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. . . the cycle has taken us up through forests

Robert M. Pirsig [11]

Abstract

Let T be a tree on n vertices. We can regard the edges of T

as transpositions of the vertex set; their product (in any order) is
a cyclic permutation. All possible cyclic permutations arise (each
exactly once) if and only if the tree is a star. In this paper we find
the number of realised cycles, and obtain some results on the number
of realisations of each cycle, for other trees. We also solve the inverse
problem of the number of trees which give rise to a given cycle. On
the way, we meet some familiar number sequences including the Euler
and Fuss–Catalan numbers.

1 Introduction

Let T be a tree on the vertex set {1, . . . , n}, with edge set E(T ). We regard
the edge e ∈ E(T ) which joins vertices i and j as the transposition (i, j)
in the symmetric group Sn. These transpositions generate the symmetric
group, and form a minimal generating set for Sn, in the sense that no proper
subset is a generating set.

Whiston [14] showed that the largest size of a minimal generating set
for Sn is n − 1, and Cameron and Cara [1] showed that, for n ≥ 7, there
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are just two types of minimal generating sets of size n − 1, both derived
from trees: one consists of the set E(T ) as above, while the other has the
form {{s} ∪ {(st)ǫ : t ∈ E(T ) \ {s}, ǫ = ±1}, for s ∈ E(T ), where T is an
arbitrary tree. The diameter of the Cayley graph of Sn with generating set
E(T ) has been investigated by Kraft [8], and other properties of these graphs
by Konstantinova and co-authors (see for example [5]).

The product of the transpositions corresponding to all edges of T is an
n-cycle [2]. (This follows easily by induction from the fact that, if g ∈ Sn

has the property that i and j lie in different cycles, then these two cycles are
fused into a single cycle in the product g(i, j).)

According to Cayley’s Theorem, the number of trees on {1, . . . , n} is
nn−2, while the number of orderings of the edges of such a tree is (n − 1)!.
On the other hand, the number of n-cycles in Sn is (n − 1)!, and all cycles
are conjugate, so each cycle can be realised in nn−2 ways as the product of
all the edges in a tree [2].

One might guess that, given any tree, every cycle arises uniquely from an
ordering of its edges; but a little thought shows that this is not so. Indeed,
the only trees with this property are the stars. This raises several questions:

(a) Given a tree T , how many different cycles arise from multiplying its
edges in arbitrary order?

(b) What is the distribution of the numbers of occurrences of cycles from
a given tree?

(c) The inverse problem: given a cycle c, how many trees give rise to c
when the edges are multiplied together in some order?

To illustrate, Table 1 shows the frequencies of cycles arising from the six
non-isomorphic trees on 6 vertices. (The entry (x, y) means that y cycles have
frequency x.) This and other computations were performed using GAP [4].
The column labelled Diameter gives the diameter of the Cayley graph of
S6 with connection set E(T ). These values were calculated using the GAP

package GRAPE [12].
In this paper, we answer the first and third question, and give some

information about the second. One feature of the results, is that a couple of
famous integer sequences, the Euler numbers and the Fuss–Catalan numbers,
come up in the investigation. More specifically:
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Tree Cycles Diameter Cycle frequencies
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❅❅ 36 10 (1, 8), (3, 16), (4, 4), (6, 8)
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48 9 (1, 12), (2, 12), (3, 12), (4, 12)

r

r

r r

r

r

✚✚
❩❩❍❍✟
✟

120 7 (1, 120)

Table 1: Cycles from 6-vertex trees

• the number of occurrences of the most frequent cycle obtained from
the n-edge path is the nth Euler number En;

• the number of trees which realise a given (n+1)-cycle is the nth Fuss-
Catalan number.

Let O(T ) denote the set of all orderings of the edges of a tree T , and let
C(T ) denote the set of cycles arising from orderings of the edges of T ; for
c ∈ C(T ), the multiplicity of c is the number of orderings of the edges of T
for which the product of the transpositions is c.

2 Cycles from a tree

In this section we answer the first question stated in the introduction: how
many distinct cycles arise from a given tree T ? The answer is summarised
in Theorem 2.3. Before proceeding it is necessary to discuss a geometric
interpretation of the cycles which arise as products of the edges of T , since
the proof of the theorem will rely in part on a lemma which emerges from
this interpretation. Indeed, this lemma turns out to be foundational to much
of the work done in this paper.
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First notice that the set-up of our problem is naturally reached via a ge-
ometric, or dynamical, interpretation. We consider the edges of T as trans-
positions on {1, . . . , n}: the edge e = {i, j} corresponds to the transposition
(i, j). Set-theoretically, the edge is just a pair of elements while the trans-
position is a function which sends the element i to j and vice versa, fixing
everything else. This may seem like a bit of a leap, but this gap can be
bridged by appealing to the geometry of T . If we imagine a person standing
at the vertex i, they could cross the edge e and arrive at the vertex j; simi-
larly they can cross in the opposite direction to reach i from j. Of course, if
this person were at any other vertex v they cannot cross e; any attempt to
do so would fail and they would remain at v.

This interpretation can naturally be extended to sequences of edges (cor-
respondingly, products of transpositions). To take a basic example, suppose
we have e1 = {i, j} and e2 = {j, k}; then their corresponding transpositions
are (i, j), (j, k) and so the sequence e1e2 corresponds to the 3-cycle (i, k, j).
As before, imagine a person standing at the vertex i, moving along the tree
with respect to the sequence e1e2. First they cross e1, bringing them to the
vertex j, and then e2, arriving at k. Now at k they move with respect to
e1e2 again; first they attempt to cross e1 but cannot since e1 is not incident
to k, so they next cross e2 and arrive at j. Finally, starting at j they cross e1
to arrive at i since they now cannot cross e2. Starting at any other vertices
they will remain fixed, since neither e1 nor e2 are incident to them.

So by appealing to the geometry of a tree T we can arrive at the corre-
spondence between edges and transpositions, since the transposition corre-
sponding to an edge e describes the part that e plays in the dynamics of T .
As such we can use the transpositions to formalise and generalise the idea
described above. Given a tree T and some sequence of its edges s = e1 . . . em
we define the kth step of the traversal of T from i with respect to s to be
the unique path pki from the vertex i(e1 . . . em)

k−1 to i(e1 . . . em)
k where the

edges ej are identified with their corresponding transpositions. We refer to
these vertices as those hit by or landed on by the traversal. We then define
the traversal of T from i with respect to s to be the concatenation of each
step from i in the order they appear; pi = p1i . . . p

r
i where r is the smallest

number such that i(e1 . . . em)
r = i. Notice that pi is necessarily a circuit and

if ci is the cycle of e1 . . . em containing i when written in disjoint cycle form
then pi corresponds to ci and ci = (i, t(p1i ), t(p

2
i ), . . . , t(p

r−1
i )) which are the

vertices hit by the traversal from i, where t(p) denotes the terminal vertex
of a path p. Finally we define the traversal of T with respect to s to be the
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set of circuits pi for each i and thus the traversal {pi1, . . . pip} corresponds to
the permutation e1 . . . em = ci1 . . . cip.

We are concerned with orderings of the edges O(T ). These are sequences
as above which are maximal without replacement. As stated in the introduc-
tion, the products of transpositions corresponding to orderings are n-cycles
and so the traversal of each must be a single circuit which hits every ver-
tex. In fact, one can use this correspondence with traversals to obtain an
alternative proof that any ordering obtains an n-cycle; it can be shown in-
dependently that a traversal with respect to a given ordering of a tree must
be a single circuit which lands on every vertex. Related to this is the fol-
lowing lemma, which will prove useful for solving question (c) stated in the
introduction.

Lemma 2.1 Let T be a tree with vertex set {1, . . . , n} and let p = e1 . . . em
be the traversal of T with respect to some ordering from O(T ). Then for each
e ∈ E(T ) there are precisely two distinct numbers j1, j2 ∈ {1, . . . , m} such
that e = ej1 = ej2.

Proof We proceed by induction on n. Considering the path of length 1
with vertices i1, i2, there is only one edge e and so only one ordering. The
first step of the traversal from i1 is e; the second step starts at i2 and is also
e, returning to i1. Thus the only traversal for an ordering for this tree is ee,
satisfying the claim.

Now assume the inductive hypothesis and suppose we are given an order-
ing σ ∈ O(T ), we find its traversal p step by step. Pick any vertex to start
at and call it i; we denote by e1, . . . , ed the edges incident to i and assume
they are labelled so that they appear in this order in σ. Notice that each ej
leads to a subtree of T which we denote Tj and the Tj are pairwise disjoint.
The first step of the traversal is the path between i and iσ; the first edge
incident to i appearing in σ is e1 and thus iσ must be a vertex of T1. Let
e1,1 . . . e1,k be the part of the first step of the traversal which is in T1 (this
may be empty) and let v1 be the vertex such that e1 = {i, v1} (we may have
v1 = iσ).

