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Abstract. After Gay–Kirby extended the classical notion of Heegaard
splittings of 3-manifolds by introducing trisections of smooth 4-manifolds,
Rubinstein–Tillmann defined multisections of PL n-manifolds. We con-
sider smooth multisections, which are decompositions into k = bn/2c+1
n-dimensional 1-handlebodies with nice intersection properties. We
prove that a manifold X of even dimension n ≥ 6 admits no smooth
multisection if Hi(X) 6= 0 for any odd i 6= 1, n − 1. By contrast, every
manifold admits a PL multisection, and every manifold of dimension
n ≤ 5 admits a smooth multisection.

What about odd dimensions n ≥ 7? We construct, for each odd-
dimensional torus Tn, a smooth multisection which is efficient in the
sense that each 1-handlebody has genus n, which we prove is optimal;
each multisection is symmetric with respect to both the permutation
action of Sn on the indices and the Zk translation action along the main
diagonal. We also construct such a trisection of T 4, lift all symmetric
multisections of tori to certain cubulated manifolds, and obtain combi-
natorial identities as corollaries.

1. Introduction

Every closed 3-manifold1 X admits a decomposition into two 3-dimensional
1-handlebodies2 glued along their boundaries. Gay–Kirby (resp. Lambert-
Cole–Miller) extended this classical notion of Heegaard splittings by proving
that every closed smooth 4- (resp. 5-) manifold admits a decomposition
X =

⋃
i∈Z3

Xi where each Xi is a 4- (resp. 5-) dimensional 1-handlebody,
each Xi ∩ Xi+1 is a 3-dimensional 1-handlebody (resp. 4-dimensional 2-
handlebody), and X0 ∩X1 ∩X2 is a closed surface (resp. 3-manifold). Each
of these smooth trisections gives a handle decomposition of X in which X0

contributes all the 0- and 1-handles, X1 all the 2- and (n− 2)-handles, and
X2 all the (n− 1)- and n-handles.

In the PL category, Rubinstein-Tillmann proved that every closed manifold
of arbitrary dimension n = 2k − 1 (resp. 2k − 2) admits a decomposition

1All manifolds throughout, whether PL or smooth, are compact, connected, and ori-
entable. A manifold X is closed if ∂X = ∅.
2A d-dimensional h-handlebody is a d-manifold obtained by gluing d-dimensional r-handles
for various r = 0, . . . , h.
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2 THOMAS KINDRED

X =
⋃
i∈Zk

Xi where each Xi is an n-dimensional 1-handlebody; for each

I $ Zk with |I| ≥ 2,
⋂
i∈I Xi is an (n + 1 − |I|)-dimensional submanifold

with an |I|- (resp. (|I|−1)-) dimensional spine;3 and the central intersection⋂
i∈Zk

Xi is a k- (resp. (k − 1)-) dimensional manifold. We consider the
smooth analog of these PL multisections:

Definition 1.1. Let X be a closed manifold of dimension n = 2k− 1 (resp.
2k − 2). A smooth multisection is a decomposition X =

⋃
i∈Zk

Xi, where:

• Each Xi is an n-dimensional 1-handlebody.
• For each I ⊂ Zk with 2 ≤ |I| ≤ k − 1,

⋂
i∈I Xi is an (n + 1 − |I|)-

dimensional |I|- (resp. (|I| − 1)-) handlebody.
• The central intersection

⋂
i∈Zk

Xi is a closed k- (resp. (k − 1)-)
dimensional submanifold.

Section 2 shows that any combinatorial description of a smooth multisec-
tion X =

⋃
i∈Zk

Xi gives a handle decomposition of X, and thus a smooth

structure (in which each XI is smoothly embedded, generally with corners).

Theorem 2.5. Let X =
⋃
i∈Zk

Xi be a smooth multisection of a closed
manifold of dimension n = 2k − 1. Then X has a handle decomposition in
which each Xi provides all the 2i- and (2i+ 1)-handles.

Theorem 2.7. Let k ≥ 3. If a closed (2k − 2)-manifold has a smooth mul-
tisection X =

⋃
i∈Zk

Xi, then X has a handle decomposition in which each
Xi provides all the 2i-handles, and the only handles with odd-dimensional
cores are the 1-handles from X0 and the (n− 1)-handles from Xk−1.

In even dimension n, this handle decomposition reveals that any nontrivial
homology group in odd dimension i 6= 1, n − 1 obstructs the existence of
smooth multisections. In general, the handle decomposition bounds the
efficiency of smooth multisections. Let g(Xi) denote the genus of Xi; that
is, since Xi is an n-dimensional 1-handlebody, Xi ≈ \g(S1×Dn−1) for some
g = g(Xi).

Definition 1.2. The efficiency of a smooth multisection X =
⋃
i∈Zk

Xi is
1

1 + maxi g(Xi)
H1(X) = 0

rank π1(X)

maxi g(Xi)
H1(X) 6= 0

A multisection is efficient if its efficiency is 1.

3A spine of a PL manifold N is a subpolyhedron P ⊂ int(N) onto which N collapses.
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Corollary 2.10. Any smooth multisection in dimension n 6= 2 has efficiency
at most 1; if X =

⋃
i∈Zk

Xi is efficient, then all Xi have the same genus.4

Section 3 begins a detailed investigation of smooth multisections of odd-
dimensional tori. Roughly stated, the main result of that investigation is:

Theorem 7.11. Each n = (2k− 1)-torus admits an efficient smooth multi-
section which is symmetric with respect to the permutation action by Sn on
the indices and the translation action by Zk along the main diagonal.

The full version of Theorem 7.11 gives a simple expression (1) for each piece
Xi of this multisection. The hard part will be describing, in arbitrary odd
dimension, a handle decomposition of XI =

⋂
i∈I Xi for arbitrary I $ Zk.

Section 3 describes the multisections of Tn for n = 3, 4, 5 in detail.

Section 4 introduces three types of building blocks; each handle of each XI

in arbitrary odd dimension will be a product of such blocks.

Section 5 describes further examples, each featuring a new complication in
the handle decomposition of XI .

Section 6 proves several combinatorial facts, including that Tn =
⋃
i∈Zk

Xi,
and obtains two combinatorial identities as corollaries. In particular, §6.4
establishes a closed expression (2) for arbitrary XI .

Section 7 describes the handle decomposition of arbitrary XI , confirms the
details of this decomposition, shows that the central intersection

⋂
i∈Zk

Xi

is a closed k-manifold, and puts everything together to prove Theorem 7.11

Section 8 extends Theorem 7.11 to certain cubulated manifolds.

Appendix 1 features tables, several detailing follow-up examples for the com-
plications introduced in §§3 and 5, others detailing aspects of the handle de-
composition described in §7.2. Appendix 2 describes three other ways that
one might attempt to multisect Tn. Two attempts fail in instructive ways;
the status of the other attempt is uncertain.

Thank you to Mark Brittenham, Charlie Frohman, Peter Lambert-Cole
for helpful discussions. Special thank you to Alex Zupan for helpful dis-
cussions throughout the project, especially during its early stages, when we
collaborated to find efficient trisections of T 4 and T 5.

4Any surface of positive even genus, however, admits a smooth multisection with efficiency
2. This is the maximum possible efficiency for any multisection of any surface.
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2. Smooth multisections and their efficiency

Example 2.1. For n = 2k − 1, the n-sphere

Sn = ∂
k−1∏
i=0

D2 =
k−1⋃
i=0

i−1∏
j=0

D2 × S1 ×
k−1∏
j=i+1

D2


admits a smooth multisection in which each

Xi =

i−1∏
j=0

D2 × S1 ×
k−1∏
j=i+1

D2

is an n-dimensional 1-handlebody of genus 1. In dimension 3, this is the
genus 1 Heegaard splitting of S3, with central surface S1 × S1. In arbi-

trary dimension n, the central intersection is the k-torus
∏k−1
j=0 S

1, and more

generally, for each I ⊂ Zk with 1 ≤ |I| = ` ≤ k − 1, the intersection

XI =
⋂
j∈I

Xi =

k−1∏
j=0

{
S1 j ∈ I
D2 j /∈ I

}
≈

`−1∏
j=0

S1 ×
k−1∏
j=`

D2 ≈ T ` ×D2(k−`)

is a thickened `-torus. In dimension 5, Lambert-Cole–Miller use this con-
struction and a second trisection of S5, whose central intersection is a 3-
sphere rather than a 3-torus, to show that, unlike Heegaard splittings of
3-manifolds and trisections of 4-manifolds, trisections of a given 5-manifold
need not be stably equivalent [3].

Example 2.2. Using homogeneous coordinates [z0 : · · · : zk−1] on CPk−1,
one can define a smooth multisection by [7]

Xi = {[z0 : · · · : zk−1] | |zi| ≥ |zj | for j = 0, . . . , k − 1} .

Then each XI with |I| = ` is related by permutation to a thickened torus

`−1⋂
i=0

Xi =

{
[1 : z1 : · · · : zk−1]

∣∣∣∣ |zj | = 1 for j = 1, . . . , `− 1,
|zj | ≤ 1 for j = `, . . . , k − 1

}
≈ T `−1 ×D2(k−`).

In particular, the central intersection is

{[1 : z1 : · · · : zk] : |z1| = · · · = |zk| = 1} .

These symmetric multisections are also efficient, since each Xi has genus 0.

Proposition 2.3. For i = 1, 2, let Zi be an n-manifold admitting an hi-
handle decomposition, and let φ : Y1 → Y2 glue compact Yi ⊂ ∂Zi, such that
Y1 ≈ Y2 admit h-handle decompositions. Then Z = Z1 ∪φ Z2 admits an
h′-handle decomposition for h′ = max{h1, h2, h+ 1}.
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Proof. By taking a bicollared neighborhood N of Y = φ(Y1) = φ(Y2) in
Z, where N ≡ [−1, 1]× Y , we may identify Z \ int(N) with Z1 t Z2, which
admits an h′′-handle decomposition where h′′ = max{h1, h2}. Then, for
each i-handle H ≡ Di×Dn−1−i in Y , 0 ≤ i ≤ h, we can glue on [−1, 1]×H
along ∂([−1, 1]×Di)×Dn−1−i ≈ Si×Dn−1−i, and so attaching [−1, 1]×H
is the same as attaching an (i+ 1)-handle, where i+ 1 ≤ h+ 1. �

Proposition 2.4. Let X =
⋃
i∈Zk

Xi be a smooth multisection of a closed
manifold of dimension n = 2k − 1. Then for each 1 ≤ j ≤ i ≤ k − 1:

j−1⋃
t=0

Xt ∩
i⋂
t=j

Xt

admits an (i+ j)-handle decomposition.

In particular, taking j = i, (X0∪· · ·∪Xi−1)∩Xi admits a 2i-handle decom-
position. Hence, each X0 ∪ · · · ∪Xi admits a (2i+ 1)-handle decomposition.

Proof. We argue by lexicographical induction on (i, j). When (i, j) = (1, 1),
proposition is true by definition, since X0 ∩X1 is a 2-handlebody. The last
claim then follows from Proposition 2.3.

Let (i, j) > (1, 1). Assume for each (r, s) < (i, j) that (X0 ∪ · · · ∪ Xs−1) ∩
Xs ∩ · · · ∩ Xr admits an (r + s)-handle decomposition. Assume also that
X0 ∪ · · · ∪Xi−1 admits a (2i− 1)-handle decomposition. Let

Z1 =

j−2⋃
t=0

Xt ∩
i⋂
t=j

Xt

and

Z2 =
i⋂

t=j−1
Xt,

so that
j−1⋃
t=0

Xt ∩
i⋂
t=j

Xt = Z1 ∪ Z2

Then Z2 admits an (i+ 1− j)-handle decomposition. So does Z1, by sym-
metry and the induction hypothesis. Further,

Z1 ∩ Z2 =

j−2⋃
t=0

Xt ∩
i⋂

t=j−1
Xt,

which, by induction, admits an (i+ j−1)-handle decomposition. Therefore,
Z1 ∪ Z2 admits a h-handle decomposition, where

h = max{i+ j − 1, i+ 1− j, i+ j} = i+ j.
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Finally, consider W = X0 ∪ · · · ∪ Xi. Then W = W1 ∪ Xi where W1 =
X0∪· · ·∪Xi−1, which, by induction, admits a 2(i−1)-handle decomposition.
We just showed that W1 ∩Xi has a 2i-handle decomposition. Therefore, by
Proposition 2.3, W admits an h-handle decomposition where

h = max{2(i− 1), 1, 2i+ 1} = 2i+ 1. �

Flipping X upside down reveals:

Theorem 2.5. Let X =
⋃
i∈Zk

Xi be a smooth multisection of a closed
manifold of dimension n = 2k − 1. Then X has a handle decomposition in
which each Xi provides all the 2i- and (2i+ 1)-handles.

Proof. Given such a multisection, Proposition 2.4 implies that X admits
an n-handle decomposition in which each Xi contributes only h-handles
for various h ≤ 2i + 1. After flipping X upside down, Proposition 2.4
implies that each Xi contributes only (n − h)-handles for various n − h ≤
2(k−1−i)+1. Combining these two-sided bounds gives 2i ≤ h ≤ 2i+1. �

Proposition 2.4 and its proof adapt directly to even dimensions:

Proposition 2.6. Let X =
⋃
i∈Zk

Xi be a smooth multisection of a closed
manifold of dimension n = 2k − 2. Then for each 1 ≤ j ≤ i ≤ k − 1:

j−1⋃
t=0

Xt ∩
i⋂
t=j

Xt

admits an (i+j−1)-handle decomposition. Hence, each X0∪· · ·∪Xi admits
a 2i-handle decomposition.

Proof. Argue by lexicographical induction on (i, j). The base case holds,
since X0 ∩X1 has a core of dimension 1. The induction step follows exactly
as in the proof of Proposition 2.4. �

In odd dimensions, X1 contributes 2- and 3-handles, but in even dimensions,
X1 contributes no 3-handles. The ramifications of this difference are striking:

Theorem 2.7. Let k ≥ 3. If a closed (2k − 2)-manifold has a smooth mul-
tisection X =

⋃
i∈Zk

Xi, then X has a handle decomposition in which each
Xi provides all the 2i-handles, and the only handles with odd-dimensional
cores are the 1-handles from X0 and the (n− 1)-handles from Xk−1.

