Smooth multisections of odd-dimensional tori and other manifolds

Thomas Kindred

Abstract

After Gay-Kirby extended the classical notion of Heegaard splittings of 3-manifolds by introducing trisections of smooth 4-manifolds, Rubinstein-Tillmann defined multisections of PL n-manifolds. We consider smooth multisections, which are decompositions into $k=\lfloor n / 2\rfloor+1$ n-dimensional 1-handlebodies with nice intersection properties. We prove that a manifold X of even dimension $n \geq 6$ admits no smooth multisection if $H_{i}(X) \neq 0$ for any odd $i \neq 1, n-1$. By contrast, every manifold admits a PL multisection, and every manifold of dimension $n \leq 5$ admits a smooth multisection.

What about odd dimensions $n \geq 7$? We construct, for each odddimensional torus T^{n}, a smooth multisection which is efficient in the sense that each 1-handlebody has genus n, which we prove is optimal; each multisection is symmetric with respect to both the permutation action of S_{n} on the indices and the \mathbb{Z}_{k} translation action along the main diagonal. We also construct such a trisection of T^{4}, lift all symmetric multisections of tori to certain cubulated manifolds, and obtain combinatorial identities as corollaries.

1. Introduction

Every closed 3 -manifold ${ }^{1} X$ admits a decomposition into two 3-dimensional 1 -handlebodies ${ }^{2}$ glued along their boundaries. Gay-Kirby (resp. Lambert-Cole-Miller) extended this classical notion of Heegaard splittings by proving that every closed smooth 4- (resp. 5-) manifold admits a decomposition $X=\bigcup_{i \in \mathbb{Z}_{3}} X_{i}$ where each X_{i} is a 4- (resp. 5-) dimensional 1-handlebody, each $X_{i} \cap X_{i+1}$ is a 3-dimensional 1-handlebody (resp. 4-dimensional 2handlebody), and $X_{0} \cap X_{1} \cap X_{2}$ is a closed surface (resp. 3-manifold). Each of these smooth trisections gives a handle decomposition of X in which X_{0} contributes all the 0 - and 1-handles, X_{1} all the 2 - and ($n-2$)-handles, and X_{2} all the $(n-1)$ - and n-handles.

In the PL category, Rubinstein-Tillmann proved that every closed manifold of arbitrary dimension $n=2 k-1$ (resp. $2 k-2$) admits a decomposition

[^0]$X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ where each X_{i} is an n-dimensional 1-handlebody; for each $I \varsubsetneqq \mathbb{Z}_{k}$ with $|I| \geq 2, \bigcap_{i \in I} X_{i}$ is an $(n+1-|I|)$-dimensional submanifold with an $|I|-$ (resp. $(|I|-1)$-) dimensional spine; ${ }^{3}$ and the central intersection $\bigcap_{i \in \mathbb{Z}_{k}} X_{i}$ is a k - (resp. $(k-1)$-) dimensional manifold. We consider the smooth analog of these PL multisections:

Definition 1.1. Let X be a closed manifold of dimension $n=2 k-1$ (resp. $2 k-2$). A smooth multisection is a decomposition $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$, where:

- Each X_{i} is an n-dimensional 1-handlebody.
- For each $I \subset \mathbb{Z}_{k}$ with $2 \leq|I| \leq k-1, \bigcap_{i \in I} X_{i}$ is an $(n+1-|I|)$ dimensional $|I|$ - (resp. $(|I|-1)$-) handlebody.
- The central intersection $\bigcap_{i \in \mathbb{Z}_{k}} X_{i}$ is a closed k - (resp. $(k-1)$-) dimensional submanifold.

Section 2 shows that any combinatorial description of a smooth multisection $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ gives a handle decomposition of X, and thus a smooth structure (in which each X_{I} is smoothly embedded, generally with corners).
Theorem 2.5. Let $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ be a smooth multisection of a closed manifold of dimension $n=2 k-1$. Then X has a handle decomposition in which each X_{i} provides all the $2 i$ - and $(2 i+1)$-handles.

Theorem 2.7. Let $k \geq 3$. If a closed $(2 k-2)$-manifold has a smooth multisection $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$, then X has a handle decomposition in which each X_{i} provides all the $2 i$-handles, and the only handles with odd-dimensional cores are the 1-handles from X_{0} and the $(n-1)$-handles from X_{k-1}.

In even dimension n, this handle decomposition reveals that any nontrivial homology group in odd dimension $i \neq 1, n-1$ obstructs the existence of smooth multisections. In general, the handle decomposition bounds the efficiency of smooth multisections. Let $g\left(X_{i}\right)$ denote the genus of X_{i}; that is, since X_{i} is an n-dimensional 1-handlebody, $X_{i} \approx \mathrm{q}^{g}\left(S^{1} \times D^{n-1}\right)$ for some $g=g\left(X_{i}\right)$.

Definition 1.2. The efficiency of a smooth multisection $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ is

$$
\begin{cases}\frac{1}{1+\max _{i} g\left(X_{i}\right)} & H_{1}(X)=0 \\ \frac{\operatorname{rank} \pi_{1}(X)}{\max _{i} g\left(X_{i}\right)} & H_{1}(X) \neq 0\end{cases}
$$

A multisection is efficient if its efficiency is 1.

[^1]Corollary 2.10. Any smooth multisection in dimension $n \neq 2$ has efficiency at most 1; if $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ is efficient, then all X_{i} have the same genus. ${ }^{4}$

Section 3 begins a detailed investigation of smooth multisections of odddimensional tori. Roughly stated, the main result of that investigation is:

Theorem 7.11. Each $n=(2 k-1)$-torus admits an efficient smooth multisection which is symmetric with respect to the permutation action by S_{n} on the indices and the translation action by \mathbb{Z}_{k} along the main diagonal.

The full version of Theorem 7.11 gives a simple expression (1) for each piece X_{i} of this multisection. The hard part will be describing, in arbitrary odd dimension, a handle decomposition of $X_{I}=\bigcap_{i \in I} X_{i}$ for arbitrary $I \varsubsetneqq \mathbb{Z}_{k}$.
Section 3 describes the multisections of T^{n} for $n=3,4,5$ in detail.
Section 4 introduces three types of building blocks; each handle of each X_{I} in arbitrary odd dimension will be a product of such blocks.
Section 5 describes further examples, each featuring a new complication in the handle decomposition of X_{I}.
Section 6 proves several combinatorial facts, including that $T^{n}=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$, and obtains two combinatorial identities as corollaries. In particular, $\S 6.4$ establishes a closed expression (2) for arbitrary X_{I}.

Section 7 describes the handle decomposition of arbitrary X_{I}, confirms the details of this decomposition, shows that the central intersection $\bigcap_{i \in \mathbb{Z}_{k}} X_{i}$ is a closed k-manifold, and puts everything together to prove Theorem 7.11

Section 8 extends Theorem 7.11 to certain cubulated manifolds.
Appendix 1 features tables, several detailing follow-up examples for the complications introduced in $\S \S 3$ and 5 , others detailing aspects of the handle decomposition described in $\S 7.2$. Appendix 2 describes three other ways that one might attempt to multisect T^{n}. Two attempts fail in instructive ways; the status of the other attempt is uncertain.
Thank you to Mark Brittenham, Charlie Frohman, Peter Lambert-Cole for helpful discussions. Special thank you to Alex Zupan for helpful discussions throughout the project, especially during its early stages, when we collaborated to find efficient trisections of T^{4} and T^{5}.

[^2]
2. Smooth multisections and their efficiency

Example 2.1. For $n=2 k-1$, the n-sphere

$$
S^{n}=\partial \prod_{i=0}^{k-1} D^{2}=\bigcup_{i=0}^{k-1}\left(\prod_{j=0}^{i-1} D^{2} \times S^{1} \times \prod_{j=i+1}^{k-1} D^{2}\right)
$$

admits a smooth multisection in which each

$$
X_{i}=\prod_{j=0}^{i-1} D^{2} \times S^{1} \times \prod_{j=i+1}^{k-1} D^{2}
$$

is an n-dimensional 1-handlebody of genus 1 . In dimension 3 , this is the genus 1 Heegaard splitting of S^{3}, with central surface $S^{1} \times S^{1}$. In arbitrary dimension n, the central intersection is the k-torus $\prod_{j=0}^{k-1} S^{1}$, and more generally, for each $I \subset \mathbb{Z}_{k}$ with $1 \leq|I|=\ell \leq k-1$, the intersection

$$
X_{I}=\bigcap_{j \in I} X_{i}=\prod_{j=0}^{k-1}\left\{\begin{array}{ll}
S^{1} & j \in I \\
D^{2} & j \notin I
\end{array}\right\} \approx \prod_{j=0}^{\ell-1} S^{1} \times \prod_{j=\ell}^{k-1} D^{2} \approx T^{\ell} \times D^{2(k-\ell)}
$$

is a thickened ℓ-torus. In dimension 5, Lambert-Cole-Miller use this construction and a second trisection of S^{5}, whose central intersection is a 3 sphere rather than a 3 -torus, to show that, unlike Heegaard splittings of 3 -manifolds and trisections of 4-manifolds, trisections of a given 5-manifold need not be stably equivalent [3].

Example 2.2. Using homogeneous coordinates $\left[z_{0}: \cdots: z_{k-1}\right]$ on $\mathbb{C P}^{k-1}$, one can define a smooth multisection by [7]

$$
X_{i}=\left\{\left[z_{0}: \cdots: z_{k-1}\right]| | z_{i}\left|\geq\left|z_{j}\right| \text { for } j=0, \ldots, k-1\right\} .\right.
$$

Then each X_{I} with $|I|=\ell$ is related by permutation to a thickened torus

$$
\left.\begin{array}{rl}
\bigcap_{i=0}^{\ell-1} X_{i} & =\left\{\left[1: z_{1}: \cdots: z_{k-1}\right]\right.
\end{array} \left\lvert\, \begin{array}{l}
\left|z_{j}\right|=1 \text { for } j=1, \ldots, \ell-1, \\
\left|z_{j}\right| \leq 1 \text { for } j=\ell, \ldots, k-1
\end{array}\right.\right\}, ~ 土 T^{\ell-1} \times D^{2(k-\ell)} .
$$

In particular, the central intersection is

$$
\left\{\left[1: z_{1}: \cdots: z_{k}\right]:\left|z_{1}\right|=\cdots=\left|z_{k}\right|=1\right\} .
$$

These symmetric multisections are also efficient, since each X_{i} has genus 0 .
Proposition 2.3. For $i=1,2$, let Z_{i} be an n-manifold admitting an h_{i} handle decomposition, and let $\phi: Y_{1} \rightarrow Y_{2}$ glue compact $Y_{i} \subset \partial Z_{i}$, such that $Y_{1} \approx Y_{2}$ admit h-handle decompositions. Then $Z=Z_{1} \cup_{\phi} Z_{2}$ admits an h^{\prime}-handle decomposition for $h^{\prime}=\max \left\{h_{1}, h_{2}, h+1\right\}$.

Proof. By taking a bicollared neighborhood N of $Y=\phi\left(Y_{1}\right)=\phi\left(Y_{2}\right)$ in Z, where $N \equiv[-1,1] \times Y$, we may identify $Z \backslash \operatorname{int}(N)$ with $Z_{1} \sqcup Z_{2}$, which admits an $h^{\prime \prime}$-handle decomposition where $h^{\prime \prime}=\max \left\{h_{1}, h_{2}\right\}$. Then, for each i-handle $H \equiv D^{i} \times D^{n-1-i}$ in $Y, 0 \leq i \leq h$, we can glue on $[-1,1] \times H$ along $\partial\left([-1,1] \times D^{i}\right) \times D^{n-1-i} \approx S^{i} \times D^{n-1-i}$, and so attaching $[-1,1] \times H$ is the same as attaching an $(i+1)$-handle, where $i+1 \leq h+1$.

Proposition 2.4. Let $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ be a smooth multisection of a closed manifold of dimension $n=2 k-1$. Then for each $1 \leq j \leq i \leq k-1$:

$$
\bigcup_{t=0}^{j-1} X_{t} \cap \bigcap_{t=j}^{i} X_{t}
$$

admits an $(i+j)$-handle decomposition.
In particular, taking $j=i,\left(X_{0} \cup \cdots \cup X_{i-1}\right) \cap X_{i}$ admits a 2i-handle decomposition. Hence, each $X_{0} \cup \cdots \cup X_{i}$ admits a $(2 i+1)$-handle decomposition.

Proof. We argue by lexicographical induction on (i, j). When $(i, j)=(1,1)$, proposition is true by definition, since $X_{0} \cap X_{1}$ is a 2-handlebody. The last claim then follows from Proposition 2.3.
Let $(i, j)>(1,1)$. Assume for each $(r, s)<(i, j)$ that $\left(X_{0} \cup \cdots \cup X_{s-1}\right) \cap$ $X_{s} \cap \cdots \cap X_{r}$ admits an $(r+s)$-handle decomposition. Assume also that $X_{0} \cup \cdots \cup X_{i-1}$ admits a ($2 i-1$)-handle decomposition. Let

$$
Z_{1}=\bigcup_{t=0}^{j-2} X_{t} \cap \bigcap_{t=j}^{i} X_{t}
$$

and

$$
Z_{2}=\bigcap_{t=j-1}^{i} X_{t}
$$

so that

$$
\bigcup_{t=0}^{j-1} X_{t} \cap \bigcap_{t=j}^{i} X_{t}=Z_{1} \cup Z_{2}
$$

Then Z_{2} admits an $(i+1-j)$-handle decomposition. So does Z_{1}, by symmetry and the induction hypothesis. Further,

$$
Z_{1} \cap Z_{2}=\bigcup_{t=0}^{j-2} X_{t} \cap \bigcap_{t=j-1}^{i} X_{t},
$$

which, by induction, admits an $(i+j-1)$-handle decomposition. Therefore, $Z_{1} \cup Z_{2}$ admits a h-handle decomposition, where

$$
h=\max \{i+j-1, i+1-j, i+j\}=i+j .
$$

Finally, consider $W=X_{0} \cup \cdots \cup X_{i}$. Then $W=W_{1} \cup X_{i}$ where $W_{1}=$ $X_{0} \cup \cdots \cup X_{i-1}$, which, by induction, admits a $2(i-1)$-handle decomposition. We just showed that $W_{1} \cap X_{i}$ has a $2 i$-handle decomposition. Therefore, by Proposition 2.3, W admits an h-handle decomposition where

$$
h=\max \{2(i-1), 1,2 i+1\}=2 i+1 .
$$

Flipping X upside down reveals:
Theorem 2.5. Let $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ be a smooth multisection of a closed manifold of dimension $n=2 k-1$. Then X has a handle decomposition in which each X_{i} provides all the $2 i$ - and $(2 i+1)$-handles.

Proof. Given such a multisection, Proposition 2.4 implies that X admits an n-handle decomposition in which each X_{i} contributes only h-handles for various $h \leq 2 i+1$. After flipping X upside down, Proposition 2.4 implies that each X_{i} contributes only $(n-h)$-handles for various $n-h \leq$ $2(k-1-i)+1$. Combining these two-sided bounds gives $2 i \leq h \leq 2 i+1$.

Proposition 2.4 and its proof adapt directly to even dimensions:
Proposition 2.6. Let $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ be a smooth multisection of a closed manifold of dimension $n=2 k-2$. Then for each $1 \leq j \leq i \leq k-1$:

$$
\bigcup_{t=0}^{j-1} X_{t} \cap \bigcap_{t=j}^{i} X_{t}
$$

admits an $(i+j-1)$-handle decomposition. Hence, each $X_{0} \cup \cdots \cup X_{i}$ admits a 2i-handle decomposition.

Proof. Argue by lexicographical induction on (i, j). The base case holds, since $X_{0} \cap X_{1}$ has a core of dimension 1 . The induction step follows exactly as in the proof of Proposition 2.4.

In odd dimensions, X_{1} contributes 2- and 3 -handles, but in even dimensions, X_{1} contributes no 3-handles. The ramifications of this difference are striking:

Theorem 2.7. Let $k \geq 3$. If a closed ($2 k-2$)-manifold has a smooth multisection $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$, then X has a handle decomposition in which each X_{i} provides all the $2 i$-handles, and the only handles with odd-dimensional cores are the 1-handles from X_{0} and the $(n-1)$-handles from X_{k-1}.

Proof. By the reasoning from the proof of Theorem 2.5, each X_{i} contributes only h-handles for various $h \leq 2 i$ and only $(n-h)$-handles for various $n-h \leq 2(k-1-i)$, hence contributes only $2 i$-handles.

Corollary 2.8. Let X be a closed smooth manifold of even dimension $n \geq 6$. If $H_{i}(X) \neq 0$ for any odd $i \neq 1, n-1$, then X admits no smooth multisection. In particular, for even $n \geq 6, T^{n}$ admits no smooth multisection.
Corollary 2.9. When $n \neq 2$, any smooth multisection $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ obeys

$$
\min _{i \in \mathbb{Z}_{k}} g\left(X_{i}\right) \geq \operatorname{rank} \pi_{1}(X) .
$$

Corollary 2.10. No smooth multisection of any manifold of any dimension $n \neq 2$ has efficiency greater than 1. In any efficient smooth multisection $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$, all X_{i} have the same genus.
Question 2.11. Does every smooth odd-dimensional manifold have a smooth multisection?

3. Motivating examples

Figure 1 illustrates an efficient Heegaard splitting of the 3 -torus, which suggests viewing T^{3} as $(\mathbb{R} / 2 \mathbb{Z})^{3}$; then the splitting is determined by a partition of the eight unit cubes with vertices in the lattice $(\mathbb{Z} / 2 \mathbb{Z})^{3}$. Moreover, this partition satisfies two symmetry properties: first, the permutation action of S_{3} on the indices in T^{3} fixes each piece of the slitting, and second, the \mathbb{Z}_{2} translation action along the main diagonal of T^{3} satisfies $X_{i}+(1,1,1,1)=X_{i+1}$. Note that, while this splitting looks PL it (as with any Heegaard splitting) qualifies as smooth, since both X_{i} are handlebodies.

How might one construct efficient smooth trisections of $T^{n}, n=4,5$, with symmetry properties analogous to Figure 1's splitting of T^{3} ? To begin, one might view these T^{n} as $(\mathbb{R} / 3 \mathbb{Z})^{n}$-rather than, say, $(\mathbb{R} / 2 \mathbb{Z})^{n}$, because we seek a trisection rather than a splitting - and seek an appropriate partition of the 3^{n} unit cubes with vertices in the lattice $(\mathbb{Z} / 3 \mathbb{Z})^{n}$. From now on, for brevity, we will refer to these unit cubes as subcubes of T^{n}.

To start forming this partition, one might assign each subcube $[i, i+1]^{n}$ to X_{i} (because of the translation action). Next, one might assign each subcube of the form $[i, i+1]^{n-1}[i+1, i+2],[i, i+1]^{n-1}[i-1, i]$ to X_{i} as well, and

Figure 1. A Heegaard splitting of T^{3}.

Figure 2. Start partitioning the subcubes of $T^{4}=(\mathbb{R} / 3 \mathbb{Z})^{4}$ like this, giving three 4 -dimensional 1-handlebodies.
extend these assignments using the permutation action on the indices. At this point, each X_{i} is indeed an n-dimensional 1-handlebody, and so the rest of the partition should be constructed in a way that preserves this fact, while also giving rise to the needed pairwise intersection properties. Figure 2 illustrates this intermediate stage in the case of T^{4}.
For T^{4}, the symmetry properties imply that the remaining partition is determined by the assignments of the subcubes $[0,1]^{2}[1,2][2,3]$ and $[0,1]^{2}[1,2]^{2}$. Assigning both subcubes to X_{0} and extending symmetrically gives the decomposition of T^{4} illustrated in Figures 3 and 4. Section 3.2 will confirm that this decomposition is indeed a trisection.
A similar approach leads to the decomposition of T^{5} shown in Figure 5. Section 3.3 will confirm that this, too, is a trisection.

3.1. Notation.

Notation 3.1. Let $X, Y \subset Z$ be compact subspaces of a topological space. Denote " X cut along Y " by $X \backslash \backslash Y$. In every example where we use this notation, $X \backslash \backslash Y$ equals the closure in Z of $X \backslash Y$. (The general construction is somewhat more complicated.)

Given $n=2 k-1,2 k-2$, view the n-torus T^{n} as $(\mathbb{R} / k \mathbb{Z})^{n}$. Let S_{n} denote the permutation group on n elements.
Notation 3.2. Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in T^{n}$ and $\sigma \in S_{n}$, denote

$$
\vec{x}_{\sigma}=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
$$

Figure 3. Partitioning the 3^{4} subcubes of $T^{4}=(\mathbb{R} / 3 \mathbb{Z})^{4}$ like this gives a symmetric efficient smooth trisection of T^{4}.

Figure 4. In the multisection of T^{4} from Figure 3, each slice $T^{3} \times\{t\}, t \in(\mathbb{R} / 3 \mathbb{Z}) \backslash \mathbb{Z}_{3}$, intersects X_{0}, X_{1}, X_{2} like this.

Also, given $U \subset T^{n}$ and $\vec{v} \in T^{n}$, denote

$$
U+\vec{v}=\{\vec{u}+\vec{v}: \vec{u} \in U\} .
$$

Figure 5. Partitioning the 3^{5} subcubes of $T^{5}=(\mathbb{R} / 3 \mathbb{Z})^{5}$ like this gives a symmetric efficient smooth trisection of T^{5}.