By the inductive hypothesis each e ∈ E(T1) appears precisely twice in
any traversal of T1 with respect to an ordering of its edges; removing edges
in E(T ) \ E(T1) from σ, which we denote σ|T1 , gives such an ordering and
indeed, if v ∈ V (T1) then vσ = vσ|T1 as long as vσ ∈ V (T1). So we obtain a
traversal pT1 where each e ∈ E(T1) appears precisely twice, hits each vertex
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of T1 and ends at iσ (since that is where it started). Notice that e1,1 . . . e1,k
must be a suffix of pT1 as once e1,1 is crossed the rest must immediately follow
as the edges appear in that order in σ and we must then land on iσ where
the traversal ends (we know this because they are a suffix of the first step of
the traversal p). Since e1,1 is incident to v1 the edge preceding it in pT1 must
be an edge ev1 also incident to v1 and this edge must be the rightmost edge
incident to v1 left of e1,1 in σ|T1 or the rightmost edge incident to v1 in σ|T1 .
Therefore, in σ, it is either the rightmost edge of T1 left of e1 incident to v1 or
(if there are no edges incident to v1 left of e1) it is the rightmost edge incident
to v1. In either case the final step of pT1 differs from the corresponding step
of p; after ev1 , instead of e1,1 the traversal p crosses e1 and immediately e2
without landing on i. So p and pT1 disagree on the path e1,1 . . . e1,k, but these
edges are still included in p precisely twice so far since they were counted
once in pT1 where they do agree, and once immediately before pT1 started.
Thus we redefine pT1 by removing the suffix e1,1 . . . e1,k and attaching it as
a prefix; now pT1 is the part of p containing all edges of T1 which appear in
p and each appear precisely twice. In the case where v = iσ we have that
pT1 and p agree apart from landing on v1 the second time, and so no changes
need be made to pT1.

Now after landing on the final vertex of T1, p lands on a vertex of T2

and we have precisely the same situation as before. Thus this continues
inductively until we reach Td; in the final step of p we start at a vertex in Td

and cross ed. Since ed is the rightmost edge incident to i in σ, p must land on
i and the traversal is complete. We now see that p = e1pT1e1e2 . . . ed−1edpTd

ed
where each edge of Tj appears precisely twice in pTj

, as required. �

Using similar ideas to the above we can prove the following lemma which,
while a simple idea, turns out to be crucial throughout the paper and in
particular will be used to prove the next theorem.

Lemma 2.2 Let σ, τ ∈ O(T ). Then σ, τ give the same n-cycle c ∈ C(T )
if and only if they differ only by some sequence of commuting non-adjacent
edges.

Proof Since non-adjacent edges correspond to disjoint transpositions, it is
trivial that if the orderings differ only by a sequence of commuting non-
adjacent edges then they are equal in the symmetric group. We show that
if they differ by a sequence of commutes which involves at least one pair of
adjacent edges then they must be distinct.
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Indeed, suppose σ = e1 . . . ejej+1 . . . en−1 ∈ O(T ) and consider σ′ =
e1 . . . ej+1ej . . . en−1 where ej , ej+1 are incident to a common vertex denoted
i. Listing the edges incident to i by the order they appear in each order-
ing, we have ei1 , . . . , eik , ej, ej+1, eik+3

, . . . , eid for σ and ei1 , . . . , eik , ej+1, ej ,
eik+3

, . . . , eid for σ′. We denote the subtree that each em leads to by Tm and
the traversal of T with respect to σ (resp. σ′) by p (resp. p′). As illustrated
in the proof of Lemma 2.1 above, p and p′ hits each vertex of Tm in some
order then each vertex of Tm+1 according to the order of their respective
listing of edges incident to i. The order in which a traversal of T with re-
spect to an ordering in O(T ) hits the vertices fully determines the cycle in
C(T ) obtained from that ordering. Thus we can see that p hits the vertices
in Tj then those in Tj+1 while p′ hits the vertices in Tj+1 then those in Tj

and hence they must correspond to distinct n-cycles. This argument can
be applied inductively so we see that a sequence of commutes involving any
number of pairs of adjacent edges will result in a necessarily different cycle.
�

Theorem 2.3 Let T be a tree with vertex set {1, . . . , n}, and suppose that
the vertex i has valency di. Then the number of cycles which arise from
multiplying together the edges of T is

∏n

i=1 di!.

Proof Given a tree T with vertex set {1, . . . , n} we show that the tree T ′

obtained by attaching a leaf (edge and vertex) to a vertex i of T with degree
d has the property that |C(T ′)| = (d + 1)|C(T )|. The theorem then follows
by induction on n.

Let e1, . . . , ed be the vertices incident to i and let σ ∈ O(T ). Then σ has
the form

σ = g1e1g2 . . . gdedgd+1

where gj is a product of edges from E(T ) \ {e1, . . . , ed} such that gj, gk have
no edges in common for j 6= k and each e ∈ E(T ) \ {e1, . . . , ed} is used by gj
for some j. We allow the possibility gj = id for any j.

Let ed+1 be the edge attached to i to obtain T ′. Notice that given an
ordering σ′ ∈ O(T ′) we obtain an ordering σ ∈ O(T ) by removing ed+1; as
such, σ′ can be obtained from σ by inserting ed+1 in between the appropriate
edges of σ. Further, given σ ∈ O(T ) we can obtain an ordering σ′ ∈ O(T ′)
by inserting ed+1 in between any two consecutive edges of σ.

So consider inserting ed+1 somewhere into σ = g1e1g2 . . . gdedgd+1; for a
fixed j, if we insert ed+1 in any two places so that it is beside an edge of gj
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the two orderings from O(T ′) we obtain will give the same cycle by Lemma
2.2, since they differ only by a sequence of commutes of ed+1 with edges from
gj. On the other hand, if we obtain σj , σk ∈ O(T ′) by inserting ed+1 so it is
beside an edge of gj and gk respectively, for j < k, the cycle given by each
must be distinct since to reach σk from σj by a sequence of commutes would
require commuting ed+1 and ej+1, which are adjacent in T . Thus for every
cycle in C(T ) there are d+1 cycles in C(T ′) (one for each gj) as required. �

Corollary 2.4 (a) The only trees which give rise to all possible cycles are
the stars.

(b) The trees which give rise to the smallest number of cycles (namely 2n−2)
are the paths.

Proof The degrees di sum to 2(n − 1). Since (di − 1)!(dj + 1)! > di!dj! if
di < dj, we maximise the number of cycles by moving degrees to the extreme
values (n− 1, 1, 1, . . . , 1), and minimise the number by moving them close to
the mean values, (2, 2, . . . , 2, 1, 1). �

3 Distributions

We now turn to the second question: for a given tree T , what are the multi-
plicities of the cycles which arise? We obtain a characterisation of trees with
cycles of multiplicity 1 and a counting formula for the number of such cycles.
We also find the number of cycles with extremal multiplicities for two classes
of tree; paths and forked paths.

Before detailing our results we first develop another alternative view of
the problem at hand, this time order theoretic, which will prove useful for
what we show and may have uses for future work.

As before, consider a tree T with vertex set {1, . . . , n} and take an or-
dering of its edges σ = e1 . . . en−1 ∈ O(T ). Notice that each such ordering
corresponds to a linear order on E(T ) in the sense of a partial order where
any two elements are comparable; if < is the linear order corresponding to σ
then e1 < e2 < . . . < en−1. As we know, multiple different orderings can give
the same cycle, so what is it that unifies these orderings?

Lemma 2.2 tells us that – as far as the cycle obtained from an ordering
is concerned – the only relevant thing is, for each vertex, what order do the
edges incident to it appear in the ordering. We can see this fact at play in
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the proofs from Section 2. Of course, each edge is incident to two vertices
so the constraints on how we can manipulate an ordering without changing
the cycle is more complex than this, but those constraints emerge from this
basic principle.

It is this idea which motivates the following definition. First we require
some notation and terminology. When working with a partially ordered set
we will usually consider the partial order (p) and the set it is defined over
(P ) separately, regarding p as a subset of P × P . However, when working
with a linear order l it will often be convenient to regard it as a bijection
l : P → [m] where m = |P | and we will switch freely between these two
conceptions. For a partial order p over P we denote by L(p) the set of linear
extensions of p; these are the linear orders over P which contain p as a subset.
For a partial order p on a set P we define the inverse of p to be the partial
order p−1 = {(y, x) | (x, y) ∈ p} on P .

If p is a partial order on a set P then we say q ⊆ p is a suborder of p
if it a partial order on P and in this case we call p a refinement of q. For
Q ⊆ P we say q is the induced suborder of p on Q if q = p ∩ (Q × Q). If p
is a partial order on P and q is a partial order on a subset Q ⊆ P then for
ease we denote by p ∪ q the smallest partial order on P which contains both
p and q; in other words, we implicitly take the transitive closure of the set
p ∪ q.