Proof. By the reasoning from the proof of Theorem 2.5, each Xi contributes
only h-handles for various h ≤ 2i and only (n − h)-handles for various
n− h ≤ 2(k − 1− i), hence contributes only 2i-handles. �



SMOOTH MULTISECTIONS OF ODD-DIMENSIONAL TORI AND OTHER MANIFOLDS7

Corollary 2.8. Let X be a closed smooth manifold of even dimension n ≥ 6.
If Hi(X) 6= 0 for any odd i 6= 1, n−1, then X admits no smooth multisection.
In particular, for even n ≥ 6, Tn admits no smooth multisection.

Corollary 2.9. When n 6= 2, any smooth multisection X =
⋃
i∈Zk

Xi obeys

min
i∈Zk

g(Xi) ≥ rank π1(X).

Corollary 2.10. No smooth multisection of any manifold of any dimension
n 6= 2 has efficiency greater than 1. In any efficient smooth multisection
X =

⋃
i∈Zk

Xi, all Xi have the same genus.

Question 2.11. Does every smooth odd-dimensional manifold have a smooth
multisection?

3. Motivating examples

Figure 1 illustrates an efficient Heegaard splitting of the 3-torus, which sug-
gests viewing T 3 as (R/2Z)3; then the splitting is determined by a par-
tition of the eight unit cubes with vertices in the lattice (Z/2Z)3. More-
over, this partition satisfies two symmetry properties: first, the permuta-
tion action of S3 on the indices in T 3 fixes each piece of the slitting, and
second, the Z2 translation action along the main diagonal of T 3 satisfies
Xi + (1, 1, 1, 1) = Xi+1. Note that, while this splitting looks PL it (as with
any Heegaard splitting) qualifies as smooth, since both Xi are handlebodies.

How might one construct efficient smooth trisections of Tn, n = 4, 5, with
symmetry properties analogous to Figure 1’s splitting of T 3? To begin, one
might view these Tn as (R/3Z)n—rather than, say, (R/2Z)n, because we
seek a trisection rather than a splitting—and seek an appropriate partition
of the 3n unit cubes with vertices in the lattice (Z/3Z)n. From now on, for
brevity, we will refer to these unit cubes as subcubes of Tn.

To start forming this partition, one might assign each subcube [i, i+ 1]n to
Xi (because of the translation action). Next, one might assign each subcube
of the form [i, i + 1]n−1[i + 1, i + 2], [i, i + 1]n−1[i − 1, i] to Xi as well, and

Figure 1. A Heegaard splitting of T 3.



8 THOMAS KINDRED

Figure 2. Start partitioning the subcubes of T 4 = (R/3Z)4

like this, giving three 4-dimensional 1-handlebodies.

extend these assignments using the permutation action on the indices. At
this point, each Xi is indeed an n-dimensional 1-handlebody, and so the
rest of the partition should be constructed in a way that preserves this fact,
while also giving rise to the needed pairwise intersection properties. Figure
2 illustrates this intermediate stage in the case of T 4.

For T 4, the symmetry properties imply that the remaining partition is deter-
mined by the assignments of the subcubes [0, 1]2[1, 2][2, 3] and [0, 1]2[1, 2]2.
Assigning both subcubes to X0 and extending symmetrically gives the de-
composition of T 4 illustrated in Figures 3 and 4. Section 3.2 will confirm
that this decomposition is indeed a trisection.

A similar approach leads to the decomposition of T 5 shown in Figure 5.
Section 3.3 will confirm that this, too, is a trisection.

3.1. Notation.

Notation 3.1. Let X,Y ⊂ Z be compact subspaces of a topological space.
Denote “X cut along Y ” by X \ \Y . In every example where we use this
notation, X \\Y equals the closure in Z of X \Y . (The general construction
is somewhat more complicated.)

Given n = 2k − 1, 2k − 2, view the n-torus Tn as (R/kZ)n. Let Sn denote
the permutation group on n elements.

Notation 3.2. Given ~x = (x1, . . . , xn) ∈ Tn and σ ∈ Sn, denote

~xσ = (xσ(1), . . . , xσ(n)).
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Figure 3. Partitioning the 34 subcubes of T 4 = (R/3Z)4

like this gives a symmetric efficient smooth trisection of T 4.

t ∈ (0, 1)

t ∈ (1, 2)

t ∈ (2, 3)

Figure 4. In the multisection of T 4 from Figure 3, each slice
T 3 × {t}, t ∈ (R/3Z) \ Z3, intersects X0, X1, X2 like this.

Also, given U ⊂ Tn and ~v ∈ Tn, denote

U + ~v = {~u+ ~v : ~u ∈ U}.
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Figure 5. Partitioning the 35 subcubes of T 5 = (R/3Z)5

like this gives a symmetric efficient smooth trisection of T 5.

The symmetric group Sn acts on Tn by permuting the indices, σ : ~x 7→ ~xσ.
Because we are interested in subsets of Tn which are fixed by this action:

Notation 3.3. For any subset U ⊂ Tn, denote

〈U〉 = {~xσ : ~x ∈ U, σ ∈ Sn} ⊂ Tn.

Note, for any U ⊂ Tn, that 〈U〉 is fixed by the action of Sn on Tn.

Theorem 7.11. For n = 2k − 1, the n-torus Tn = (R/kZ)n = [0, k]n/ ∼
admits an efficient smooth multisection Tn =

⋃
i∈Zk

Xi defined by

X0 =
〈
[0, 1]2 · · · [0, k − 1]2[0, k]

〉
,

Xi = X0 + (i, . . . , i), i ∈ Zk.
(1)

By construction, the decomposition is symmetric with respect to the permu-
tation action on the indices and the translation action on the main diagonal.

Anticipating the concrete and (somewhat) low-dimensional nature of §§3, 5
and Appendix 1, give the first few intervals [i, i+1], i ∈ Zk, special notations:

Notation 3.4. Denote

[0, 1] = α, [1, 2] = β, [2, 3] = γ, [3, 4] = δ, [4, 5] = ε, [5, 6] = ζ, [6, 7] = η.

To further abbreviate our notation, we will often omit × symbols and use
exponents to denote repeated factors. For example, we can describe the two
pieces of the Heegaard splitting of T 3 from Figure 1 like this:

X0 = α3 ∪ α2β ∪ αβα ∪ βα2, X1 = β3 ∪ β2α ∪ βαβ ∪ αβ2.
Using Notation 3.3, we can further abbreviate this notation:

X0 = α3 ∪
〈
α2β

〉
X1 = β3 ∪

〈
β2α

〉
=
〈
α2[0, 2]

〉
=
〈
β2[1, 3]

〉
.
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We often omit the braces around singleton factors. For example, in T 3:

X0 ∩X1 = 〈[0, 1]× [1, 2]× {0}〉 ∪ 〈[0, 1]× [1, 2]× {1}〉
= 〈αβ0〉 ∪ 〈αβ1〉 .

We also extend Notation 3.3 in the way suggested by the following example:

〈0α〉β2 = ({0} × α× β × β) ∪ (α× {0} × β × β) .

More precisely, if we decompose Tn as a product Tn = Tn1 × · · · × Tnp and
Ui ⊂ Tni for i = 1, . . . , p, then

〈U1〉 · · · 〈Up〉 =
{

(~x1σ1 , ~x
2
σ2 , . . . , ~x

p
σp) : ~xi ∈ Tni , σi ∈ Sni , i = 1, . . . , p

}
where, extending Notation 3.2, denoting each ~xi = (xi1, . . . , x

i
ni

), each

~xiσi =
(
xiσi(1), . . . , x

i
σi(ni)

)
.

Starting in dimension 7, some handle decompositions will require subdivid-
ing unit subintervals α, β, γ, δ, . . . into halves or thirds. Anticipating this:

Notation 3.5. Denote

α− =
[
0, 12
]
, α+ =

[
1
2 , 1
]
, . . . , [η−] =

[
6, 132

]
, η+ =

[
13
2 , 7

]
and

α−3 =
[
0, 13
]
, α◦3 =

[
1
3 ,

2
3

]
, α+

3 =
[
2
3 , 1
]
, . . . , η◦3 =

[
19
3 ,

20
3

]
, η+3 =

[
20
3 , 7

]
.

Because of the symmetry of the construction under the Zk translation action
on Tn, it will suffice, when considering XI , to allow I to be arbitrary only
up to cyclic permutation. In order to take advantage of this convenience:

Notation 3.6. Given I ⊂ Zk with |I| = ` > 0, denote XI =
⋂
i∈I Xi, and

denote I = {is}s∈Z`
such that

0 ≤ i0 < i1 < · · · < i`−1 ≤ k − 1.

Definition 3.7. Let I = {is}s∈Z`
as in Notation 3.6. For each r ∈ Z`, define

Ir = {i + r : i ∈ I} ⊂ Zk. Denote each Ir = {irs}s∈Z`
with 0 ≤ ir0 < ir1 <

· · · < ir`−1 ≤ k − 1. Say that I is simple if, for each r ∈ Z`, we have I ≤ Ir
under the lexicographical ordering of their elements, i.e. if each Ir 6= I has
some s ∈ Z` with it = irt for each t = 0, . . . , s− 1 and is < irs.

Notation 3.8. Given simple I = {is}s∈Z`
⊂ Zk as in Notation 3.6, define

T = {r ∈ Zk : ir − 1 /∈ I}.
Denote T = {tr}r∈Zm with 0 = t0 < · · · < tm < `. For each r ∈ Zm, denote
Ir = {itr , . . . , itr+1−1}. Then

I = I1 t · · · t Im,
and for each r = 0, . . . ,m − 1, we have |Ir| = max Ir + 1 − min Ir (each
block Ir is comprised of consecutive indices) and min Ir+1 ≥ max Ir + 2 (the
blocks are nonconsecutive).
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Figure 6. A handle decomposition of X0 in Figure 3’s tri-
section of T 4: the 0-handle consists of 11 subcubes; each of
four 1-handles consists of four subcubes.

Given i∗ ∈ I (denoted specifically as i∗), denote the Ir containing i∗ by I∗.

Convention 3.9. Throughout, reserve the notations n, k, α, . . ., η, α−, . . .,
η+, α−3 , . . ., η

+
3 , I, XI , `, T , and m for the way they are used in Notations

3.4-3.8. Assume, unless otherwise stated, that I ⊂ Zk is simple. Also
reserve, for any s ∈ Z` or r ∈ Zm, the notations is, tr, Ir, i∗, and I∗ for the
way they are used in Notations 3.6 and 3.8.

Observation 3.10. Given I $ Zk, we have i0 = 0, i`−1 ≤ k − 2, and
|I0| ≥ |Ir| for each r ∈ Zm; if |I0| = |Ir|, then |I1| ≥ |Ir+1|.

Given I ⊂ Zk and s ∈ Z`, denote

(i1, . . . , îs, . . . , i`) = (i1, . . . , is−1, is+1, . . . , i`) ⊂ T `−1.

Lemma 6.13. Given nonempty I j Zk, XI is given by:

(2)
⋃
i∗∈I

〈
(i1, . . . , î∗, . . . , i`)

∏
r∈Z`

[ir, ir + 1]2 · · · [ir, ir+1 − 1]2[ir, ir+1]

〉
.

In particular,

(3)
⋂
i∈Zk

Xi =
⋃
i∗∈Zk

〈
(0, . . . , î∗, . . . , k − 1)

∏
i∈Zk

[i, i+ 1]

〉
.

We will prove Lemma 6.13 in §6.4.
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3.2. Trisection of T 4. The decomposition of T 4 from Figure 3 is given by

X0 =
〈
α2[0, 2][0, 3]

〉
=
〈
α4
〉
∪
〈
α3β

〉
∪
〈
α3γ

〉
∪
〈
α2β2

〉
∪
〈
α2βγ

〉
Xi =X0 + (i, i, i, i).

(4)

It is evident from Figure 3 that X0 ∪ X1 ∪ X2 = T 4. Also, I = {0} and
I = {0, 1} are the only subsets of {0, 1, 2} which are simple. Therefore, in
order to check that (4) determines a trisection of T 4, it suffices to prove
that X0 is a 4-dimensional 1-handlebody and X0 ∩ X1 is a 3-dimensional
1-handlebody with ∂(X0 ∩X1) = X0 ∩X1 ∩X2.

Indeed, Figure 6 shows a handle decomposition of X0 in which
〈
α2[0, 2]2

〉
is a 0-handle and

〈
α2[0, 2]γ

〉
supplies four 1-handles, each a permutation

of
〈
α2[0, 2]

〉
γ. More precisely, each 1-handle is given, in terms of some

permutation σ ∈ S4 (using Notation 3.2), by{
~xσ : ~x ∈

〈
α2[0, 2]

〉
γ
}
.

Now consider

X0 ∩X1 = 〈α1β[1, 3]〉 ∪
〈
0αβ2

〉
.

We claim that this is a 3-dimensional 1-handlebody in which:

• Y1 =
〈
α1β2

〉
is the 0-handle;

• Y2 =
〈
0αβ2

〉
gives six 1-handles, all permutations of Y ∗2 = 〈0α〉β2;

• Y3 = 〈α1βγ〉 gives four 1-handles, all permutations of Y ∗3 = 〈α1β〉 γ.

Figure 7 shows this decomposition of X0 ∩X1:

• The shape in the center (which looks like a truncated tetrahedron)
is the 0-handle

〈
α1β2

〉
, comprised of 12 cubes, each a permutation

of α1β2. The interior lattice point is (1, 1, 1, 1), and each triangular-
looking face is a permutation of 0

〈
1β2
〉
. Each blue segment on

∂
〈
α1β2

〉
is a permutation of 〈α1〉 22.

• Each of the four three-pronged pieces is a permutation of 0
〈
αβ2

〉
,

glued to the 0-handle along 0
〈
1β2
〉
. The twelve cubes comprising

these pieces are then glued in pairs: 0αβ2 and α0β2, e.g., meet
along the face 00β2, and the other pairs are permutations of this.
The union of each pair of cubes, (a permutation of) Y ∗2 = 〈0α〉β2, is
a 1-handle which is glued to the 0-handle along (the corresponding
permutation of) 〈01〉β2. Note that Y ∗2 intersects other permutations
of Y ∗2 , but only within Y ∗2 ∩ Y1. Therefore, attaching Y ∗2 to Y1
amounts to attaching six 1-handles.
• Each of the four remaining pieces is a permutation of Y ∗3 = 〈α1β〉 γ,

attaching to Y1 along (a permutation of) 〈α1β〉 2 and to Y2 along
〈α1β〉 0 ⊂

〈
αβ2

〉
0.
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Figure 7. A handle decomposition of X0 ∩X1 in Figure 3’s
trisection of T 4. The trisection diagram on ∂(X0 ∩ X1) =
X0 ∩X1 ∩X2 = 〈αβ02〉 ∪ 〈αγ12〉 ∪ 〈βγ01〉 has two types of
red curves; one of each is in bold. Same with blue and green.