The symmetric group S_{n} acts on T^{n} by permuting the indices, $\sigma: \vec{x} \mapsto \vec{x}_{\sigma}$. Because we are interested in subsets of T^{n} which are fixed by this action:

Notation 3.3. For any subset $U \subset T^{n}$, denote

$$
\langle U\rangle=\left\{\vec{x}_{\sigma}: \vec{x} \in U, \sigma \in S_{n}\right\} \subset T^{n} .
$$

Note, for any $U \subset T^{n}$, that $\langle U\rangle$ is fixed by the action of S_{n} on T^{n}.
Theorem 7.11. For $n=2 k-1$, the n-torus $T^{n}=(\mathbb{R} / k \mathbb{Z})^{n}=[0, k]^{n} / \sim$ admits an efficient smooth multisection $T^{n}=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ defined by

$$
\begin{align*}
X_{0} & =\left\langle[0,1]^{2} \cdots[0, k-1]^{2}[0, k]\right\rangle, \\
X_{i} & =X_{0}+(i, \ldots, i), \quad i \in \mathbb{Z}_{k} . \tag{1}
\end{align*}
$$

By construction, the decomposition is symmetric with respect to the permutation action on the indices and the translation action on the main diagonal.
Anticipating the concrete and (somewhat) low-dimensional nature of $\S \S 3,5$ and Appendix 1, give the first few intervals $[i, i+1], i \in \mathbb{Z}_{k}$, special notations:

Notation 3.4. Denote

$$
[0,1]=\alpha,[1,2]=\beta,[2,3]=\gamma,[3,4]=\delta,[4,5]=\varepsilon,[5,6]=\zeta,[6,7]=\eta
$$

To further abbreviate our notation, we will often omit \times symbols and use exponents to denote repeated factors. For example, we can describe the two pieces of the Heegaard splitting of T^{3} from Figure 1 like this:

$$
X_{0}=\alpha^{3} \cup \alpha^{2} \beta \cup \alpha \beta \alpha \cup \beta \alpha^{2},
$$

$$
X_{1}=\beta^{3} \cup \beta^{2} \alpha \cup \beta \alpha \beta \cup \alpha \beta^{2}
$$

Using Notation 3.3, we can further abbreviate this notation:

$$
\begin{aligned}
X_{0} & =\alpha^{3} \cup\left\langle\alpha^{2} \beta\right\rangle & X_{1} & =\beta^{3} \cup\left\langle\beta^{2} \alpha\right\rangle \\
& =\left\langle\alpha^{2}[0,2]\right\rangle & & =\left\langle\beta^{2}[1,3]\right\rangle .
\end{aligned}
$$

We often omit the braces around singleton factors. For example, in T^{3} :

$$
\begin{aligned}
X_{0} \cap X_{1} & =\langle[0,1] \times[1,2] \times\{0\}\rangle \cup\langle[0,1] \times[1,2] \times\{1\}\rangle \\
& =\langle\alpha \beta 0\rangle \cup\langle\alpha \beta 1\rangle .
\end{aligned}
$$

We also extend Notation 3.3 in the way suggested by the following example:

$$
\langle 0 \alpha\rangle \beta^{2}=(\{0\} \times \alpha \times \beta \times \beta) \cup(\alpha \times\{0\} \times \beta \times \beta) .
$$

More precisely, if we decompose T^{n} as a product $T^{n}=T^{n_{1}} \times \cdots \times T^{n_{p}}$ and $U_{i} \subset T^{n_{i}}$ for $i=1, \ldots, p$, then

$$
\left\langle U_{1}\right\rangle \cdots\left\langle U_{p}\right\rangle=\left\{\left(\vec{x}_{\sigma_{1}}^{1}, \vec{x}_{\sigma_{2}}^{2}, \ldots, \vec{x}_{\sigma_{p}}^{p}\right): \vec{x}^{i} \in T^{n_{i}}, \sigma_{i} \in S_{n_{i}}, i=1, \ldots, p\right\}
$$

where, extending Notation 3.2, denoting each $\vec{x}^{i}=\left(x_{1}^{i}, \ldots, x_{n_{i}}^{i}\right)$, each

$$
\vec{x}_{\sigma_{i}}^{i}=\left(x_{\sigma_{i}(1)}^{i}, \ldots, x_{\sigma_{i}\left(n_{i}\right)}^{i}\right) .
$$

Starting in dimension 7 , some handle decompositions will require subdividing unit subintervals $\alpha, \beta, \gamma, \delta, \ldots$ into halves or thirds. Anticipating this:

Notation 3.5. Denote

$$
\alpha^{-}=\left[0, \frac{1}{2}\right], \alpha^{+}=\left[\frac{1}{2}, 1\right], \ldots,\left[\eta^{-}\right]=\left[6, \frac{13}{2}\right], \eta^{+}=\left[\frac{13}{2}, 7\right]
$$

and

$$
\alpha_{3}^{-}=\left[0, \frac{1}{3}\right], \alpha_{3}^{\circ}=\left[\frac{1}{3}, \frac{2}{3}\right], \alpha_{3}^{+}=\left[\frac{2}{3}, 1\right], \ldots, \eta_{3}^{\circ}=\left[\frac{19}{3}, \frac{20}{3}\right], \eta_{3}^{+}=\left[\frac{20}{3}, 7\right] .
$$

Because of the symmetry of the construction under the \mathbb{Z}_{k} translation action on T^{n}, it will suffice, when considering X_{I}, to allow I to be arbitrary only up to cyclic permutation. In order to take advantage of this convenience:
Notation 3.6. Given $I \subset \mathbb{Z}_{k}$ with $|I|=\ell>0$, denote $X_{I}=\bigcap_{i \in I} X_{i}$, and denote $I=\left\{i_{s}\right\}_{s \in \mathbb{Z}_{\ell}}$ such that

$$
0 \leq i_{0}<i_{1}<\cdots<i_{\ell-1} \leq k-1 .
$$

Definition 3.7. Let $I=\left\{i_{s}\right\}_{s \in \mathbb{Z}_{\ell}}$ as in Notation 3.6. For each $r \in \mathbb{Z}_{\ell}$, define $I^{r}=\{i+r: \quad i \in I\} \subset \mathbb{Z}_{k}$. Denote each $I^{r}=\left\{i_{s}^{r}\right\}_{s \in \mathbb{Z}_{\ell}}$ with $0 \leq i_{0}^{r}<i_{1}^{r}<$ $\cdots<i_{\ell-1}^{r} \leq k-1$. Say that I is simple if, for each $r \in \mathbb{Z}_{\ell}$, we have $I \leq I^{r}$ under the lexicographical ordering of their elements, i.e. if each $I_{r} \neq I$ has some $s \in \mathbb{Z}_{\ell}$ with $i_{t}=i_{t}^{r}$ for each $t=0, \ldots, s-1$ and $i_{s}<i_{s}^{r}$.
Notation 3.8. Given simple $I=\left\{i_{s}\right\}_{s \in \mathbb{Z}_{\ell}} \subset \mathbb{Z}_{k}$ as in Notation 3.6, define

$$
T=\left\{r \in \mathbb{Z}_{k}: i_{r}-1 \notin I\right\} .
$$

Denote $T=\left\{t_{r}\right\}_{r \in \mathbb{Z}_{m}}$ with $0=t_{0}<\cdots<t_{m}<\ell$. For each $r \in \mathbb{Z}_{m}$, denote $I_{r}=\left\{i_{t_{r}}, \ldots, i_{t_{r+1}-1}\right\}$. Then

$$
I=I_{1} \sqcup \cdots \sqcup I_{m},
$$

and for each $r=0, \ldots, m-1$, we have $\left|I_{r}\right|=\max I_{r}+1-\min I_{r}$ (each block I_{r} is comprised of consecutive indices) and $\min I_{r+1} \geq \max I_{r}+2$ (the blocks are nonconsecutive).

Figure 6. A handle decomposition of X_{0} in Figure 3's trisection of T^{4} : the 0 -handle consists of 11 subcubes; each of four 1-handles consists of four subcubes.

Given $i_{*} \in I$ (denoted specifically as i_{*}), denote the I_{r} containing i_{*} by I_{*}.
Convention 3.9. Throughout, reserve the notations $n, k, \alpha, \ldots, \eta, \alpha^{-}, \ldots$, $\eta^{+}, \alpha_{3}^{-}, \ldots, \eta_{3}^{+}, I, X_{I}, \ell, T$, and m for the way they are used in Notations 3.4-3.8. Assume, unless otherwise stated, that $I \subset \mathbb{Z}_{k}$ is simple. Also reserve, for any $s \in \mathbb{Z}_{\ell}$ or $r \in \mathbb{Z}_{m}$, the notations $i_{s}, t_{r}, I_{r}, i_{*}$, and I_{*} for the way they are used in Notations 3.6 and 3.8.

Observation 3.10. Given $I \varsubsetneqq \mathbb{Z}_{k}$, we have $i_{0}=0$, $i_{\ell-1} \leq k-2$, and $\left|I_{0}\right| \geq\left|I_{r}\right|$ for each $r \in \mathbb{Z}_{m}$; if $\left|I_{0}\right|=\left|I_{r}\right|$, then $\left|I_{1}\right| \geq\left|I_{r+1}\right|$.

Given $I \subset \mathbb{Z}_{k}$ and $s \in \mathbb{Z}_{\ell}$, denote

$$
\left(i_{1}, \ldots, \widehat{i_{s}}, \ldots, i_{\ell}\right)=\left(i_{1}, \ldots, i_{s-1}, i_{s+1}, \ldots, i_{\ell}\right) \subset T^{\ell-1}
$$

Lemma 6.13. Given nonempty $I \subseteq \mathbb{Z}_{k}, X_{I}$ is given by:

$$
\begin{equation*}
\bigcup_{i_{*} \in I}\left\langle\left(i_{1}, \ldots, \widehat{i_{*}}, \ldots, i_{\ell}\right) \prod_{r \in \mathbb{Z}_{\ell}}\left[i_{r}, i_{r}+1\right]^{2} \cdots\left[i_{r}, i_{r+1}-1\right]^{2}\left[i_{r}, i_{r+1}\right]\right\rangle . \tag{2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\bigcap_{i \in \mathbb{Z}_{k}} X_{i}=\bigcup_{i_{*} \in \mathbb{Z}_{k}}\left\langle\left(0, \ldots, \widehat{i_{*}}, \ldots, k-1\right) \prod_{i \in \mathbb{Z}_{k}}[i, i+1]\right\rangle . \tag{3}
\end{equation*}
$$

We will prove Lemma 6.13 in $\S 6.4$.
3.2. Trisection of \boldsymbol{T}^{4}. The decomposition of T^{4} from Figure 3 is given by

$$
\begin{align*}
X_{0}=\left\langle\alpha^{2}[0,2][0,3]\right\rangle & =\left\langle\alpha^{4}\right\rangle \cup\left\langle\alpha^{3} \beta\right\rangle \cup\left\langle\alpha^{3} \gamma\right\rangle \cup\left\langle\alpha^{2} \beta^{2}\right\rangle \cup\left\langle\alpha^{2} \beta \gamma\right\rangle \tag{4}\\
X_{i} & =X_{0}+(i, i, i, i) .
\end{align*}
$$

It is evident from Figure 3 that $X_{0} \cup X_{1} \cup X_{2}=T^{4}$. Also, $I=\{0\}$ and $I=\{0,1\}$ are the only subsets of $\{0,1,2\}$ which are simple. Therefore, in order to check that (4) determines a trisection of T^{4}, it suffices to prove that X_{0} is a 4-dimensional 1-handlebody and $X_{0} \cap X_{1}$ is a 3-dimensional 1-handlebody with $\partial\left(X_{0} \cap X_{1}\right)=X_{0} \cap X_{1} \cap X_{2}$.
Indeed, Figure 6 shows a handle decomposition of X_{0} in which $\left\langle\alpha^{2}[0,2]^{2}\right\rangle$ is a 0 -handle and $\left\langle\alpha^{2}[0,2] \gamma\right\rangle$ supplies four 1 -handles, each a permutation of $\left\langle\alpha^{2}[0,2]\right\rangle \gamma$. More precisely, each 1-handle is given, in terms of some permutation $\sigma \in S_{4}$ (using Notation 3.2), by

$$
\left\{\vec{x}_{\sigma}: \vec{x} \in\left\langle\alpha^{2}[0,2]\right\rangle \gamma\right\} .
$$

Now consider

$$
X_{0} \cap X_{1}=\langle\alpha 1 \beta[1,3]\rangle \cup\left\langle 0 \alpha \beta^{2}\right\rangle
$$

We claim that this is a 3 -dimensional 1 -handlebody in which:

- $Y_{1}=\left\langle\alpha 1 \beta^{2}\right\rangle$ is the 0-handle;
- $Y_{2}=\left\langle 0 \alpha \beta^{2}\right\rangle$ gives six 1-handles, all permutations of $Y_{2}^{*}=\langle 0 \alpha\rangle \beta^{2}$;
- $Y_{3}=\langle\alpha 1 \beta \gamma\rangle$ gives four 1-handles, all permutations of $Y_{3}^{*}=\langle\alpha 1 \beta\rangle \gamma$.

Figure 7 shows this decomposition of $X_{0} \cap X_{1}$:

- The shape in the center (which looks like a truncated tetrahedron) is the 0 -handle $\left\langle\alpha 1 \beta^{2}\right\rangle$, comprised of 12 cubes, each a permutation of $\alpha 1 \beta^{2}$. The interior lattice point is ($1,1,1,1$), and each triangularlooking face is a permutation of $0\left\langle 1 \beta^{2}\right\rangle$. Each blue segment on $\partial\left\langle\alpha 1 \beta^{2}\right\rangle$ is a permutation of $\langle\alpha 1\rangle 2^{2}$.
- Each of the four three-pronged pieces is a permutation of $0\left\langle\alpha \beta^{2}\right\rangle$, glued to the 0 -handle along $0\left\langle 1 \beta^{2}\right\rangle$. The twelve cubes comprising these pieces are then glued in pairs: $0 \alpha \beta^{2}$ and $\alpha 0 \beta^{2}$, e.g., meet along the face $00 \beta^{2}$, and the other pairs are permutations of this. The union of each pair of cubes, (a permutation of) $Y_{2}^{*}=\langle 0 \alpha\rangle \beta^{2}$, is a 1 -handle which is glued to the 0 -handle along (the corresponding permutation of) $\langle 01\rangle \beta^{2}$. Note that Y_{2}^{*} intersects other permutations of Y_{2}^{*}, but only within $Y_{2}^{*} \cap Y_{1}$. Therefore, attaching Y_{2}^{*} to Y_{1} amounts to attaching six 1-handles.
- Each of the four remaining pieces is a permutation of $Y_{3}^{*}=\langle\alpha 1 \beta\rangle \gamma$, attaching to Y_{1} along (a permutation of) $\langle\alpha 1 \beta\rangle 2$ and to Y_{2} along $\langle\alpha 1 \beta\rangle 0 \subset\left\langle\alpha \beta^{2}\right\rangle 0$.

Figure 7. A handle decomposition of $X_{0} \cap X_{1}$ in Figure 3's trisection of T^{4}. The trisection diagram on $\partial\left(X_{0} \cap X_{1}\right)=$ $X_{0} \cap X_{1} \cap X_{2}=\langle\alpha \beta 02\rangle \cup\langle\alpha \gamma 12\rangle \cup\langle\beta \gamma 01\rangle$ has two types of red curves; one of each is in bold. Same with blue and green.

For emphasis, here are some key details of this decomposition which will be instructive toward the odd-dimensional case:

$$
Y_{1}=Y_{1}^{*}=\left\langle\alpha 1 \beta^{2}\right\rangle \approx D^{3}
$$

so Y_{1} is a 0 -handle;

$$
\begin{aligned}
Y_{2}^{*} & =\langle 0 \alpha\rangle \beta^{2} \approx D^{1} \times D^{2} \text { and } \\
Y_{2}^{*} \cap\left(Y_{2} \backslash \backslash Y_{2}^{*}\right) \subset Y_{2}^{*} \cap Y_{1} & =(\partial\langle 0 \alpha\rangle) \times \beta^{2}=\langle 01\rangle \beta^{2} \approx S^{0} \times D^{2},
\end{aligned}
$$

so attaching Y_{2} to Y_{1} amounts to attaching a collection of 1-handles; and

$$
\begin{aligned}
Y_{3}^{*} & =\langle\alpha 1 \beta\rangle \gamma \approx D^{2} \times D^{1} \text { and } \\
Y_{3}^{*} \cap\left(Y_{3} \backslash \backslash Y_{3}^{*}\right) \subset Y_{3}^{*} \cap\left(Y_{1} \cup Y_{2}\right) & =\langle\alpha 1 \beta\rangle \times \partial \gamma \approx D^{2} \times S^{0},
\end{aligned}
$$

so attaching Y_{3} to $Y_{1} \cup Y_{2}$ amounts to attaching a collection of 1-handles. Thus, $X_{0} \cap X_{1}$ is a 4-dimensional 1-handlebody. Note in Figure 7 that $\partial\left(X_{0} \cap X_{1}\right)$ is the central surface

$$
\begin{equation*}
X_{0} \cap X_{1} \cap X_{2}=\langle\alpha \beta 02\rangle \cup\langle\alpha \gamma 12\rangle \cup\langle\beta \gamma 01\rangle, \tag{5}
\end{equation*}
$$

which is colored in Figure 7 according to the color scheme from (5). Moreover, the red (resp. blue, green) line segments in Figure 7 comprise the "red (resp. blue, green) curves" in a trisection diagram for this trisection, and so Figure 7 contains the information of a trisection diagram (see $[1,4]$).
3.3. Trisection of $\boldsymbol{T}^{\mathbf{5}}$. The decomposition of $T^{\mathbf{5}}$ from Figure 5 is given by

$$
X_{0}=\left\langle\alpha^{2}[0,2]^{2}[0,3]\right\rangle, \quad X_{i}=X_{0}+(i, i, i, i, i) .
$$

The handle decompositions of $X_{I}, I=\{0\},\{0,1\}$, are quite similar to those from T^{4}. Focusing first on $I=\{0\}$, compare Tables 1 and 2 .

Y_{z}	Y_{z}^{*}	h	z	glue to
$\left\langle\alpha^{2}[0,2]^{2}\right\rangle$	$\left\langle\alpha^{2}[0,2]^{2}\right\rangle$	0	1	
$\left\langle\alpha^{2}[0,2] \gamma\right\rangle$	$\left\langle\alpha^{2}[0,2]\right\rangle \gamma$	$\mathbf{1}$	2	1

TABLE 1. X_{0} from the trisection of T^{4}

J	Y_{z}	Y_{z}^{*}	h	z	glue to
\varnothing	$\left\langle\alpha^{2}[0,2]^{3}\right\rangle$	$\left\langle\alpha^{2}[0,2]^{3}\right\rangle$	0	1	
$\{0\}$	$\left\langle\alpha^{2}[0,2]^{2} \gamma\right\rangle$	$\left\langle\alpha^{2}[0,2]^{2}\right\rangle \gamma$	1	2	1

Table 2. X_{0} from the trisection of T^{5}

Note in each case that $Y_{1}=Y_{1}^{*}$ is star-shaped in a particularly nice way. In §4, we will formalize and generalize this, giving one of three basic types of building blocks for our general construction. Notice in both cases that the handle decomposition of X_{0} comes from the decomposition of the interval

$$
[0,3]=[0,2] \cup \gamma .
$$

To observe the other two types building blocks, consider $X_{I}, I=\{0,1\}$ from T^{4} and T^{5}, whose handle decompositions are summarized in Tables 3, 4. The factor $\langle 0 \alpha\rangle \approx D^{1}$ of Y_{2}^{*} is an example of the second type of building block. The factor $\langle\gamma 0 \alpha\rangle \approx D^{2}$ from Y_{4}^{*} is an example of the third type (from $Y_{3}^{*},\langle\alpha 1 \beta\rangle \approx D^{2}$ from T^{4} and $\left\langle\alpha 1 \beta^{2}\right\rangle \approx D^{3}$ from T^{5} are further examples).

Y_{z}	Y_{z}^{*}	h	z	glue to
$\left\langle\alpha 1 \beta^{2}\right\rangle$	$\left\langle\alpha 1 \beta^{2}\right\rangle$	0	1	
$\left\langle 0 \alpha \beta^{2}\right\rangle$	$\langle 0 \alpha\rangle \beta^{2}$	1	2	1
$\langle\alpha 1 \beta \gamma\rangle$	$\langle\alpha 1 \beta\rangle \gamma$	1	3	1,2

Table 3. From the trisection of $T^{4}: X_{0} \cap X_{1}=\langle\alpha 1 \beta[1,3]\rangle \cup\left\langle 0 \alpha \beta^{2}\right\rangle$.

J	i_{*}	Y_{z}	Y_{z}^{*}	h	z	glue to
\varnothing	0	$\left\langle\alpha 1 \beta^{3}\right\rangle$	$\left\langle\alpha 1 \beta^{3}\right\rangle$	0	1	
	1	$\left\langle 0 \alpha \beta^{3}\right\rangle$	$\langle 0 \alpha\rangle \beta^{3}$	1	2	1
$\{0\}$	0	$\left\langle\alpha 1 \beta^{2} \gamma\right\rangle$	$\left\langle\alpha 1 \beta^{2}\right\rangle \gamma$	1	3	1,2
	1	$\left\langle\gamma 0 \alpha \beta^{2}\right\rangle$	$\langle\gamma 0 \alpha\rangle \beta^{2}$	$\mathbf{2}$	4	2,3

Table 4. From the trisection of $T^{5}: X_{0} \cap X_{1}=\left\langle\alpha 1 \beta^{2}[1,3]\right\rangle \cup\left\langle 0 \alpha \beta^{2}[1,3]\right\rangle$.