Now, let σ ∈ O(T ) be an ordering. For each vertex i we consider σ|i; this
is σ with all edges apart from those incident to i removed. Understanding
σ ⊆ E(T ) × E(T ) as a linear order, σ|i ⊆ σ is a linear order on the edges
incident to i; indeed, σ|i is the induced suborder of σ on the set of edges
incident to i and we refer to it as the local suborder of σ at i. Thus we define
the partial order with respect to σ, denoted by pσ, to be the transitive closure
of

⋃

1≤i≤n

σ|i

Notice that pσ is a subset of σ and thus σ ∈ L(pσ). Indeed, the partial
order with respect to σ is defined to preserve the order in σ which the edges
incident to a vertex appear in, for each vertex. As such, any linear extension
σ′ of pσ will have the edges incident to a given vertex appearing in the same
order as in σ; in other words, σ and σ′ differ only by commuting non-adjacent
edges and thus they give the same cycle, by Lemma 2.2. Conversely, if σ′

is an ordering which gives the same cycle as σ then, to reach one from the
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other, no two edges incident to a common vertex can commute and so any
such edges must appear in the same order in each; hence pσ = pσ′ and σ
and σ′ are linear extensions of the same partial order. The conclusion of this
discussion is summarised in the following theorem.

Theorem 3.1 Let T be a tree. There is a one-to-one correspondence between
C(T ) and the set P (T ) = {pσ | σ ∈ O(T )} such that for a given σ ∈ O(T )
the cycle c arising from σ corresponds to the partial order pσ. In addition, for
each p ∈ P (T ) its linear extensions L(p) correspond precisely to the orderings
in O(T ) giving the cycle which p corresponds to.

This correspondence can be exploited to find a slicker alternative proof
of Theorem 2.3. More importantly, it gives an entirely new method for find-
ing the multiplicity of cycles for a given tree; rather than counting orderings
which give a cycle directly, we can find the partial order which a cycle cor-
responds to (easily done given an ordering from which the cycle arises) and
count the number of linear extensions. Having said that, counting linear
extensions is no mean feat; it is a classical problem in order theory known to
be difficult in general. But, of course, the partial orders arising from a given
tree T form a special class (depending on the class of tree) so there is hope
for progress. As we will see this method is also useful for related questions;
for example, it can be used to show that the cycle (1, 3, 5, . . . , 6, 4, 2) is the
unique most frequent cycle (besides its inverse) for the path with vertex set
{1, . . . , n} labelled in ascending order from one end to the other.

For now, we focus on cycles with multiplicity 1. As noted, the star gives
rise to every cyclic permutation exactly once. But for any other tree, not
every cycle arises, and so some cycles occur with multiplicity greater than 1.

3.1 Cycles with multiplicity 1

In this section we determine all the trees T for which C(T ) contains cycles
with multiplicity 1.

A caterpillar is a tree with the property that removal of all leaves gives
rise to a path. This path is called the body of the caterpillar. Figure 1 shows
a caterpillar.

Theorem 3.2 A tree T has the property that some cycle in C(T ) has mul-
tiplicity 1 if and only if T is a caterpillar.
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Figure 1: A caterpillar

Proof Suppose first that there is an ordering of the edges of T such that the
product occurs with multiplicity 1 in C(T ). Then edges which are adjacent
in the ordering must meet at a vertex, else the transpositions would commute
and could be swapped. In other words, the ordering is a Hamiltonian path
in the line graph of T .

We claim that the tree with three paths of length 2 from a vertex is
a forbidden subgraph. For consider the tree with edges {v1, v2}, {v2, v3},
{v3, v4}, {v4, v5}, {v3, v6}, {v6, v7}. At some point in the sequence, without
loss, we arrive at edge {v2, v3} from {v1, v2}. If we visit {v3, v4} and {v3, v6}
and leave along {v6, v7}, we can never revisit {v4, v5}. But if {v4, v5} follows
{v3, v4}, then we can never return to {v3, v6}. (This is the smallest tree which
is not a caterpillar.)

We conclude that, at any vertex of T , all but (at most) two of the incident
edges are leaves. Thus, removing the leaves gives a path. So T is a caterpillar.

Conversely, given a caterpillar, order the edges so that, if {vi, vj} and
{vj, vk} are edges at vertex vj which are not leaves, we visit all the leaves at
vj between {vi, vj} and {vj , vk} in the sequence of edges. �

Corollary 3.3 Let T be a caterpillar whose body is the path v1, . . . , vr. For
i = 1, . . . , r, let li be the number of leaves incident with vi. Then the number
of cycles with multiplicity 1 in C(T ) is

{

2
∏r

i=1 li! if r > 1

l1! if r = 1.

Proof The sequence of edges must use the edges of the body in turn. If it
starts at the v1 end, it must traverse the leaves at v1 in some order before
using {v1, v2}, then the leaves at v2 in some order before using {v2, v3}, and
so on. If r > 1 we double the number since we may start at either end. �
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Every tree on 6 vertices is a caterpillar, and Table 1 agrees with the above
Corollary. As noted, the smallest tree which is not a caterpillar has 7 vertices;
the frequency distribution of cycles for this tree is (3, 12), (9, 12), (15, 12),
(33, 12).

3.2 Paths

For stars, every cycle is realised with multiplicity 1. The obvious next case to
look at is the opposite extreme, the paths, which realise the smallest number
of cycles.

3.2.1 Best and worst cycles

Consider the n-vertex path, with edges numbered consecutively from 1 to
(n − 1). The edge transpositions are the Moore–Coxeter generators of the
symmetric group. Empirically we found that the most frequent cycles are
(1, 3, 5, . . . , 6, 4, 2) and its inverse, and that the frequencies of these cycles
are the Euler numbers En (sequence A000111 in the On-line Encyclopedia
of Integer Sequences [10]), having generating function sec(x) + tan(x) [13,
p.149]. The sequence begins

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . .

We prove that the number of realisations of this cycle is the Euler number
in Theorem 3.5 and show that no other cycle apart from its inverse does better
in Theorem 3.11.

The second most frequent cycles give the sequence

0, 0, 0, 1, 3, 11, 40, 181, 917, 5263, 33486, . . .

where we have put 0 if only the maximum frequency occurs. This sequence
is not in the OEIS. Can we find further information about it?

3.2.2 Realising the Euler numbers

Rather than a direct proof of the formula, we give a characterisation of
those permutations of the edges of the path which give rise to the cycle
(1, 3, 5, . . . , 6, 4, 2); these are identified with the inverses of the permutations
counted by the Euler numbers.

12



To simplify notation, we use instead the path with n+1 vertices, so that
we are looking at permutations on {1, . . . , n}.

We need to distinguish between the active and passive forms of a per-
mutation. The passive form of a permutation σ on {1, . . . , n} is the n-tuple
[a1, a2, . . . , an] containing each element of {1, . . . , n} just once; the active
form is the map σ which takes i to ai for i = 1, . . . , n. We usually write
the active form in disjoint cycle notation; we use square brackets for the
passive form to avoid confusion with the active form of a cyclic permutation.
The inverse of a permutation σ is the permutation whose active form is the
inverse map of the active form of σ.

Multiplying a permutation on the left by a transposition (i, j) has the
effect of interchanging the elements in positions i and j in its passive form.

An up-down permutation is one whose passive form satisfies

a1 < a2 > a3 < a4 > · · · .

The canonical up-down permutation is the permutation whose passive form
is [1, n, 2, n − 1, 3, . . .]. Its inverse has passive form [1, 3, 5, . . . , 6, 4, 2]. The
number of up-down permutations on {1, . . . , n} is the Euler number [13,
p.149]. These and the analogous down-up permutations are also known as
alternating permutations or zig-zag permutations.

A transposition (i, j) is acceptable for a permutation [a1, . . . , an] if |i−j| >
1 but |ai − aj| = 1.

Lemma 3.4 From any up-down permutation σ, we can reach the canonical
up-down permutation by multiplying on the left by a sequence tm, . . . , t1 of
transpositions, such that for each i, ti−1 · · · t1σ is up-down and ti is acceptable
for this permutation.

Proof Suppose first that n is even. Let σ be an up-down permutation with
passive form [a1, . . . , an]. We call the even-numbered positions peaks and
the others troughs. A peak i is low if ai ≤ n/2, while a trough j is high if
aj ≥ 1 + n/2. Note that the numbers of low peaks and high troughs are
equal, and that a low peak and a high trough cannot be adjacent.