For emphasis, here are some key details of this decomposition which will be
instructive toward the odd-dimensional case:

Y1 = Y ∗1 =
〈
α1β2

〉
≈ D3,

so Y1 is a 0-handle;

Y ∗2 = 〈0α〉β2 ≈ D1 ×D2 and

Y ∗2 ∩ (Y2 \ \Y ∗2 ) ⊂ Y ∗2 ∩ Y1 = (∂ 〈0α〉)× β2 = 〈01〉β2 ≈ S0 ×D2,
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so attaching Y2 to Y1 amounts to attaching a collection of 1-handles; and

Y ∗3 = 〈α1β〉 γ ≈ D2 ×D1 and

Y ∗3 ∩ (Y3 \ \Y ∗3 ) ⊂ Y ∗3 ∩ (Y1 ∪ Y2) = 〈α1β〉 × ∂γ ≈ D2 × S0,

so attaching Y3 to Y1 ∪ Y2 amounts to attaching a collection of 1-handles.
Thus, X0 ∩ X1 is a 4-dimensional 1-handlebody. Note in Figure 7 that
∂(X0 ∩X1) is the central surface

(5) X0 ∩X1 ∩X2 = 〈αβ02〉 ∪ 〈αγ12〉 ∪ 〈βγ01〉 ,

which is colored in Figure 7 according to the color scheme from (5). More-
over, the red (resp. blue, green) line segments in Figure 7 comprise the “red
(resp. blue, green) curves” in a trisection diagram for this trisection, and so
Figure 7 contains the information of a trisection diagram (see [1, 4]).

3.3. Trisection of T 5. The decomposition of T 5 from Figure 5 is given by

X0 =
〈
α2[0, 2]2[0, 3]

〉
, Xi = X0 + (i, i, i, i, i).

The handle decompositions of XI , I = {0}, {0, 1}, are quite similar to those
from T 4. Focusing first on I = {0}, compare Tables 1 and 2.

Yz Y ∗z h z glue to〈
α2[0, 2]2

〉 〈
α2[0, 2]2

〉
0 1〈

α2[0, 2]γ
〉 〈

α2[0, 2]
〉
γ 1 2 1

Table 1. X0 from the trisection of T 4

J Yz Y ∗z h z glue to
∅

〈
α2[0, 2]3

〉 〈
α2[0, 2]3

〉
0 1

{0}
〈
α2[0, 2]2γ

〉 〈
α2[0, 2]2

〉
γ 1 2 1

Table 2. X0 from the trisection of T 5

Note in each case that Y1 = Y ∗1 is star-shaped in a particularly nice way. In
§4, we will formalize and generalize this, giving one of three basic types of
building blocks for our general construction. Notice in both cases that the
handle decomposition of X0 comes from the decomposition of the interval

[0, 3] = [0, 2] ∪ γ.

To observe the other two types building blocks, consider XI , I = {0, 1}
from T 4 and T 5, whose handle decompositions are summarized in Tables 3,
4. The factor 〈0α〉 ≈ D1 of Y ∗2 is an example of the second type of building
block. The factor 〈γ0α〉 ≈ D2 from Y ∗4 is an example of the third type (from
Y ∗3 , 〈α1β〉 ≈ D2 from T 4 and

〈
α1β2

〉
≈ D3 from T 5 are further examples).
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Yz Y ∗z h z glue to〈
α1β2

〉 〈
α1β2

〉
0 1〈

0αβ2
〉
〈0α〉β2 1 2 1

〈α1βγ〉 〈α1β〉 γ 1 3 1,2

Table 3. From the trisection of T 4: X0 ∩X1 = 〈α1β[1, 3]〉 ∪
〈
0αβ2

〉
.

J i∗ Yz Y ∗z h z glue to
∅ 0

〈
α1β3

〉 〈
α1β3

〉
0 1

1
〈
0αβ3

〉
〈0α〉β3 1 2 1

{0} 0
〈
α1β2γ

〉 〈
α1β2

〉
γ 1 3 1,2

1
〈
γ0αβ2

〉
〈γ0α〉β2 2 4 2,3

Table 4. From the trisection of T 5: X0 ∩X1 =
〈
α1β2[1, 3]

〉
∪
〈
0αβ2[1, 3]

〉
.

The most striking difference between X0 and X{0,1} is the presence of the
singletons in the expressions for the latter. Note the consistency between
the singleton (i1, . . . , î∗, . . . , i`) in the general expression (2) for XI , and the
specific singleton in each row of Table 4, depending on i∗. The most striking
difference between X{0,1} in T 4 versus T 5 is the appearance of the 2-handles

Y4 in the latter. Other than this, most of the structure described for T 4

applies (by analogy) to T 5 as well.

In the handle decomposition of X{0,1} from T 5, each Yz is characterized as
follows by a pair (J, i∗), where J ⊂ T = {0} and i∗ ∈ I = {0, 1}. (The
reader may wish to skip these formalities for now and may find this more
useful when considering these formalities in §7.2 in the context of the handle

decomposition of arbitrary XI .) Define ρ1 = α and Ĉ0 = β2. Given J ⊂ T
and i∗ ∈ I, let i be the element of I \ {i∗}, and define:

ρ0 =

{
β J = ∅
γ J = {0},

Yz =
〈
{i} × ρ0 × ρ1 × Ĉ0

〉
.

Order the four possibilities for (J, i∗) lexicographically, with (J, i∗) ≺ (J ′, i′∗)
if J $ J ′ or if J = J ′ and i∗ < i′∗, and index Y1, Y2, Y3, Y4 according to this
order. For each z = 1, 2, 3, 4 corresponding to some (J, i∗), define ξi(z),
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ξi∗(z), and Y ∗z as follows:

ξi(z) =

{
{i} × Ĉ0 ×

∏
t∈I: ρt3i ρt i = 1

{i} ×
∏
t∈I: ρt3i ρt i = 0,

ξi∗(z) =

{
Ĉ0 ×

∏
t∈I: ρt3i ρt i∗ = 1∏

t∈I: ρt3i ρt i∗ = 0,

Y ∗z = 〈ξ0(z)〉 × 〈ξ1(z)〉 .

Note that when J = ∅ and i∗ = 0, i ∈ ρ0 ∩ ρ1, so ξ0 is an empty product.
In that case, we regard ξ0 not as the empty set but rather as “no factor”, so

Y ∗1 = 〈ξ0(1)〉 × 〈ξ1(1)〉 = 〈ξ1(1)〉 =
〈
α1β3

〉
= Y1.

4. Star-shaped building blocks

Given ~p, ~q ∈ Rn, denote

[~p, ~q] = {t~p+ (1− t)~q : 0 ≤ t ≤ 1} .

Let Y ⊂ Rn. Given ~p ∈ Y , the link of ~p in Y is

lkY (~p) = {~v ∈ Rn : |~v| = 1, [~p, ~p+ ε~v] ⊂ Y for some ε > 0} .

Then Y is a d-dimensional submanifold near a point ~p ∈ Y if either

• lkY (~p) ≈ Sd−1, in which case ~p is in the interior of Y ; or
• lkY (~p) ≈ Dd−1, in which case ~p ∈ ∂Y .

If lkY (~p) ≈ Sd−1, define the scope of ~p in Y to be

scope(Y ; ~p) = {~q ∈ Y : [~p, ~q] ⊂ Y }.

If lkY (~p) ≈ Sd−1, say that Y is strongly star-shaped about ~p if, for every
point ~q ∈ scope(Y ; ~p), every point ~x ∈ [~p, ~q] \ {~q} satisfies lkY (~x) ≈ Sd−1.

Proposition 4.1. If Y ⊂ Rn is strongly star-shaped about ~p ∈ Y , then
A = scope(Y ; ~p) is homeomorphic to the compact d-ball, A ≈ Dd.

Proof. There is a homeomorphism φ : Sd−1 → lkY (~p), since ~p ∈ int Y , and

another ψ : ∂A→ lkY (~p) given by ψ : ~q 7→ ~q−~p
|~q−~p| , because Y is strongly star-

shaped about ~p. Define a polar coordinate system Φ : A→ Dq by Φ : ~p 7→ ~0

and, for ~q 6= ~p, with ~θ = ~q−~p
|~q−~p| ∈ lkY (~p), by

Φ : ~q 7→ |~q − ~p|
|ψ−1(v)− ~p|

· ~θ.

This is a homeomorphism, because the inverse map Dd → A is

Φ−1 : r~θ 7→ ~p+ r|ψ−1 ◦ φ(~θ)− ~p| · φ(~θ). �
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Figure 8. Left to right: 〈0α〉, 〈α[0, 2]〉, 〈α1β〉, 〈0α[0, 2]〉,
〈
α2[0, 2]

〉
.

Figure 9. Left to right:
〈
α0β2

〉
and

〈
0α3
〉
→
〈
0α2[0, 2]

〉
.

In Tn = (R/kZ)n, for d ≤ n−1, identify T d = (R/kZ)d with (R/kZ)d×{~0} ⊂
Tn, and likewise for T d+1. With 0 < a1 ≤ · · · ≤ ad < k, define

C1 =

〈
d∏
r=1

[0, ar]

〉
⊂ T d,(6)

C2 =

〈
{0} ×

d∏
r=1

[0, ar]

〉
⊂ T d+1.(7)

Also, assuming that k − a1 > ad, define

(8) C3 =

〈
[0, a1]× {a1} ×

d∏
r=2

[a1, ar]

〉
⊂ T d+1.

Figures 8 and 9 show low-dimensional examples of these building blocks.

Lemma 4.2. C1, C2, and C3 from ( 6)-( 8) are homeomorphic to Dd.

Proof. Let a = a1
2 , ~a = (a, . . . , a, 0, . . . , 0), b = 1

2(k+ ad), and U = [0, b]d ⊂
T d. Then C1 ⊂ U ≈ Dd and C2, C3 ⊂ U × [0, b] ≈ Dd+1, so we may view C1

in Rd and C2, C3 in Rd+1.
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C1 is strongly star-shaped about ~a, and the scope of ~a in C1 is all of C1, so
C1 ≈ Dd, by Proposition 4.1.

Consider U × [0, b] ≈ Dd+1 with ∂(U × [0, b]) = Y0 ∪ Yb, where, for t = 0, b:

Yt =
〈
{t}[0, b]d

〉
.

Proposition 4.1 gives Dd ≈ scope(Y0,~0) = C2, as Y0 is strongly star-shaped

about ~0. Let ~a′ = (a1, . . . , a1), and consider

Dd+1 ≈ Y1 =

〈
[0, a1]

2
d∏
r=2

[0, ar]

〉
,

Dd ≈ Y2 =

〈
{0}

d∏
r=1

[0, ar]

〉
⊂ ∂Dd+1 ≈ Sd,

Dd ≈ Y3 = ∂Y1 \ \Y2

= C3 ∪
d⋃
s=2

〈
[0, a1]

2
s−1∏
r=2

{as}
d∏

r=s+1

[as, ad]

〉
.

Proposition 4.1 implies that Dd ≈ scope(Y3;~a
′) = C3, since Y3 is strongly

star-shaped about ~a′. �

5. Further examples

5.1. Quadrisection of T 7. Consider the decomposition of T 7 given by
X0 =

〈
α2[0, 2]2[0, 3]2[0, 4]

〉
and Xi = X0 + (i, i, i, i, i, i, i).

5.1.1. XI , I = {0}, {0, 1}. The handle decompositions ofXI , I = {0}, {0, 1},
summarized in Tables 5 and 6, respectively, follow the same pattern in di-
mension seven (and all higher odd dimensions) as in dimension five (recall
Tables 2 and 4 and the attending discussions).

J Yz Y ∗z h z glue to
∅

〈
α2[0, 2]2[0, 3]2[0, 4]3

〉 〈
α2[0, 2]2[0, 3]2[0, 4]3

〉
0 1

{0}
〈
α2[0, 2]2[0, 3]2[0, 4]2ε

〉 〈
α2[0, 2]2[0, 3]2[0, 4]2

〉
ε 1 2 1

Table 5. X0 from the quadrisection of T 7

5.1.2. XI when I = {0, 2}. Consider

X0 ∩X2 =
〈
α2[0, 2]γ2[2, 4]2[2, 5]

〉
∪
〈
α2[0, 2]2γ2[2, 4]2[2, 5]

〉
.

Table 7 summarizes a handle decomposition XI = Y1 ∪ · · · ∪ Y12. As with
XI , I = {0, 1}, the decomposition of XI , I = {0, 2} is organized largely
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J i∗ Yz Y ∗z h z glue to
∅ 0

〈
α1β2[1, 3]3

〉 〈
α1β2[1, 3]3

〉
0 1

1
〈
0αβ2[1, 3]3

〉
〈0α〉

〈
β2[1, 3]3

〉
1 2 1

{0} 0
〈
α1β2[1, 3]2δ

〉 〈
α1β2[1, 3]2

〉
δ 1 3 1,2

1
〈
δ0αβ2[1, 3]2

〉
〈δ0α〉

〈
β2[1, 3]2

〉
2 4 2,3

Table 6. XI , I = {0, 1} from the quadrisection of T 7

J i∗ V V − Yz Y ∗z h z glue to
∅ 0 ∅ ∅

〈
α32γ3

〉
α3
〈
2γ3
〉

0 1
2 ∅

〈
0α3γ3

〉 〈
0α3
〉
γ3 0 2

{0} 0 ∅ ∅
〈
α32γ2δ

〉
α3
〈
2γ2
〉
δ 1 3 1,2

2 {0} ∅
〈
δ+0α3γ2

〉 〈
δ+0α3

〉
γ2 0 4

{0}
〈
δ−0α3γ2

〉
δ−
〈
0α3
〉
γ2 1 5 2,4

{2} 0 {2} ∅
〈
α2β+2γ3

〉
α2
〈
β+2γ3

〉
0 6

{2}
〈
α2β−2γ3

〉
α2β−

〈
2γ3
〉

1 7 1,6
2 ∅ ∅

〈
0α2βγ3

〉 〈
0α2
〉
βγ3 1 8 1,2

{0, 2} 0 {2} ∅
〈
α2β+2γ2δ

〉
α2
〈
β+2γ2

〉
δ 1 9 6,8

{2}
〈
α2β−2γ2δ

〉
α2β−

〈
2γ2
〉
δ 2 10 3,7,8,9

2 {0} ∅
〈
δ+0α2βγ2

〉 〈
δ+0α2

〉
βγ2 1 11 3,4

{0}
〈
0α2βγ2δ−

〉 〈
0α2
〉
βγ2δ− 2 12 3,5,8,11

Table 7. XI , I = {0, 2} from the quadrisection of T 7

according to {(J, i∗) : J ⊂ {min Ir}, i∗ ∈ I}. Here, Y4 and Y5 provide the
first instance where J \ {min I∗} 6= ∅, requiring us to split a unit interval
into subintervals, in this case halves.