The most striking difference between X_{0} and $X_{\{0,1\}}$ is the presence of the singletons in the expressions for the latter. Note the consistency between the singleton $\left(i_{1}, \ldots, \widehat{i_{*}}, \ldots, i_{\ell}\right)$ in the general expression (2) for X_{I}, and the specific singleton in each row of Table 4 , depending on i_{*}. The most striking difference between $X_{\{0,1\}}$ in T^{4} versus T^{5} is the appearance of the 2 -handles Y_{4} in the latter. Other than this, most of the structure described for T^{4} applies (by analogy) to T^{5} as well.
In the handle decomposition of $X_{\{0,1\}}$ from T^{5}, each Y_{z} is characterized as follows by a pair $\left(J, i_{*}\right)$, where $J \subset T=\{0\}$ and $i_{*} \in I=\{0,1\}$. (The reader may wish to skip these formalities for now and may find this more useful when considering these formalities in $\S 7.2$ in the context of the handle decomposition of arbitrary X_{I}.) Define $\rho_{1}=\alpha$ and $\widehat{C}_{0}=\beta^{2}$. Given $J \subset T$ and $i_{*} \in I$, let i be the element of $I \backslash\left\{i_{*}\right\}$, and define:

$$
\begin{aligned}
& \rho_{0}= \begin{cases}\beta & J=\varnothing \\
\gamma & J=\{0\},\end{cases} \\
& Y_{z}=\left\langle\{i\} \times \rho_{0} \times \rho_{1} \times \widehat{C}_{0}\right\rangle .
\end{aligned}
$$

Order the four possibilities for $\left(J, i_{*}\right)$ lexicographically, with $\left(J, i_{*}\right) \prec\left(J^{\prime}, i_{*}^{\prime}\right)$ if $J \varsubsetneqq J^{\prime}$ or if $J=J^{\prime}$ and $i_{*}<i_{*}^{\prime}$, and index $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ according to this order. For each $z=1,2,3,4$ corresponding to some $\left(J, i_{*}\right)$, define $\xi_{i}(z)$,
$\xi_{i_{*}}(z)$, and Y_{z}^{*} as follows:

$$
\begin{aligned}
\xi_{i}(z) & = \begin{cases}\{i\} \times \widehat{C}_{0} \times \prod_{t \in I: \rho_{t} \ni i} \rho_{t} & i=1 \\
\{i\} \times \prod_{t \in I: \rho_{t} \ni i} \rho_{t} & i=0,\end{cases} \\
\xi_{i_{*}}(z) & = \begin{cases}\widehat{C}_{0} \times \prod_{t \in I: \rho_{t} \ni i} \rho_{t} & i_{*}=1 \\
\prod_{t \in I: \rho_{t} \ni i} \rho_{t} & i_{*}=0, \\
Y_{z}^{*} & =\left\langle\xi_{0}(z)\right\rangle \times\left\langle\xi_{1}(z)\right\rangle .\end{cases}
\end{aligned}
$$

Note that when $J=\varnothing$ and $i_{*}=0, i \in \rho_{0} \cap \rho_{1}$, so ξ_{0} is an empty product. In that case, we regard ξ_{0} not as the empty set but rather as "no factor", so

$$
Y_{1}^{*}=\left\langle\xi_{0}(1)\right\rangle \times\left\langle\xi_{1}(1)\right\rangle=\left\langle\xi_{1}(1)\right\rangle=\left\langle\alpha 1 \beta^{3}\right\rangle=Y_{1} .
$$

4. Star-shaped building blocks

Given $\vec{p}, \vec{q} \in \mathbb{R}^{n}$, denote

$$
[\vec{p}, \vec{q}]=\{t \vec{p}+(1-t) \vec{q}: 0 \leq t \leq 1\} .
$$

Let $Y \subset \mathbb{R}^{n}$. Given $\vec{p} \in Y$, the link of \vec{p} in Y is

$$
\operatorname{lk}_{Y}(\vec{p})=\left\{\vec{v} \in \mathbb{R}^{n}:|\vec{v}|=1,[\vec{p}, \vec{p}+\varepsilon \vec{v}] \subset Y \text { for some } \varepsilon>0\right\} .
$$

Then Y is a d-dimensional submanifold near a point $\vec{p} \in Y$ if either

- $\mathrm{lk}_{Y}(\vec{p}) \approx S^{d-1}$, in which case \vec{p} is in the interior of Y; or
- $\mathrm{lk}_{Y}(\vec{p}) \approx D^{d-1}$, in which case $\vec{p} \in \partial Y$.

If $\mathrm{lk}_{Y}(\vec{p}) \approx S^{d-1}$, define the scope of \vec{p} in Y to be

$$
\operatorname{scope}(Y ; \vec{p})=\{\vec{q} \in Y:[\vec{p}, \vec{q}] \subset Y\} .
$$

If $\mathrm{lk}_{Y}(\vec{p}) \approx S^{d-1}$, say that Y is strongly star-shaped about \vec{p} if, for every point $\vec{q} \in \operatorname{scope}(Y ; \vec{p})$, every point $\vec{x} \in[\vec{p}, \vec{q}] \backslash\{\vec{q}\}$ satisfies $\mathrm{lk}_{Y}(\vec{x}) \approx S^{d-1}$.

Proposition 4.1. If $Y \subset \mathbb{R}^{n}$ is strongly star-shaped about $\vec{p} \in Y$, then $A=\operatorname{scope}(Y ; \vec{p})$ is homeomorphic to the compact d-ball, $A \approx D^{d}$.

Proof. There is a homeomorphism $\phi: S^{d-1} \rightarrow \mathrm{lk}_{Y}(\vec{p})$, since $\vec{p} \in$ int Y, and another $\psi: \partial A \rightarrow \mathrm{lk}_{Y}(\vec{p})$ given by $\psi: \vec{q} \mapsto \frac{\vec{q}-\vec{p}}{|\vec{q}-\vec{p}|}$, because Y is strongly starshaped about \vec{p}. Define a polar coordinate system $\Phi: A \rightarrow D^{q}$ by $\Phi: \vec{p} \mapsto \overrightarrow{0}$ and, for $\vec{q} \neq \vec{p}$, with $\vec{\theta}=\frac{\vec{q}-\vec{p}}{|\vec{q}-\vec{p}|} \in \mathrm{l}_{Y}(\vec{p})$, by

$$
\Phi: \vec{q} \mapsto \frac{|\vec{q}-\vec{p}|}{\left|\psi^{-1}(v)-\vec{p}\right|} \cdot \vec{\theta}
$$

This is a homeomorphism, because the inverse map $D^{d} \rightarrow A$ is

$$
\Phi^{-1}: r \vec{\theta} \mapsto \vec{p}+r\left|\psi^{-1} \circ \phi(\vec{\theta})-\vec{p}\right| \cdot \phi(\vec{\theta}) .
$$

Figure 8. Left to right: $\langle 0 \alpha\rangle,\langle\alpha[0,2]\rangle,\langle\alpha 1 \beta\rangle,\langle 0 \alpha[0,2]\rangle,\left\langle\alpha^{2}[0,2]\right\rangle$.

Figure 9. Left to right: $\left\langle\alpha 0 \beta^{2}\right\rangle$ and $\left\langle 0 \alpha^{3}\right\rangle \rightarrow\left\langle 0 \alpha^{2}[0,2]\right\rangle$.
In $T^{n}=(\mathbb{R} / k \mathbb{Z})^{n}$, for $d \leq n-1$, identify $T^{d}=(\mathbb{R} / k \mathbb{Z})^{d}$ with $(\mathbb{R} / k \mathbb{Z})^{d} \times\{\overrightarrow{0}\} \subset$ T^{n}, and likewise for T^{d+1}. With $0<a_{1} \leq \cdots \leq a_{d}<k$, define

$$
\begin{align*}
& C_{1}=\left\langle\prod_{r=1}^{d}\left[0, a_{r}\right]\right\rangle \subset T^{d} \tag{6}\\
& C_{2}=\left\langle\{0\} \times \prod_{r=1}^{d}\left[0, a_{r}\right]\right\rangle \subset T^{d+1} \tag{7}
\end{align*}
$$

Also, assuming that $k-a_{1}>a_{d}$, define

$$
\begin{equation*}
C_{3}=\left\langle\left[0, a_{1}\right] \times\left\{a_{1}\right\} \times \prod_{r=2}^{d}\left[a_{1}, a_{r}\right]\right\rangle \subset T^{d+1} . \tag{8}
\end{equation*}
$$

Figures 8 and 9 show low-dimensional examples of these building blocks.
Lemma 4.2. C_{1}, C_{2}, and C_{3} from (6)-(8) are homeomorphic to D^{d}.
Proof. Let $a=\frac{a_{1}}{2}, \vec{a}=(a, \ldots, a, 0, \ldots, 0), b=\frac{1}{2}\left(k+a_{d}\right)$, and $U=[0, b]^{d} \subset$ T^{d}. Then $C_{1} \subset U \approx D^{d}$ and $C_{2}, C_{3} \subset U \times[0, b] \approx D^{d+1}$, so we may view C_{1} in \mathbb{R}^{d} and C_{2}, C_{3} in \mathbb{R}^{d+1}.
C_{1} is strongly star-shaped about \vec{a}, and the scope of \vec{a} in C_{1} is all of C_{1}, so $C_{1} \approx D^{d}$, by Proposition 4.1.
Consider $U \times[0, b] \approx D^{d+1}$ with $\partial(U \times[0, b])=Y_{0} \cup Y_{b}$, where, for $t=0, b$:

$$
Y_{t}=\left\langle\{t\}[0, b]^{d}\right\rangle .
$$

Proposition 4.1 gives $D^{d} \approx \operatorname{scope}\left(Y_{0}, \overrightarrow{0}\right)=C_{2}$, as Y_{0} is strongly star-shaped about $\overrightarrow{0}$. Let $\vec{a}^{\prime}=\left(a_{1}, \ldots, a_{1}\right)$, and consider

$$
\begin{aligned}
D^{d+1} & \approx Y_{1}=\left\langle\left[0, a_{1}\right]^{2} \prod_{r=2}^{d}\left[0, a_{r}\right]\right\rangle \\
D^{d} & \approx Y_{2}=\left\langle\{0\} \prod_{r=1}^{d}\left[0, a_{r}\right]\right\rangle \subset \partial D^{d+1} \approx S^{d} \\
D^{d} & \approx Y_{3}=\partial Y_{1} \backslash \backslash Y_{2} \\
& =C_{3} \cup \bigcup_{s=2}^{d}\left\langle\left[0, a_{1}\right]^{2} \prod_{r=2}^{s-1}\left\{a_{s}\right\} \prod_{r=s+1}^{d}\left[a_{s}, a_{d}\right]\right\rangle
\end{aligned}
$$

Proposition 4.1 implies that $D^{d} \approx \operatorname{scope}\left(Y_{3} ; \vec{a}^{\prime}\right)=C_{3}$, since Y_{3} is strongly star-shaped about \vec{a}^{\prime}.

5. Further examples

5.1. Quadrisection of $\boldsymbol{T}^{\boldsymbol{7}}$. Consider the decomposition of $T^{\boldsymbol{7}}$ given by $X_{0}=\left\langle\alpha^{2}[0,2]^{2}[0,3]^{2}[0,4]\right\rangle$ and $X_{i}=X_{0}+(i, i, i, i, i, i, i)$.
5.1.1. $\boldsymbol{X}_{\boldsymbol{I}}, \boldsymbol{I}=\{\mathbf{0}\},\{\mathbf{0}, \mathbf{1}\}$. The handle decompositions of $X_{I}, I=\{0\},\{0,1\}$, summarized in Tables 5 and 6 , respectively, follow the same pattern in dimension seven (and all higher odd dimensions) as in dimension five (recall Tables 2 and 4 and the attending discussions).

J	Y_{z}	Y_{z}^{*}	h	z	glue to
\varnothing	$\left\langle\alpha^{2}[0,2]^{2}[0,3]^{2}[0,4]^{3}\right\rangle$	$\left\langle\alpha^{2}[0,2]^{2}[0,3]^{2}[0,4]^{3}\right\rangle$	0	1	
$\{0\}$	$\left\langle\alpha^{2}[0,2]^{2}[0,3]^{2}[0,4]^{2} \varepsilon\right\rangle$	$\left\langle\alpha^{2}[0,2]^{2}[0,3]^{2}[0,4]^{2}\right\rangle \varepsilon$	$\mathbf{1}$	2	1

Table 5. X_{0} from the quadrisection of T^{7}
5.1.2. X_{I} when $I=\{\mathbf{0}, \mathbf{2}\}$. Consider

$$
X_{0} \cap X_{2}=\left\langle\alpha^{2}[0,2] \gamma^{2}[2,4]^{2}[2,5]\right\rangle \cup\left\langle\alpha^{2}[0,2] 2 \gamma^{2}[2,4]^{2}[2,5]\right\rangle .
$$

Table 7 summarizes a handle decomposition $X_{I}=Y_{1} \cup \cdots \cup Y_{12}$. As with $X_{I}, I=\{0,1\}$, the decomposition of $X_{I}, I=\{0,2\}$ is organized largely

J	i_{*}	Y_{z}	Y_{z}^{*}	h	z	glue to
\varnothing	0	$\left\langle\alpha 1 \beta^{2}[1,3]^{3}\right\rangle$	$\left\langle\alpha 1 \beta^{2}[1,3]^{3}\right\rangle$	0	1	
	1	$\left\langle 0 \alpha \beta^{2}[1,3]^{3}\right\rangle$	$\langle 0 \alpha\rangle\left\langle\beta^{2}[1,3]^{3}\right\rangle$	1	2	1
$\{0\}$	0	$\left.\left\langle\alpha 1 \beta^{2}[1,3]^{2}\right\rangle\right\rangle$	$\left\langle\alpha 1 \beta^{2}[1,3]^{2}\right\rangle \delta$	1	3	1,2
	1	$\left\langle\delta 0 \alpha \beta^{2}[1,3]^{2}\right\rangle$	$\langle\delta 0 \alpha\rangle\left\langle\beta^{2}[1,3]^{2}\right\rangle$	$\mathbf{2}$	4	2,3

Table 6. $X_{I}, I=\{0,1\}$ from the quadrisection of T^{7}

J	i_{*}	V	V^{-}	Y_{z}	Y_{z}^{*}	h	z	glue to
\varnothing	0	\varnothing	\varnothing	$\left\langle\alpha^{3} 2 \gamma^{3}\right\rangle$	$\alpha^{3}\left\langle 2 \gamma^{3}\right\rangle$	0	1	
	2	\varnothing		$\left\langle 0 \alpha^{3} \gamma^{3}\right\rangle$	$\left\langle 0 \alpha^{3}\right\rangle \gamma^{3}$	0	2	
$\{0\}$	0	\varnothing	\varnothing	$\left\langle\alpha^{3} 2 \gamma^{2} \delta\right\rangle$	$\alpha^{3}\left\langle 2 \gamma^{2}\right\rangle \delta$	1	3	1,2
	2	$\{0\}$	\varnothing	$\left\langle\delta^{+} 0 \alpha^{3} \gamma^{2}\right\rangle$	$\left\langle\delta^{+} 0 \alpha^{3}\right\rangle \gamma^{2}$	0	4	
			$\{0\}$	$\left\langle\delta^{-} 0 \alpha^{3} \gamma^{2}\right\rangle$	$\delta^{-}\left\langle 0 \alpha^{3}\right\rangle \gamma^{2}$	1	5	2,4
$\{2\}$	0	$\{2\}$	\varnothing	$\left\langle\alpha^{2} \beta^{+} 2 \gamma^{3}\right\rangle$	$\alpha^{2}\left\langle\beta^{+} 2 \gamma^{3}\right\rangle$	0	6	
	2		$\{2\}$	$\left\langle\alpha^{2} \beta^{-} 2 \gamma^{3}\right\rangle$	$\alpha^{2} \beta^{-}\left\langle 2 \gamma^{3}\right\rangle$	1	7	1,6
	2	\varnothing	\varnothing	$\left\langle 0 \alpha^{2} \beta \gamma^{3}\right\rangle$	$\left\langle 0 \alpha^{2}\right\rangle \beta \gamma^{3}$	1	8	1,2
$\{0,2\}$	0	$\{2\}$	\varnothing	$\left\langle\alpha^{2} \beta^{+} 2 \gamma^{2} \delta\right\rangle$	$\alpha^{2}\left\langle\beta^{+} 2 \gamma^{2}\right\rangle \delta$	1	9	6,8
	2		$\{2\}$	$\left\langle\alpha^{2} \beta^{-} 2 \gamma^{2} \delta\right\rangle$	$\alpha^{2} \beta^{-}\left\langle 2 \gamma^{2}\right\rangle \delta$	$\mathbf{2}$	10	$3,7,8,9$
	2	$\{0\}$	\varnothing	$\left\langle\delta^{+} 0 \alpha^{2} \beta \gamma^{2}\right\rangle$	$\left\langle\delta^{+} 0 \alpha^{2}\right\rangle \beta \gamma^{2}$	1	11	3,4
		$\{0\}$	$\left\langle\alpha^{2} \beta \gamma^{2} \delta^{-}\right\rangle$	$\left\langle\alpha^{2}\right\rangle \beta \gamma^{2} \delta^{-}$	$\mathbf{2}$	12	$3,5,8,11$	

Table 7. $X_{I}, I=\{0,2\}$ from the quadrisection of T^{7}
according to $\left\{\left(J, i_{*}\right): J \subset\left\{\min I_{r}\right\}, i_{*} \in I\right\}$. Here, Y_{4} and Y_{5} provide the first instance where $J \backslash\left\{\min I_{*}\right\} \neq \varnothing$, requiring us to split a unit interval into subintervals, in this case halves.

5.1.3. X_{I} when $I=\{0,1,2\}$. Consider

$$
X_{0} \cap X_{1} \cap X_{2}=\left\langle\alpha^{2}[0,2] \gamma^{2}[2,4]^{2}[2,5]\right\rangle \cup\left\langle\alpha^{2}[0,2] 2 \gamma^{2}[2,4]^{2}[2,5]\right\rangle
$$

Table 8 summarizes a handle decomposition $X_{I}=Y_{1} \cup \cdots \cup Y_{12}$. Again, the decomposition of $X_{I}, I=\{0,2\}$ is organized largely according to $\left\{\left(J, i_{*}\right)\right.$: $\left.J \subset\left\{\min I_{r}\right\}, i_{*} \in I\right\}$. Here, we have the first instance where a block I_{r} (in this case $I_{r}=I$) has $\left|I_{r}\right| \geq 3$, requiring us to split a unit interval at times into thirds, seen here in $Y_{6}-Y_{8}$ and $Y_{14}-Y_{16}$. Also, $Y_{1}-Y_{4}$ and $Y_{9}-Y_{12}$ provide the first instances where $i_{*}+2 \in I_{*}$, requiring us to split certain unit intervals into halves according to a different rule than in §5.1.2.
5.2. $X_{I}, I=\{0,1,2,4\}$ from T^{11}. There is one more complication, which arises, first in dimension 11, whenever $X_{I}, I=I_{1} \sqcup \cdots \sqcup I_{m}$, has some $I_{r} \not \not i_{*}$ with $\left|I_{r}\right| \geq 3$. Consider X_{I} in the sexasection of T^{11} where

J	i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
\varnothing	0	\varnothing	$\{1,2\}$	$\{1\}$	$\alpha^{-} 1\left\langle\beta^{+} 2 \gamma^{3}\right\rangle$	0	1	
				\varnothing	$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{3}\right\rangle$	1	2	1
				$\{1,2\}$	$\alpha^{-}\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{3}\right\rangle$	1	3	1
	1	\varnothing	\varnothing	$\{2\}$	$\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{3}\right\rangle$	2	4	2,3
	2	$\{1\}$	\varnothing	\varnothing	$\langle 0 \alpha\rangle\left\langle\beta 2 \gamma^{3}\right\rangle$	1	5	1,3
					$0 \alpha_{3}^{\circ}\langle 1 \beta\rangle \gamma^{3}$	1	6	5
$\{0\}$	0	\varnothing	$\{1,2\}$	$\{1\}$	$\left.\delta \alpha_{3}^{-}\right\rangle\langle 1 \beta\rangle \gamma^{3}$	2	7	5,6
				\varnothing	$\delta\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{2}\right\rangle$	2	10	$2,6,8$
				$\{1,2\}$	$\delta \alpha^{-}\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle$	2	11	$3,6,7$
				$\{2\}$	$\delta\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle$	$\mathbf{3}$	12	$4,6,8$
		\varnothing	\varnothing	\varnothing	$\langle\delta 0 \alpha\rangle\left\langle\beta 2 \gamma^{2}\right\rangle$	2	13	$5,9,11$
	2	$\{1\}$	\varnothing	\varnothing	$\langle\delta 0\rangle \alpha_{3}^{\circ}\langle 1 \beta\rangle \gamma^{2}$	2	14	6,13
					$\left\langle\delta 0 \alpha_{3}^{-}\right\rangle\langle 1 \beta\rangle \gamma^{2}$	$\mathbf{3}$	15	$7,13,14$
					$\langle\delta 0\rangle\left\langle\alpha_{3}^{+} 1 \beta\right\rangle \gamma^{2}$	$\mathbf{3}$	16	$8,13,14$

Table 8. $X_{I}, I=\{0,1,2\}$ from the quadrisection of T^{7}
$I=\{0,1,2,4\}$, which is given by

$$
\begin{aligned}
& \left\langle\alpha 1 \beta 2 \gamma^{2}[2,4] 4 \delta^{2}[4,6]\right\rangle \cup\left\langle 0 \alpha \beta 2 \gamma^{2}[2,4] 4 \delta^{2}[4,6]\right\rangle \\
& \cup\left\langle 0 \alpha 1 \beta \gamma^{2}[2,4] 4 \delta^{2}[4,6]\right\rangle \cup\left\langle 0 \alpha 1 \beta 2 \gamma^{2}[2,4] \delta^{2}[4,6]\right\rangle .
\end{aligned}
$$

Tables 18 and 19 in Appendix 1 detail the handle decomposition. The new complication arises when $s=4$, i.e in the part of X_{I} given by

$$
\left\langle 0 \alpha 1 \beta 2 \gamma^{2}[2,4] \delta^{2}[4,6]\right\rangle .
$$

The difficult part of this complication is the question of how to order the pieces Y_{z} (when some $\left|I_{r}\right| \geq 3$ has $I_{r} \nexists i_{*}$). To highlight that difficulty and its solution, Table 9 summarizes the first several Y_{z} in the handle decomposition of $X_{I}, I=\{0,1,2,3,5\}$, from the septisection of T^{13}. In that table, $J=\varnothing$, $s=5, U=\varnothing$, and $V=\{1,2,3\}$.
Also see Table 20 in Appendix 1, which summarizes the start of the handle decomposition of $X_{I}, I=\{0,1,2,3,4,6\}$, from T^{15}. In that table, $J=\varnothing$, $s=6, U=\varnothing$, and $V=\{1,2,3,4\}$.