The first step is to reduce the number of low peaks (assuming it is
nonzero). Let i be the low peak for which ai is maximal, and suppose that
ai + 1 = aj . Then j is either a trough or a high peak. If it is a trough, then
the transposition (i, j) swaps the entries in these positions; so in the new
permutation, i is a peak (and is either high, or low but higher than before)
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while j is a trough. If j is a high peak, then ai = n/2. So we can raise
the height of the peak at i to n/2. Similarly, we can lower the height of the
lowest high trough to n/2 + 1. Then we can swap these two to reduce the
number of low peaks by one.

For example, consider [1, 3, 2, 5, 4, 8, 6, 7], where the second position is
a low peak and the seventh is a high trough. Applying (2, 5) takes us to
[1, 4, 2, 5, 3, 8, 6, 7]; then applying (4, 7) gives [1, 4, 2, 6, 3, 8, 5, 7]. Then we
may apply (2, 7) to give [1, 5, 2, 6, 3, 8, 4, 7], with no low peaks or high troughs.

After finitely many steps of this type, we reach the case where there are
no low peaks or high troughs. Since the peaks are pairwise non-adjacent,
we can arrange them in descending order by a number of swaps, realised by
left multiplication by acceptable transpositions (using bubblesort); similarly
we can arrange the troughs in ascending order. The result is the canonical
up-down permutation. In the above example, the troughs are already sorted,
and we sort the peaks by applying in turn (4, 8), (2, 8), (2, 4), (2, 6), and
(4, 6).

If n is odd, the number of troughs is one more than the number of peaks,
since position n is a trough. We split into two cases. If the value of i for
which ai = (n + 1)/2 is a trough, we regard it as a low trough, and proceed
as before. If it is a peak, there must be a high trough; we can reduce the
height of the lowest high trough j to (n + 3)/2 by the above method. After
swapping these, aj = (n+ 1)/2 and j is a trough. �

Theorem 3.5 Number the edges of the (n+1)-vertex path from 1 to n. Then
a permutation σ of the edges gives rise to the cycle (1, 3, 5, . . . , 6, 4, 2) if and
only if σ is the inverse of an up-down permutation.

Proof A simple calculation shows that the inverse of the canonical up-down
permutation gives rise to this cycle, which we call the canonical cycle.

We observe that multiplying σ = [a1, . . . , an] on the left by the trans-
position (i, j) is the same as multiplying it on the right by the conjugate
(i, j)σ = (ai, aj); this satisfies the dual conditions |i−j| = 1 but |ai−aj | > 1.
The effect on the inverse permutation is to multiply on the left by this trans-
position.

The corresponding edges of the tree are disjoint but are adjacent in the
order of the product; so they commute, and can be swapped. Thus such a
multiplication does not change the cycle given by the permutation.
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Now, by the lemma, an arbitrary inverse up-down permutation can be
obtained from this one by post-multiplying by a sequence of such transpo-
sitions. This operation does not change the cycle. We conclude that all
inverses of up-down permutations give rise to the same cycle.

For the converse, we know that the numbers of up-down permutations
and of permutations realising the canonical cycle are equal, and since one set
is contained in the other, the sets are equal. �

Note that the inverse of the canonical cycle is realised by the similarly-
defined down-up permutations.

3.2.3 The Euler numbers are maximal

We have given a characterisation of the orderings of the edges of a path
which give the canonical cycle (1, 3, 5, . . . , 6, 4, 2) and using this we conclude
the multiplicity of this cycle is the Euler number En where n + 1 is the
number of vertices. Now we use Theorem 3.1 to show that no other cycle
has a multiplicity higher than this, and this cycle and its inverse are the only
ones to attain it.

First, since we are specifically concerned with paths, we can make this
correspondence more precise as demonstrated in the following proposition.
As before, we consider the path Pn on n+1 vertices with edges consecutively
labelled 1, . . . , n from left to right.

Proposition 3.6 The set Pn = P (Pn) is precisely the set of partial orders
on n points whose Hasse diagrams are paths.

Before proceeding with the proof we note that a Hasse diagram which
is a path with n vertices may be defined by taking a simple path with n
vertices and specifying an appropriate orientation on each of its edges; say 1
and −1 for indicating an upward and downward slope respectively. Further,
specifying any such orientation on the path defines such a Hasse diagram.

Proof Let p ∈ Pn, then there is some σ ∈ O(Pn) such that p = pσ. To
determine the Hasse diagram of p we consider σ|v for each vertex v of Pn;
recall the edges of a Hasse diagram are the cover relations for its partial order
so this is all we need consider. There are two leaves in Pn (which the edges
1 and n are incident to); the remaining vertices vi have two edges incident
to each, i and i + 1 for 1 ≤ i ≤ n − 1. Thus there is an edge between the
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vertices of the Hasse diagram of p labelled i and i + 1 (the direction of the
edge depending on σ|vi) for each i and no other edges. In other words, the
Hasse diagram of p is a path.

On the other hand, we know there is a bijection between C(Pn) and P
n

and by Corollary 2.4(b) we have |C(Pn)| = 2n−1. Thus it suffices to show
that the number of Hasse diagrams who are paths with n vertices is also
2n−1. Indeed, by the comment before the proof we can count these Hasse
diagrams by counting the possible orientations on the edges of a simple path
with n vertices. This path has n − 1 edges and so there are 2n−1 different
orientations. �

We will thus refer to the elements of Pn as partial orders of path-type.
We will frequently identify these partial orders with their Hasse diagrams
(as with partial orders in general) and in light of the above comment it is
coherent, and will be convenient, to identify these with (n− 1)-tuples whose
entries are ±1 corresponding to each Hasse diagram’s orientation.

Our aim is to show that the canonical cycle (1, 3, 5, . . . , 6, 4, 2) attains the
highest multiplicity among the cycles in C(Pn), and only its inverse does at
least as well. To do this we should find the partial order in Pn corresponding
to the canonical cycle; for this, all we need is an ordering from O(Pn) which
gives this cycle. By Theorem 3.5 any inverse of an up-down permutation
on E(Pn) corresponds to such an ordering and in particular we may use the
inverse of the canonical up-down permutation Σ, which has passive form
[1, 3, 5, . . . , 6, 4, 2]. Since all odd numbers appear before any even numbers,
it is clear that Σ|vi = i(i+1) when i is odd and Σ|vi = (i+1)i when i is even,
giving (i, i+ 1) and (i+ 1, i) as cover relations for pΣ respectively. Thus the
canonical cycle corresponds to (1,−1, 1, . . . , (−1)n) ∈ Pn; this is known as
the zig-zag partial order and we denote it by Zn (Figure 2).
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r r r✁
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Figure 2: The Hasse diagram of a zig-zag partial order Zn for odd n

We now define an operation on Pn which we will then show necessarily
increases the number of linear extensions of the partial order it is applied to,
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under the appropriate conditions. Then, given any path-type partial order,
we show that there is some sequence of applying this operation under such
conditions which brings us to the zig-zag partial order, whence we conclude
no other path-type partial order does better.

We define the operation Φi : Pn → Pn for 1 ≤ i ≤ n− 1 by

(a1, . . . , an−1)Φi = (a1, . . . , ai−1,−ai,−ai+1, . . . ,−an−1)

We call this operation right-side inversion at i. Note that for i = 1 the
operation inverts p ∈ Pn. A few examples of this operation being applied
are shown in Figure 3; they begin with (1, 1, 1,−1), (1, 1,−1,−1) ∈ P5.
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Figure 3: Some right-side inversions

The following two lemmas cover some useful results from order theory
and are probably well known.

Lemma 3.7 Let p be a partial order on a set P . There is a bijection ωp :
L(p) → L(p−1) and in particular |L(p)| = |L(p−1)|.

Proof We define ωp : L(p) → L(p−1) by p′ωp = (p′)−1. To see that (p′)−1 ∈
L(p−1) note that (p′)−1 contains p−1 since p′ contains p. Since (r−1)−1 = r
for any partial order r on P it follows by symmetry that ωp is invertible and
hence a bijection. �

Lemma 3.8 Let p be a partial order on some set P and let q be an induced
suborder on a subset Q ⊆ P . Then L(p) =

⊔

q′∈L(q) L(p ∪ q′).
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Proof The partial order p∪ q′ is a refinement of p and so each r ∈ L(p∪ q′)
is a linear extension of p for all q′ ∈ L(q).

Let p′ ∈ L(p). Take the induced suborder of p′ on Q and denote it as q′

- notice that q ⊆ q′ since q ⊆ p ⊆ p′. Since p′ is a linear order any induced
suborder is as well, so q′ ∈ L(q) and p′ is a linear order containing both p
and q′; thus p′ ∈ L(p ∪ q′).