5.1.3. XI when I = {0, 1, 2}. Consider

X0 ∩X1 ∩X2 =
〈
α2[0, 2]γ2[2, 4]2[2, 5]

〉
∪
〈
α2[0, 2]2γ2[2, 4]2[2, 5]

〉
.

Table 8 summarizes a handle decomposition XI = Y1 ∪ · · · ∪Y12. Again, the
decomposition of XI , I = {0, 2} is organized largely according to {(J, i∗) :
J ⊂ {min Ir}, i∗ ∈ I}. Here, we have the first instance where a block Ir (in
this case Ir = I) has |Ir| ≥ 3, requiring us to split a unit interval at times
into thirds, seen here in Y6 − Y8 and Y14 − Y16. Also, Y1 − Y4 and Y9 − Y12
provide the first instances where i∗ + 2 ∈ I∗, requiring us to split certain
unit intervals into halves according to a different rule than in §5.1.2.

5.2. XI , I = {0, 1, 2, 4} from T 11. There is one more complication,
which arises, first in dimension 11, whenever XI , I = I1 t · · · t Im, has
some Ir 63 i∗ with |Ir| ≥ 3. Consider XI in the sexasection of T 11 where
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J i∗ U V V − Y ∗z h z glue to
∅ 0 ∅ {1,2} {1} α−1

〈
β+2γ3

〉
0 1

∅ 〈α+1〉
〈
β+2γ3

〉
1 2 1

{1,2} α− 〈1β−〉
〈
2γ3
〉

1 3 1
{2} 〈α+1β−〉

〈
2γ3
〉

2 4 2,3
1 ∅ ∅ ∅ 〈0α〉

〈
β2γ3

〉
1 5 1,3

2 {1} ∅ ∅ 0α◦3 〈1β〉 γ3 1 6 5〈
0α−3

〉
〈1β〉 γ3 2 7 5,6

0
〈
α+
3 1β

〉
γ3 2 8 5,6

{0} 0 ∅ {1,2} {1} δα−1
〈
β+2γ2

〉
1 9 1,6,7

∅ δ 〈α+1〉
〈
β+2γ2

〉
2 10 2,6,8

{1,2} δα− 〈1β−〉
〈
2γ2
〉

2 11 3,6,7
{2} δ 〈α+1β−〉

〈
2γ2
〉

3 12 4,6,8
1 ∅ ∅ ∅ 〈δ0α〉

〈
β2γ2

〉
2 13 5,9,11

2 {1} ∅ ∅ 〈δ0〉α◦3 〈1β〉 γ2 2 14 6,13〈
δ0α−3

〉
〈1β〉 γ2 3 15 7,13,14

〈δ0〉
〈
α+
3 1β

〉
γ2 3 16 8,13,14

Table 8. XI , I = {0, 1, 2} from the quadrisection of T 7

I = {0, 1, 2, 4}, which is given by〈
α1β2γ2[2, 4]4δ2[4, 6]

〉
∪
〈
0αβ2γ2[2, 4]4δ2[4, 6]

〉
∪
〈
0α1βγ2[2, 4]4δ2[4, 6]

〉
∪
〈
0α1β2γ2[2, 4]δ2[4, 6]

〉
.

Tables 18 and 19 in Appendix 1 detail the handle decomposition. The new
complication arises when s = 4, i.e in the part of XI given by〈

0α1β2γ2[2, 4]δ2[4, 6]
〉
.

The difficult part of this complication is the question of how to order the
pieces Yz (when some |Ir| ≥ 3 has Ir 63 i∗). To highlight that difficulty and its
solution, Table 9 summarizes the first several Yz in the handle decomposition
of XI , I = {0, 1, 2, 3, 5}, from the septisection of T 13. In that table, J = ∅,
s = 5, U = ∅, and V = {1, 2, 3}.

Also see Table 20 in Appendix 1, which summarizes the start of the handle
decomposition of XI , I = {0, 1, 2, 3, 4, 6}, from T 15. In that table, J = ∅,
s = 6, U = ∅, and V = {1, 2, 3, 4}.

6. Combinatorics

6.1. Notation. Because each Xi is symmetric under the permutation ac-
tion of Sn on the indices in Tn, it will often suffice, when considering an
arbitrary point ~x = (x1, . . . , xn) ∈ (R/kZ)n = Tn, to assume that ~x is
monotonic in the sense that x1 ≤ x2 ≤ · · · ≤ xn ≤ k + x1.
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V − Y ∗z h z glue to
∅ 0 〈α+1〉 〈β+2〉

〈
γ+3δ3

〉
ζ3 0 1

{1} 〈0α−〉 1 〈β+2〉
〈
γ+3δ3

〉
ζ3 1 2 1

{1, 2} 〈0α−〉 〈1β−〉 2
〈
γ+3δ3

〉
ζ3 1 3 2

{2} 0 〈α+1β−〉 2
〈
γ+3δ3

〉
ζ3 2 4 1,3

{2, 3} 0 〈α+1β−〉 〈2γ−〉
〈
3δ3
〉
ζ3 1 5 4

{1, 2, 3} 〈0α−〉 〈1β−〉 〈2γ−〉
〈
3δ3
〉
ζ3 2 6 3,5

{1, 3} 〈0α−〉 1 〈β+2γ−〉
〈
3δ3
〉
ζ3 2 7 2,6

{3} 0 〈α+1〉 〈β+2γ−〉
〈
3δ3
〉
ζ3 3 8 1,5,7

Table 9. From the septisection of T 13: the start of the han-
dle decomposition of XI when I = {0, 1, 2, 3, 5}.

Denoting the main diagonal of Tn by ∆, note that each monotonic point
~x = (x1, . . . , xn) ∈ Tn \∆ corresponds to a unique point (x1, . . . , xn) ∈ Rn
with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ x1 + k < 2k. For such ~x, extend the point
(x1, . . . , xn) ∈ Rn to a point ~x∞ = (xr)r∈Z ∈ RZ by defining for each r ∈ Zk
and m ∈ Z:

xr+mn = xr +mk.

We will mainly be interested in 0 ≤ x1 ≤ · · · ≤ x2n, where

x2n = xn + k ≤ x1 + 2k ≤ 3k.

With this setup for any monotonic ~x ∈ Tn \∆, define the following cutoff
indices ar(~x), br(~x) ∈ Z for each r ∈ Z:

ar(~x) = min{a : xa+1 ≥ r} and

br(~x) = min{b : xb+1 > r}.
Note that, in all cases, we have a0(~x) ≤ 0, with equality if and only if
xn 6= k ≡ 0 ∈ R/kZ. The main point is:

Observation 6.1. Let ~x ∈ Tn \∆ be monotonic. Then ~x ∈ [0, 1]2 · · · [0, k−
1]2[0, k] if and only if bs(~x) ≥ 2s for every s = 0, . . . , k − 1.

Note that b0(~x) ≥ 0 in all cases. In order to apply the principle of Observa-
tion 6.1 more broadly, denote for each r ∈ Z:

~xr = (x1+ar(~x), x2+ar(~x), . . . , xar(~x))

The point regarding monotonic points off the main diagonal is:

Observation 6.2. If ~x ∈ Tn \∆ is monotonic and r ∈ Z, then

r ≤ x1+ar(~x) ≤ · · · ≤ xar(~x) < r + k,

and the following conditions are equivalent:

• ~xr ∈ [r, r + 1]2 · · · [r, r + k − 1]2[r, r + k];
• br+s(~xr) ≥ 2s for every s = r + 1, . . . , r + k;
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• br+s(~x) ≥ ar(~x) + 2s for every s = r + 1, . . . , r + k

The point more generally is:

Observation 6.3. If ~x ∈ Xr ⊂ Tn \∆, then there is a permutation σ ∈ Sn
such that ~xσ ∈ [r, r + 1]2 · · · [r, r + k − 1]2[r, r + k] is monotonic.

Note also that each class of cutoff indices provides two-sided bounds for the
other class:

Observation 6.4. If ~x ∈ Tn is nonzero and monotonic and r ∈ Z, then

· · · ≤ ar(~x) ≤ br(~x) ≤ ar+1(~x) ≤ br+1(~x) ≤ · · ·

with ar(~x) = br(~x) if and only if xar(~x)+1 /∈ Zk, and br(~x) = ar+1(~x) if and
only if xbr(~x)+1 ≥ r + 1.

Note that xbr(~x)+1 is the first coordinate in ~x that exceeds r. Here is another
convenient property:

Observation 6.5. Any nonzero monotonic ~x ∈ Tn, r ∈ Z≥0 satisfy

ar+k(~x) = n+ ar(~x),

br+k(~x) = n+ br(~x).
(9)

Noting that Xr ∩∆ = {(x, . . . , x) : x ∈ [r, r + 1]}, we can express each Xr

in terms of cutoff indices as follows.

Proposition 6.6. Let ~x ∈ Tn \ ∆ be monotonic, and let r ∈ Zk. Then
~x ∈ Xr if and only if ~xr ∈ [r, r+ 1]2 · · · [r, r+ k− 1]2[r, r+ k]. In particular,

(10) Xr \∆ = 〈monotonic ~x : br+s(~x) ≥ ar(~x) + 2s for s = 0, . . . , k − 1〉 .

Proof. Write ~xr = (x1, . . . , xn. Note that r ≤ x1 ≤ · · · ≤ xn < r + k. To
show that ~xr ∈ [r, r+ 1]2 · · · [r, r+ k− 1]2[r, r+ k] if and only if ~xr ∈ Xr, we
will prove both containments. One is trivial. For the other, suppose that
~xr /∈ [r, r + 1]2 · · · [r, r + k − 1]2[r, r + k]. Then Observation 6.2 implies that
br+s(~xr) < 2s for some s = 0, . . . , k − 1, so

r + s < x2s, . . . , xn < r + k.

Thus, at least n + 1 − 2s of the coordinates of ~x lie in the open interval
(r + s, r + k). Yet, 2s of the n factors of [r, r + 1]2 · · · [r, r + k − 1]2[r, r + k]
are disjoint from that open interval. Contradiction. Observation 6.3 now
implies that ~x ∈ Xr if and only if ~x is an element of the rhs of (10). �
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6.2. The Xr have disjoint interiors and cover Tn.

Proposition 6.7. With the setup from Theorem 7.11, Xr and Xs have
disjoint interiors whenever 0 ≤ r < s ≤ k − 1.

This will follow from Lemma 6.13, but the following proof is much easier
than that of the lemma; we include it for expository reasons.

Proof. By the symmetry of the construction, we may assume that r = 0.
Assume for contradiction that the interiors of Xr and Xs intersect. Then
there is a monotonic point ~x = (x1, . . . , xn) ∈ X0 ∩Xj such that for every
i = 1, . . . , n we have xi /∈ Zk. (This is not to say that every interior point
has this property.)

This implies that ai(~x) = bi(~x) for each i = 1, . . . , n, by Observation 6.4.
In particular, since ~x ∈ X0, we have a0 = b0 = 0, and as = bs ≥ 2s by
Proposition 6.6. But then, since ~x ∈ Xs and as ≥ 2s, Observation 6.5 and
Proposition 6.6 give the following contradiction:

n = n+ b0 = bk = bs+(k−s)

n ≥ as + 2(k − s)
n ≥ 2k. �

Lemma 6.8. We have X0 ∪ · · · ∪Xk−1 = Tn.

Proof. Let ~x ∈ Tn. We will prove that ~x ∈ Xs for some s. If ~x =
(x, . . . , x) ∈ ∆, then ~x ∈ Xbxc. Assume instead that ~x ∈ Tn\∆. Also assume
without loss of generality that ~x is monotonic with a0(~x) = 0. Throughout
this proof, denote each as(~x) by as and each bs(~x) by bs.

Let s0 = 0, so that as0 = a0 = 0. If bs ≥ 2s = 2s−as0 for all s = 1, . . . , k−1,
then ~x ∈ X0 = Xs0 . Otherwise, choose the smallest s1 such that bs1 < 2s1.
Thus, bs ≥ 2s whenever s < s1, so by Observation 6.4:

2s1 − 2 ≤ bs1−1 ≤ as1 ≤ bs1 ≤ 2s1 − 1.

Continue in this way: for each st, choose the minimum st+1 = st+1, . . . , k−1
such that bst+1 < ast+2(st+1−st), if such st+1 exists. Eventually this process
terminates with some su, so that:

• bs ≥ ast + 2(s− st) whenever st ≤ s ≤ st+1 for t = 0, . . . , u− 1,
• bs ≥ ast + 2(s− su) whenever su ≤ s ≤ k − 1, and
• bst+1 < ast + 2(st+1 − st) for each t = 0, . . . , u− 1.

Hence, for each t = 0, . . . , u− 1, Observation 6.4 gives:

ast + 2(st+1 − 1− st) ≤ bst+1−1 ≤ ast+1 ≤ bst+1 ≤ ast + 2(st+1 − st)− 1.

Subtracting ast from the first, middle, and last expressions gives:

2(st+1 − st)− 2 ≤ ast+1 − ast ≤ 2(st+1 − st)− 1.
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Therefore, for any t = 0, . . . , u− 1:

asu − ast =
u−1∑
r=t

(asr+1 − asr)

≤
u−1∑
r=t

(2(sr+1 − sr)− 1)

= 2(su − st)− (u− t)
asu − ast ≤ 2(su − st)− 1.

Rearranging gives

(11) asu − 2su ≤ ast − 2st − 1.