6. Combinatorics

6.1. Notation. Because each X_{i} is symmetric under the permutation action of S_{n} on the indices in T^{n}, it will often suffice, when considering an arbitrary point $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{R} / k \mathbb{Z})^{n}=T^{n}$, to assume that \vec{x} is monotonic in the sense that $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq k+x_{1}$.

V^{-}	Y_{z}^{*}	h	z	glue to
\varnothing	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle \zeta^{3}$	0	1	
$\{1\}$	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle \zeta^{3}$	1	2	1
$\{1,2\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle \zeta^{3}$	1	3	2
$\{2\}$	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle \zeta^{3}$	2	4	1,3
$\{2,3\}$	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle \zeta^{3}$	1	5	4
$\{1,2,3\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle \zeta^{3}$	2	6	3,5
$\{1,3\}$	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle \zeta^{3}$	2	7	2,6
$\{3\}$	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle \zeta^{3}$	3	8	$1,5,7$

TABLE 9. From the septisection of T^{13} : the start of the handle decomposition of X_{I} when $I=\{0,1,2,3,5\}$.

Denoting the main diagonal of T^{n} by Δ, note that each monotonic point $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in T^{n} \backslash \Delta$ corresponds to a unique point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ with $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq x_{1}+k<2 k$. For such \vec{x}, extend the point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ to a point $\vec{x}_{\infty}=\left(x_{r}\right)_{r \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$ by defining for each $r \in \mathbb{Z}_{k}$ and $m \in \mathbb{Z}$:

$$
x_{r+m n}=x_{r}+m k
$$

We will mainly be interested in $0 \leq x_{1} \leq \cdots \leq x_{2 n}$, where

$$
x_{2 n}=x_{n}+k \leq x_{1}+2 k \leq 3 k
$$

With this setup for any monotonic $\vec{x} \in T^{n} \backslash \Delta$, define the following cutoff indices $a_{r}(\vec{x}), b_{r}(\vec{x}) \in \mathbb{Z}$ for each $r \in \mathbb{Z}$:

$$
\begin{gathered}
a_{r}(\vec{x})=\min \left\{a: x_{a+1} \geq r\right\} \text { and } \\
b_{r}(\vec{x})=\min \left\{b: x_{b+1}>r\right\}
\end{gathered}
$$

Note that, in all cases, we have $a_{0}(\vec{x}) \leq 0$, with equality if and only if $x_{n} \neq k \equiv 0 \in \mathbb{R} / k \mathbb{Z}$. The main point is:
Observation 6.1. Let $\vec{x} \in T^{n} \backslash \Delta$ be monotonic. Then $\vec{x} \in[0,1]^{2} \cdots[0, k-$ $1]^{2}[0, k]$ if and only if $b_{s}(\vec{x}) \geq 2 s$ for every $s=0, \ldots, k-1$.

Note that $b_{0}(\vec{x}) \geq 0$ in all cases. In order to apply the principle of Observation 6.1 more broadly, denote for each $r \in \mathbb{Z}$:

$$
\vec{x}_{r}=\left(x_{1+a_{r}(\vec{x})}, x_{2+a_{r}(\vec{x})}, \ldots, x_{a_{r}(\vec{x})}\right)
$$

The point regarding monotonic points off the main diagonal is:
Observation 6.2. If $\vec{x} \in T^{n} \backslash \Delta$ is monotonic and $r \in \mathbb{Z}$, then

$$
r \leq x_{1+a_{r}(\vec{x})} \leq \cdots \leq x_{a_{r}(\vec{x})}<r+k
$$

and the following conditions are equivalent:

- $\vec{x}_{r} \in[r, r+1]^{2} \cdots[r, r+k-1]^{2}[r, r+k]$;
- $b_{r+s}\left(\vec{x}_{r}\right) \geq 2 s$ for every $s=r+1, \ldots, r+k$;

SMOOTH MULTISECTIONS OF ODD-DIMENSIONAL TORI AND OTHER MANIFOLRS

- $b_{r+s}(\vec{x}) \geq a_{r}(\vec{x})+2 s$ for every $s=r+1, \ldots, r+k$

The point more generally is:
Observation 6.3. If $\vec{x} \in X_{r} \subset T^{n} \backslash \Delta$, then there is a permutation $\sigma \in S_{n}$ such that $\vec{x}_{\sigma} \in[r, r+1]^{2} \cdots[r, r+k-1]^{2}[r, r+k]$ is monotonic.

Note also that each class of cutoff indices provides two-sided bounds for the other class:

Observation 6.4. If $\vec{x} \in T^{n}$ is nonzero and monotonic and $r \in \mathbb{Z}$, then

$$
\cdots \leq a_{r}(\vec{x}) \leq b_{r}(\vec{x}) \leq a_{r+1}(\vec{x}) \leq b_{r+1}(\vec{x}) \leq \cdots
$$

with $a_{r}(\vec{x})=b_{r}(\vec{x})$ if and only if $x_{a_{r}(\vec{x})+1} \notin \mathbb{Z}_{k}$, and $b_{r}(\vec{x})=a_{r+1}(\vec{x})$ if and only if $x_{b_{r}(\vec{x})+1} \geq r+1$.

Note that $x_{b_{r}(\vec{x})+1}$ is the first coordinate in \vec{x} that exceeds r. Here is another convenient property:

Observation 6.5. Any nonzero monotonic $\vec{x} \in T^{n}, r \in \mathbb{Z}_{\geq} 0$ satisfy

$$
\begin{align*}
a_{r+k}(\vec{x}) & =n+a_{r}(\vec{x}), \\
b_{r+k}(\vec{x}) & =n+b_{r}(\vec{x}) . \tag{9}
\end{align*}
$$

Noting that $X_{r} \cap \Delta=\{(x, \ldots, x): x \in[r, r+1]\}$, we can express each X_{r} in terms of cutoff indices as follows.

Proposition 6.6. Let $\vec{x} \in T^{n} \backslash \Delta$ be monotonic, and let $r \in \mathbb{Z}_{k}$. Then $\vec{x} \in X_{r}$ if and only if $\vec{x}_{r} \in[r, r+1]^{2} \cdots[r, r+k-1]^{2}[r, r+k]$. In particular,
(10) $X_{r} \backslash \Delta=\left\langle\right.$ monotonic $\vec{x}: b_{r+s}(\vec{x}) \geq a_{r}(\vec{x})+2 s$ for $\left.s=0, \ldots, k-1\right\rangle$.

Proof. Write $\vec{x}_{r}=\left(x_{1}, \ldots, x_{n}\right.$. Note that $r \leq x_{1} \leq \cdots \leq x_{n}<r+k$. To show that $\vec{x}_{r} \in[r, r+1]^{2} \cdots[r, r+k-1]^{2}[r, r+k]$ if and only if $\vec{x}_{r} \in X_{r}$, we will prove both containments. One is trivial. For the other, suppose that $\vec{x}_{r} \notin[r, r+1]^{2} \cdots[r, r+k-1]^{2}[r, r+k]$. Then Observation 6.2 implies that $b_{r+s}\left(\vec{x}_{r}\right)<2 s$ for some $s=0, \ldots, k-1$, so

$$
r+s<x_{2 s}, \ldots, x_{n}<r+k .
$$

Thus, at least $n+1-2 s$ of the coordinates of \vec{x} lie in the open interval $(r+s, r+k)$. Yet, $2 s$ of the n factors of $[r, r+1]^{2} \cdots[r, r+k-1]^{2}[r, r+k]$ are disjoint from that open interval. Contradiction. Observation 6.3 now implies that $\vec{x} \in X_{r}$ if and only if \vec{x} is an element of the RHS of (10).

6.2. The X_{r} have disjoint interiors and cover T^{n}.

Proposition 6.7. With the setup from Theorem 7.11, X_{r} and X_{s} have disjoint interiors whenever $0 \leq r<s \leq k-1$.

This will follow from Lemma 6.13, but the following proof is much easier than that of the lemma; we include it for expository reasons.

Proof. By the symmetry of the construction, we may assume that $r=0$. Assume for contradiction that the interiors of X_{r} and X_{s} intersect. Then there is a monotonic point $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in X_{0} \cap X_{j}$ such that for every $i=1, \ldots, n$ we have $x_{i} \notin \mathbb{Z}_{k}$. (This is not to say that every interior point has this property.)

This implies that $a_{i}(\vec{x})=b_{i}(\vec{x})$ for each $i=1, \ldots, n$, by Observation 6.4. In particular, since $\vec{x} \in X_{0}$, we have $a_{0}=b_{0}=0$, and $a_{s}=b_{s} \geq 2 s$ by Proposition 6.6. But then, since $\vec{x} \in X_{s}$ and $a_{s} \geq 2 s$, Observation 6.5 and Proposition 6.6 give the following contradiction:

$$
\begin{aligned}
& n=n+b_{0}=b_{k}=b_{s+(k-s)} \\
& n \geq a_{s}+2(k-s) \\
& n \geq 2 k .
\end{aligned}
$$

Lemma 6.8. We have $X_{0} \cup \cdots \cup X_{k-1}=T^{n}$.
Proof. Let $\vec{x} \in T^{n}$. We will prove that $\vec{x} \in X_{s}$ for some s. If $\vec{x}=$ $(x, \ldots, x) \in \Delta$, then $\vec{x} \in X_{\lfloor x\rfloor}$. Assume instead that $\vec{x} \in T^{n} \backslash \Delta$. Also assume without loss of generality that \vec{x} is monotonic with $a_{0}(\vec{x})=0$. Throughout this proof, denote each $a_{s}(\vec{x})$ by a_{s} and each $b_{s}(\vec{x})$ by b_{s}.
Let $s_{0}=0$, so that $a_{s_{0}}=a_{0}=0$. If $b_{s} \geq 2 s=2 s-a_{s_{0}}$ for all $s=1, \ldots, k-1$, then $\vec{x} \in X_{0}=X_{s_{0}}$. Otherwise, choose the smallest s_{1} such that $b_{s_{1}}<2 s_{1}$. Thus, $b_{s} \geq 2 s$ whenever $s<s_{1}$, so by Observation 6.4:

$$
2 s_{1}-2 \leq b_{s_{1}-1} \leq a_{s_{1}} \leq b_{s_{1}} \leq 2 s_{1}-1 .
$$

Continue in this way: for each s_{t}, choose the minimum $s_{t+1}=s_{t}+1, \ldots, k-1$ such that $b_{s_{t+1}}<a_{s_{t}}+2\left(s_{t+1}-s_{t}\right)$, if such s_{t+1} exists. Eventually this process terminates with some s_{u}, so that:

- $b_{s} \geq a_{s_{t}}+2\left(s-s_{t}\right)$ whenever $s_{t} \leq s \leq s_{t+1}$ for $t=0, \ldots, u-1$,
- $b_{s} \geq a_{s_{t}}+2\left(s-s_{u}\right)$ whenever $s_{u} \leq s \leq k-1$, and
- $b_{s_{t+1}}<a_{s_{t}}+2\left(s_{t+1}-s_{t}\right)$ for each $t=0, \ldots, u-1$.

Hence, for each $t=0, \ldots, u-1$, Observation 6.4 gives:

$$
a_{s_{t}}+2\left(s_{t+1}-1-s_{t}\right) \leq b_{s_{t+1}-1} \leq a_{s_{t+1}} \leq b_{s_{t+1}} \leq a_{s_{t}}+2\left(s_{t+1}-s_{t}\right)-1
$$

Subtracting $a_{s_{t}}$ from the first, middle, and last expressions gives:

$$
2\left(s_{t+1}-s_{t}\right)-2 \leq a_{s_{t+1}}-a_{s_{t}} \leq 2\left(s_{t+1}-s_{t}\right)-1 .
$$

Therefore, for any $t=0, \ldots, u-1$:

$$
\begin{aligned}
a_{s_{u}}-a_{s_{t}} & =\sum_{r=t}^{u-1}\left(a_{s_{r+1}}-a_{s_{r}}\right) \\
& \leq \sum_{r=t}^{u-1}\left(2\left(s_{r+1}-s_{r}\right)-1\right) \\
& =2\left(s_{u}-s_{t}\right)-(u-t) \\
a_{s_{u}}-a_{s_{t}} & \leq 2\left(s_{u}-s_{t}\right)-1 .
\end{aligned}
$$

Rearranging gives

$$
\begin{equation*}
a_{s_{u}}-2 s_{u} \leq a_{s_{t}}-2 s_{t}-1 \tag{11}
\end{equation*}
$$

We claim that $\vec{x} \in X_{s_{u}}$. This is true if (and only if) $b_{s} \geq a_{s_{u}}+2\left(s-s_{u}\right)$ for each $s=s_{u}, \ldots, s_{u}+k-1$. Fix some $s=k, \ldots, s_{u}+k-1$. Then $s_{t} \leq s-k \leq s_{t+1}-1$ for some $t=0, \ldots, u-1$. By construction, we have $b_{s-k} \geq a_{s_{t}}+2\left(s-k-s_{t}\right)$. Together with (9) and (11), this gives:

$$
\begin{aligned}
b_{s} & =b_{s-k}+n \\
& \geq a_{s_{t}}+2\left(s-k-s_{t}\right)+2 k-1 \\
& =\left(a_{s_{t}}-2 s_{t}-1\right)+2 s \\
& \geq\left(a_{s_{u}}-2 s_{u}\right)+2 s \\
& =a_{s_{u}}+2\left(s-s_{u}\right) .
\end{aligned}
$$

6.3. Combinatorial corollaries. We have proven that the pieces X_{r} of the multisection of T^{n} have disjoint interiors and cover T^{n}. Also, each $X_{r}=X_{0}+(r, \ldots, r)$, so all X_{r} have the same number of unit cubes. Since there are k^{n} unit cubes in $T^{n}=(\mathbb{R} / k \mathbb{Z})^{n}$, each X_{r} contains k^{n-1} unit cubes. By counting these unit cubes a different way, we obtain the following. ${ }^{5}$

Corollary 6.9. For any $n=2 k-1$, we have:

$$
\begin{align*}
k^{n-1}= & \sum_{i_{1}=2}^{n}\binom{n}{i_{1}} \sum_{i_{2}=4-i_{1}}^{n-i_{1}}\binom{n-i_{1}}{i_{2}} \sum_{i_{3}=6-i_{1}-i_{2}}^{n-i_{1}-i_{2}}\binom{n-i_{1}-i_{2}}{i_{3}} \ldots \\
& \ldots \sum_{i_{k-1}=2 k-2-\sum_{j=1}^{k-2} i_{j}}^{n-\sum_{j=1}^{k-2} i_{j}}\binom{n-\sum_{j=1}^{k-2} i_{j}}{i_{k-1}} . \tag{12}
\end{align*}
$$

Proof. Each X_{i} consists of k^{n-1} subcubes, each of the form $\prod_{r=1}^{n}\left[w_{r}, w_{r}+1\right]$ for some $w_{1}, \ldots, w_{n} \in \mathbb{Z}_{k}$. For each $s=1, \ldots, k-1$, there are at least $2 s$ indices $r=1, \ldots, n$ with $w_{r} \in\{i, \ldots, i+s-1\}$, and conversely any subcube of that form with this property will be in X_{i}.

[^3]Note that (12) is also the number of spanning trees of the complete bipartite graph $K_{j, j}$ where $j=k[6]$. Counting combinatorial cube types in three different ways yields:

Corollary 6.10. For any $n=2 k-1$, we have:

$$
\begin{align*}
k \sum_{i_{1}=2}^{n} \sum_{i_{2}=\max \left\{0,4-i_{1}\right\}}^{n-i_{1}} & \sum_{i_{3}}=\max \left\{0,6-i_{1}-i_{2}\right\} \\
& =\sum_{i_{k-1}=\max \left\{0,2 k-2-\sum_{j=1}^{k-2} i_{j}\right\}}^{n-i_{1}-i_{2}} \sum_{i_{1}=0}^{n-\sum_{j=1}^{k-2} i_{j}} \sum_{i_{3}=0}^{n-i_{1}-i_{2}} \cdots \sum_{i_{k-1}=0}^{n-\sum_{j=1}^{k-2} i_{j}} 1 \tag{13}\\
& =\binom{3 k-2}{k-1}
\end{align*}
$$

Proof. The first expression is k times the number of cube types in X_{i}, counted by the same principle as in Corollary 6.9. The second counts the number of cube types in T^{n}, each of the form $\prod_{r=0}^{k-1}[r, r+1]^{v_{r}}$, characterized by a tuple $\left(v_{0}, \ldots, v_{k-1}\right)$ with $\sum_{r=0}^{k-1} v_{r}=n$. The third counts the number of cube types in T^{n} by denoting $a_{0}=0, a_{k}=3 k-1$ and associating to each $A=\left\{a_{1}, \ldots, a_{k-1}\right\} \subset\{1, \ldots, 3 k-2\}$ with $a_{1}<\cdots<a_{k-1}$ the cube type

$$
\prod_{i=1}^{k} \prod_{j=a_{i-1}+1}^{a_{i}-1}[i-1, i]
$$

See [6] for other interpretations of (13).
6.4. Verification of the formula $\boldsymbol{X}_{\boldsymbol{I}}=(2)$. Next, we will use the cutoff indices $a_{r}(\vec{x}), b_{r}(\vec{x})$ to verify (2). To prepare this, we define subsets $C_{I, s} \subset T^{n}$ as follows. Let $I \subset \mathbb{Z}_{k}$ following Convention 3.9, $i_{*}=i_{s} \in I$. Then define:

$$
\begin{align*}
C_{I, s}= & \left(\prod_{t=0}^{s-1}\left\{i_{t}\right\} \times\left[i_{t}, i_{t}+1\right]^{2} \times \cdots \times\left[i_{t}, i_{t+1}-1\right]^{2} \times\left[i_{t}, i_{t+1}\right]\right) \\
& \times\left[i_{*}, i_{*}+1\right]^{2} \times \cdots \times\left[i_{*}, i_{s+1}-1\right]^{2} \times\left[i_{*}, i_{s+1}\right] \tag{14}\\
& \times\left(\prod_{t=s+1}^{\ell-1}\left\{i_{t}\right\} \times\left[i_{t}, i_{t}+1\right]^{2} \times \cdots \times\left[i_{t}, i_{t+1}-1\right]^{2} \times\left[i_{t}, i_{t+1}\right]\right)
\end{align*}
$$

Note the "missing" $\left\{i_{*}\right\}$ at the start of the second line; this corresponds to the $\widehat{i_{*}}$ in (2). Observe that the expression on the RHS of (2) equals

$$
\bigcup_{s \in \mathbb{Z}_{\ell}}\left\langle C_{I, s}\right\rangle
$$

Proposition 6.11. Let $I \subset \mathbb{Z}_{k}$ follow Convention 3.9, $s \in \mathbb{Z}_{\ell}$, and $C_{I, s}$ as in (14). Suppose $\vec{x} \in T^{n} \backslash \Delta$ is monotonic. Then $\vec{x} \in C_{I, s}$ if and only if all of the following conditions hold:

- $b_{t}(\vec{x}) \geq 2 t+1$ for $0 \leq t<i_{*}$,
- $b_{t}(\vec{x}) \geq 2 t$ for $i_{*} \leq t \leq k-1$,
- $a_{t}(\vec{x}) \leq 2 t$ for $t=i_{0}, \ldots, i_{*}$, and
- $a_{t}(\vec{x}) \leq 2 t-1$ for $t=i_{s+1}, \ldots, i_{\ell-1}$.

Proof. This follows immediately from the definitions, upon consideration of each entry in \vec{x}.

Also note the following generalization of Observation 6.3:
Observation 6.12. Let $I \subset \mathbb{Z}_{k}$ follow Convention 3.9, $s \in \mathbb{Z}_{\ell}$, and $C_{I, s}$ as in (14). Suppose $\vec{x} \in\left\langle C_{I, s}\right\rangle$. Then there is a permutation $\sigma \in S_{n}$ such that $\vec{x}_{\sigma} \in C_{I, s}$ is monotonic.

Lemma 6.13. Given nonempty $I \subset \mathbb{Z}_{k}$ (following Convention 3.9),

$$
\begin{equation*}
X_{I}=\bigcup_{s \in \mathbb{Z}_{\ell}}\left\langle C_{I, s}\right\rangle \tag{15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\bigcap_{i_{*} \in \mathbb{Z}_{k}} X_{i}=\bigcup_{i_{*} \in I}\left\langle\left(i_{1}, \ldots, \widehat{i_{*}}, \ldots, i_{\ell}\right) \prod_{i \in \mathbb{Z}_{k}}[i, i+1]\right\rangle \tag{3}
\end{equation*}
$$

Note that the formula (15) is equivalent to (2).