To see that the union is disjoint note that for q′, q′′ ∈ L(q) distinct there
must exist x, y ∈ Q so that q′(x) < q′(y) and q′′(y) < q′′(x) and consequently
these relations must hold for any r ∈ L(p ∪ q′) and s ∈ L(p ∪ q′′). �

The next lemma we require involves the Entringer numbers E(n, i) which
are the number of down-up permutations on {1, . . . , n+1} whose first term is
i+1 when written in passive form. They satisfy the recursion E(n+1, i+1) =
E(n+1, i) +E(n, n− i) for 0 ≤ i ≤ n where E(0, 0) = 1 and E(n, 0) = 0 for
all n ≥ 1 [13].

Lemma 3.9 Define L(Z−1
n , i) = {z ∈ L(Z−1

n ) | z(1) = i + 1}. Then
|L(Z−1

n , i)| = E(n− 1, i) for 0 ≤ i ≤ n− 1.

Proof Recall that a down-up permutation on {1, . . . , n} is a permutation
whose passive form [a1, . . . , an] satisfies a1 > a2 < a3 > . . . and notice that a
linear order l on the set {1, . . . n} may be regarded as a permutation where
the image of l specifies how l orders the elements of the set. In particular
any z ∈ L(Z−1

n ) must satisfy z(1) > z(2) < z(3) > . . . and thus the number
of ways of choosing the z(j) such that z(1) = i+ 1 is the Entringer number
E(n− 1, i). �

Proposition 3.10 Let p = (a1, . . . , an−1) ∈ Pn and let i ≥ 2 be maximal
such that ai = ai−1. Then |L(p)| < |L(pΦi)|.

Proof We assume without loss of generality that ai = ai−1 = −1. Since
inverting a partial order doesn’t change its number of linear extensions, if
ai = ai−1 = 1 we can invert p, apply right-side inversion at i and then invert
the resulting partial order.

Consider the induced suborder q of p on Q = {i, i+ 1, . . . , n}. Note that
q ∼= Z−1

n−i+1 by maximality of i. Given q′ ∈ L(q) we can then consider the
induced suborder rq′ of p ∪ q′ on R = {i− 1, i, . . . , n}.

Similarly consider the induced suborder of pΦi on Q (this is the inverse
of q so we denote it as q−1) and further consider the induced suborder r(q−1)′
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of pΦi ∪ (q−1)′ on R for (q−1)′ ∈ L(q−1). By Lemma 3.7 there is a bijection
ωq : L(q) → L(q−1) which sends a linear extension of q to its inverse. We
can extend this to a bijection rq′ 7→ r(q′)−1 since rq′ is fully determined by the
position of i in q′. Note that rq′ = (i, i− 1)∪ q′ and similarly for r(q−1)′ (here
taking q′ and (q−1)′ to be partial orders on Q ∪ {i− 1}).

Consider the general form of rq′. The shape of the Hasse diagram of rq′ is
that of a linear order of length n− i (which is q′) with an ‘offshoot’ of length
1 at some vertex (which is i). We can partition the rq′ into n− i sets by the
position of i in q′ (since ai = −1 we must have (i + 1, i) ∈ q′ so i cannot be
minimal, but it can be in any other position). In effect, we are partitioning
the rq′ into their isomorphism classes; two partial orders are isomorphic if and
only if their Hasse diagrams are ‘the same’ once labels have been removed.
Let P1, . . . , Pn−i be the partition, where Pj = {q′ ∈ L(q) | q′(i) = j + 1} and
let Nj = |Pj| for all j.

We can also partition
⋃

q′∈Pj
L(rq′) based on isomorphism class. Let Sk

j =

{t ∈
⋃

q′∈Pj
L(rq′) | t(i − 1) = k + 2} for j ≤ k ≤ n− i. For a given q′ ∈ Pj

there is precisely one t ∈ L(rq′) with t(i− 1) = k + 2 for each j ≤ k ≤ n− i.
Hence |Sk

j | = Nj for each j ≤ k ≤ n − i. Define Sk =
⋃

1≤j≤k S
k
j , this is

the set of all t ∈
⋃

q′∈L(q) L(rq′) with t(i − 1) = k + 2. Thus
⋃n−i

k=1 S
k =

⋃n−i

k=1{t ∈
⋃

q′∈L(q) L(rq′) | t(i − 1) = k + 2} =
⋃

q′∈L(q) L(rq′) and so for

t, u ∈
⋃

q′∈L(q) L(rq′) refinements p∪ t and p∪ u are isomorphic if and only if

t, u ∈ Sk which holds if and only if |L(p ∪ t)| = |L(p ∪ u)| and so we denote
this common value by |L(p ∪ t)|k. Since the Pj are disjoint so are Sk

j , thus

|Sk| =
∑k

j=1 |S
k
j | =

∑k

j=1Nj.
With all this it follows by Lemma 3.8 that

L(p) =
⊔

q′∈L(q)

L(p ∪ q′) =
⊔

q′∈L(q)

⊔

t∈L(rq′ )

L(p ∪ q′ ∪ t)

=
⊔

q′∈L(q), t∈L(rq′ )

L(p ∪ t) =

n−i
⊔

k=1

⊔

t∈Sk

L(p ∪ t)

and so

|L(p)| =
n−i
∑

k=1

∑

t∈Sk

|L(p ∪ t)| =
n−i
∑

k=1

(
k
∑

j=1

Nj)|L(p ∪ t)|k
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Since P1, . . . , Pn−i is a partition for L(q), we can partition L(q−1) sim-
ilarly. If q′ ∈ Pj then q′(i) = j + 1 and so (q′)−1(i) = n − i − j + 1.
Thus we can partition L(q−1) into P−1

1 , . . . , P−1
n−i where P−1

j = {(q−1)′ ∈

L(q−1) | (q−1)′(i) = n− i− j + 1}. By Lemma 3.7 |P−1
j | = |Pj| = Nj .

Continuing, define (Sk
j )

−1 = {t ∈
⋃

(q−1)′∈P−1
j

L(r(q−1)′) | t(i− 1) = k + 2}

for n− i−j ≤ k ≤ n− i. Similar to before, for (q−1)′ ∈ P−1
j there is precisely

one t ∈ L(r(q−1)′) with t(i − 1) = k + 2 for each n− i − j ≤ k ≤ n − i, and
so |(Sk

j )
−1| = Nj. Define (Sk)−1 =

⋃

n−i−k≤j≤n−i(S
k
j )

−1 taking (Sn−i
0 )−1 = ∅.

We then have
⋃n−i

k=0(S
k)−1 =

⋃

(q−1)′∈L(q−1) L(r(q−1)′).

The sets (Sk
j )

−1 are disjoint so |(Sk)−1| =
∑n−i

j=n−i−k |(S
k
j )

−1|=
∑n−i

j=n−i−k Nj

for k < n − i and |(Sn−i)−1| =
∑n−i

j=1Nj and as before t, u ∈ (Sk)−1 if and
only if pΦi ∪ t and pΦi ∪ u are in the same isomorphism class and thus
|L(pΦi ∪ t)| = |L(pΦi ∪ u)|. Importantly, we also have that if t ∈ Sk and
u ∈ (Sk)−1 then p∪ t and pΦi∪u are isomorphic since p and pΦi are equal on
{1, . . . , i} and so |L(p ∪ t)| = |L(pΦi ∪ u)|. Hence |L(pΦi ∪ u)| = |L(p ∪ t)|k
for all u ∈ (Sk)−1.

We now have

L(pΦi) =
⊔

(q−1)′∈L(q−1), t∈L(r(q−1)′)

L(pΦi ∪ t) =

n−i
⊔

k=0

⊔

t∈(Sk)−1

L(pΦi ∪ t)

and then

|L(pΦi)| =
n−i
∑

k=0

∑

t∈(Sk)−1

|L(pΦi ∪ t)|

=

n−i−1
∑

k=0

(

n−i
∑

j=n−i−k

Nj)|L(p ∪ t)|k + (

n−i
∑

j=1

Nj)|L(p ∪ t)|n−i

Now, comparing the two formulae obtained, the statement of the propo-
sition is equivalent to

n−i−1
∑

k=1

(
k
∑

j=1

Nj)|L(p ∪ t)|k <
n−i−1
∑

k=0

(
n−i
∑

j=n−i−k

Nj)|L(p ∪ t)|k

Thus it suffices to show that
∑k

j=1Nj ≤
∑n−i

j=n−i−k Nj for all 1 ≤ k ≤

n−i−1. As noted q ∼= Z−1
n−i+1 with the labelling from i to n. Thus i takes the
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place of 1 in Lemma 3.9 and so Pj
∼= L(Z−1

n−i+1, j) and hence by that lemma
we have Nj = E(n− i, j). Finally note that the recurrence which defines the
Entringer numbers rearranges to give E(n, i)−E(n, i−1) = E(n−1, n−i) > 0
and thus N1 < N2 < . . . < Nn−i. �

The theorem now follows.