We claim that ~x ∈ Xsu . This is true if (and only if) bs ≥ asu + 2(s − su)
for each s = su, . . . , su + k − 1. Fix some s = k, . . . , su + k − 1. Then
st ≤ s − k ≤ st+1 − 1 for some t = 0, . . . , u − 1. By construction, we have
bs−k ≥ ast + 2(s− k − st). Together with (9) and (11), this gives:

bs = bs−k + n

≥ ast + 2(s− k − st) + 2k − 1

= (ast − 2st − 1) + 2s

≥ (asu − 2su) + 2s

= asu + 2(s− su). �

6.3. Combinatorial corollaries. We have proven that the pieces Xr of
the multisection of Tn have disjoint interiors and cover Tn. Also, each
Xr = X0 + (r, . . . , r), so all Xr have the same number of unit cubes. Since
there are kn unit cubes in Tn = (R/kZ)n, each Xr contains kn−1 unit cubes.
By counting these unit cubes a different way, we obtain the following.5

Corollary 6.9. For any n = 2k − 1, we have:

kn−1 =

n∑
i1=2

(
n

i1

) n−i1∑
i2=4−i1

(
n− i1
i2

) n−i1−i2∑
i3=6−i1−i2

(
n− i1 − i2

i3

)
· · ·

· · ·
n−

∑k−2
j=1 ij∑

ik−1=2k−2−
∑k−2

j=1 ij

(
n−

∑k−2
j=1 ij

ik−1

)
.

(12)

Proof. Each Xi consists of kn−1 subcubes, each of the form
∏n
r=1[wr, wr+1]

for some w1, . . . , wn ∈ Zk. For each s = 1, . . . , k − 1, there are at least 2s
indices r = 1, . . . , n with wr ∈ {i, . . . , i+s−1}, and conversely any subcube
of that form with this property will be in Xi. �

5Note that by definition, if a, b ∈ Z with b < 0, then
(
a
b

)
= 0.
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Note that (12) is also the number of spanning trees of the complete bipartite
graph Kj,j where j = k [6]. Counting combinatorial cube types in three
different ways yields:

Corollary 6.10. For any n = 2k − 1, we have:

k

n∑
i1=2

n−i1∑
i2=max{0,4−i1}

n−i1−i2∑
i3=max{0,6−i1−i2}

· · ·
n−

∑k−2
j=1 ij∑

ik−1=max{0,2k−2−∑k−2
j=1 ij}

1

=
n∑

i1=0

n−i1∑
i2=0

n−i1−i2∑
i3=0

· · ·
n−

∑k−2
j=1 ij∑

ik−1=0

1

=

(
3k − 2

k − 1

)
.

(13)

Proof. The first expression is k times the number of cube types in Xi,
counted by the same principle as in Corollary 6.9. The second counts the

number of cube types in Tn, each of the form
∏k−1
r=0 [r, r+ 1]vr , characterized

by a tuple (v0, . . . , vk−1) with
∑k−1

r=0 vr = n. The third counts the number
of cube types in Tn by denoting a0 = 0, ak = 3k− 1 and associating to each
A = {a1, . . . , ak−1} ⊂ {1, . . . , 3k − 2} with a1 < · · · < ak−1 the cube type

k∏
i=1

ai−1∏
j=ai−1+1

[i− 1, i]. �

See [6] for other interpretations of (13).

6.4. Verification of the formula XI = (2). Next, we will use the cutoff
indices ar(~x), br(~x) to verify (2). To prepare this, we define subsets CI,s ⊂ Tn
as follows. Let I ⊂ Zk following Convention 3.9, i∗ = is ∈ I. Then define:

CI,s =

(
s−1∏
t=0

{it} × [it, it + 1]2 × · · · × [it, it+1 − 1]2 × [it, it+1]

)
× [i∗, i∗ + 1]2 × · · · × [i∗, is+1 − 1]2 × [i∗, is+1]

×

(
`−1∏
t=s+1

{it} × [it, it + 1]2 × · · · × [it, it+1 − 1]2 × [it, it+1]

)(14)

Note the “missing” {i∗} at the start of the second line; this corresponds to

the î∗ in (2). Observe that the expression on the rhs of (2) equals⋃
s∈Z`

〈CI,s〉 .

https://oeis.org/A068087
https://oeis.org/A045721
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Proposition 6.11. Let I ⊂ Zk follow Convention 3.9, s ∈ Z`, and CI,s as
in ( 14). Suppose ~x ∈ Tn \∆ is monotonic. Then ~x ∈ CI,s if and only if all
of the following conditions hold:

• bt(~x) ≥ 2t+ 1 for 0 ≤ t < i∗,
• bt(~x) ≥ 2t for i∗ ≤ t ≤ k − 1,
• at(~x) ≤ 2t for t = i0, . . . , i∗, and
• at(~x) ≤ 2t− 1 for t = is+1, . . . , i`−1.

Proof. This follows immediately from the definitions, upon consideration
of each entry in ~x. �

Also note the following generalization of Observation 6.3:

Observation 6.12. Let I ⊂ Zk follow Convention 3.9, s ∈ Z`, and CI,s as
in ( 14). Suppose ~x ∈ 〈CI,s〉. Then there is a permutation σ ∈ Sn such that
~xσ ∈ CI,s is monotonic.

Lemma 6.13. Given nonempty I ⊂ Zk (following Convention 3.9),

(15) XI =
⋃
s∈Z`

〈CI,s〉 .

In particular,

(3)
⋂
i∗∈Zk

Xi =
⋃
i∗∈I

〈
(i1, . . . , î∗, . . . , i`)

∏
i∈Zk

[i, i+ 1]

〉
.

Note that the formula (15) is equivalent to (2).

Proof. We argue by induction on `. When ` = 1, XI = X0 = 〈CI,0〉 = (2).

Assume now that ` > 1. First, we will show that

(16) XI ⊂
⋃
s∈Z`

〈CI,s〉 .

Let ~x ∈ XI , and define I ′ = I \ {i`−1}. Note that I ′ is simple and XI =
XI′∩Xi`−1

. Since ~x ∈ XI′ , the induction hypothesis implies that ~x ∈
〈
CI′,s0

〉
for some s0 ∈ Z`−1. By Observation 6.12, there exists σ ∈ Sn such that ~xσ
is monotonic and ~xσ ∈ CI′,s0 . Proposition 6.11 implies that:

• bt(~xσ) ≥ 2t+ 1 for 0 ≤ t ≤ is0 − 1,
• bt(~xσ) ≥ 2t for is0 ≤ t ≤ k − 1,
• at(~xσ) ≤ 2t for t = i0, . . . , is0 , and
• at(~xσ) ≤ 2t− 1 for t = is0+1, . . . , i`−2.
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If also ai`−1
(~xσ) ≤ 2i`−1 − 1, then Proposition 6.11 implies that ~xσ ∈ CI,s0 .

In that case, we are done proving the forward containment. Assume instead
that ai`−1

(~xσ) ≥ 2i`−1. We now split into two cases:

Case 1: Assume that ai`−1
(~xσ) = 2i`−1. We claim that ~xσ ∈ CI,`−1. By

Proposition 6.11, since ~xσ is monotonic, it will suffice to show:

(a) bt(~xσ) ≥ 2t+ 1 for 0 ≤ t ≤ i`−1 − 1,
(b) bt(~xσ) ≥ 2t for i`−1 ≤ t ≤ k − 1, and
(c) at(~xσ) ≤ 2t for t = i0, . . . , i`−1.

Observation 6.5, Proposition 6.6, and the facts that ~xσ ∈ Xi`−1
and ai`−1

(~xσ) =
2i`−1 imply for each t = 0, . . . , i`−1 − 1 that:

bt(~xσ) = bt+k(~xσ)− n
≥ 2(t+ k) + ai`−1

(~xσ)− 2i`−1 − n
≥ 2t+ 1.

This verifies (a). Taking t = i`−1, . . . , k − 1, similar reasoning confirms (b):

bt(~xσ) ≥ ai`−1
(~xσ) + 2(t− i`−1) ≥ 2t.

Finally, we have at(~xσ) ≤ 2t for each t = i0, . . . , i`−1. For t = i0, . . . , i`−2,
this is because ~xσ ∈ XI′ ; for t = i`−1, it is our assumption in Case 1. Thus,
in Case 1, (a), (b), and (c) hold, and so ~xσ ∈ CI,`−1.

Case 2: Assume instead that ai`−1
(~xσ) ≥ 2i`−1+1. Denoting ~xσ = (x1, . . . , xn),

we claim in this case that x1 = x2 = 0 ≡ k and that ~y = (x2, . . . , xn, x1) ∈
CI,`−1. By similar reasoning to Case 1, we have:

b0(~xσ) = bk(~xσ)− n
≥ ai`−1

(~xσ) + 2(k − i`−1)− n
≥ 2.

Thus, x1 = x2 = 0 ≡ k. Define ~y as above. Note that, since ~xσ is monotonic,
~y is also monotonic. It remains to show that ~y ∈ CI,`−1. The arguments
are almost identical to those in Case 1, except that we need to check that
ai`−1

(~y) ≤ 2i`−1. Using Observations 6.4 and 6.5 and the fact that ai`−1
(~y) =

ai`−1
(~xσ)− 1, we compute:

ai`−1
(~y) = ai`−1

(~xσ)− 1

≤ bk−1(~xσ)− 2(k − 1− i`−1)− 1

≤ ak(~xσ)− 2k + 1 + 2i`−1

= a0(~xσ) + (n+ 1− 2k) + 2i`−1

= a0(~xσ) + 2i`−1

≤ 2i`−1.

This completes the proof of the forward containment (16). For the reverse
containment, keep the same subset I ⊂ Zk from the start of the induction
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step of the proof, fix some s ∈ Z`, and let ~x ∈ CI,s be monotonic, t ∈
I = {i0, . . . , i`−1}. We will show for each r = 0, . . . , k − 1 that bt+r(~x) ≥
at(~x) + 2r. Proposition 6.6 will then imply that ~x ∈ Xt. Since t is arbitrary,
this will imply that ~x ∈ XI , completing the proof. We will split into cases,
but first note, since ~x is monotonic, that Proposition 6.11 implies:

• bt(~x) ≥ 2t+ 1 for 0 ≤ t ≤ is − 1,
• bt(~x) ≥ 2t for is ≤ t ≤ k − 1,
• at(~x) ≤ 2t for t = i0, . . . , is, and
• at(~x) ≤ 2t− 1 for t = is+1, . . . , i`−2.

Case 1: If t+ r ≤ k − 1, then bt+r(~x) ≥ 2(t+ r) ≥ at(~x) + 2r.

Case 2: If instead t+ r ≥ k and t+ r ≤ k + is − 1, then

bt+r(~x) = n+ bt+r−k(~x) ≥ n+ 2(t+ r − k) + 1 = 2t+ 2r + (n+ 1− 2k)

bt+r(~x) ≥ at(~x) + 2r

Case 3: Similarly, if t+ r ≥ k and t ≥ is+1, then

bt+r(~x) = n+ bt+r−k(~x) ≥ n+ 2(t+ r − k) = (2t− 1) + 2r + (n+ 1− 2k)

bt+r(~x) ≥ at(~x) + 2r

Are there other cases? If there were, they would satisfy t + r ≥ k + is and
t ≤ is, giving

k + is ≤ t+ r ≤ is + r

k ≤ r.

Yet r ≤ k−1 by assumption. Therefore, in every case, bt+r(~x) ≥ at(~x) + 2r,
and so ~x ∈ Xit for arbitrary t ∈ I. Thus, ~x ∈ XI . This completes the proof
of the reverse containment, and thus of the equality in (2)=(15). �

7. General construction

7.1. Notation. Section 7 uses Notations 3.3, 3.6, 3.8, and Convention 3.9.

Notation 7.1. Denote the symmetric difference of sets R and S by

R	 S = (R \ S) ∪ (S \R).

7.2. Handle decompositions: the general case. Let I =
⊔
r∈Zm

Ir be
arbitrary, following Convention 3.9. Recall that T = {min Ir : r ∈ Zm}.
Decompose XI into handles in several steps as follows. First, decompose XI

XI =
⋃

J⊂T, i∗∈I
XI,J,i∗
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as follows. Fix arbitrary r ∈ Zm. Denote a = min Ir, b = max Ir, c =
min Ir+1. Define

Ĉr =

c−1∏
j=b+1

[b, j]2,(17)

Cr =


[a− 1, a] i∗ = a ∈ J
[a− 1, a]× {a} i∗ 6= a ∈ J
{a} i∗ 6= a /∈ J
(no factor) i∗ = a /∈ J


×

b∏
i=a+1

{
[i− 1, i]× {i} i 6= i∗

[i− 1, i] i = i∗

}
×

{
Ĉr × [b, c− 1] c /∈ J
Ĉr c ∈ J

}
.

(18)

Now the piece of XI corresponding to the pair (J, i∗) is given by

XI,J,i∗ =

〈 ∏
r∈Zm

Cr

〉
.

i∗ /∈ Ir,
a /∈ J

i∗ /∈ Ir,
a ∈ J

i∗ ∈ Ir,
i∗ ≤ b− 2

i∗ ∈ Ir,
i∗ ≥ b− 1

Ur ∅ Ir \ {a, b} Ir \ {a, i∗, i∗ + 1, b} Ir \ {a, i∗, b}
Vr Ir \ {a} {b} {i∗ + 1, b} ∅

Ir \ (Ur ∪ Vr) {a} {a} \ {b} {a, i∗} {a, i∗, b}

Table 10. The index subsets Ur, Vr ⊂ Ir when Ir = {a, . . . , b}.

Second, fix arbitrary J ⊂ T , i∗ ∈ I, and r ∈ Zm. For each r ∈ Zm, define
subsets Ur, Vr ⊂ Ir following Table 10 (depending on J and i∗). Tables 11
and 12 in Appendix 1 present Ur and Vr more explicitly. Then define

U =
⋃
r∈Zm

Ur and V =
⋃
r∈Zm

Vr.

Note that min Ir /∈ (Ur ∪ Vr) unless Ir 6= I∗ and min Ir = max Ir ∈ J . See
Table 7 for an example of this exceptional case: XI , I = {0, 2}, from T 7.