Proof. We argue by induction on ℓ. When $\ell=1, X_{I}=X_{0}=\left\langle C_{I, 0}\right\rangle=(2)$.
Assume now that $\ell>1$. First, we will show that

$$
\begin{equation*}
X_{I} \subset \bigcup_{s \in \mathbb{Z}_{\ell}}\left\langle C_{I, s}\right\rangle \tag{16}
\end{equation*}
$$

Let $\vec{x} \in X_{I}$, and define $I^{\prime}=I \backslash\left\{i_{\ell-1}\right\}$. Note that I^{\prime} is simple and $X_{I}=$ $X_{I^{\prime}} \cap X_{i_{\ell-1}}$. Since $\vec{x} \in X_{I^{\prime}}$, the induction hypothesis implies that $\vec{x} \in\left\langle C_{I^{\prime}, s_{0}}\right\rangle$ for some $s_{0} \in \mathbb{Z}_{\ell-1}$. By Observation 6.12 , there exists $\sigma \in S_{n}$ such that \vec{x}_{σ} is monotonic and $\vec{x}_{\sigma} \in C_{I^{\prime}, s_{0}}$. Proposition 6.11 implies that:

- $b_{t}\left(\vec{x}_{\sigma}\right) \geq 2 t+1$ for $0 \leq t \leq i_{s_{0}}-1$,
- $b_{t}\left(\vec{x}_{\sigma}\right) \geq 2 t$ for $i_{s_{0}} \leq t \leq k-1$,
- $a_{t}\left(\vec{x}_{\sigma}\right) \leq 2 t$ for $t=i_{0}, \ldots, i_{s_{0}}$, and
- $a_{t}\left(\vec{x}_{\sigma}\right) \leq 2 t-1$ for $t=i_{s_{0}+1}, \ldots, i_{\ell-2}$.

If also $a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right) \leq 2 i_{\ell-1}-1$, then Proposition 6.11 implies that $\vec{x}_{\sigma} \in C_{I, s_{0}}$. In that case, we are done proving the forward containment. Assume instead that $a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right) \geq 2 i_{\ell-1}$. We now split into two cases:
Case 1: Assume that $a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right)=2 i_{\ell-1}$. We claim that $\vec{x}_{\sigma} \in C_{I, \ell-1}$. By Proposition 6.11, since \vec{x}_{σ} is monotonic, it will suffice to show:
(a) $b_{t}\left(\vec{x}_{\sigma}\right) \geq 2 t+1$ for $0 \leq t \leq i_{\ell-1}-1$,
(b) $b_{t}\left(\vec{x}_{\sigma}\right) \geq 2 t$ for $i_{\ell-1} \leq t \leq k-1$, and
(c) $a_{t}\left(\vec{x}_{\sigma}\right) \leq 2 t$ for $t=i_{0}, \ldots, i_{\ell-1}$.

Observation 6.5, Proposition 6.6, and the facts that $\vec{x}_{\sigma} \in X_{i_{\ell-1}}$ and $a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right)=$ $2 i_{\ell-1}$ imply for each $t=0, \ldots, i_{\ell-1}-1$ that:

$$
\begin{aligned}
b_{t}\left(\vec{x}_{\sigma}\right) & =b_{t+k}\left(\vec{x}_{\sigma}\right)-n \\
& \geq 2(t+k)+a_{i_{-1}}\left(\vec{x}_{\sigma}\right)-2 i_{\ell-1}-n \\
& \geq 2 t+1
\end{aligned}
$$

This verifies (a). Taking $t=i_{\ell-1}, \ldots, k-1$, similar reasoning confirms (b):

$$
b_{t}\left(\vec{x}_{\sigma}\right) \geq a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right)+2\left(t-i_{\ell-1}\right) \geq 2 t .
$$

Finally, we have $a_{t}\left(\vec{x}_{\sigma}\right) \leq 2 t$ for each $t=i_{0}, \ldots, i_{\ell-1}$. For $t=i_{0}, \ldots, i_{\ell-2}$, this is because $\vec{x}_{\sigma} \in X_{I^{\prime}}$; for $t=i_{\ell-1}$, it is our assumption in Case 1 . Thus, in Case 1, (a), (b), and (c) hold, and so $\vec{x}_{\sigma} \in C_{I, \ell-1}$.
Case 2: Assume instead that $a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right) \geq 2 i_{\ell-1}+1$. Denoting $\vec{x}_{\sigma}=\left(x_{1}, \ldots, x_{n}\right)$, we claim in this case that $x_{1}=x_{2}=0 \equiv k$ and that $\vec{y}=\left(x_{2}, \ldots, x_{n}, x_{1}\right) \in$ $C_{I, \ell-1}$. By similar reasoning to Case 1 , we have:

$$
\begin{aligned}
b_{0}\left(\vec{x}_{\sigma}\right) & =b_{k}\left(\vec{x}_{\sigma}\right)-n \\
& \geq a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right)+2\left(k-i_{\ell-1}\right)-n \\
& \geq 2 .
\end{aligned}
$$

Thus, $x_{1}=x_{2}=0 \equiv k$. Define \vec{y} as above. Note that, since \vec{x}_{σ} is monotonic, \vec{y} is also monotonic. It remains to show that $\vec{y} \in C_{I, \ell-1}$. The arguments are almost identical to those in Case 1, except that we need to check that $a_{i_{\ell-1}}(\vec{y}) \leq 2 i_{\ell-1}$. Using Observations 6.4 and 6.5 and the fact that $a_{i_{\ell-1}}(\vec{y})=$ $a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right)-1$, we compute:

$$
\begin{aligned}
a_{i_{\ell-1}}(\vec{y}) & =a_{i_{\ell-1}}\left(\vec{x}_{\sigma}\right)-1 \\
& \leq b_{k-1}\left(\vec{x}_{\sigma}\right)-2\left(k-1-i_{\ell-1}\right)-1 \\
& \leq a_{k}\left(\vec{x}_{\sigma}\right)-2 k+1+2 i_{\ell-1} \\
& =a_{0}\left(\vec{x}_{\sigma}\right)+(n+1-2 k)+2 i_{\ell-1} \\
& =a_{0}\left(\vec{x}_{\sigma}\right)+2 i_{\ell-1} \\
& \leq 2 i_{\ell-1} .
\end{aligned}
$$

This completes the proof of the forward containment (16). For the reverse containment, keep the same subset $I \subset \mathbb{Z}_{k}$ from the start of the induction
step of the proof, fix some $s \in \mathbb{Z}_{\ell}$, and let $\vec{x} \in C_{I, s}$ be monotonic, $t \in$ $I=\left\{i_{0}, \ldots, i_{\ell-1}\right\}$. We will show for each $r=0, \ldots, k-1$ that $b_{t+r}(\vec{x}) \geq$ $a_{t}(\vec{x})+2 r$. Proposition 6.6 will then imply that $\vec{x} \in X_{t}$. Since t is arbitrary, this will imply that $\vec{x} \in X_{I}$, completing the proof. We will split into cases, but first note, since \vec{x} is monotonic, that Proposition 6.11 implies:

- $b_{t}(\vec{x}) \geq 2 t+1$ for $0 \leq t \leq i_{s}-1$,
- $b_{t}(\vec{x}) \geq 2 t$ for $i_{s} \leq t \leq k-1$,
- $a_{t}(\vec{x}) \leq 2 t$ for $t=i_{0}, \ldots, i_{s}$, and
- $a_{t}(\vec{x}) \leq 2 t-1$ for $t=i_{s+1}, \ldots, i_{\ell-2}$.

Case 1: If $t+r \leq k-1$, then $b_{t+r}(\vec{x}) \geq 2(t+r) \geq a_{t}(\vec{x})+2 r$.
Case 2: If instead $t+r \geq k$ and $t+r \leq k+i_{s}-1$, then

$$
\begin{aligned}
& b_{t+r}(\vec{x})=n+b_{t+r-k}(\vec{x}) \geq n+2(t+r-k)+1=2 t+2 r+(n+1-2 k) \\
& b_{t+r}(\vec{x}) \geq a_{t}(\vec{x})+2 r
\end{aligned}
$$

Case 3: Similarly, if $t+r \geq k$ and $t \geq i_{s+1}$, then

$$
\begin{aligned}
& b_{t+r}(\vec{x})=n+b_{t+r-k}(\vec{x}) \geq n+2(t+r-k)=(2 t-1)+2 r+(n+1-2 k) \\
& b_{t+r}(\vec{x}) \geq a_{t}(\vec{x})+2 r
\end{aligned}
$$

Are there other cases? If there were, they would satisfy $t+r \geq k+i_{s}$ and $t \leq i_{s}$, giving

$$
\begin{aligned}
k+i_{s} & \leq t+r \leq i_{s}+r \\
k & \leq r .
\end{aligned}
$$

Yet $r \leq k-1$ by assumption. Therefore, in every case, $b_{t+r}(\vec{x}) \geq a_{t}(\vec{x})+2 r$, and so $\vec{x} \in X_{i_{t}}$ for arbitrary $t \in I$. Thus, $\vec{x} \in X_{I}$. This completes the proof of the reverse containment, and thus of the equality in (2)=(15).

7. General construction

7.1. Notation. Section 7 uses Notations 3.3, 3.6, 3.8, and Convention 3.9.

Notation 7.1. Denote the symmetric difference of sets R and S by

$$
R \ominus S=(R \backslash S) \cup(S \backslash R)
$$

7.2. Handle decompositions: the general case. Let $I=\bigsqcup_{r \in \mathbb{Z}_{m}} I_{r}$ be arbitrary, following Convention 3.9. Recall that $T=\left\{\min I_{r}: r \in \mathbb{Z}_{m}\right\}$. Decompose X_{I} into handles in several steps as follows. First, decompose X_{I}

$$
X_{I}=\bigcup_{J \subset T, i_{*} \in I} X_{I, J, i_{*}}
$$

as follows. Fix arbitrary $r \in \mathbb{Z}_{m}$. Denote $a=\min I_{r}, b=\max I_{r}, c=$ $\min I_{r+1}$. Define

$$
\begin{align*}
\widehat{C}_{r}= & \prod_{j=b+1}^{c-1}[b, j]^{2}, \tag{17}\\
C_{r}= & \left\{\begin{array}{ll}
{[a-1, a]} & i_{*}=a \in J \\
{[a-1, a] \times\{a\}} & i_{*} \neq a \in J \\
\{a\} & i_{*} \neq a \notin J \\
(\text { no factor }) & i_{*}=a \notin J
\end{array}\right\} \tag{18}\\
& \times \prod_{i=a+1}^{b}\left\{\begin{array}{ll}
{[i-1, i] \times\{i\}} & i \neq i_{*} \\
{[i-1, i]} & i=i_{*}
\end{array}\right\} \times\left\{\begin{array}{ll}
\widehat{C}_{r} \times[b, c-1] & c \notin J \\
\widehat{C}_{r} & c \in J
\end{array}\right\} .
\end{align*}
$$

Now the piece of X_{I} corresponding to the pair $\left(J, i_{*}\right)$ is given by

$$
X_{I, J, i_{*}}=\left\langle\prod_{r \in \mathbb{Z}_{m}} C_{r}\right\rangle
$$

	$i_{*} \notin I_{r}$,	$i_{*} \notin I_{r}$,	$i_{*} \in I_{r}$,	$i_{*} \in I_{r}$,
	$a \notin J$	$a \in J$	$i_{*} \leq b-2$	$i_{*} \geq b-1$
U_{r}	\varnothing	$I_{r} \backslash\{a, b\}$	$I_{r} \backslash\left\{a, i_{*}, i_{*}+1, b\right\}$	$I_{r} \backslash\left\{a, i_{*}, b\right\}$
V_{r}	$I_{r} \backslash\{a\}$	$\{b\}$	$\left\{i_{*}+1, b\right\}$	\varnothing
$I_{r} \backslash\left(U_{r} \cup V_{r}\right)$	$\{a\}$	$\{a\} \backslash\{b\}$	$\left\{a, i_{*}\right\}$	$\left\{a, i_{*}, b\right\}$

Table 10. The index subsets $U_{r}, V_{r} \subset I_{r}$ when $I_{r}=\{a, \ldots, b\}$.

Second, fix arbitrary $J \subset T, i_{*} \in I$, and $r \in \mathbb{Z}_{m}$. For each $r \in \mathbb{Z}_{m}$, define subsets $U_{r}, V_{r} \subset I_{r}$ following Table 10 (depending on J and i_{*}). Tables 11 and 12 in Appendix 1 present U_{r} and V_{r} more explicitly. Then define

$$
U=\bigcup_{r \in \mathbb{Z}_{m}} U_{r} \text { and } V=\bigcup_{r \in \mathbb{Z}_{m}} V_{r} .
$$

Note that $\min I_{r} \notin\left(U_{r} \cup V_{r}\right)$ unless $I_{r} \neq I_{*}$ and $\min I_{r}=\max I_{r} \in J$. See Table 7 for an example of this exceptional case: $X_{I}, I=\{0,2\}$, from T^{7}.

Third, decompose each $X_{I, J, i_{*}}$ into pieces $X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}}$as follows. Denote

$$
\begin{aligned}
& 2^{V}=\left\{V^{-} \subset V\right\}, \\
& 2^{U}=\left\{U^{\circ} \subset U\right\},
\end{aligned}
$$

and given $U^{\circ} \subset U$, denote

$$
2^{U \backslash U^{\circ}}=\left\{U^{-} \subset U \backslash U^{\circ}\right\} .
$$

Given $V^{-} \subset V$, denote $V^{+}=V \backslash V^{-}$, and given $U^{\circ} \subset U$ and $U^{-} \subset U \backslash U^{\circ}$, denote $U^{+}=U \backslash\left(U^{\circ} \cup U^{-}\right)$. Then $V=V^{-} \sqcup V^{+}$and $U=U^{-} \sqcup U^{\circ} \sqcup U^{+}$. For each $r \in \mathbb{Z}_{m}$, denote \widehat{C}_{r} as in (17). For each $i \in I_{r}$, define

$$
\rho_{i}= \begin{cases}{\left[i-1, i-\frac{2}{3}\right]} & i \in U^{-} \\ {\left[i-\frac{2}{3}, i-\frac{1}{3}\right]} & i \in U^{\circ} \\ {\left[i-\frac{1}{3}, i\right]} & i \in U^{+} \\ {\left[i-1, i-\frac{1}{2}\right]} & i \in V^{-} \\ {\left[i-\frac{1}{2}, i+1\right]} & i \in V^{+} \\ {\left[\max I_{r-1}, i-1\right]} & i \in T \backslash(J \cup V) . \\ {[i-1, i]} & \text { else }\end{cases}
$$

Fix arbitrary $r \in \mathbb{Z}_{m}$. Denote $a=\min I_{r}, b=\max I_{r}, c=\min I_{r+1}$, and \widehat{C}_{r} as in (17). Define:

$$
\begin{aligned}
X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}, r}= & \left\{\begin{array}{ll}
\rho_{a} & i_{*}=a \in J \\
\rho_{a} \times\{a\} & i_{*} \neq a \in J \\
\{a\} & i_{*} \neq a \notin J \\
\text { (no factor) } & i_{*}=a \notin J
\end{array}\right\} \\
& \times \prod_{i=a+1}^{b}\left\{\begin{array}{ll}
\rho_{i} \times\{i\} & i \neq i_{*} \\
\rho_{i} & i=i_{*}
\end{array}\right\} \times\left\{\begin{array}{ll}
\widehat{C}_{r} \times \rho_{c} & c \notin J \\
\widehat{C}_{r} & c \in J
\end{array}\right\} .
\end{aligned}
$$

Note that $\rho_{i} \subset[i-1, i]$ for each $i=a+1, \ldots, b, \rho_{a} \subset[a-1, a]$ if $a \in J$, and $\rho_{c}=[b, c-1]$ if $c \notin J$. Define

$$
X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}}=\left\langle\prod_{r \in \mathbb{Z}_{m}} X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}, r}\right\rangle
$$

Note that $X_{I, J, i_{*}}=\bigcup_{V^{-}, U^{\circ}, U^{-}} X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}}$. Fourth, order the pieces $X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}}$according to the lexicographical order on

$$
\begin{equation*}
\left\{\left(J, i_{*}, V^{-}, U^{\circ}, U^{-}\right)\right\}_{J \subset T,} i_{*} \in I, V^{-} \subset V, U^{\circ} \subset U, U^{-} \subset U \backslash U^{\circ} \tag{19}
\end{equation*}
$$

determined by the following orders \prec on $\{J \subset T\}, I, 2^{V}, 2^{U}$, and $2^{U \backslash U^{\circ}}$. Order $\{J \subset T\}$ and 2^{U} partially by inclusion, so that $J^{\prime} \prec J$ if $J^{\prime} \varsubsetneqq J$ and $U^{\prime \circ} \prec U^{\circ}$ if $U^{\prime \circ} \varsubsetneqq U^{\circ}$; extend these partial orders arbitrarily to total orders. Define an arbitrary total order \prec on $2^{U \backslash U^{\circ}}$. Partially order I such that $i<i^{\prime}$, with $i \in I_{r}$ and $i^{\prime} \in I_{s}$, if $i-\min I_{r}<i_{s}-\min I_{s}$; extend arbitrarily to a total order on I.
It remains to order 2^{V}. This will be slightly more complicated. To do this, we first define a total order \prec_{r} on $2^{V_{r}}$ for each $r \in \mathbb{Z}_{m}$. First consider the $I_{r} \ni i_{*}$. If $i_{*} \geq \max I_{*}-1$, we have $V_{r}=\varnothing$, so there is nothing to do. Otherwise, we have $i_{*} \leq \max I_{*}-2$ and $V_{r}=\left\{i_{*}+1, \max I_{*}\right\}$; in this case,
order $2^{V_{r}}$ as follows:

$$
\left\{i_{*}+1\right\} \prec_{r} \varnothing \prec_{r}\left\{i_{*}+1, \max I_{*}\right\} \prec_{r}\left\{\max I_{*}\right\} .
$$

Now consider $I_{r} \not \supset i_{*}$. Define \prec_{r} on $2^{V_{r}}$ recursively by $V_{r}^{-} \prec_{r} V_{r}^{\prime-}$ if:

- $\max V_{r}^{-}<\max V_{r}^{\prime-}$, or
- $\max V_{r}^{-}=\max V_{r}^{\prime-}$ and $V_{r}^{\prime-} \backslash\left\{\max V_{r}^{\prime-}\right\} \prec_{r} V_{r}^{-} \backslash\left\{\max V_{r}^{-}\right\}$.

Explicitly, denoting $V_{r}=\{a, \ldots, b\}$:

$$
\begin{align*}
\varnothing & \prec_{r}\{a\} \prec_{r}\{a, a+1\} \prec_{r}\{a+1\} \prec_{r}\{a+1, a+2\} \\
& \prec_{r}\{a, a+1, a+2\} \prec_{r}\{a, a+2\} \prec_{r}\{a+2\} \prec_{r} \cdots \tag{20}\\
& \prec_{r}\{a+1, b\} \prec_{r}\{a, a+1, b\} \prec_{r}\{a, b\} \prec_{r}\{b\} .
\end{align*}
$$

For more examples, see Tables 9 and 20, and the parts of Tables 18 and 19 where $s=4$. Use the orderings \prec_{r} on $2^{V_{r}}$ to define a partial order on 2^{V} by declaring $V^{-} \prec V^{\prime-}$ if

- $V^{-} \cap I_{r} \prec_{r} V^{\prime-} \cap I_{r}$ for some r, and
- there is no r for which $V^{\prime-} \cap I_{r} \prec_{r} V^{-} \cap I_{r}$.

Extend \prec arbitrarily to a total order on 2^{V}. This determines a total order on (19), and thus on the pieces $X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}}$. Relabel these pieces as Y_{z}, $z=1, \ldots, \#(19)$, according to this order.

Fourth and finally, for each z, we will define $Y_{z}^{*} \subset Y_{z}$. In §7.3, we will see that attaching Y_{z}^{*} to $\bigcup_{w<z} Y_{w}$ amounts to attaching an $(n+1-|I|)$ dimensional $h(z)$-handle for some $h(z) \leq|I|$, and moreover that attaching all of Y_{z} to $\bigcup_{w<z} Y_{w}$ amounts to attaching several such handles.
Consider arbitrary $Y_{z}=X_{I, J, i_{*}, V^{-}, U^{\circ}, U^{-}}$. Note, for each $r \in \mathbb{Z}_{\ell}$, that ρ_{r} contains at most one point in $I \backslash\left\{i_{*}\right\} .{ }^{6}$ Moreover, if $\rho_{r} \cap I \backslash\left\{i_{*}\right\}=\varnothing$, then, with $i_{r} \in I_{s}$, either (i) $i_{r} \in U^{\circ}$, (ii) $i_{r} \in J \cap V^{-}$(hence $\left|I_{s}\right|=1$), (iii) $i_{r}=\min I_{s}$ with either $i_{r}=i_{*} \in J$ or $i_{r-1}=i_{*}$ and $i_{r} \notin J$, or (iv) $i_{r}=i_{*} \leq \max I_{s}-2$ with $i_{r}+1 \in V^{-}$. Note also, for each $s \in \mathbb{Z}_{m}$, that $\widehat{C}_{s} \cap I=\left\{\max I_{s}\right\}$, so $\widehat{C}_{s} \cap\left(I \backslash\left\{i_{*}\right\}\right)=\varnothing$ only if $i_{*}=\max I_{s}$. For each $r=0, \ldots, \ell-1$ with $i_{*} \neq i_{r} \in I_{s}$ and $i_{r} \neq \max I_{s}$, define

$$
\begin{equation*}
\xi_{r}(z)=\left\langle\left\{i_{r}\right\} \times \prod_{t \in \mathbb{Z}_{\ell}: \rho_{t} \ni i_{r}} \rho_{t}\right\rangle . \tag{21}
\end{equation*}
$$

[^4]Similarly, for each $r=0, \ldots, \ell-1$ with $i_{*} \neq i_{r}=\max I_{s}$, define

$$
\begin{equation*}
\xi_{r}(z)=\left\langle\left\{i_{r}\right\} \times \widehat{C}_{t} \times \prod_{t \in \mathbb{Z}_{\ell}: \rho_{t} \ni i_{r}} \rho_{t}\right\rangle . \tag{22}
\end{equation*}
$$

For $r=\ell, \ldots, \ell+\left|U^{\circ}\right|-1$, denote $\xi_{r}(z)=\left[i-\frac{2}{3}, i-\frac{1}{3}\right], i \in U^{\circ}$, so that each $\xi_{r}(z)$ is distinct. For $r=\ell+\left|U^{\circ}\right|, \ldots, \ell+\left|U^{\circ}\right|+\left|J \cap V^{-}\right|-1$, denote $\xi_{r}(z)=\left[i-1, i-\frac{1}{2}\right], i \in J \cap V^{-}$, so that each $\xi_{r}(z)$ is distinct. Define

$$
p=\ell+\left|U^{\circ}\right|+\left|J \cap V^{-}\right|-\left\{\begin{array}{ll}
0 & i_{*}=\max I_{s}, \min I_{s+1} \in J \\
1 & \text { else }
\end{array}\right\} .
$$

If $i_{*}=\max I_{s}$ for some $s \in \mathbb{Z}_{m}$ and $\min I_{s+1} \in J$, denote $\xi_{p}(z)=\widehat{C}_{s}$.
Notation 7.2. For each r, let $\min \xi_{r}(z)\left(\right.$ resp. $\left.\max \xi_{r}(z)\right)$ denote the supremum (resp. infimum) of all coordinates in $(0, k)$ among all points in $\xi_{r}(z)$.