Theorem 3.11 The canonical cycle (1, 3, 5, . . . , 6, 4, 2) and its inverse have
the highest multiplicity among cycles in C(Pn) and are the only cycles to
obtain this maximum.

Proof Let p = (a1, . . . , an−1) ∈ Pn \ {Zn, Z
−1
n }. Suppose i1, . . . , im are the

values such that aij = aij−1 in ascending order. Then by Proposition 3.9
we have |L(p)| < |L(pΦim)| < |L(pΦimΦim−1)| < . . . < |L(pΦim . . .Φi1)| and
either pΦim . . .Φi1

∼= Zn or pΦim . . .Φi1
∼= Z−1

n . Since p was arbitrary the
result follows. �

Notice that in the proof of Proposition 3.10 the assumption that i is
maximal is not used until the final paragraph. With this in mind we make
the following conjecture.

Conjecture 3.12 Let p = (a1, . . . , an−1) ∈ Pn and let i ≥ 2 be such that
ai−1 = ai. Then |L(p)| < |L(pΦi)|.

Since right-side inversion is an involution, proving this would mean that
given any p ∈ Pn and any 2 ≤ i ≤ n − 1 we would know which of p and
pΦi has more linear extensions. Identifying elements which are inverse (they
have the same number of linear extensions) we can obtain a bounded lattice
L on Pn by defining (p, pΦi) ∈ L if the above condition holds and taking the
transitive closure, and so if the conjecture is true then L has the property
that |L(p)| < |L(q)| if (p, q) ∈ L. This lattice L is isomorphic to the power
set of a set with n− 2 elements ordered by inclusion.

3.2.4 The least frequent cycles

Proposition 3.13 For the path with vertices numbered from 1 to n in order,
the least frequent cycles are (1, 2, . . . , n) and its inverse, which are realised
just once.
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Proof The count follows from Corollary 3.3; the proof of that Corollary
shows that to realise these cycles we must take the edges of the path in order
from one end to the other. Now

(1, 2)(2, 3) · · · (n− 1, n) = (n, n− 1, . . . , 2, 1),

and similarly for the reverse order. �

The second smallest frequency appears to be n−2, realised by four cycles
if n > 4. To prove this, we first require a couple of lemmas.

Lemma 3.14 Let p = (a1, . . . , an−1) ∈ Pn and let 1 ≤ i ≤ n−2 be such that
ai+j = 1 for all j ≥ 0 or ai+j = −1 for all j ≥ 0. Then |L(p)| < |L(pΦi+j)|
for all j ≥ 1.

Proof Consider the induced suborder q of p on Q = {i, . . . , n}. This is a
linear order by assumption and thus has precisely one linear extension. On
the other hand, given j ≥ 1 the induced suborder qj of pΦi+j on Q is not a
linear order and thus has at least two linear extensions. In particular, there
is a linear extension r of qj such that pΦi+j ∪ r is isomorphic to p ∪ q = p.
If ai = 1 (resp. ai = −1) then any r ∈ L(qj) such that r(i) = 1 (resp.
r(i) = n− i+ 1) is appropriate. By Lemma 3.8 we have

L(pΦi+j) =
⊔

q′
j
∈L(qj)

L(pΦi+j ∪ q′j) ⊃ L(pΦi+j ∪ r)

and thus |L(p)| = |L(pΦi+j ∪ r)| < |L(pΦi+j)|. �

The next lemma concerns path-type partial orders of the form (1, . . . , 1,
−1, . . . ,−1) ∈ Pn. If (a1, . . . , an−1) is such a partial order we denote it by
hk, where k is the unique number such that ak−1 = 1 and ak = −1. Then
the vertex of hk labelled k is the global maximal element of hk. We denote
Hn = {hk ∈ Pn | k = 2, . . . , n − 1} and refer to this set’s elements as hills ;
for a hill hk we refer to the vertex labelled k as its peak.

Lemma 3.15 Consider Hn for some n. We have for all k

|L(hk)| =

(

n− 1

n− k

)

.
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Proof Suppose i > n
2
, the complementary case is symmetrical and follows

by the same argument. We count the linear extensions ‘manually’; let h ∈
L(hk), this will always be the linear extension we are currently considering.
We take h(1) < h(2) < . . . < h(k) to be fixed reference points and define
the extension we are considering by placing the remaining points h(k+1) >
. . . > h(n) in between these fixed points; each choice uniquely defines a linear
extension and every linear extension can be defined this way. However these
choices are not free. We have h(i) > h(i + 1) for i = k + 1, . . . , n − 1 so
choosing where h(i) goes restricts the choices for h(i+1) and thus we choose
where h(n) goes first, then h(n − 1) and so on. Further, h(k) > h(k + 1)
so there are k places to choose from. We denote by Gi the space between
h(i− 1) and h(i) for i = 2, . . . k and by G1 the space below h(1).

We start with h(k+1), . . . , h(n) ∈ G1, this is one linear extension. Keep-
ing h(k+2), . . . , h(n) ∈ G1 and placing h(k+1) ∈ G2 is another linear exten-
sion. Similarly h(k+2), . . . , h(n) ∈ G1 and h(k+1) ∈ Gi for i = 3, . . . , k each
gives a linear extension and we have found

∑k

i=1 1 linear extensions so far.
Next, we start with h(k+1), h(k+2) ∈ G2 and h(k+3), . . . , k(n) ∈ G1 and we
find a linear extension h(k+1) ∈ Gi, h(k+2) ∈ G2, h(k+3), . . . , k(n) ∈ G1

for each i = 3, . . . , k, giving us another
∑k−1

i=1 1 linear extensions. Moving
h(k+2) in the same way as we have with h(k+1) and then moving h(k+1)
within the thus restricted zone, we find a linear extension h(k + 1) ∈ Gi,
h(k + 2) ∈ Gj, h(k + 3), . . . , h(n) ∈ G1 for each i, j = 3, . . . , k such that
i ≥ j. Choosing j first then finding each i within the possible range, for such
a j we have

∑k−j+1
i=1 1 linear extensions. Hence, in total, we have now found

∑k

i1=1

∑i1
i0=1 1 linear extensions.

Continuing inductively, we find that

|L(hk)| =
k
∑

in−k−1=1

in−k−1
∑

in−k−2=1

. . .
i2
∑

i1=1

i1
∑

i0=1

1.

Clearly
∑i1

i0=1 1 = i1 =
(

i1
1

)

and it is well known that

i2
∑

i1=1

i1 =
i2(i2 + 1)

2
=

(

i2 + 1

2

)

.

It follows from the hockey stick identity [7] that for k ≥ 0
m
∑

i=1

(

i+ k − 1

k

)

=

(

m+ k

k + 1

)
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and thus by induction on m we have

im+1
∑

im=1

im
∑

im−1=1

. . .

i2
∑

i1=1

i1 =

(

im+1 +m

m+ 1

)

.

Finally, we conclude

|L(hk)| =
k
∑

in−k−1=1

(

in−k−1 + n− k − 2

n− k − 1

)

=

(

n− 1

n− k

)

.

�

Proposition 3.16 Consider the path with n + 1 vertices labelled consecu-
tively from 1 to n+1. If n ≥ 4 then (1, 2, . . . , n−1, n+1, n) and (1, 3, 4, . . . , n, n+
1, 2) and their inverses are the second least frequent cycles, appearing with
multiplicity n− 1.

Proof Notice that for n = 1, 2 there are only one and two distinct cycles
respectively. For n = 3 there are four distinct cycles; two least frequent cycles
and two most frequent cycles. So the first interesting case here is n = 4.

Let e1, . . . , en be the edges of the path such that ei = (i, i+ 1). Then we
have

σ = e1e2 . . . en−2enen−1 = (1, 2, . . . , n− 1, n+ 1, n)−1

and
τ = e2e1e3 . . . en−1en = (1, 3, 4, . . . , n, n+ 1, 2)−1

Thus we can use these two orderings of the edges to find the partial
orders corresponding to these cycles. We find that the local suborders of
σ are σ|i = ei−1ei for 2 ≤ i ≤ n − 1 and σ|n = enen−1. Similarly, we
have τ |2 = e2e1 and τ |i = ei−1ei for 3 ≤ i ≤ n. Thus the corresponding
partial orders are pσ = (1, . . . , 1,−1), pτ = (−1, 1, . . . , 1) ∈ Pn whose Hasse
diagrams are shown in Figure 4.