Third, decompose each XI,J,i∗ into pieces XI,J,i∗,V −,U◦,U− as follows. Denote

2V = {V − ⊂ V },
2U = {U◦ ⊂ U},

and given U◦ ⊂ U , denote

2U\U
◦

= {U− ⊂ U \ U◦}.
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Given V − ⊂ V , denote V + = V \ V −, and given U◦ ⊂ U and U− ⊂ U \ U◦,
denote U+ = U \ (U◦ ∪ U−). Then V = V − t V + and U = U− t U◦ t U+.

For each r ∈ Zm, denote Ĉr as in (17). For each i ∈ Ir, define

ρi =



[i− 1, i− 2
3 ] i ∈ U−

[i− 2
3 , i−

1
3 ] i ∈ U◦

[i− 1
3 , i] i ∈ U+

[i− 1, i− 1
2 ] i ∈ V −

[i− 1
2 , i+ 1] i ∈ V +

[max Ir−1, i− 1] i ∈ T \ (J ∪ V ).

[i− 1, i] else

Fix arbitrary r ∈ Zm. Denote a = min Ir, b = max Ir, c = min Ir+1, and Ĉr
as in (17). Define:

XI,J,i∗,V −,U◦,U−,r =


ρa i∗ = a ∈ J
ρa × {a} i∗ 6= a ∈ J
{a} i∗ 6= a /∈ J
(no factor) i∗ = a /∈ J


×

b∏
i=a+1

{
ρi × {i} i 6= i∗

ρi i = i∗

}
×

{
Ĉr × ρc c /∈ J
Ĉr c ∈ J

}
.

Note that ρi ⊂ [i− 1, i] for each i = a+ 1, . . . , b, ρa ⊂ [a− 1, a] if a ∈ J , and
ρc = [b, c− 1] if c /∈ J . Define

XI,J,i∗,V −,U◦,U− =

〈 ∏
r∈Zm

XI,J,i∗,V −,U◦,U−,r

〉
Note that XI,J,i∗ =

⋃
V −,U◦,U− XI,J,i∗,V −,U◦,U− . Fourth, order the pieces

XI,J,i∗,V −,U◦,U− according to the lexicographical order on

(19)
{

(J, i∗, V
−, U◦, U−)

}
J⊂T, i∗∈I, V −⊂V, U◦⊂U, U−⊂U\U◦

determined by the following orders ≺ on {J ⊂ T}, I, 2V , 2U , and 2U\U
◦
.

Order {J ⊂ T} and 2U partially by inclusion, so that J ′ ≺ J if J ′ $ J and
U ′◦ ≺ U◦ if U ′◦ $ U◦; extend these partial orders arbitrarily to total orders.

Define an arbitrary total order ≺ on 2U\U
◦
. Partially order I such that

i < i′, with i ∈ Ir and i′ ∈ Is, if i−min Ir < is −min Is; extend arbitrarily
to a total order on I.

It remains to order 2V . This will be slightly more complicated. To do this,
we first define a total order ≺r on 2Vr for each r ∈ Zm. First consider the
Ir 3 i∗. If i∗ ≥ max I∗ − 1, we have Vr = ∅, so there is nothing to do.
Otherwise, we have i∗ ≤ max I∗ − 2 and Vr = {i∗ + 1,max I∗}; in this case,
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order 2Vr as follows:

{i∗ + 1} ≺r ∅ ≺r {i∗ + 1,max I∗} ≺r {max I∗}.

Now consider Ir 63 i∗. Define ≺r on 2Vr recursively by V −r ≺r V ′−r if:

• maxV −r < maxV ′−r , or
• maxV −r = maxV ′−r and V ′−r \ {maxV ′−r } ≺r V −r \ {maxV −r }.

Explicitly, denoting Vr = {a, . . . , b}:

∅ ≺r {a} ≺r {a, a+ 1} ≺r {a+ 1} ≺r {a+ 1, a+ 2}
≺r {a, a+ 1, a+ 2} ≺r {a, a+ 2} ≺r {a+ 2} ≺r · · ·
≺r {a+ 1, b} ≺r {a, a+ 1, b} ≺r {a, b} ≺r {b}.

(20)

For more examples, see Tables 9 and 20, and the parts of Tables 18 and 19
where s = 4. Use the orderings ≺r on 2Vr to define a partial order on 2V by
declaring V − ≺ V ′− if

• V − ∩ Ir ≺r V ′− ∩ Ir for some r, and
• there is no r for which V ′− ∩ Ir ≺r V − ∩ Ir.

Extend ≺ arbitrarily to a total order on 2V . This determines a total order
on (19), and thus on the pieces XI,J,i∗,V −,U◦,U− . Relabel these pieces as Yz,
z = 1, . . . ,#(19), according to this order.

Fourth and finally, for each z, we will define Y ∗z ⊂ Yz. In §7.3, we will
see that attaching Y ∗z to

⋃
w<z Yw amounts to attaching an (n + 1 − |I|)-

dimensional h(z)-handle for some h(z) ≤ |I|, and moreover that attaching
all of Yz to

⋃
w<z Yw amounts to attaching several such handles.

Consider arbitrary Yz = XI,J,i∗,V −,U◦,U− . Note, for each r ∈ Z`, that ρr
contains at most one point in I \ {i∗}.6 Moreover, if ρr ∩ I \ {i∗} = ∅,
then, with ir ∈ Is, either (i) ir ∈ U◦, (ii) ir ∈ J ∩ V − (hence |Is| = 1),
(iii) ir = min Is with either ir = i∗ ∈ J or ir−1 = i∗ and ir /∈ J , or (iv)
ir = i∗ ≤ max Is − 2 with ir + 1 ∈ V −. Note also, for each s ∈ Zm, that

Ĉs ∩ I = {max Is}, so Ĉs ∩ (I \ {i∗}) = ∅ only if i∗ = max Is. For each
r = 0, . . . , `− 1 with i∗ 6= ir ∈ Is and ir 6= max Is, define

(21) ξr(z) =

〈
{ir} ×

∏
t∈Z`: ρt3ir

ρt

〉
.

6To see why, consider the last row of Table 10. It shows for each s ∈ Zm with Is 6= I∗
that Is \ (U ∪V ) ⊂ {min Is}. Therefore, each ρr coming from such Is contains no full unit
interval [i, i+ 1] where i, i+ 1 ∈ Is. Similar reasoning applies to those ρr coming from I∗,
where I∗\(U∪V ∪i∗) j {max I∗,min I∗} with equality only when min I∗ < i∗ = max I∗−1.
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Similarly, for each r = 0, . . . , `− 1 with i∗ 6= ir = max Is, define

(22) ξr(z) =

〈
{ir} × Ĉt ×

∏
t∈Z`: ρt3ir

ρt

〉
.

For r = `, . . . , ` + |U◦| − 1, denote ξr(z) =
[
i− 2

3 , i−
1
3

]
, i ∈ U◦, so that

each ξr(z) is distinct. For r = `+ |U◦|, . . . , `+ |U◦|+ |J ∩ V −| − 1, denote
ξr(z) =

[
i− 1, i− 1

2

]
, i ∈ J ∩ V −, so that each ξr(z) is distinct. Define

p = `+ |U◦|+ |J ∩ V −| −

{
0 i∗ = max Is, min Is+1 ∈ J
1 else

}
.

If i∗ = max Is for some s ∈ Zm and min Is+1 ∈ J , denote ξp(z) = Ĉs.

Notation 7.2. For each r, let min ξr(z) (resp. max ξr(z)) denote the supre-
mum (resp. infimum) of all coordinates in (0, k) among all points in ξr(z).

Reorder ξ0(z), . . . , ξp(z) as follows. If i∗ 6= 0, do this such that ξ0(z) (with
{0} as a factor) remains ξ0(z) and max ξr(z) ≤ min ξr+1(z) for r = 1, . . . , p−
1. If i∗ = 0, do this such that ρ1 is a factor of ξ0(z) and max ξr(z) ≤
min ξr+1(z) for r = 1, . . . , p− 1. Now define

Y ∗z =

p∏
r=0

ξr(z).

Observe that:

Yz =

〈
ρi∗ ×

∏
i∈I\i∗

(ρi × {i})×
∏
r∈Zm

Ĉr

〉
=

〈
p∏
r=0

ξr(z)

〉
= 〈Y ∗r 〉 .

Example 7.3. Consider XI ⊂ T 9 where I = {0, 1, 2, 3}, which is detailed in
Tables 14 and 17. Note that T = {0}. In particular, consider the first and
twelfth rows of Table 14 (after the headings), where J = ∅, s = 0, U = {2},
and V = {1, 3}. The first row of Table 14 corresponds to

(23) Y1 = XI,J,s,V −,U◦,U− =
〈
α−1β◦32γ+3δ3

〉
,

where V − = {1}, U◦ = {2}, and U− = ∅. Note, comparing (21), (22),(23),
and Notation 3.5, that

ξ0 = α− =

[
0,

1

2

]
, ξ1 = {1}, ξ2 = β◦3 =

[
4

3
,
5

3

]
, ξ3 = {2},

ξ4 = γ+ =

[
5

2
, 3

]
, ξ5 = {3}, and ξ6 = ξ7 = ξ8 = δ = [3, 4].

Thus:
Y ∗1 = α−1β◦32

〈
γ+3δ3

〉
.

The twelfth row of Table 14 corresponds to

Y12 = XI,J,s,V −,U◦,U− =
〈
α+1β+3 2γ−3δ3

〉
,
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where V − = {3}, U◦ = ∅ = U−. Thus:

Y ∗12 =
〈
α+1

〉 〈
β+3 2γ−

〉 〈
3δ3
〉
.

7.3. Properties of handle decompositions.

Proposition 7.4. Let i ∈ V − ⊂ V for some i ∈ Is, s ∈ Zm, where i∗ /∈ Is.
Denote b = max Is, c = max(Is∩V −). Let V ′− = V −\{i}. Then V ′− ≺ V −
if and only if |V − ∩ {i+ 1, . . . , b}| is even.

Proof. We argue by induction on c − i. When c − i = 0, we have c = i >
max(Is ∩ V − \ {i}) and Ir ∩ V − = Ir ∩ V − \ {i} for all r 6= s, so V ′− ≺ V −.

Now assume that c− i = t > 0, and assume that the claim is true whenever
max(Is ∩ V −) − i < t. Let W− = V − \ {c} and W ′− = V ′− \ {c}. Then
|V −∩{i+1, . . . , b}) and |W−∩{i+1, . . . , b}| have opposite parities. Also, by
construction, V − ≺ V ′− if and only if W ′− ≺ W−. The result now follows
by induction. �

Proposition 7.5. Let A ⊂ V − ⊂ V such that V − ≺ V − 	 {a} for each
a ∈ A. Then V − ≺ V − \A.

Proof. Suppose first that A ⊂ Is for some s ∈ Zm. Denote A = (a1, . . . , aq)
with min Is ≤ a1 ≤ · · · ≤ aq ≤ max Is = b. Assume that i∗ /∈ Is and
|Is| ≥ 3 (the other cases are trivial). Note that Proposition 7.4 implies, for
each a ∈ A, that |V − ∩ {a + 1, . . . , b}| is odd if and only if a ∈ V −. For
each r = 1, . . . , q, denote the symmetric difference V −r = V − 	{a1, . . . , ar}.
Then, |V −a ∩{a+ 1, . . . , b}| = |V − ∩{a+ 1, . . . , b}| for each a = 0, . . . , q− 1.
Since this quantity is odd if and only if a ∈ V −, Proposition 7.4 implies:

V − ≺ V −1 ≺ · · · ≺ V
−
q = V − \A.

For the general case, apply this argument repeatedly for each s ∈ Zm. �

Observation 7.6. If Yz comes from J, i∗, V
−, U◦, U− and Yw comes from

J, i∗, V
−, U◦, U ′−, then Yz ∩ Yw = ∅ unless U− = U ′−.

Lemma 7.7. For each r = 0, . . . , p, ξr(z) has one of the forms described in

Lemma 4.2, and thus is homeomorphic to Dd(r) for some d(r) ≥ 0.

Moreover,
∑p

r=0 d(r) = n+ 1− |I|, so Y ∗z ≈ Dn+1−|I|.

Proof. The first claim follows by construction, since each ρi contains at
most one point in I \ {i∗}. (For a more explicit accounting, see Tables
21–23.)

Moreover, for each r = 0, . . . , p, d(r) equals the number of intervals in
the expression for ξr(z), which equals the number of coordinates in that
expression minus the number of singleton factors. Since there are n factors
and |I| − 1 singletons among ξ0(z), . . . , ξp(z) all together, it follows that∑p

r=0 d(r) = n+ 1− |I|. Thus, Y ∗z ≈ Dn+1−|I|. �
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In the following way, classify each ξr(z) into one of two classes, (A) or (B).
Say that ξr(z) is in class (B) if:

• Some Ĉs appears in the expression for ξr(z);
• ξr(z) =

[
i− 2

3 , i−
1
3

]
for some i ∈ I;

• ξr(z) =
[
i∗, i∗ + 1

2

]
; or

• Some {i} appears in the expression for ξr(z), with i ∈ Is and:
– i ∈ V + and i + 1 ∈ U◦ ∪ U+ ∪ V +, or i ∈ U− ∪ U◦ ∪ V − and
i+ 1 ∈ V −; and

– |V − ∩ {i+ 1, . . . ,max Is}| is even.

All other types of ξr(z) are of class (A). Tables 21, 22, and 23 in Appendix
1 list the possibilities explicitly.

Lemma 7.8. Let Y ∗z =
∏p
r=0 ξr(z) come from some J, i∗, V

−, U◦, U−. If,
for some a = 0, . . . , p, ξa(z) is of class (A) and

~x = (x1, . . . , xn) ∈
a−1∏
r=0

ξr(z)× ∂ξa(z)×
p∏

r=a+1

ξr(z),

then ~x ∈ Yw for some w < z.

Proof. Suppose first that some {i} appears in the expression for ξa(z),
with i ∈ Is; i ∈ V + and i + 1 ∈ U◦ ∪ U+ ∪ V +, or i ∈ U− ∪ U◦ ∪ V − and
i + 1 ∈ V −; and |V − ∩ {i + 1, . . . ,max Is}| is odd. Then ~x is in the Yw
coming from J, i∗, V

′−, U◦, U− where V ′− is either V − ∪{i} or V − \ {i+ 1}.
In either case, Proposition 7.4 implies that V ′− ≺ V and thus w < z.