Reorder $\xi_{0}(z), \ldots, \xi_{p}(z)$ as follows. If $i_{*} \neq 0$, do this such that $\xi_{0}(z)$ (with $\{0\}$ as a factor) remains $\xi_{0}(z)$ and $\max \xi_{r}(z) \leq \min \xi_{r+1}(z)$ for $r=1, \ldots, p-$ 1. If $i_{*}=0$, do this such that ρ_{1} is a factor of $\xi_{0}(z)$ and $\max \xi_{r}(z) \leq$ $\min \xi_{r+1}(z)$ for $r=1, \ldots, p-1$. Now define

$$
Y_{z}^{*}=\prod_{r=0}^{p} \xi_{r}(z) .
$$

Observe that:

$$
Y_{z}=\left\langle\rho_{i_{*}} \times \prod_{i \in I \backslash i_{*}}\left(\rho_{i} \times\{i\}\right) \times \prod_{r \in \mathbb{Z}_{m}} \widehat{C}_{r}\right\rangle=\left\langle\prod_{r=0}^{p} \xi_{r}(z)\right\rangle=\left\langle Y_{r}^{*}\right\rangle .
$$

Example 7.3. Consider $X_{I} \subset T^{9}$ where $I=\{0,1,2,3\}$, which is detailed in Tables 14 and 17. Note that $T=\{0\}$. In particular, consider the first and twelfth rows of Table 14 (after the headings), where $J=\varnothing, s=0, U=\{2\}$, and $V=\{1,3\}$. The first row of Table 14 corresponds to

$$
\begin{equation*}
Y_{1}=X_{I, J, s, V^{-}, U^{\circ}, U^{-}}=\left\langle\alpha^{-} 1 \beta_{3}^{\circ} 2 \gamma^{+} 3 \delta^{3}\right\rangle, \tag{23}
\end{equation*}
$$

where $V^{-}=\{1\}, U^{\circ}=\{2\}$, and $U^{-}=\varnothing$. Note, comparing (21), (22),(23), and Notation 3.5, that

$$
\begin{aligned}
& \xi_{0}=\alpha^{-}=\left[0, \frac{1}{2}\right], \xi_{1}=\{1\}, \xi_{2}=\beta_{3}^{\circ}=\left[\frac{4}{3}, \frac{5}{3}\right], \xi_{3}=\{2\}, \\
& \xi_{4}=\gamma^{+}=\left[\frac{5}{2}, 3\right], \xi_{5}=\{3\}, \text { and } \xi_{6}=\xi_{7}=\xi_{8}=\delta=[3,4] .
\end{aligned}
$$

Thus:

$$
Y_{1}^{*}=\alpha^{-} 1 \beta_{3}^{\circ} 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle .
$$

The twelfth row of Table 14 corresponds to

$$
Y_{12}=X_{I, J, s, V^{-}, U^{\circ}, U^{-}}=\left\langle\alpha^{+} 1 \beta_{3}^{+} 2 \gamma^{-} 3 \delta^{3}\right\rangle,
$$

where $V^{-}=\{3\}, U^{\circ}=\varnothing=U^{-}$. Thus:

$$
Y_{12}^{*}=\left\langle\alpha^{+} 1\right\rangle\left\langle\beta_{3}^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle .
$$

7.3. Properties of handle decompositions.

Proposition 7.4. Let $i \in V^{-} \subset V$ for some $i \in I_{s}, s \in \mathbb{Z}_{m}$, where $i_{*} \notin I_{s}$. Denote $b=\max I_{s}, c=\max \left(I_{s} \cap V^{-}\right)$. Let $V^{\prime-}=V^{-} \backslash\{i\}$. Then $V^{\prime-} \prec V^{-}$ if and only if $\left|V^{-} \cap\{i+1, \ldots, b\}\right|$ is even.

Proof. We argue by induction on $c-i$. When $c-i=0$, we have $c=i>$ $\max \left(I_{s} \cap V^{-} \backslash\{i\}\right)$ and $I_{r} \cap V^{-}=I_{r} \cap V^{-} \backslash\{i\}$ for all $r \neq s$, so $V^{\prime-} \prec V^{-}$.

Now assume that $c-i=t>0$, and assume that the claim is true whenever $\max \left(I_{s} \cap V^{-}\right)-i<t$. Let $W^{-}=V^{-} \backslash\{c\}$ and $W^{\prime-}=V^{\prime-} \backslash\{c\}$. Then $\left.\mid V^{-} \cap\{i+1, \ldots, b\}\right)$ and $\left|W^{-} \cap\{i+1, \ldots, b\}\right|$ have opposite parities. Also, by construction, $V^{-} \prec V^{\prime-}$ if and only if $W^{\prime-} \prec W^{-}$. The result now follows by induction.

Proposition 7.5. Let $A \subset V^{-} \subset V$ such that $V^{-} \prec V^{-} \ominus\{a\}$ for each $a \in A$. Then $V^{-} \prec V^{-} \backslash A$.

Proof. Suppose first that $A \subset I_{s}$ for some $s \in \mathbb{Z}_{m}$. Denote $A=\left(a_{1}, \ldots, a_{q}\right)$ with $\min I_{s} \leq a_{1} \leq \cdots \leq a_{q} \leq \max I_{s}=b$. Assume that $i_{*} \notin I_{s}$ and $\left|I_{s}\right| \geq 3$ (the other cases are trivial). Note that Proposition 7.4 implies, for each $a \in A$, that $\left|V^{-} \cap\{a+1, \ldots, b\}\right|$ is odd if and only if $a \in V^{-}$. For each $r=1, \ldots, q$, denote the symmetric difference $V_{r}^{-}=V^{-} \ominus\left\{a_{1}, \ldots, a_{r}\right\}$. Then, $\left|V_{a}^{-} \cap\{a+1, \ldots, b\}\right|=\left|V^{-} \cap\{a+1, \ldots, b\}\right|$ for each $a=0, \ldots, q-1$. Since this quantity is odd if and only if $a \in V^{-}$, Proposition 7.4 implies:

$$
V^{-} \prec V_{1}^{-} \prec \cdots \prec V_{q}^{-}=V^{-} \backslash A .
$$

For the general case, apply this argument repeatedly for each $s \in \mathbb{Z}_{m}$.
Observation 7.6. If Y_{z} comes from $J, i_{*}, V^{-}, U^{\circ}, U^{-}$and Y_{w} comes from $J, i_{*}, V^{-}, U^{\circ}, U^{\prime-}$, then $Y_{z} \cap Y_{w}=\varnothing$ unless $U^{-}=U^{\prime-}$.
Lemma 7.7. For each $r=0, \ldots, p, \xi_{r}(z)$ has one of the forms described in Lemma 4.2, and thus is homeomorphic to $D^{d(r)}$ for some $d(r) \geq 0$.
Moreover, $\sum_{r=0}^{p} d(r)=n+1-|I|$, so $Y_{z}^{*} \approx D^{n+1-|I|}$.
Proof. The first claim follows by construction, since each ρ_{i} contains at most one point in $I \backslash\left\{i_{*}\right\}$. (For a more explicit accounting, see Tables 21-23.)
Moreover, for each $r=0, \ldots, p, d(r)$ equals the number of intervals in the expression for $\xi_{r}(z)$, which equals the number of coordinates in that expression minus the number of singleton factors. Since there are n factors and $|I|-1$ singletons among $\xi_{0}(z), \ldots, \xi_{p}(z)$ all together, it follows that $\sum_{r=0}^{p} d(r)=n+1-|I|$. Thus, $Y_{z}^{*} \approx D^{n+1-|I|}$.

In the following way, classify each $\xi_{r}(z)$ into one of two classes, (A) or (B). Say that $\xi_{r}(z)$ is in class (B) if:

- Some \widehat{C}_{s} appears in the expression for $\xi_{r}(z)$;
- $\xi_{r}(z)=\left[i-\frac{2}{3}, i-\frac{1}{3}\right]$ for some $i \in I$;
- $\xi_{r}(z)=\left[i_{*}, i_{*}+\frac{1}{2}\right]$; or
- Some $\{i\}$ appears in the expression for $\xi_{r}(z)$, with $i \in I_{s}$ and:
$-i \in V^{+}$and $i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$, or $i \in U^{-} \cup U^{\circ} \cup V^{-}$and $i+1 \in V^{-}$; and
$-\left|V^{-} \cap\left\{i+1, \ldots, \max I_{s}\right\}\right|$ is even.
All other types of $\xi_{r}(z)$ are of class (A). Tables 21, 22, and 23 in Appendix 1 list the possibilities explicitly.

Lemma 7.8. Let $Y_{z}^{*}=\prod_{r=0}^{p} \xi_{r}(z)$ come from some $J, i_{*}, V^{-}, U^{\circ}, U^{-}$. If, for some $a=0, \ldots, p, \xi_{a}(z)$ is of class (A) and

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \prod_{r=0}^{a-1} \xi_{r}(z) \times \partial \xi_{a}(z) \times \prod_{r=a+1}^{p} \xi_{r}(z)
$$

then $\vec{x} \in Y_{w}$ for some $w<z$.
Proof. Suppose first that some $\{i\}$ appears in the expression for $\xi_{a}(z)$, with $i \in I_{s} ; i \in V^{+}$and $i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$, or $i \in U^{-} \cup U^{\circ} \cup V^{-}$and $i+1 \in V^{-} ;$and $\left|V^{-} \cap\left\{i+1, \ldots, \max I_{s}\right\}\right|$ is odd. Then \vec{x} is in the Y_{w} coming from $J, i_{*}, V^{-}, U^{\circ}, U^{-}$where $V^{\prime-}$ is either $V^{-} \cup\{i\}$ or $V^{-} \backslash\{i+1\}$. In either case, Proposition 7.4 implies that $V^{\prime-} \prec V$ and thus $w<z$.

Next, suppose that $\xi_{a}(z)$ has no singleton factors. There are two possibilities. If $\xi_{a}(z)=\left[i_{*}-1, i_{*}\right]$ with $i_{*} \in J$, then \vec{x} is in some Y_{w} coming from $J \backslash\left\{i_{*}\right\} \prec$ J. Otherwise, $\xi_{a}(z)=\left[i-1, i-\frac{1}{2}\right]$ for some $i \in J \cap V^{-}$; in this case, $i+1 \notin I$, and so \vec{x} is in some Y_{w} coming either from $J \backslash\{i\} \prec J$ or the from same J and i_{*} and $V^{\prime-}=V^{-} \backslash\{i\}$, where Proposition 7.4 implies that $V^{\prime-} \prec V^{-}$because $i+1 \notin I$.

The remaining cases follow by similar reasoning. The interested reader may find Table 23 useful for this.

Lemma 7.9. Let $Y_{z}^{*}=\prod_{r=0}^{p} \xi_{r}(z)$ come from some $J, i_{*}, V^{-}, U^{\circ}, U^{-}$. If

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in Y_{z}^{*} \cap \bigcup_{w<z} Y_{w},
$$

then

$$
\vec{x} \in \prod_{r=0}^{a-1} \xi_{r}(z) \times \partial \xi_{a}(z) \times \prod_{r=a+1}^{p} \xi_{r}(z)
$$

for some $a=0, \ldots, p$, such that $\xi_{a}(z)$ is of class (A).

Proof. Let $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in Y_{z}^{*} \cap Y_{w^{\prime}}$ for some $w^{\prime}<z$. Choose the smallest $w<z$ such that $\vec{x} \in Y_{w}$, and assume that Y_{w} comes from some $J^{\prime}, i_{*}^{\prime}, V^{\prime-}, U^{\prime \circ}, U^{\prime-}$ with $V^{\prime-} \subset V^{\prime}$ and $U^{\prime \circ} \subset U^{\prime}$, whereas Y_{z} comes from some $J, i_{*}, V^{-}, U^{\circ}, U^{-}$with $V^{-} \subset V$ and $U^{\circ} \subset U$. Denote

$$
S=\left\{a=0, \ldots, p: \vec{x} \in \prod_{r=0}^{a-1} \xi_{r}(z) \times \partial \xi_{a}(z) \times \prod_{r=a+1}^{p} \xi_{r}(z)\right\} .
$$

Assume for contradiction that $\xi_{a}(z)$ is of class (B) for every $a \in S$. If $S=\varnothing$, then no coordinate of \vec{x} equals i_{*}, so $i_{*}^{\prime}=i_{*}$. Also, in that case, no coordinate of \vec{x} equals $\min I_{s}-1$ for any $s \in \mathbb{Z}_{m}$, and so J and J^{\prime} completely determine the number of coordinates that \vec{x} has in each open interval ($\min I_{s}-1, \min I_{s+1}-1$). It follows that either $J^{\prime}=J$ or $J^{\prime}=T \backslash J$. If $J^{\prime}=T \backslash J$, then considering the coordinates of \vec{x} in $\left[\min I_{*}, \max I_{*}\right]$ yields a contradiction. If $J^{\prime}=J$, then the fact that $S=\varnothing$ implies that $V^{-}=V^{\prime-}$, $U^{\circ}=U^{\prime \circ}$, and $U^{-}=U^{\prime-}$, contradicting the fact that $w<z$.
Therefore, $S \neq \varnothing$. If no coordinate of \vec{x} equals i_{*}, then $i_{*}^{\prime}=i_{*}$, so again either $J^{\prime}=J$ or $J^{\prime}=T \backslash J$. The latter case gives the same contradiction as before. Therefore $J^{\prime}=J$, and so $V^{\prime}=V$.
For each $i \in V^{-} \ominus V^{\prime-}, \vec{x}$ has a coordinate $x_{t}=i-\frac{1}{2}$ (using the fact that $i_{*}^{\prime}=i_{*}$ and $J^{\prime}=J$). The corresponding $\xi_{r}(z)$ has $r \in S$, and so by assumption $\xi_{r}(z)$ is of class (B). Therefore, $V^{-} \prec V^{-} \ominus\{i\}$ for each $i \in V^{-} \ominus V^{\prime-}$. Proposition 7.5 implies that $V^{-} \prec V^{\prime-}$ unless $V^{-}=V^{\prime-}$. Since $w<z$, we must have $V^{-}=V^{\prime-}$.
Each $i \in U^{\prime \circ}$ must also be in U°, or else the corresponding coordinate of \vec{x} would equal $i-\frac{1}{3}$ or $i-\frac{2}{3}$, and the corresponding $\xi_{a}(z)$ would be of class (A) with $a \in S$, contrary to assumption. Thus, $U^{\circ} \subset U^{\prime 0}$. Similarly, each $i \in U^{\circ}$ must also be in $U^{\prime 0}$, or else the $Y_{w^{\prime}}$ coming from $J, i_{*}, V, U^{\prime \circ} \cup\{i\}, U^{-} \backslash\{i\}$ would still contain \vec{x} but with $w^{\prime}<w$, contrary to assumption. Thus, $U^{\prime \circ}=U^{\circ}$.

Finally, we must have $U^{\prime-}=U^{-}$, by Observation 7.6. This implies, contrary to assumption, that $Y_{w}=Y_{z}$.
Lemma 7.10. Let $Y_{z}^{*}=\prod_{r=0}^{p} \xi_{r}(z)$ come from some $J, i_{*}, V^{-}, U^{\circ}, U^{-}$. If

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in Y_{z}^{*} \cap\left(Y_{z} \backslash \backslash Y_{z}^{*}\right),
$$

then

$$
\vec{x} \in \prod_{r=0}^{a-1} \xi_{r}(z) \times \partial \xi_{a}(z) \times \prod_{r=a+1}^{p} \xi_{r}(z)
$$

for some $a=0, \ldots, p$, such that $\xi_{a}(z)$ is of class (A).
Proof. This follows from a case analysis, for which the interested reader may find Tables 21, 23, and 22 useful. It comes down to this. Consider
two pieces $\xi_{a}(z)$ and $\xi_{b}(z)$ where $\max \xi_{a}(z)=\min \xi_{b}(z)=c$ (recall Notation 7.2). Then $c \in \mathbb{Z}_{k}$. If c equals $i-1$ for some $i \in T$, then $i \in J$ and $\xi_{b}(z)$ is of class (A). Otherwise, $c=i_{*}$ and $\xi_{a}(z)$ is of class (A).

The results of $\S \S 6,7.3$ provide all the details we need to prove:
Theorem 7.11. For $n=2 k-1 \in \mathbb{Z}_{+}$, the n-torus admits a smooth multisection $T^{n}=\bigcup_{r \in \mathbb{Z}_{k}} X_{r}$ defined by

$$
\begin{align*}
X_{0} & =\left\{\vec{x}_{\sigma}: \vec{x} \in[0,1]^{2} \cdots[0, k-1]^{2}[0, k] / \sim, \sigma \in S_{n}\right\}, \tag{1}\\
X_{i} & =\left\{\vec{x}+(i, \ldots, i): \vec{x} \in X_{0}\right\} .
\end{align*}
$$

Proof. Lemma 6.8 implies that $X=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$, so it remains only to prove for each nonempty proper subset $I \subset \mathbb{Z}_{k}$, that $X_{I}=\bigcap_{i \in I} X_{i}$ is an $(n+1-$ $|I|$)-dimensional submanifold of X with a spine of dimension $|I|$.

Fix some such I. Assume wlog that I is simple. Then $X_{I}=(2)$, by Lemma 6.13. Decompose $X_{I}=\bigcup_{z} Y_{z}$ as described in §7.2. Lemmas 7.7 and 7.8 imply that Y_{1}^{*} is an $(n+1-|I|)$-dimensional 0 -handle with no pieces $\xi_{r}(1)$ of class (A); Lemma 7.10 and the symmetry of the construction imply further that Y_{1} is a union of $(n+1-|I|)$-dimensional 0-handles.
Similarly, for each z, Lemmas 7.7, 7.8, and 7.9 imply that attaching Y_{z}^{*} to $\bigcup_{w<z} Y_{z}$ amounts to attaching an $(n+1-|I|)$-dimensional h-handle, where $h(z)$ is the sum of the dimensions of those $\xi_{r}(z)$ of class (A):

$$
h=\left\{i \in I: \xi_{r}(z) \text { is of class }(\mathrm{A})\right\} \leq|I| .
$$

Again, Lemma 7.10 and the symmetry of the construction imply further that attaching all of Y_{z} to $\bigcup_{w<z} Y_{w}$ amounts to attaching several such handles. Thus, X_{I} is an $(n+1-|I|)$-dimensional $|I|$-handlebody in T^{n}.
It remains to check that $X_{\mathbb{Z}_{k}}=\bigcap_{i \in \mathbb{Z}_{k}} X_{i}$ is a closed k-manifold. We know from Lemma 6.13 that $X_{\mathbb{Z}_{k}}$ is given by (3).
Since $X_{\mathbb{Z}_{k} \backslash\{k-1\}}$ is $(k+1)$-manifold, it suffices to check that $X_{\mathbb{Z}_{k}}$ equals $\partial X_{\mathbb{Z}_{k} \backslash\{k-1\}}$, which is the union of those k-faces of the Y_{z} from the handle decomposition of $X_{\mathbb{Z}_{k} \backslash\{k-1\}}$ that are not glued to any other Y_{w}. Case analysis confirms that this union equals the expression from 3. (The reader may find Tables 21-21 useful.)
Alternatively, construct a handle decomposition of $X_{\mathbb{Z}_{k}}$ as follows. Cut each unit interval $[i, i+1]$ into thirds and, for each $i_{*} \in \mathbb{Z}_{k}$, further cut $\left[i_{*}-\frac{1}{3}, i_{*}\right]$ and $\left[i_{*}, i_{*}+\frac{1}{3}\right]$ into halves. Then, for each $i_{*} \in \mathbb{Z}_{k}, U^{\circ} \subset \mathbb{Z}_{k}, U^{-} \subset \mathbb{Z}_{k} \backslash U^{\circ}$,
and $U^{*} \subset\left(\left\{i_{*}+1\right\} \cap U^{-}\right) \cup\left(\left\{i_{*}\right\} \backslash\left(U^{\circ} \cup U^{-}\right)\right.$，define

$$
\begin{aligned}
\rho_{i}= \begin{cases}{\left[i-\frac{2}{3}, i-\frac{1}{3}\right]} & i \in U^{\circ} \\
{\left[i-1, i-\frac{2}{3}\right]} & i_{*}+1 \neq i \in U^{-} \\
{\left[i-\frac{1}{3}, i\right]} & i_{*} \neq i \in \mathbb{Z}_{k} \backslash\left(U^{\circ} \cup U^{-}\right) \\
{\left[i_{*}, i_{*}+\frac{1}{6}\right]} & i_{*}+1=i \in U^{*} \\
{\left[i_{*}+\frac{1}{6}, i_{*}+\frac{1}{3}\right]} & i_{*}+1=i \in U^{-} \backslash U^{*} \\
{\left[i_{*}-\frac{1}{6}, i_{*}\right]} & i_{*}=i \in U^{*} \\
{\left[i_{*}-\frac{1}{3}, i_{*}-\frac{1}{6}\right]} & i_{*}=i \in U^{+} \backslash U^{*}\end{cases} \\
X_{\mathbb{Z}_{k}, i_{*}, U^{\circ}, U^{-}, U^{*}}=\prod_{i \in \mathbb{Z}_{k}}\left\{\begin{array}{ll}
\rho_{i} \times\{i\} & i \neq i_{*} \\
\rho_{i} & =i_{*}
\end{array}\right\}
\end{aligned}
$$