Notice that pσ = hn−1 and pτ = h−1
2 ; thus by Lemma 3.15 we have

|L(pσ)| =
(

n−1
1

)

=
(

n−1
n−2

)

= |L(pτ )| = n − 1 and so this is the multiplicity
of the cycles. To see that these are the second least frequent cycles, let
p = (a1, . . . , an−1) ∈ Pn such that p 6= (1, . . . , 1), (−1, . . . ,−1), h±1

2 , h±1
n−1

and let i1, . . . , im be the numbers such that aij−1 = −aij listed in ascending
order. Then p ∼= ha1

i1
Φi2 . . .Φim and by Lemma 3.14 we have |L(ha1

i1
)| <

|L(ha1
i1
Φi2)| < . . . < |L(ha1

i1
Φi2 . . .Φim)| = |L(p)|. Finally by Lemma 3.15 we

have |L(hn−1)| = |L(h2)| < |L(hk)| for any 2 < k < n − 1 and we conclude
|L(h2)| = |L(hn−1)| < |L(p)|. �
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Figure 4: The partial orders of the second least frequent cycles for paths

Problem For the path on n vertices, describe the cycles with the second
largest number of realisations, and calculate this number.

3.3 Forked paths

We have done limited investigation of other trees. One natural candidate is
the “forked path” or Coxeter diagram of type Dn for n ≥ 3 (Figure 5).

r r r r r r. . .
r

r

��
❅❅

Figure 5: A forked path

Empirically the greatest frequency of cycles obtained from this tree is
given by Sequence A034428 in the OEIS, counting almost up-down permu-
tations (which begin with two increases and then alternate); they are given
by the formula An = nEn−1 − En, where (En) are the Euler numbers. The
sequence begins

1, 1, 3, 9, 35, 155, 791, 4529, 28839, . . .

and has generating function 1 − (1 − x)(tan(x) + sec(x)). The analogous
almost down-up permutations and their reverses also give the same number
of cycles.

First, we give a characterisation of Dn = P (Dn+1) similar to that of
Proposition 3.6. We assume the leaves at the ‘fork’ are labelled 1 and 2 and
the rest of the vertices labelled 3, . . . , n + 1 consecutively, while the edges
are labelled ei so that e1 = (1, 3) and ei = (i, i + 1) for i = 2, . . . , n. For
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convenience we will often refer to ei simply as i when the referent is clear; in
particular when referring to labels on the vertices of Hasse diagrams.

Proposition 3.17 The set Dn is precisely the set of partial orders whose
Hasse diagram is a path-type partial order with n−2 vertices with two vertices
attached to the leftmost vertex making a linear suborder on three vertices.

Proof Take some σ ∈ O(Dn+1) and consider pσ ∈ Dn. As with path-
type partial orders we find that the vertices 1, 2 and n + 1 are leaves while
σ|i = ei−1ei or eiei−1 for i = 4, . . . , n so the induced suborder of pσ on
{3, . . . , n} is a path-type partial order. The final part to consider is σ|3,
where e1, e2, e3 appear in some order; e3 is the only one of these to appear
in any other cover relation, so the Hasse diagram of pσ is found by attaching
the vertices 1 and 2 to 3 so that they form a linear suborder.

Now, by Theorem 2.3 we know that |Dn| = |C(Dn+1)| = 6 × 2n−3. We
show that this is the same as the number of Hasse diagrams of the stated
type. Pick a path-type Hasse diagram on n−2 vertices labelled consecutively
from 3 to n (there are 2n−3 of them) and a linear order on 1, 2, 3 (there are
3! = 6 of them) and attach the linear order to the leftmost vertex of the path
by identifying the vertices labelled 3. This fully determines a Hasse diagram
of the stated type, and each such diagram can be reached in this way. �

We may refer to these as partial orders of fork-type; given a fork-type
partial order we refer to the linear suborder on {1, 2, 3} as the fork part
and the induced suborder on {3, . . . , n} as the path part. As such given a
fork-type partial order d ∈ Dn we will often denote it as (a1, a2, a3)p where
(a1, a2, a3) tells us that the fork part has cover relations (a1, a2), (a2, a3) and
p ∈ Pn−2 is the path part with relabelling i 7→ i + 2. Given this, we note
that Proposition 3.10 can be extended to Dn as long as right-side inversion
is applied at a point in the path part, and we will need this fact in the proofs
that follow.

We can now use this characterisation to find the most frequent cycles
and their multiplicity as we did with paths. For this purpose we first find an
explicit formula for the number of linear extensions of a particular fork-type
partial order.

Lemma 3.18 Consider d = (a1, 3, a2)Z
a
n ∈ Dn+2 for a = ±1 and some

n ∈ N. Then

|L(d)| =
n−1
∑

i=1

(n− i)(i+ 1)E(n− 1, i).
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Proof We assume d = (1, 3, 2)Z−1
n ; the other cases follow by symmetry

and inverting. The formula follows by considering refinements of d found by
taking a linear extension of the path part and summing the number of linear
extensions for each refinement, since by Lemma 3.8

|L(d)| =
∑

z∈L(Z−1
n )

|L(d ∪ z)|

recalling Z−1
n is relabelled by i 7→ i+ 2.

The Hasse diagram of a refinement of this type is a linear order on three
points ‘joined’ with a linear order on n points by identifying the vertices
labelled by 3. Thus the isomorphism class of a refinement d ∪ z is fully
determined by the place of the vertex labelled 3 in the linear extension z. As
such we partition the refinements

⋃

z∈L(Z−1
n ){d∪z} into sets Di = {d∪z | z ∈

L(Z−1
n , i)} for i = 1, . . . , n − 1 and any two refinements in a given set are

isomorphic.
Consider r ∈ Di for some i. The relationship of the vertex labelled 3

with each other vertex is already fully determined, so when finding a linear
extension of r this cannot be altered. Thus the linear extensions of r can
be counted by considering it as a hill b = h2 ∈ Hi+2 and an inverted hill
t = h−1

2 ∈ H−1
n−i+1 joined by identifying their peaks, which is the vertex

labelled 3. This is because if a ∈ [n+ 2] is such that (a, 3) ∈ r then a linear
extension r′ cannot have (3, a) ∈ r′, and similarly if a is such that (3, a) ∈ r.
Hence any linear extension of r can be found by first taking a linear extension
b′ of b and then of r ∪ b′, which has the same number of linear extensions
as t. Thus we have |L(r)| =

(

i+1
i

)(

n−i

n−i−1

)

= (i + 1)(n − i) by Lemma 3.15.
Finally, continuing the equation above we have

|L(d)| =
n−1
∑

i=1

∑

z∈Di

(n− i)(i+ 1) =

n−1
∑

i=1

(n− i)(i+ 1)E(n− 1, i)

by Lemma 3.9. �

Theorem 3.19 The cycles (1, 2, 4, 6, . . . , 7, 5, 3), (1, 2, 3, 5, 7, . . . , 6, 4) and their
inverses are the most frequent cycles among cycles in C(Dn+1) having mul-
tiplicity An, and are the only such to attain this multiplicity.

Proof Notice that

σ = e1e2e4e6 . . . e5e3 = (1, 2, 4, 6, . . . , 7, 5, 3)
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and
τ = e2e1e4e6 . . . e5e3 = (1, 2, 3, 5, 7, . . . , 6, 4)−1

so we can find the multiplicity of these cycles by considering the partial orders
pσ, pτ ∈ Dn. Calculating each of these we see that they are isomorphic; their
isomorphism class is shown in Figure 6. Using an analogous argument to

r

r

r

r

r

r

✁
✁
✁
✁✁❆❆❆✁

✁✁❆
❆❆✁✁

. . .
❆❆

r r

r r r✁
✁✁❆
❆❆✁
✁✁❆
❆❆

Figure 6: The almost zig-zag partial order for even n

that used in Lemma 3.9 we can see that the number of linear extensions of
this partial order is the same as the number of almost up-down permutations
on n points, which is An by definition.

We may partition Dn into six sets defined by

D(a1,a2,a3)
n = {d ∈ Dn | d = (a1, a2, a3)p for some p ∈ Pn−2}.

We simplify this by noting that D
(a1,a2,a3)
n is precisely the set of inverses

of D
(a3,a2,a1)
n and so we need only consider three sets of the partition -

D
(1,2,3)
n ,D

(1,3,2)
n and D

(3,1,2)
n .

We begin by noting that the partial orders with the most linear exten-
sions in each of these sets are the ones whose path part is zig-zag. Indeed,
given a1, a2, a3 from one of the three above and p ∈ D

(a1,a2,a3)
n we may re-

peatedly apply right-side inversion in the same manner as in Theorem 3.11
to see that it has strictly fewer linear extensions than an appropriate such
partial order. The path part can be isomorphic to either Zn−2 or Z−1

n−2 and

so there are six such partial orders in D
(1,2,3)
n ∪ D

(1,3,2)
n ∪ D

(3,1,2)
n which are

(a1, a2, a3)Zn−2, (a1, a2, a3)Z
−1
n−2 ∈ D

(a1,a2,a3)
n . Notice that pσ = (1, 2, 3)Z−1

n−2

and pτ = (3, 1, 2)Zn−2.
We can see that pσ = (1, 2, 3)Zn−2Φ3 and pτ = (3, 1, 2)Z−1

n−2Φ3 and thus
|L(pσ)| > |L((1, 2, 3)Zn−2)| and |L(pτ )| > |L((3, 1, 2)Z−1

n−2)|. All that is left
to show is |L((1, 3, 2)Zn−2)|, |L((1, 3, 2)Z

−1
n−2)| < |L(pσ)| = |L(pτ )| for n ≥ 4.