Next, suppose that ξa(z) has no singleton factors. There are two possibilities.
If ξa(z) = [i∗−1, i∗] with i∗ ∈ J , then ~x is in some Yw coming from J \{i∗} ≺
J . Otherwise, ξa(z) =

[
i− 1, i− 1

2

]
for some i ∈ J ∩ V −; in this case,

i + 1 /∈ I, and so ~x is in some Yw coming either from J \ {i} ≺ J or the
from same J and i∗ and V ′− = V − \ {i}, where Proposition 7.4 implies that
V ′− ≺ V − because i+ 1 /∈ I.

The remaining cases follow by similar reasoning. The interested reader may
find Table 23 useful for this. �

Lemma 7.9. Let Y ∗z =
∏p
r=0 ξr(z) come from some J, i∗, V

−, U◦, U−. If

~x = (x1, . . . , xn) ∈ Y ∗z ∩
⋃
w<z

Yw,

then

~x ∈
a−1∏
r=0

ξr(z)× ∂ξa(z)×
p∏

r=a+1

ξr(z)

for some a = 0, . . . , p, such that ξa(z) is of class (A).
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Proof. Let ~x = (x1, . . . , xn) ∈ Y ∗z ∩ Yw′ for some w′ < z. Choose the
smallest w < z such that ~x ∈ Yw, and assume that Yw comes from some
J ′, i′∗, V

′−, U ′◦, U ′− with V ′− ⊂ V ′ and U ′◦ ⊂ U ′, whereas Yz comes from
some J, i∗, V

−, U◦, U− with V − ⊂ V and U◦ ⊂ U . Denote

S =

{
a = 0, . . . , p : ~x ∈

a−1∏
r=0

ξr(z)× ∂ξa(z)×
p∏

r=a+1

ξr(z)

}
.

Assume for contradiction that ξa(z) is of class (B) for every a ∈ S. If
S = ∅, then no coordinate of ~x equals i∗, so i′∗ = i∗. Also, in that case,
no coordinate of ~x equals min Is − 1 for any s ∈ Zm, and so J and J ′

completely determine the number of coordinates that ~x has in each open
interval (min Is−1,min Is+1−1). It follows that either J ′ = J or J ′ = T \J .
If J ′ = T \J , then considering the coordinates of ~x in [min I∗,max I∗] yields
a contradiction. If J ′ = J , then the fact that S = ∅ implies that V − = V ′−,
U◦ = U ′◦, and U− = U ′−, contradicting the fact that w < z.

Therefore, S 6= ∅. If no coordinate of ~x equals i∗, then i′∗ = i∗, so again
either J ′ = J or J ′ = T \ J . The latter case gives the same contradiction as
before. Therefore J ′ = J , and so V ′ = V .

For each i ∈ V − 	 V ′−, ~x has a coordinate xt = i − 1
2 (using the fact

that i′∗ = i∗ and J ′ = J). The corresponding ξr(z) has r ∈ S, and so
by assumption ξr(z) is of class (B). Therefore, V − ≺ V − 	 {i} for each
i ∈ V − 	 V ′−. Proposition 7.5 implies that V − ≺ V ′− unless V − = V ′−.
Since w < z, we must have V − = V ′−.

Each i ∈ U ′◦ must also be in U◦, or else the corresponding coordinate of ~x
would equal i− 1

3 or i− 2
3 , and the corresponding ξa(z) would be of class (A)

with a ∈ S, contrary to assumption. Thus, U◦ ⊂ U ′◦. Similarly, each i ∈ U◦
must also be in U ′◦, or else the Yw′ coming from J, i∗, V, U

′◦ ∪ {i}, U− \ {i}
would still contain ~x but with w′ < w, contrary to assumption. Thus,
U ′◦ = U◦.

Finally, we must have U ′− = U−, by Observation 7.6. This implies, contrary
to assumption, that Yw = Yz. �

Lemma 7.10. Let Y ∗z =
∏p
r=0 ξr(z) come from some J, i∗, V

−, U◦, U−. If

~x = (x1, . . . , xn) ∈ Y ∗z ∩ (Yz \ \Y ∗z ),

then

~x ∈
a−1∏
r=0

ξr(z)× ∂ξa(z)×
p∏

r=a+1

ξr(z)

for some a = 0, . . . , p, such that ξa(z) is of class (A).

Proof. This follows from a case analysis, for which the interested reader
may find Tables 21, 23, and 22 useful. It comes down to this. Consider
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two pieces ξa(z) and ξb(z) where max ξa(z) = min ξb(z) = c (recall Notation
7.2). Then c ∈ Zk. If c equals i− 1 for some i ∈ T , then i ∈ J and ξb(z) is
of class (A). Otherwise, c = i∗ and ξa(z) is of class (A). �

The results of §§6, 7.3 provide all the details we need to prove:

Theorem 7.11. For n = 2k − 1 ∈ Z+, the n-torus admits a smooth multi-
section Tn =

⋃
r∈Zk

Xr defined by

X0 =
{
~xσ : ~x ∈ [0, 1]2 · · · [0, k − 1]2[0, k]/ ∼, σ ∈ Sn

}
,

Xi = {~x+ (i, . . . , i) : ~x ∈ X0}.
(1)

Proof. Lemma 6.8 implies that X =
⋃
i∈Zk

Xi, so it remains only to prove

for each nonempty proper subset I ⊂ Zk, that XI =
⋂
i∈I Xi is an (n+ 1−

|I|)-dimensional submanifold of X with a spine of dimension |I|.

Fix some such I. Assume wlog that I is simple. Then XI = (2), by
Lemma 6.13. Decompose XI =

⋃
z Yz as described in §7.2. Lemmas 7.7 and

7.8 imply that Y ∗1 is an (n + 1 − |I|)-dimensional 0-handle with no pieces
ξr(1) of class (A); Lemma 7.10 and the symmetry of the construction imply
further that Y1 is a union of (n+ 1− |I|)-dimensional 0-handles.

Similarly, for each z, Lemmas 7.7, 7.8, and 7.9 imply that attaching Y ∗z to⋃
w<z Yz amounts to attaching an (n+ 1− |I|)-dimensional h-handle, where

h(z) is the sum of the dimensions of those ξr(z) of class (A):

h = {i ∈ I : ξr(z) is of class (A)} ≤ |I|.

Again, Lemma 7.10 and the symmetry of the construction imply further that
attaching all of Yz to

⋃
w<z Yw amounts to attaching several such handles.

Thus, XI is an (n+ 1− |I|)-dimensional |I|-handlebody in Tn.

It remains to check that XZk
=
⋂
i∈Zk

Xi is a closed k-manifold. We know

from Lemma 6.13 that XZk
is given by (3).

Since XZk\{k−1} is (k + 1)-manifold, it suffices to check that XZk
equals

∂XZk\{k−1}, which is the union of those k-faces of the Yz from the handle
decomposition of XZk\{k−1} that are not glued to any other Yw. Case anal-
ysis confirms that this union equals the expression from 3. (The reader may
find Tables 21-21 useful.)

Alternatively, construct a handle decomposition of XZk
as follows. Cut each

unit interval [i, i+1] into thirds and, for each i∗ ∈ Zk, further cut
[
i∗ − 1

3 , i∗
]

and
[
i∗, i∗ + 1

3

]
into halves. Then, for each i∗ ∈ Zk, U◦ ⊂ Zk, U− ⊂ Zk \U◦,
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and U∗ ⊂ ({i∗ + 1} ∩ U−) ∪ ({i∗} \ (U◦ ∪ U−), define

ρi =



[i− 2
3 , i−

1
3 ] i ∈ U◦

[i− 1, i− 2
3 ] i∗ + 1 6= i ∈ U−

[i− 1
3 , i] i∗ 6= i ∈ Zk \ (U◦ ∪ U−)

[i∗, i∗ + 1
6 ] i∗ + 1 = i ∈ U∗

[i∗ + 1
6 , i∗ + 1

3 ] i∗ + 1 = i ∈ U− \ U∗

[i∗ − 1
6 , i∗] i∗ = i ∈ U∗

[i∗ − 1
3 , i∗ −

1
6 ] i∗ = i ∈ U+ \ U∗,

XZk,i∗,U◦,U−,U∗ =
∏
i∈Zk

{
ρi × {i} i 6= i∗

ρi = i∗

}
.

Order the pieces XZk,i∗,U◦,U−,U∗ as Yz, z = 1, 2, 3, . . . , lexicographically ac-

cording to the following orders on the possibilities for (i∗, U
◦, U−, U∗). Order

{i∗ ∈ I} and U− ⊂ U◦ arbitrarily. Partially order {U◦ ⊂ Zk} by inclusion,
with U◦ ≺ U ′◦ if U◦ ⊂ U ′◦, and extend arbitrarily to a total order. Order
the possibilities for U∗ the same way. Then⋃

i=1,...,k

Yz =
⋃
i∗∈Zk

XZk,i∗,Zk,∅,∅

is a union of 0-handles, and to attach each Yz = XZk,i∗,U◦,U−,U∗ to
⋃
w<z Yw

is to attach a collection of h(z)-handles for h(z) = k − |U◦| − |U∗|. �

8. Cubulated manifolds of odd dimension

Consider a covering space p : M → Tn, where n = 2k − 1. Multisect
Tn =

⋃
i∈Zk

Xi as in Theorem 7.11. Then, by Corollary 17 of [7], M =⋃
i∈Zk

p−1(Xi) determines a PL multisection of M . In general, one expects
such multisections to be less efficient than those from Theorem 7.11. Also,
there seems to be no reason to expect that one can extend the main construc-
tion to cubulated odd-dimensional manifolds in general. There is, however,
an intermediate case to which our construction does extend.

First, we propose the following modest generalization of the usual notion of
a cubulation. The generalization is similar to Hatcher’s ∆-complexes vis a
vis simplicial complexes [2]. A cube is a homeomorphic copy of In for some
n ≥ 0, with the usual cell structure; its faces are defined in the traditional
way.

Definition 8.1. A -complex is a quotient space of a collection of disjoint
cubes obtained by identifying certain of their faces via homeomorphisms.

Note that, by definition, a -complex comes equipped with a cell structure.
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Definition 8.2. A generalized cubulation of a manifold is a homeomor-
phism to a -complex.

In other words, a generalized cubulation of an n-manifold M imposes a
cell structure on M in which every cell “looks like” an n-cube. The point of
generalizing the usual definition is that the usual cell structure on Tn counts
as a generalized cubulation, but not as a cubulation in the traditional sense.

Consider an arbitrary edge of In, joining ~a = (a1, . . . , ai−1, 0, ai+1, . . . , an)

and ~b = (a1, . . . , ai−1, 1, ai+1, . . . , an). Orient this edge so that it runs from

~a to ~b. Do the same with every edge of the n-cube. Call these the standard
orientations on the edges of the n-cube.

Definition 8.3. A -complex K is directable if it is possible to orient the
edges in K in such a way that, for each n-cell C in K, there is a continuous
map h to K from the n-cube with the standard orientations on its edges,
such that h respects these orientations and maps the interior of the n-cube
homeomorphically to the interior of C. A directed -complex is one whose
edges have been oriented in this way.

Definition 8.4. A directed cubulation of a manifold is a homeomorphism
to a directed -complex.

Fix some n = 2k − 1. Let g : In = [0, k]n → Tn = (R/kZ)n = [0, k]n/ ∼
be the quotient map. Let f : M → K be a directed cubulation of an n-
manifold. For each n-cell C in K, denote h : In → C as in Definition
8.3. Multisect Tn =

⋃
i∈Zk

Xi as in Theorem 7.11. For each i ∈ Zk, define

Xi,C = h(g−1(Xi)) ⊂ C. Then, for each i ∈ Zk, define

X ′i =
⋃

n-cubes C in K

f−1(Xi,C).

Observation 8.5. With the setup above, M =
⋃
i∈Zk

X ′i determines a PL
multisection of M .

This follows from the fact that the multisection of Tn is fixed by the permu-
tation action on the indices and K is a directed cubulation. Another way
to see this is by noting that, because M admits a directed cubulation, then
there is a well-defined map map from M to the symmetric space Tn/Sn,
which one can use to define this multisection.

Appendix 1: Additional tables detailing handle
decompositions

Tables 11 and 12 explicitly detail Ur, Vr ⊂ Ir for arbitrary Ir (following
Notation 3.8). For simplicity, these tables have Ir = I0 = {0, . . . , w}, listing
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U0, V0; this is not necessarily consistent with Convention 3.9. To adapt
U0, V0 ⊂ I0 to the general case Ur, Vr ⊂ Ir, add min Ir in each coordinate.

I0 0 /∈ J 0 ∈ J
U0 V0 U0 V0

{0} ∅ ∅ ∅ {0}
{0,1} ∅ {1} ∅ {1}
{0,1,2} ∅ {1,2} {1} {2}
{0,1,2,3} ∅ {1,2,3} {1,2} {3}
{0,1,2,3,4} ∅ {1,2,3,4} {1,2,3} {4}
{0, . . . , w} ∅ {1, . . . , w} {1, . . . , w − 1} {w}

Table 11. The index subsets U0, V0 ⊂ I0 when i∗ /∈ I0.

I0 U0 V0
{0} ∅ ∅
{0,1} ∅ ∅

{0,1,2}

{
{1} s = 2

∅ s 6= 2

} {
{1, 2} s = 0

∅ s 6= 0

}

{0,1,2,3}


{2} s = 0

∅ s = 1

{1} s = 2

{1, 2} s = 3


{
{i∗ + 1, 3} s ≤ 1

∅ s ≥ 2

}

{0, . . . , w} I0 \ {0, i∗, i∗ + 1, w}

{
{i∗ + 1, w} i∗ ≤ w − 2

∅ i∗ ≥ w − 1

}

Table 12. The index subsets U0, V0 ⊂ I0 when i∗ ∈ I0.