Order the pieces $X_{\mathbb{Z}_{k}, i_{*}, U^{\circ}, U^{-}, U^{*}}$ as $Y_{z}, z=1,2,3, \ldots$ ，lexicographically ac－ cording to the following orders on the possibilities for $\left(i_{*}, U^{\circ}, U^{-}, U^{*}\right)$ ．Order $\left\{i_{*} \in I\right\}$ and $U^{-} \subset U^{\circ}$ arbitrarily．Partially order $\left\{U^{\circ} \subset \mathbb{Z}_{k}\right\}$ by inclusion， with $U^{\circ} \prec U^{\prime \circ}$ if $U^{\circ} \subset U^{\prime \circ}$ ，and extend arbitrarily to a total order．Order the possibilities for U^{*} the same way．Then

$$
\bigcup_{i=1, \ldots, k} Y_{z}=\bigcup_{i_{*} \in \mathbb{Z}_{k}} X_{\mathbb{Z}_{k}, i_{*}, \mathbb{Z}_{k}, \varnothing, \varnothing}
$$

is a union of 0－handles，and to attach each $Y_{z}=X_{\mathbb{Z}_{k}, i_{*}, U^{\circ}, U^{-}, U^{*}}$ to $\bigcup_{w<z} Y_{w}$ is to attach a collection of $h(z)$－handles for $h(z)=k-\left|U^{\circ}\right|-\left|U^{*}\right|$ ．

8．Cubulated manifolds of odd dimension

Consider a covering space $p: M \rightarrow T^{n}$ ，where $n=2 k-1$ ．Multisect $T^{n}=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ as in Theorem 7．11．Then，by Corollary 17 of［7］，$M=$ $\bigcup_{i \in \mathbb{Z}_{k}} p^{-1}\left(X_{i}\right)$ determines a PL multisection of M ．In general，one expects such multisections to be less efficient than those from Theorem 7．11．Also， there seems to be no reason to expect that one can extend the main construc－ tion to cubulated odd－dimensional manifolds in general．There is，however， an intermediate case to which our construction does extend．

First，we propose the following modest generalization of the usual notion of a cubulation．The generalization is similar to Hatcher＇s Δ－complexes vis a vis simplicial complexes［2］．A cube is a homeomorphic copy of I^{n} for some $n \geq 0$ ，with the usual cell structure；its faces are defined in the traditional way．

Definition 8．1．A－$⿴ 囗 十 一$－complex is a quotient space of a collection of disjoint cubes obtained by identifying certain of their faces via homeomorphisms．

Note that，by definition，a 四－complex comes equipped with a cell structure．

Definition 8．2．A generalized cubulation of a manifold is a homeomor－ phism to a －complex．

In other words，a generalized cubulation of an n－manifold M imposes a cell structure on M in which every cell＂looks like＂an n－cube．The point of generalizing the usual definition is that the usual cell structure on T^{n} counts as a generalized cubulation，but not as a cubulation in the traditional sense．

Consider an arbitrary edge of I^{n} ，joining $\vec{a}=\left(a_{1}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right)$ and $\vec{b}=\left(a_{1}, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_{n}\right)$ ．Orient this edge so that it runs from \vec{a} to \vec{b} ．Do the same with every edge of the n－cube．Call these the standard orientations on the edges of the n－cube．
Definition 8．3．A 四－complex K is directable if it is possible to orient the edges in K in such a way that，for each n－cell C in K ，there is a continuous map h to K from the n－cube with the standard orientations on its edges， such that h respects these orientations and maps the interior of the n－cube homeomorphically to the interior of C ．A directed $⿴ 囗 ⿰ 丿 ㇄$ edges have been oriented in this way．

Definition 8．4．A directed cubulation of a manifold is a homeomorphism to a directed $⿴$－complex．

Fix some $n=2 k-1$ ．Let $g: I^{n}=[0, k]^{n} \rightarrow T^{n}=(\mathbb{R} / k \mathbb{Z})^{n}=[0, k]^{n} / \sim$ be the quotient map．Let $f: M \rightarrow K$ be a directed cubulation of an n－ manifold．For each n－cell C in K ，denote $h: I^{n} \rightarrow C$ as in Definition 8．3．Multisect $T^{n}=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}$ as in Theorem 7．11．For each $i \in \mathbb{Z}_{k}$ ，define $X_{i, C}=h\left(g^{-1}\left(X_{i}\right)\right) \subset C$ ．Then，for each $i \in \mathbb{Z}_{k}$ ，define

$$
X_{i}^{\prime}=\bigcup_{n \text {-cubes } C \text { in } K} f^{-1}\left(X_{i, C}\right) \text {. }
$$

Observation 8．5．With the setup above，$M=\bigcup_{i \in \mathbb{Z}_{k}} X_{i}^{\prime}$ determines a $P L$ multisection of M ．

This follows from the fact that the multisection of T^{n} is fixed by the permu－ tation action on the indices and K is a directed cubulation．Another way to see this is by noting that，because M admits a directed cubulation，then there is a well－defined map map from M to the symmetric space T^{n} / S_{n} ， which one can use to define this multisection．

Appendix 1：Additional tables detailing handle decompositions

Tables 11 and 12 explicitly detail $U_{r}, V_{r} \subset I_{r}$ for arbitrary I_{r}（following Notation 3．8）．For simplicity，these tables have $I_{r}=I_{0}=\{0, \ldots, w\}$ ，listing
U_{0}, V_{0}; this is not necessarily consistent with Convention 3.9. To adapt $U_{0}, V_{0} \subset I_{0}$ to the general case $U_{r}, V_{r} \subset I_{r}$, add $\min I_{r}$ in each coordinate.

I_{0}	$0 \notin J$		$0 \in J$	
	U_{0}	V_{0}	U_{0}	V_{0}
$\{0\}$	\varnothing	\varnothing	\varnothing	$\{0\}$
$\{0,1\}$	\varnothing	$\{1\}$	\varnothing	$\{1\}$
$\{0,1,2\}$	\varnothing	$\{1,2\}$	$\{1\}$	$\{2\}$
$\{0,1,2,3\}$	\varnothing	$\{1,2,3\}$	$\{1,2\}$	$\{3\}$
$\{0,1,2,3,4\}$	\varnothing	$\{1,2,3,4\}$	$\{1,2,3\}$	$\{4\}$
$\{0, \ldots, w\}$	\varnothing	$\{1, \ldots, w\}$	$\{1, \ldots, w-1\}$	$\{w\}$

Table 11. The index subsets $U_{0}, V_{0} \subset I_{0}$ when $i_{*} \notin I_{0}$.

I_{0}	U_{0}	V_{0}
\{0\}	\varnothing	\varnothing
\{0,1\}	\varnothing	\varnothing
\{0,1,2\}	$\left\{\begin{array}{ll}\{1\} & s=2 \\ \varnothing & s \neq 2\end{array}\right\}$	$\left\{\begin{array}{ll}\{1,2\} & s=0 \\ \varnothing & s \neq 0\end{array}\right\}$
\{0,1,2,3\}	$\left\{\begin{array}{ll}\{2\} & s=0 \\ \varnothing & s=1 \\ \{1\} & s=2 \\ \{1,2\} & s=3\end{array}\right\}$	$\left\{\begin{array}{ll}\left\{i_{*}+1,3\right\} & s \leq 1 \\ \varnothing & s \geq 2\end{array}\right\}$
$\{0, \ldots, w\}$	$I_{0} \backslash\left\{0, i_{*}, i_{*}+1, w\right\}$	$\left\{\begin{array}{ll}\left\{i_{*}+1, w\right\} & i_{*} \leq w-2 \\ \varnothing & i_{*} \geq w-1\end{array}\right\}$

Table 12. The index subsets $U_{0}, V_{0} \subset I_{0}$ when $i_{*} \in I_{0}$.

Table 13 details the handle decomposition of X_{I} from T^{9} with $I=\{0,1,3\}=$ $I_{1} \sqcup I_{2}, I_{1}=\{0,1\}, I_{2}=\{3\}$. The interesting feature of this example is how the two blocks of indices I_{1}, I_{2} interact.

J	i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
\varnothing	0	\varnothing	\varnothing		$\left\langle\alpha 1 \beta^{3}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	0	1	
\varnothing	1	\varnothing	\varnothing	\varnothing	$\langle 0 \alpha\rangle \beta^{3}\left\langle 3 \delta^{3}\right\rangle$	1	2	1
\varnothing	3	\varnothing	$\{1\}$	\varnothing	$0\left\langle\alpha^{+} 1 \beta^{3}\right\rangle \delta^{3}$	0	3	
\varnothing	3	\varnothing	$\{1\}$	$\{1\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{3}\right\rangle \delta^{3}$	1	4	3
$\{0\}$	0	\varnothing	\varnothing	\varnothing	$\left\langle\alpha 1 \beta^{3}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	1	5	$1,3,4$
$\{0\}$	1	\varnothing	\varnothing	\varnothing	$\langle\varepsilon 0 \alpha\rangle \beta^{3}\left\langle 3 \delta^{2}\right\rangle$	2	6	2,5
$\{0\}$	3	\varnothing	$\{1\}$		$\langle\varepsilon 0\rangle\left\langle\alpha^{+} 1 \beta^{3}\right\rangle \delta^{2}$	1	7	3
$\{0\}$	3	\varnothing	$\{1\}$		$\left\langle\varepsilon 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{3}\right\rangle \delta^{2}$	2	8	4,7
$\{3\}$	0	\varnothing	$\{3\}$	\varnothing	$\left\langle\alpha 1 \beta^{2}\right\rangle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	0	9	
$\{3\}$	0	\varnothing	$\{3\}$	$\{3\}$	$\left\langle\alpha 1 \beta^{2}\right\rangle \gamma^{-}\left\langle 3 \delta^{3}\right\rangle$	1	10	1,9
$\{3\}$	1	\varnothing	$\{3\}$	\varnothing	$\langle 0 \alpha\rangle \beta^{2}\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	1	11	9
$\{3\}$	1	\varnothing	$\{3\}$	$\{3\}$	$\langle 0 \alpha\rangle \beta^{2} \gamma^{-}\left\langle 3 \delta^{3}\right\rangle$	2	12	$2,10,11$
$\{3\}$	3	\varnothing	$\{1\}$	\varnothing	$0\left\langle\alpha \alpha^{+} 1 \beta^{2}\right\rangle \gamma \delta^{3}$	1	13	2,3
$\{3\}$	3	\varnothing	$\{1\}$	$\{1\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{2}\right\rangle \gamma \delta^{3}$	2	14	$2,4,13$
$\{0,3\}$	0	\varnothing	$\{3\}$	\varnothing	$\left\langle\alpha 1 \beta^{2}\right\rangle\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	1	15	$9,13,14$
$\{0,3\}$	0	\varnothing	$\{3\}$	$\{3\}$	$\left\langle\alpha 1 \beta^{2}\right\rangle \gamma^{-}\left\langle 3 \delta^{2}\right\rangle \varepsilon$	2	16	$10,13,14,15$
$\{0,3\}$	1	\varnothing	$\{3\}$	\varnothing	$\langle\varepsilon 0 \alpha\rangle \beta^{2}\left\langle\gamma^{+} 3 \delta^{2}\right\rangle$	2	17	11,15
$\{0,3\}$	1	\varnothing	$\{3\}$	$\{3\}$	$\langle\varepsilon 0 \alpha\rangle \beta^{2} \gamma^{-}\left\langle 3 \delta^{2}\right\rangle$	$\mathbf{3}$	18	$6,12,16,17$
$\{0,3\}$	3	\varnothing	$\{1\}$	\varnothing	$\langle\varepsilon 0\rangle\left\langle\alpha^{+} 1 \beta^{2}\right\rangle \gamma \delta^{2}$	2	19	$6,7,13$
$\{0,3\}$	3	\varnothing	$\{1\}$	$\{1\}$	$\left\langle\varepsilon 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{2}\right\rangle \gamma \delta^{2}$	$\mathbf{3}$	20	$6,8,14,19$

Table 13. A genus 9 quintisection of $T^{9}: X_{I}$ when $I=\{0,1,3\}$

Tables 14-17 detail the handle decomposition of $X_{I}, I=\{0,1,2,3\}$, from the quintisection of T^{9}. Note that, since $I=I_{1}$ consists of a single block in this example, we always have $I_{1}=I_{*}$.

i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
0	$\{2\}$	$\{1,3\}$	\varnothing	$\alpha^{-} 1 \beta_{3}^{\circ}\left\langle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle\right.$	0	1	
				$\alpha^{-}\left\langle 1 \beta_{3}^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	1	2	1
				$\alpha^{-} 1\left\langle\beta_{3}^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	1	3	1
			$\{1\}$	$\left\langle\alpha^{+}+1\right\rangle \beta_{3}^{\circ} 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	1	4	1
				$\left\langle\alpha^{+} 1 \beta_{3}^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	2	5	2,4
				$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta_{3}^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	2	6	3,4
				$\alpha^{-} 1 \beta_{3}^{\circ}\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	1	7	1
				$\alpha^{-}\left\langle 1 \beta_{3}^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	2	8	2,7
				$\alpha^{-} 1\left\langle\beta_{3}^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	2	9	3,7
			$\{1,3\}$	$\left\langle\alpha^{+} 1\right\rangle \beta_{3}^{\circ}\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	2	10	4,7
				$\left\langle\alpha^{+} 1 \beta_{3}^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	3	11	$5,8,10$
				$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta_{3}^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	3	12	$6,9,10$

Table 14. $X_{I}, I=\{0,1,2,3\}$, from T^{9}. Part 1: $J=\varnothing$.

i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
1	\varnothing	$\{2,3\}$	\varnothing	$\langle 0 \alpha\rangle \beta^{-} 2\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	1	13	1,2
			$\{2\}$	$\langle 0 \alpha\rangle\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{3}\right\rangle$	2	14	$1,3,13$
			$\{3\}$	$\langle 0 \alpha\rangle \beta^{-}\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	2	15	$7,8,13$
			$\{2,3\}$	$\langle 0 \alpha\rangle\left\langle\beta^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{3}\right\rangle$	3	16	$7,9,14,15$
2	$\{1\}$	\varnothing	\varnothing	$0 \alpha_{3}^{\circ}\langle 1 \beta\rangle\left\langle\gamma 3 \delta^{3}\right\rangle$	1	17	13
				$\left\langle 0 \alpha_{3}^{-}\right\rangle\langle 1 \beta\rangle\left\langle\gamma 3 \delta^{3}\right\rangle$	2	18	13,17
				$0\left\langle\alpha_{3}^{+} 1 \beta\right\rangle\left\langle\gamma 3 \delta^{3}\right\rangle$	2	19	13,17
3	$\{1,2\}$	\varnothing	\varnothing	$0 \alpha_{3}^{\circ} 1 \beta_{3}^{\circ}\langle 2 \gamma\rangle \delta^{3}$	1	20	17
				$\left\langle 0 \alpha_{3}^{-}\right\rangle 1 \beta_{3}^{\circ}\langle 2 \gamma\rangle \delta^{3}$	2	21	18,20
				$0\left\langle\alpha_{3}^{+} 1\right\rangle \beta_{3}^{\circ}\langle 2 \gamma\rangle \delta^{3}$	2	22	19,20
				$0 \alpha_{3}^{\circ}\left\langle 1 \beta_{3}^{-}\right\rangle\langle 2 \gamma\rangle \delta^{3}$	2	23	17,20
				$\left\langle 0 \alpha_{3}^{-}\right\rangle\left\langle 1 \beta_{3}^{-}\right\rangle\langle 2 \gamma\rangle \delta^{3}$	3	24	$18,20,23$
				$0\left\langle\alpha_{3}^{+} 1 \beta_{3}^{-}\right\rangle\langle 2 \gamma\rangle \delta^{3}$	3	25	$19,22,23$
				$0 \alpha_{3}^{\circ} 1\left\langle\beta_{3}^{+} 2 \gamma\right\rangle \delta^{3}$	2	26	17,20
				$\left\langle 0 \alpha_{3}^{-}\right\rangle 1\left\langle\beta_{3}^{+} 2 \gamma\right\rangle \delta^{3}$	3	27	$18,21,26$
						$\left.\alpha_{3}^{+} 1\right\rangle\left\langle\beta_{3}^{+} 2 \gamma\right\rangle \delta^{3}$	3

Table 15. $X_{I}, I=\{0,1,2,3\}$, from T^{9}. Part 2: $J=\varnothing$.

i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
0	$\{2\}$	$\{1,3\}$	\varnothing	$\alpha^{-} 1 \beta_{3}^{\circ} 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	1	29	$1,19,20$
				$\alpha^{-}\left\langle 1 \beta_{3}^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	2	30	$2,22,23,29$
				$\alpha^{-} 1 \beta_{3}^{+} 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	2	31	$3,25,26,29$
			$\{1\}$	$\left\langle\alpha^{+} 1\right\rangle \beta_{3}^{\circ} 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	2	32	$4,19,21$
				$\left\langle\alpha^{+} 1 \beta_{3}^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	3	33	$5,22,24,30,32$
				$\left\{\alpha^{+} 1\right\rangle \beta_{3}^{+} 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle \varepsilon$	3	34	$6,25,27,31,32$
			$\alpha^{-} 1 \beta_{3}^{\circ}\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	2	35	$7,19,20,29$	
			$\alpha^{-}\left\langle 1 \beta_{3}^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	3	36	$8,22,23,30,35$	
				$\alpha^{-} 1\left\langle\beta_{3}^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	3	37	$9,25,26,31,35$
			$\{1,3\}$	$\left\langle\alpha^{+} 1\right\rangle \beta_{3}^{\circ}\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	3	38	$10,19,21,32,35$
				$\left\langle\alpha^{+} 1 \beta_{3}^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	4	39	$11,22,24,33,36,38$
				$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta_{3}^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle \varepsilon$	4	40	$12,25,27,34,37,38$
1	\varnothing	$\{2,3\}$	\varnothing	$\langle\varepsilon 0 \alpha\rangle \beta^{-} 2\left\langle\gamma^{+} 3 \delta^{2}\right\rangle$	2	41	$13,29,30$
			$\{2\}$	$\langle\varepsilon 0 \alpha\rangle\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{2}\right\rangle$	3	42	$14,29,31,41$
			$\{3\}$	$\langle\varepsilon 0 \alpha\rangle \beta^{-}\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle$	3	43	$15,35,36,41$
			$\{2,3\}$	$\langle\varepsilon 0\rangle\left\langle\beta^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{2}\right\rangle$	4	44	$16,35,37,42,43$
2	$\{1\}$	\varnothing	\varnothing	$\langle\varepsilon 0\rangle \alpha_{3}^{\circ}\langle 1 \beta\rangle\left\langle\gamma 3 \delta^{2}\right\rangle$	2	45	$17,41,43$
				$\left\langle\varepsilon 0 \alpha_{3}^{-}\right\rangle\langle 1 \beta\rangle\left\langle\gamma 3 \delta^{2}\right\rangle$	3	46	$18,41,43,45$
				$\langle\varepsilon 0\rangle\left\langle\alpha_{3}^{+} 1 \beta\right\rangle\left\langle\gamma 3 \delta^{2}\right\rangle$	3	47	$19,41,43,45$

Table 16. $X_{I}, I=\{0,1,2,3\}$, from T^{9}. Part 3: $J=\{0\}$.

i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
3	$\{1,2\}$	\varnothing	\varnothing	$\langle\varepsilon 0\rangle \alpha_{3}^{\circ} 1 \beta_{3}^{\circ}\langle 2 \gamma\rangle \delta^{2}$	2	48	20,45
				$\left\langle\varepsilon 0 \alpha_{3}^{-}\right\rangle 1 \beta_{3}^{\circ}\langle 2 \gamma\rangle \delta^{2}$	3	49	$21,46,48$
				$\langle\varepsilon 0\rangle\left\langle\alpha_{3}^{+} 1\right\rangle \beta_{3}^{\circ}\langle 2 \gamma\rangle \delta^{2}$	3	50	$22,47,48$
				$\langle\varepsilon 0\rangle \alpha_{3}^{\circ}\left\langle 1 \beta_{3}^{-}\right\rangle\langle 2 \gamma\rangle \delta^{2}$	3	51	$23,45,48$
				$\left\langle\varepsilon 0 \alpha_{3}^{-}\right\rangle\left\langle 1 \beta_{3}^{-}\right\rangle\langle 2 \gamma\rangle \delta^{2}$	$\mathbf{4}$	52	$24,46,49,51$
				$\langle\varepsilon 0\rangle\left\langle\alpha_{3}^{+} 1 \beta_{3}^{-}\right\rangle\langle 2 \gamma\rangle \delta^{2}$	$\mathbf{4}$	53	$25,47,50,51$
				$\langle\varepsilon 0\rangle \alpha_{3}^{\circ} 1\left\langle\beta_{3}^{+} 2 \gamma\right\rangle \delta^{2}$	3	54	$26,45,48$
				$\left\langle\varepsilon 0 \alpha_{3}^{-}\right\rangle 1\left\langle\beta_{3}^{+} 2 \gamma\right\rangle \delta^{2}$	$\mathbf{4}$	55	$27,46,49,54$
		$\langle\varepsilon 0\rangle\left\langle\alpha_{3}^{+} 1\right\rangle\left\langle\beta_{3}^{+} 2 \gamma\right\rangle \delta^{2}$	$\mathbf{4}$	56	$28,47,50,54$		

Table 17. $X_{I}, I=\{0,1,2,3\}$, from T^{9}. Part 4: $J=\{0\}$.