By Lemma 3.18 we have

|L((1, 3, 2)Zn−2)| = |L((1, 3, 2)Z−1
n−2)| =

n−3
∑

i=1

(n− i− 2)(i+ 1)E(n− 3, i)
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and using E(n− 1, n− i) = E(n, i)− E(n, i− 1) we can rearrange this as

=
k
∑

i=1

(n− 2(i+ 2))[E(n− 2, n− i− 3)− E(n− 2, i+ 1)]

+ 2(n− 3)E(n− 2, n− 3)− (n− 4)E(n− 2, 1)

where k = n
2
−3 if n is even and k = n+1

2
−3 if n is odd. Taking the difference

between An = nEn−1 − En and this by using E(n, i) =
∑n−1

k=n−iE(n − 1, k)
and En = E(n, n) we find

k+1
∑

i=1

(2n− 3i− 3)E(n− 2, i) +

k
∑

i=1

(3i+ 6− n)E(n− 2, n− i− 3)

+ (8− 2n)E(n− 2, n− 3) + E(n− 2, n− 2)

+ (1− (n mod 2))
n

2
E(n− 2,

n

2
− 1)

and thus it suffices to show that this sequence is positive for all n ≥ 4. By
examination we can see that this is equal to

n−4
∑

i=1

(2n− 3i− 3)E(n− 2, i)− (2n− 8)E(n− 2, n− 3) + E(n− 2, n− 2)

for all n. Applying E(n − 2, i) =
∑n−3

k=n−i−2E(n − 3, k) and rearranging to
express as a linear combination of all the (n − 3)th Entringer numbers we
obtain

n−3
∑

i=1

(

n−4
∑

k=n−i−2

(2n− 3k − 3)− 2n+ 9

)

E(n− 3, i)

=

n−3
∑

i=1

3

2

(

i2 + (3−
2

3
n)i+ (2−

2

3
n)
)

E(n− 3, i)

Let Ci =
3
2
(i2 + (3− 2

3
n)i+ (2− 2

3
n)) for i = 0, . . . , n− 3. Then we calculate

that
∑n−3

i=1 Ci = n − 3 and by considering Ci as a polynomial on i we can
further deduce that Ci > 0 precisely when i > 2

3
n − 2. This tells us that

there are more positive terms than negative (treating CiE(n − 3, i) as |Ci|
instances of the term E(n − 3, i)) and the smallest positive term is greater
than the largest negative term (since E(n − 3, j) < E(n − 3, k) for j < k).
Thus the sequence is positive as required. �
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4 The inverse problem

Now we turn to the question: how many labelled trees yield a given cycle c
when the edges are multiplied together? Since the cycles are all conjugate
in the symmetric group, the answer is independent of the chosen cycle; so
where necessary we can assume that c = (1, 2, . . . , n).

By Theorem 2.3, if the vertices of T have valencies d1, . . . , dn, then the
number of cycles which can be obtained from T is

C(T ) =
n
∏

i=1

di!.

The symmetric group acts on the set of nn−2 trees. This action is not transi-
tive (for n > 2); the orbits are the isomorphism types of trees. The stabiliser
of a tree T in this action is its automorphism group Aut(T ), so the number
of trees in the isomorphism class of T is n!/|Aut(T )|, by the Orbit-Stabiliser
Theorem.

If each cycle has D(T ) realising trees in the isomorphism class of T (the
orbit of Sn containing T ), then we have

(n− 1)!D(T ) = (n!/|Aut(T )|)C(T ),

so that D(T ) = nC(T )/|Aut(T )|. Summing over the isomorphism types T
gives the answer to our question.

For example, for n = 5, there are three isomorphism classes of trees, with
automorphism groups of orders 24, 2, and 2, with vertex valencies other than
1 being respectively (4), (3, 2), and (2, 2, 2); so the number is

5 · 24/24 + 5 · 12/2 + 5 · 8/2 = 55.

In order to find a more explicit formula, we begin with a couple of defi-
nitions.

Definition Let T be a tree on the vertex set {1, . . . , n}, and c a cyclic
permutation of the vertices. The diagram of the pair (T, c) consists of n
points a1, . . . , an in the order around a circle given by the cycle c, with a
line segment from ai to aj whenever {i, j} is an edge of T . The diagram is
crossing-free if no pair of these line segments intersect (except at their ends).
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Definition The pair (T, c) (as above) is realisable if the product of the
transpositions corresponding to edges of T (in some order) is c.

Theorem 4.1 The pair (T, c) is realisable if and only if its diagram is crossing-
free.

To prove the forward implication, we require the following lemma.

Lemma 4.2 Suppose that e = {i, j} is an edge of T ; let Ti and Tj be the
two trees obtained by deleting e, with i ∈ Ti and j ∈ Tj. Suppose that the
product of the edges of T in some order maps i to j. Then we can rearrange
the product as wjewi, where wi is a product of the edges of Ti in some order,
and so is a cycle on the vertices of Ti; and similarly for wj and Tj.

Proof Let u1eu2 = (a1, . . . , ar, i, j, b1, . . . , bs). Then i is fixed by u1, so the
edges of i in Ti are on the right of e; and similarly, edges of j in Tj are on the
left of e. Edges in Tj which occur to the right of e in the product can thus
be moved, one by one, to the left (they commute with edges of Ti and with
(i, j) by the preceding remark), and vice versa. So we can end up with the
edges of Ti on the right and those of Tj on the left. Now call this product
wjewi. The claims of the lemma now follow. �

Now we turn to the proof of the “only if” direction in the theorem. This
is a proof by induction. The result is easily verified for small values of n,
starting the induction. So we assume that (T, c) has a crossing-free diagram,
and that all smaller pairs with crossing-free diagrams are realisable.

Let e = {i, j} be an edge. Because the diagram is crossing-free, it falls
into two parts, one on each side of e.

Now e together with the edges on one side is a non-crossing diagram,
with e = {i, j} on the boundary. By the induction hypothesis, the edges on
each side can be ordered so that the product of those on one side is (j, . . . , i)
and those on the other is (i, . . . , j) (following the order in c). By the lemma,
these products can be written as w1ew2 and w3ew4, where w1 and w2 are
products of the edges in the two parts on the first side left by removing e,
and similarly on the right. Thus, in Figure 7, w1 corresponds to the edges in
Ti2, and so on.

We can choose the numbering so that w1ew2 = (1, 2, . . . , i, j, j+1, . . . , n),
where 1, . . . , i and j, . . . , n are the vertices of the two trees on the left re-
maining when e is removed; and we have w1 = (j, j + 1, . . . , n) and w2 =
(1, 2, . . . , i).
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Figure 7: The inductive step

Similarly, there exists k such that (k + 1, . . . , j, i, i + 1, . . . , k) = w3ew4,
where w3 = (i, i + 1, . . . , k) and w4 = (k + 1, . . . , j) correspond to the two
trees on the other side of e obtained by removing e.

Now calculation shows that

w3w1ew2w4 = (1, 2, . . . , i, i+ 1, . . . , k, k + 1, . . . , j, j + 1, . . . , n),

and we are done.

We now prove the reverse implication in the theorem. Suppose that the
diagram of the pair (T, c) is not crossing-free. Then there exists two edges
which intersect in the diagram, call them ei = {i1, i2} and ej = {j1, j2} where
i1 < j1 < i2 < j2 on the circle.

Since T is a tree there is precisely one path between ei and ej and since
they are non-adjacent this path has at least one edge, so choose one and call it
ek. If we assume that (T, c) is realisable then there must exist some ordering
of the edges of T whose traversal (beginning at a1) will witness landing on
i1, j1, i2, j2 in that order (possibly with others in between). However, this
would require landing on a vertex of ei followed by a vertex of ej , the other
vertex of ei and then the other vertex of ej and thus ek must appear in this
traversal at least three times, contradicting Lemma 2.1. Hence (T, c) is not
realisable as required. �
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Corollary 4.3 The number of trees on n vertices whose edges can be ordered
so as to realise a given n-cycle c is

(

3n−3
n−1

)

/(2n− 1).

Proof See Noy [9] for a proof that the number of crossing-free diagrams is
as claimed; see also [3, 6]. �

Remark These numbers are sometimes called generalised Catalan num-
bers, or Fuss–Catalan numbers. They occur as sequence A001764 in the
On-line Encyclopedia of Integer Sequences [10]. The sequence begins

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, . . .
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