e e

o














o o o

e e

e

o














































































We wish to sum the λ values over these collections: Degree 0 is just simply e or +1, and Degree

1, by Theorem 1, sums to o or −1. Degree 2 sums to e, Degree 3 sums to o, ...
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The degree28 of a number is defined as the degree of the highest-degree-prime in the number’s

prime factorization. We observe that the parity of the degree of a number satisfies the following

theorem29:

Theorem 2. Let {pi} be the finite set of primes of size n, with i ≤ n. Define

the “degree of a number” k as the degree of the highest-degree-prime in the number’s prime

factorization. Call d0 a degree 0 number, d1 a degree 1 number, and dk a degree k number,

formed only by primes from {pi}. Then,

A.
∑

d1

λ(d) = −λ(d0).

B.
∑

dk

λ(d) = (−1)k.

(A) Begin with the finite set of primes of size n. The Degree 0 collection always consists

of a single element, the number 1, which has 0 number of prime divisors, and since 0 is an

even number, λ(1) = +1. The Degree 1 collection corresponds to all the square-free numbers

generated by our initial set of generators, which, in this case, is the set of the first n primes.

Since we know that all possible distinct combinations of a set of primes taken distinctly can be

given by the Pascal or “triangular” form generated by the set, and that λ(d) = µ(d) for each

d in the degree 0 and degree 1 collections, so by Theorem 1,

∑

d1

λ(d) = −λ(d0).

(B) Now, let us consider the collection of divisors of degree k. In our concrete demonstrations

for prime generators {2, 3} and {2, 3, 5}, we offered a recursive method to list all possible

combinations of these prime generators for any degree. The method employed is simple. In

order to construct the collection of all possible divisors of degree n generated by a set of primes,

we must first write out the degree 1 collection, which is simply the Pascal or “triangular” form of

the collection of square-free numbers generated by that given set of primes. Then, we multiply

each entry of this representation with its corresponding Pascal form, i.e., we multiply each

28As a reminder, this sense of “degree” is similar in the context of polynomials
29The two theorems mentioned in Appendix 0 are original and are attributed to the co-authors of this

paper, J. M. Flagg, Louis H. Kauffman, and Divyamaan Sahoo.
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entry pi with its Pascal form pi, we multiply each entry pi.pj with




pi pj

pi.pj



, we multiply

pi.pj .pk with










pi pj pk

pi.pj pi.pk

pj .pk

pi.pj .pk










, and so on.

This recursive method, applied once, gives us all possible degree 2 numbers whose prime

components are restricted by the starting set of primes of size n, i.e., the degree 2 collection.

When this recursive method is applied twice, we get the degree 3 collection, and when applied

(k − 1) times, we get the degree k collection.

Note that the degree k collection will have k containers30 by the end of this recursive method,

i.e., the depth of degree k arrangement is k. Further, by design, we see that a degree k

collection is essentially a degree 1 collection of degree (k − 1) collections, since each entry of

the degree 1 collection combines with its corresponding Pascal form and begins nesting within

itself (k − 1) times in order to exhaustively list the entire degree k collection. In essence, a

degree k collection is a degree 1 colljection, and we know, by Theorem 2.A,
∑

d1
λ(d) = −1,

regardless of the parity of n.

Starting from the innermost depth, we will be able to replace degree 1 collections with
∑

d1
λ(d) = −1, since we wish to sum all the λ values in the degree k collection. As we move

inside-out, we subsequently remove containers and simplify the arrangement, and are finally

left with a degree 1 arrangement with n entries in the first row, namely, the single primes (from

the finite set of primes of size n) raised to the kth power. Now consider, n can be even or odd,

but the degree k collection will always begin with a row of n numbers whose λ values are all

+1, if k is even and −1, if k is odd. From our knowledge of the Pascal triangle, only one entry

of the first row will survive the alternate sign summation of the columns of Pascal’s triangle,

which contributes λ of +1 if k is even and −1 if k is odd. Hence,

∑

dk

λ(d) = (−1)k

30The reader is encouraged to make note of this in the concrete demonstrations provided for example and

perform investigations for large n on a large piece of paper.
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[35] Möbius, A. F. Uber ein besondere Art von Umkehrung der Reihen, Crelle’s Journal d. M. Bd. IX. Hft. 2.,

1832.
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