Tables 18 and 19 detail handle decompositions of $X_{I}, I=\{0,1,2,4\}$ from the sexasection of T^{11}. The parts of these tables with $i_{*}=4$ feature a "new complication," i.e. one that does not appear in dimensions $n \leq 5$.

J	i_{*}	U	V	V^{-}	Y_{z}^{*}	h	z	glue to
\varnothing	4	\varnothing	$\{1,2\}$	\varnothing	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{3}\right\rangle \varepsilon^{3}$	0	1	
				\{1\}	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2 \gamma^{3}\right\rangle \varepsilon^{3}$		2	1
				$\{1,2\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{3}\right\rangle \varepsilon^{3}$		3	2
				\{2\}	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{3}\right\rangle \varepsilon^{3}$	2	4	1,3
	0	\varnothing	$\{1,2\}$	\varnothing	$\alpha^{-} 1\left\langle\beta^{+} 2 \gamma^{3}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle$		5	
				\{1\}	$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{3}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle$		6	5
				$\{2\}$	$\alpha^{-}\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{3}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle$	1	7	5
				$\{1,2\}$	$\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{3}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle$	2	8	5,6
	1	$\begin{gathered} \varnothing \\ \{1\} \end{gathered}$	$\varnothing$$\varnothing$	$\begin{aligned} & \varnothing \\ & \varnothing \end{aligned}$	$\langle 0 \alpha\rangle\left\langle\beta 2 \gamma^{3}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle$	1	9	5,7
					$0 \alpha_{3}^{\circ}\langle 1 \beta\rangle \gamma^{3}\left\langle 4 \varepsilon^{3}\right\rangle$	1	10	9
					$\left\langle 0 \alpha_{3}^{-}\right\rangle\langle 1 \beta\rangle \gamma^{3}\left\langle 4 \varepsilon^{3}\right\rangle$	2	11	9,10
					$0\left\langle\alpha_{3}^{+} 1 \beta\right\rangle \gamma^{3}\left\langle 4 \varepsilon^{3}\right\rangle$	2	12	9,10
\{4\}	40		\{1,2\}	\varnothing	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{2}\right\rangle \delta \varepsilon^{3}$	1	13	1,10,12
					$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2 \gamma^{2}\right\rangle \delta \varepsilon^{3}$			2,10,11,13
					$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle \delta \varepsilon^{3}$	2	15	3,10,11,14
					$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle \delta \varepsilon^{3}$	3	16	4,10,12,13,15
		\varnothing	\{1,2\}	\varnothing	$\alpha^{-} 1\left\langle\beta^{+} 2 \gamma^{2}\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle$			
					$\alpha^{-} 1\left\langle\beta^{+} 2 \gamma^{2}\right\rangle \delta^{-}\left\langle 4 \varepsilon^{3}\right\rangle$			5,17
				\{1\}	$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{2}\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle$			17
					$\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{2}\right\rangle \delta^{-}\left\langle 4 \varepsilon^{3}\right\rangle$	2	20	6,18,19
				\{2\}	$\alpha^{-}\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle$	1		19
					$\alpha^{-}\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle \delta^{-}\left\langle 4 \varepsilon^{3}\right\rangle$	2	22	7,20,21
				\{1,2\}	$\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle$	2		19,21
					$\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{2}\right\rangle \delta^{-}\left\langle 4 \varepsilon^{3}\right\rangle$	3	24	8,20,22,23

Table 18. Part 1 of $X_{I}, I=\{0,1,2,4\}$, from T^{11}. The pattern for $s=4$ is new: also see Tables $9,20$.

Table 19. Part 3 of $X_{I}, I=\{0,1,2,4\}$, from T^{11}. The pattern for $s=4$ is new: also see Tables 9,20 .

Table 20 details the start of the handle decomposition of X_{I} from T^{15} with $I=\{0,1,2,4,6\}$, focusing on the first few pieces Y_{z}. Those pieces have $J=\varnothing, i_{*}=6, U=\varnothing, V=\{1,2,3,4\}$. The interesting feature of this example is the ordering of these pieces. Compare to (20).

V^{-}	Y_{z}^{*}	h	z	glue to
\varnothing	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	0	1	
$\{1\}$	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	1	2	1
$\{1,2\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle 2\left\langle\gamma^{+} 3\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	1	3	2
$\{2\}$	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle 2\left\langle\gamma^{+} 3\right\rangle\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	2	4	1,3
$\{2,3\}$	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle 3\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	1	5	4
$\{1,2,3\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle 3\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	2	6	3,5
$\{1,3\}$	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2 \gamma^{-}\right\rangle 3\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	2	7	2,6
$\{3\}$	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{-}\right\rangle 3\left\langle\delta^{+} 4 \varepsilon^{3}\right\rangle \eta^{3}$	3	8	$1,5,7$
$\{3,4\}$	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	1	9	8
$\{1,3,4\}$	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	2	10	7,9
$\{1,2,3,4\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	2	11	6,10
$\{2,3,4\}$	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle\left\langle 2 \gamma^{-}\right\rangle\left\langle 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	3	12	$5,9,11$
$\{2,4\}$	$0\left\langle\alpha^{+} 1 \beta^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	2	13	4,12
$\{1,2,4\}$	$\left\langle 0 \alpha^{-}\right\rangle\left\langle 1 \beta^{-}\right\rangle 2\left\langle\gamma^{+} 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	3	14	$3,11,13$
$\{1,4\}$	$\left\langle 0 \alpha^{-}\right\rangle 1\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	3	15	$2,10,14$
$\{4\}$	$0\left\langle\alpha^{+} 1\right\rangle\left\langle\beta^{+} 2\right\rangle\left\langle\gamma^{+} 3 \delta^{-}\right\rangle\left\langle 4 \varepsilon^{3}\right\rangle \eta^{3}$	4	16	$1,9,13,15$

TABLE 20. Start of the handle decomposition from T^{15} with $I=\{0,1,2,4,6\}, J=\varnothing, i_{*}=6, U=\varnothing, V=\{1,2,3,4\}$.

Tables 21, 22, and 23 list the possible forms for $\xi_{r}(z)$. Table 21 lists those with no singleton factor. Table 22 lists those with a singleton factor $\{i\}$, where $i \in V^{+}$and $i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$, or $i \in U^{-} \cup U^{\circ} \cup V^{-}$and $i+1 \in V^{-}$; the class of this case depends on the parity of $\#\left(V^{-} \cap\left\{i+1, \ldots, \max I_{s}\right\}\right)$, where $i \in I_{s}$. Table 22 lists the remaining possibilities for $\xi_{r}(z)$.

class	$\xi_{r}(z)$	conditions
(A)	$\left[i_{*}-1, i_{*}\right]$	$i_{*} \in J$
(A)	$\left[i-1, i-\frac{1}{2}\right]$	$i \in J \cap V^{-} \Longrightarrow \quad{ }^{-} \neq i_{*}, i+1 \notin I$
(B)	$\left[i_{*}, i_{*}+\frac{1}{2}\right]$	$a \leq i_{*} \leq b-2, i_{*}+1 \in V^{-}$
(B)	$\left[i-\frac{2}{3}, i-\frac{1}{3}\right]$	$i \in U^{\circ}$
(B)	$\prod_{j=i_{*}+1}^{c-1}\left[i_{*}, j\right]^{2}$	$i_{*}=b, c \in J$
$(\mathrm{~B})$	$\prod_{j=i_{*}+1}^{c-2}\left[i_{*}, j\right]^{2}\left[i_{*}, c-1\right]^{3}$	$i_{*}=b, c \notin J$

TABLE 21. The possible forms for $\xi_{r}(z)$ with no singleton factor, where $i_{*} \in I_{s}, a=\min I_{s}, b=\max I_{s}, c=\min I_{s+1}$.

class	$\xi_{r}(z)$	conditions on i	conditions on $i+1$	parity
(A)	$\left[i-\frac{1}{2}, i\right]\{i\}$	$i \in V^{+}$	$i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$	odd
(A)	$\{i\}\left[i, i+\frac{1}{2}\right]$	$i \in U^{-} \cup U^{\circ} \cup V^{-}$	$i+1 \in V^{-}$	odd
(A)	$\left[i-\frac{1}{2}, i\right]\{i\}\left[i, i+\frac{1}{2}\right]$	$i \in V^{+}$	$i+1 \in V^{-}$	odd
(B)	$\left[i-\frac{1}{2}, i\right]\{i\}$	$i \in V^{+}$	$i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$	even
(B)	$\{i\}\left[i, i+\frac{1}{2}\right]$	$i \in U^{-} \cup U^{\circ} \cup V^{-}$	$i+1 \in V^{-}$	even
(B)	$\left[i-\frac{1}{2}, i\right]\{i\}\left[i, i+\frac{1}{2}\right]$	$i \in V^{+}$	$i+1 \in V^{-}$	even

Table 22. The possible forms for each $\xi_{r}(z)$ containing a singleton factor $\{i\}$, where $i \in V^{+}$and $i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$, or $i \in U^{-} \cup U^{\circ} \cup V^{-}$and $i+1 \in V^{-}$; the class depends on the parity of $\#\left(V^{-} \cap\left\{i+1, \ldots, \max I_{s}\right\}\right)$, where $i \in I_{s}$.

class	$\xi_{r}(z)$	conditions on i
(A)	$[i-1, i]\{i\}$	$i \in J, i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$
(A)	$[i-1, i]\{i\}[i, i+1]$	$i \in J, i_{*}=i+1$
(A)	$[i-1, i]\{i\}\left[i, i+\frac{1}{3}\right]$	$i \in J, i+1 \in U^{-}$
(A)	$[i-1, i]\{i\}\left[i, i+\frac{1}{2}\right]$	$i \in J, i+1 \in V^{-}$
(A)	$\left[i-\frac{1}{3}, i\right]\{i\}$	$i \in U^{+}, i+1 \in U^{\circ} \cup U^{+} \cup V^{+}$
(A)	$\{i\}\left[i, i+\frac{1}{3}\right]$	$i+1 \in U^{-}, i \in U^{-} \cup U^{\circ} \cup V^{-}$
(A)	$\left[i-\frac{1}{3}, i\right]\{i\}\left[i, i+\frac{1}{3}\right]$	$i \in U^{+}, i+1 \in U^{-}$
(A)	$\left[i-\frac{1}{3}, i\right]\{i\}\left[i, i+\frac{1}{2}\right]$,	$i \in U^{+}, i+1 \in V^{-}$
		$\Longrightarrow i+1=\max I_{s} \neq i_{*}$
(A)	$\left[i-\frac{1}{2}, i\right]\{i\}\left[i, i+\frac{1}{3}\right]$,	$i \in V^{+}, i+1 \in U^{-}$
		$\Longrightarrow i=i_{*}+1 \leq \max I_{s}-1$
(A)	$\{i\}$	$i=1 \in U^{-} \cup U^{\circ} \cup V^{-}$,
		$i=U^{\circ} \cup U^{+} \cup V^{+}$
(B)	$[i-1, i]\{i\} \prod_{j=i+1}^{c-2}[i, j]^{2}[i, c-1]^{q}$	$i_{*}=\min I_{s}=i-1=\max I_{s}-1$
(B)	$\left[i-\frac{1}{2}, i\right]\{i\} \prod_{j=i+1}^{c-2}[i, j]^{2}[i, c-1]^{q}$	$i=\max I_{s} \in V^{+}$
(B)	$\{i\} \prod_{j=i+1}^{c-2}[i, j]^{2}[i, c-1]^{q}$	$i=\max I_{s} \in V^{-}$

Table 23. The possible forms for each $\xi_{r}(z)$ not listed in Tables 21, 22. Each contains a singleton factor $\{i\}, i_{*} \neq i \in$ $I_{s}, s \in \mathbb{Z}_{m}$. Denote $c=\min I_{s+1}$ with $q \in\{2,3\}$.

Appendix 2: Three other attempts to multisect $T^{\boldsymbol{n}}$ for n odd

From the handle decomposition. The n-torus has a natural handle decomposition, with $\binom{n}{r} h$-handles for each $h=0, \ldots, n$. Viewing T^{n} as $(\mathbb{R} / 2 \mathbb{Z})^{n}$, each unit cube with vertices in $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ corresponds to a handle; more precisely, each permutation of $\alpha^{n-h} \beta^{h}$ corresponds to an h-handle.

Figure 10. Another construction of the minimal genus Heegaard splitting of S^{3}

One might hope that $X_{i}=\left\langle\alpha^{n-i} \beta^{i}\right\rangle \cup\left\langle\alpha^{n+1-i} \beta^{i-1}\right\rangle$ determines a multisection. Indeed, in dimension 3, this is the Heegaard splitting shown in Figure 1. Yet, the construction does not work beyond dimension 3, as one can see by noting, e.g., that $X_{0} \cap X_{k-1}=\left\langle\alpha \beta 1^{n-2}\right\rangle$ is always 2-dimensional.

Partition cubes into pairs of balls. Instead, at least in odd dimensions, one might attempt to generalize the following construction. See Figure 10.

First, somewhat like the approach taken throughout the paper, view $T^{n}=$ $[0,2 k]^{n} / \sim=(\mathbb{R} / 2 k \mathbb{Z})^{n}$. Partition the $(2 k)^{n}$ unit cubes with vertices in the lattice $(\mathbb{Z} / 2 k \mathbb{Z})^{n}$ so as to form V_{0}, \ldots, V_{n} subject to the following conditions: ${ }^{7}$

- If $\vec{x} \in V_{0}$, then $\vec{x}+(r, \ldots, r) \in V_{r}$;
- The permutation action on the indices fixes each V_{r};
- V_{0} contains $[0,1]^{n}$, is star-shaped about $(0, \ldots, 0)$, and contains no points with any coordinate in $(n-1, n)$.

For $i=0, \ldots, k=\frac{n+1}{2}$, let $X_{i}=V_{2 i} \cup V_{2 i+1}$. This construction does in fact give a genus 3 Heegaard splitting of T^{3}. See Figure 10.

In higher dimensions, this construction is promising for many of the same reasons as the construction behind Theorem 7.11. This construction has at least one additional advantage, namely that each V_{i} is a ball. This makes it easy to check that each X_{i} is indeed an n-dimensional handlebody of genus n. Unfortunately, the complexity of this construction grows much more rapidly than the construction behind Theorem 7.11, making it hard to check the other details, even in dimension 5. Indeed, see Figure 11.

Question 8.6. Does this construction also give a (PL or smooth) trisection of T^{5} ? Does it give a multisection of T^{n} for arbitrary $n=2 k-1$?

[^5]

Figure 11. Decomposing $T^{5}=[0,6]^{5}$ as $V_{0} \cup \cdots \cup V_{5}$. Does $\left(V_{0} \cup V_{1}, V_{2} \cup V_{3}, V_{4} \cup V_{5}\right)$ determine a trisection?

Figure 12. The decompositions $\Delta_{k-1}=\bigcup_{i \in \mathbb{Z}_{k}} Z_{i}$ of the 1-, 2 -, and 3 -simplices following Rubinstein-Tillmann.

Using the symmetric space $\boldsymbol{T}^{n} / \boldsymbol{S}_{\boldsymbol{n}}$. Given a triangulation K of an n manifold X, Rubinstein-Tillmann multisect X by mapping each n-simplex of K to the standard $(k-1)$-simplex

$$
\Delta_{k-1}=\left[\vec{v}_{0}, \ldots, \vec{v}_{k-1}\right]=\left\{\sum_{j \in \mathbb{Z}_{k}} a_{j} \vec{v}_{j}: 0 \leq a_{j}, \sum_{j \in \mathbb{Z}_{k}} a_{j}=1\right\},
$$

decomposing $\Delta_{k-1}=\bigcup_{i \in \mathbb{Z}_{k}} Z_{i}$ where each

$$
\begin{equation*}
Z_{i}=\left\{\vec{x} \in \Delta_{k-1}:\left|\vec{x}-\vec{v}_{i}\right| \leq\left|\vec{x}-\vec{v}_{j}\right| \forall j \in \mathbb{Z}_{k}\right\}, \tag{24}
\end{equation*}
$$

(see Figure 12), and pulling back. Their maps from the n-simplices of K to Δ_{k-1} are simplest to construct in odd dimension $n=2 k-1$. Namely:

- map the barycenter of each r-face to $\vec{v}_{j} \in \Delta_{k-1}, j=2 r, 2 r+1$; and
- extend linearly in the first barycentric subdivision of K.

The even-dimensional case is similar, but with an extra move.
For example, the triangulation of S^{3} with two 3 -simplices gives a genus 3 Heegaard splitting, as shown in Figure 13.

Figure 13. A genus 3 Heegaard splitting (right) of S^{3}, following Rubinstein-Tillmann's construction.

Following Rubinstein-Tillmann, one might try to construct a, say PL, multisection of T^{n} using the symmetric space T^{n} / S_{n}, which is homeomorphic to a disk-bundle over the circle; this bundle is twisted when n is even and untwisted when n is odd.

One can also view the symmetric space T^{n} / S_{n} as an n-simplex $\Delta_{n}=$ $\left[\vec{v}_{0}, \ldots, \vec{v}_{n}\right]$ with certain faces identified. When $n=2 k-1$, one can also view Δ_{n} as an iterated join of intervals,

$$
\Delta_{n}=\left[\vec{v}_{0}, \vec{v}_{1}\right] * \cdots *\left[\vec{v}_{2(k-1)}, \vec{v}_{2 k-1}\right] .
$$

Hence, there is a map $\phi: \Delta_{n} \rightarrow \Delta_{k-1}=\left[\vec{v}_{0}, \ldots, \vec{v}_{n}\right]$ given by

$$
\phi: \vec{x}=\sum_{i=0}^{k-1} w_{i}\left(c_{i} \vec{v}_{2 i}+\left(1-c_{i}\right) \vec{v}_{2 i+1}\right) \mapsto \sum_{i=0}^{k-1} w_{i} \vec{v}_{i} .
$$

One can then decompose Δ_{k-1} symmetrically into k pieces using barycentric coordinates as in (24) and Figure 14. Following Rubinstein-Tillmann's construction of PL multisections from triangulations [7], one might attempt to construct a multisection of T^{n} by pulling back each X_{i} via ϕ, mapping forward by the quotient map $\Delta_{n} \rightarrow T^{n} / S_{n}$, and pulling back by the quotient $\operatorname{map} T^{n} \rightarrow T^{n} / S_{n}$.
This construction works for T^{3} and cuts any T^{n} into k 1-handlebodies of genus n. Unfortunately, the needed intersection properties fail, even for T^{5}, so the decomposition is not a multisection. Note that by writing

$$
\Delta_{n}=\left[\vec{v}_{0}, \vec{v}_{1}\right] * \cdots *\left[\vec{v}_{2(k-1)}, \vec{v}_{2 k-1}\right]
$$

we made an asymmetric choice, and that the resulting decomposition is generally different than the one obtained by writing

$$
\Delta_{n}=\left[\vec{v}_{\sigma(0)}, \vec{v}_{\sigma(1)}\right] * \cdots *\left[\vec{v}_{\sigma(2 k-2)}, \vec{v}_{\sigma(2 k-1)}\right]
$$

for arbitrary $\sigma \in S_{n}$ and then following the same procedure.

Figure 14. Try viewing T^{n} / S_{n} as Δ_{n} / \sim and Δ_{n} as an iterated join of k intervals. Then map $\Delta_{n} \rightarrow \Delta_{k-1}$, decompose Δ_{k-1}, and pull back. It fails, even for $n=5$, shown.

References

[1] D. Gay, R. Kirby, Trisecting 4-manifolds, Geom. Topol. 20 (2016), no. 6, 3097-3132.
[2] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge (2002), xii+544 pp.
[3] P. Lambert-Cole, M. Miller, Trisections of 5-manifolds, arXiv:1904.01439.
[4] J. Meier, T. Schirmer, A. Zupan, Classification of trisections and the generalized property R conjecture Proc. Amer. Math. Soc. 144 (2016), no. 11, 4983-4997.
[5] H.R. Morton, Symmetric products of the circle, Proc. Cambridge Philos. Soc. 63 (1967), 349-352.
[6] The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[7] J.H. Rubinstein, S. Tillmann, Multisections of piecewise linear manifolds, to appear in the Indiana Univ. Math. J., arXiv:1602.03279v2.
[8] J.H. Rubinstein, S. Tillmann, Generalized trisections in all dimensions, Proc. Natl. Acad. Sci. USA 115 (2018), no. 43, 10908-10913.

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NeBRASKA 68588-0130, USA
thomas.kindred@unl.edu
www.thomaskindred.com

[^0]: ${ }^{1}$ All manifolds throughout, whether PL or smooth, are compact, connected, and orientable. A manifold X is closed if $\partial X=\varnothing$.
 ${ }^{2}$ A d-dimensional h-handlebody is a d-manifold obtained by gluing d-dimensional r-handles for various $r=0, \ldots, h$.

[^1]:

[^2]: ${ }^{4}$ Any surface of positive even genus, however, admits a smooth multisection with efficiency 2. This is the maximum possible efficiency for any multisection of any surface.

[^3]: $\overline{5^{5} \text { Note that by }}$ definition, if $a, b \in \mathbb{Z}$ with $b<0$, then $\binom{a}{b}=0$.

[^4]: ${ }^{6}$ To see why, consider the last row of Table 10. It shows for each $s \in \mathbb{Z}_{m}$ with $I_{s} \neq I_{*}$ that $I_{s} \backslash(U \cup V) \subset\left\{\min I_{s}\right\}$. Therefore, each ρ_{r} coming from such I_{s} contains no full unit interval $[i, i+1]$ where $i, i+1 \in I_{s}$. Similar reasoning applies to those ρ_{r} coming from I_{*}, where $I_{*} \backslash\left(U \cup V \cup i_{*}\right) \subseteq\left\{\max I_{*}, \min I_{*}\right\}$ with equality only when $\min I_{*}<i_{*}=\max I_{*}-1$.

[^5]: ${ }^{7}$ These conditions uniquely determine V_{0}, \ldots, V_{n}.