Table 13 details the handle decomposition of XI from T 9 with I = {0, 1, 3} =
I1 t I2, I1 = {0, 1}, I2 = {3}. The interesting feature of this example is how
the two blocks of indices I1, I2 interact.
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J i∗ U V V − Y ∗z h z glue to
∅ 0 ∅ ∅

〈
α1β3

〉 〈
3δ3
〉

0 1
∅ 1 ∅ ∅ ∅ 〈0α〉β3

〈
3δ3
〉

1 2 1
∅ 3 ∅ {1} ∅ 0

〈
α+1β3

〉
δ3 0 3

∅ 3 ∅ {1} {1} 〈0α−〉
〈
1β3
〉
δ3 1 4 3

{0} 0 ∅ ∅ ∅
〈
α1β3

〉 〈
3δ2
〉
ε 1 5 1,3,4

{0} 1 ∅ ∅ ∅ 〈ε0α〉β3
〈
3δ2
〉

2 6 2,5
{0} 3 ∅ {1} 〈ε0〉

〈
α+1β3

〉
δ2 1 7 3

{0} 3 ∅ {1} 〈ε0α−〉
〈
1β3
〉
δ2 2 8 4,7

{3} 0 ∅ {3} ∅
〈
α1β2

〉 〈
γ+3δ3

〉
0 9

{3} 0 ∅ {3} {3}
〈
α1β2

〉
γ−
〈
3δ3
〉

1 10 1,9
{3} 1 ∅ {3} ∅ 〈0α〉β2

〈
γ+3δ3

〉
1 11 9

{3} 1 ∅ {3} {3} 〈0α〉β2γ−
〈
3δ3
〉

2 12 2,10,11
{3} 3 ∅ {1} ∅ 0

〈
α+1β2

〉
γδ3 1 13 2,3

{3} 3 ∅ {1} {1} 〈0α−〉
〈
1β2
〉
γδ3 2 14 2,4,13

{0,3} 0 ∅ {3} ∅
〈
α1β2

〉 〈
γ+3δ2

〉
ε 1 15 9,13,14

{0,3} 0 ∅ {3} {3}
〈
α1β2

〉
γ−
〈
3δ2
〉
ε 2 16 10,13,14,15

{0,3} 1 ∅ {3} ∅ 〈ε0α〉β2
〈
γ+3δ2

〉
2 17 11,15

{0,3} 1 ∅ {3} {3} 〈ε0α〉β2γ−
〈
3δ2
〉

3 18 6,12,16,17
{0,3} 3 ∅ {1} ∅ 〈ε0〉

〈
α+1β2

〉
γδ2 2 19 6,7,13

{0,3} 3 ∅ {1} {1} 〈ε0α−〉
〈
1β2
〉
γδ2 3 20 6,8,14,19

Table 13. A genus 9 quintisection of T 9: XI when I = {0, 1, 3}

Tables 14-17 detail the handle decomposition of XI , I = {0, 1, 2, 3}, from
the quintisection of T 9. Note that, since I = I1 consists of a single block in
this example, we always have I1 = I∗.

i∗ U V V − Y ∗z h z glue to
0 {2} {1,3} ∅ α−1β◦32

〈
γ+3δ3

〉
0 1

α−
〈
1β−3

〉
2
〈
γ+3δ3

〉
1 2 1

α−1
〈
β+3 2

〉 〈
γ+3δ3

〉
1 3 1

{1} 〈α+1〉β◦32
〈
γ+3δ3

〉
1 4 1〈

α+1β−3
〉

2
〈
γ+3δ3

〉
2 5 2,4

〈α+1〉
〈
β+3 2

〉 〈
γ+3δ3

〉
2 6 3,4

{3} α−1β◦3 〈2γ−〉
〈
3δ3
〉

1 7 1
α−
〈
1β−3

〉
〈2γ−〉

〈
3δ3
〉

2 8 2,7
α−1

〈
β+3 2γ−

〉 〈
3δ3
〉

2 9 3,7
{1,3} 〈α+1〉β◦3 〈2γ−〉

〈
3δ3
〉

2 10 4,7〈
α+1β−3

〉
〈2γ−〉

〈
3δ3
〉

3 11 5,8,10
〈α+1〉

〈
β+3 2γ−

〉 〈
3δ3
〉

3 12 6,9,10

Table 14. XI , I = {0, 1, 2, 3}, from T 9. Part 1: J = ∅.
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i∗ U V V − Y ∗z h z glue to
1 ∅ {2,3} ∅ 〈0α〉β−2

〈
γ+3δ3

〉
1 13 1,2

{2} 〈0α〉 〈β+2〉
〈
γ+3δ3

〉
2 14 1,3,13

{3} 〈0α〉β− 〈2γ−〉
〈
3δ3
〉

2 15 7,8,13
{2,3} 〈0α〉 〈β+2γ−〉

〈
3δ3
〉

3 16 7,9,14,15
2 {1} ∅ ∅ 0α◦3 〈1β〉

〈
γ3δ3

〉
1 17 13〈

0α−3
〉
〈1β〉

〈
γ3δ3

〉
2 18 13,17

0
〈
α+
3 1β

〉 〈
γ3δ3

〉
2 19 13,17

3 {1,2} ∅ ∅ 0α◦31β
◦
3 〈2γ〉 δ3 1 20 17〈

0α−3
〉

1β◦3 〈2γ〉 δ3 2 21 18,20
0
〈
α+
3 1
〉
β◦3 〈2γ〉 δ3 2 22 19,20

0α◦3
〈
1β−3

〉
〈2γ〉 δ3 2 23 17,20〈

0α−3
〉 〈

1β−3
〉
〈2γ〉 δ3 3 24 18,20,23

0
〈
α+
3 1β−3

〉
〈2γ〉 δ3 3 25 19,22,23

0α◦31
〈
β+3 2γ

〉
δ3 2 26 17,20〈

0α−3
〉

1
〈
β+3 2γ

〉
δ3 3 27 18,21,26

0
〈
α+
3 1
〉 〈
β+3 2γ

〉
δ3 3 28 19,22,26

Table 15. XI , I = {0, 1, 2, 3}, from T 9. Part 2: J = ∅.

i∗ U V V − Y ∗z h z glue to
0 {2} {1,3} ∅ α−1β◦32

〈
γ+3δ2

〉
ε 1 29 1,19,20

α−
〈
1β−3

〉
2
〈
γ+3δ2

〉
ε 2 30 2,22,23,29

α−1β+3 2
〈
γ+3δ2

〉
ε 2 31 3,25,26,29

{1} 〈α+1〉β◦32
〈
γ+3δ2

〉
ε 2 32 4,19,21〈

α+1β−3
〉

2
〈
γ+3δ2

〉
ε 3 33 5,22,24,30,32

〈α+1〉β+3 2
〈
γ+3δ2

〉
ε 3 34 6,25,27,31,32

{3} α−1β◦3 〈2γ−〉
〈
3δ2
〉
ε 2 35 7,19,20,29

α−
〈
1β−3

〉
〈2γ−〉

〈
3δ2
〉
ε 3 36 8,22,23,30,35

α−1
〈
β+3 2γ−

〉 〈
3δ2
〉
ε 3 37 9,25,26,31,35

{1,3} 〈α+1〉β◦3 〈2γ−〉
〈
3δ2
〉
ε 3 38 10,19,21,32,35〈

α+1β−3
〉
〈2γ−〉

〈
3δ2
〉
ε 4 39 11,22,24,33,36,38

〈α+1〉
〈
β+3 2γ−

〉 〈
3δ2
〉
ε 4 40 12,25,27,34,37,38

1 ∅ {2,3} ∅ 〈ε0α〉β−2
〈
γ+3δ2

〉
2 41 13,29,30

{2} 〈ε0α〉 〈β+2〉
〈
γ+3δ2

〉
3 42 14,29,31,41

{3} 〈ε0α〉β− 〈2γ−〉
〈
3δ2
〉

3 43 15,35,36,41
{2,3} 〈ε0α〉 〈β+2γ−〉

〈
3δ2
〉

4 44 16,35,37,42,43
2 {1} ∅ ∅ 〈ε0〉α◦3 〈1β〉

〈
γ3δ2

〉
2 45 17,41,43〈

ε0α−3
〉
〈1β〉

〈
γ3δ2

〉
3 46 18,41,43,45

〈ε0〉
〈
α+
3 1β

〉 〈
γ3δ2

〉
3 47 19,41,43,45

Table 16. XI , I = {0, 1, 2, 3}, from T 9. Part 3: J = {0}.
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i∗ U V V − Y ∗z h z glue to
3 {1,2} ∅ ∅ 〈ε0〉α◦31β◦3 〈2γ〉 δ2 2 48 20,45〈

ε0α−3
〉

1β◦3 〈2γ〉 δ2 3 49 21,46,48
〈ε0〉

〈
α+
3 1
〉
β◦3 〈2γ〉 δ2 3 50 22,47,48

〈ε0〉α◦3
〈
1β−3

〉
〈2γ〉 δ2 3 51 23,45,48〈

ε0α−3
〉 〈

1β−3
〉
〈2γ〉 δ2 4 52 24,46,49,51

〈ε0〉
〈
α+
3 1β−3

〉
〈2γ〉 δ2 4 53 25,47,50,51

〈ε0〉α◦31
〈
β+3 2γ

〉
δ2 3 54 26,45,48〈

ε0α−3
〉

1
〈
β+3 2γ

〉
δ2 4 55 27,46,49,54

〈ε0〉
〈
α+
3 1
〉 〈
β+3 2γ

〉
δ2 4 56 28,47,50,54

Table 17. XI , I = {0, 1, 2, 3}, from T 9. Part 4: J = {0}.

Tables 18 and 19 detail handle decompositions of XI , I = {0, 1, 2, 4} from
the sexasection of T 11. The parts of these tables with i∗ = 4 feature a “new
complication,” i.e. one that does not appear in dimensions n ≤ 5.

J i∗ U V V − Y ∗z h z glue to
∅ 4 ∅ {1,2} ∅ 0 〈α+1〉

〈
β+2γ3

〉
ε3 0 1

{1} 〈0α−〉 1
〈
β+2γ3

〉
ε3 1 2 1

{1, 2} 〈0α−〉 〈1β−〉
〈
2γ3
〉
ε3 1 3 2

{2} 0 〈α+1β−〉
〈
2γ3
〉
ε3 2 4 1,3

0 ∅ {1,2} ∅ α−1
〈
β+2γ3

〉 〈
4ε3
〉

0 5
{1} 〈α+1〉

〈
β+2γ3

〉 〈
4ε3
〉

1 6 5
{2} α− 〈1β−〉

〈
2γ3
〉 〈

4ε3
〉

1 7 5
{1,2} 〈α+1β−〉

〈
2γ3
〉 〈

4ε3
〉

2 8 5,6
1 ∅ ∅ ∅ 〈0α〉

〈
β2γ3

〉 〈
4ε3
〉

1 9 5,7
2 {1} ∅ ∅ 0α◦3 〈1β〉 γ3

〈
4ε3
〉

1 10 9〈
0α−3

〉
〈1β〉 γ3

〈
4ε3
〉

2 11 9,10
0
〈
α+
3 1β

〉
γ3
〈
4ε3
〉

2 12 9,10
{4} 4 ∅ {1,2} ∅ 0 〈α+1〉

〈
β+2γ2

〉
δε3 1 13 1,10,12

〈0α−〉 1
〈
β+2γ2

〉
δε3 2 14 2,10,11,13

〈0α−〉 〈1β−〉
〈
2γ2
〉
δε3 2 15 3,10,11,14

0 〈α+1β−〉
〈
2γ2
〉
δε3 3 16 4,10,12,13,15

0 ∅ {1,2} ∅ α−1
〈
β+2γ2

〉 〈
δ+4ε3

〉
0 17

α−1
〈
β+2γ2

〉
δ−
〈
4ε3
〉

1 18 5,17
{1} 〈α+1〉

〈
β+2γ2

〉 〈
δ+4ε3

〉
1 19 17

〈α+1〉
〈
β+2γ2

〉
δ−
〈
4ε3
〉

2 20 6,18,19
{2} α− 〈1β−〉

〈
2γ2
〉 〈
δ+4ε3

〉
1 21 19

α− 〈1β−〉
〈
2γ2
〉
δ−
〈
4ε3
〉

2 22 7,20,21
{1,2} 〈α+1β−〉

〈
2γ2
〉 〈
δ+4ε3

〉
2 23 19,21

〈α+1β−〉
〈
2γ2
〉
δ−
〈
4ε3
〉

3 24 8,20,22,23

Table 18. Part 1 of XI , I = {0, 1, 2, 4}, from T 11. The
pattern for s = 4 is new: also see Tables 9, 20.
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J i∗ U V V − Y ∗z h z glue to
{4} 1 ∅ ∅ ∅ 〈0α〉

〈
β2γ2

〉 〈
δ+4ε3

〉
1 25 17,21

〈0α〉
〈
β2γ2

〉
δ−
〈
4ε3
〉

2 26 9,18,22,25
2 {1} ∅ ∅ 0α◦3 〈1β〉 γ2

〈
δ+4ε3

〉
1 27 25

0α◦3 〈1β〉 γ2δ−
〈
4ε3
〉

2 28 10,26,27〈
0α−3

〉
〈1β〉 γ2

〈
δ+4ε3

〉
2 29 25,27〈

0α−3
〉
〈1β〉 γ2δ−

〈
4ε3
〉

3 30 11,26,28,29
0
〈
α+
3 1β

〉
γ2
〈
δ+4ε3

〉
2 31 25,27

0
〈
α+
3 1β

〉
γ2δ−

〈
4ε3
〉

3 32 12,26,28,31
{0} 4 {1} {2} ∅ 〈ζ0〉α◦31

〈
β+2γ3

〉
ε2 1 33 1,2

〈ζ0〉
〈
α+
3 1
〉 〈
β+2γ3

〉
ε2 2 34 1,33〈

ζ0α−3
〉

1
〈
β+2γ3

〉
ε2 2 35 2,33

{2} 〈ζ0〉α◦3 〈1β−〉
〈
2γ3
〉
ε2 2 36 3,4,33

〈ζ0〉
〈
α+
3 1β−

〉 〈
2γ3
〉
ε2 3 37 3,34,36〈

ζ0α−3
〉
〈1β−〉

〈
2γ3
〉
ε2 3 38 4,35,36

0 ∅ {1,2} ∅ ζα−1
〈
β+2γ3

〉 〈
4ε2
〉

1 39 2,5
{1} ζ 〈α+1〉

〈
β+2γ3

〉 〈
4ε2
〉

2 40 1,6,39
{2} ζα− 〈1β−〉

〈
2γ3
〉 〈

4ε2
〉

2 41 3,7,39
{1,2} ζ 〈α+1β−〉

〈
2γ3
〉 〈

4ε2
〉

3 42 4,8,40
1 ∅ ∅ 〈ζ0α〉

〈
β2γ3

〉 〈
4ε2
〉

2 43 9,39,41
2 {1} ∅ ∅ 〈ζ0〉α◦3 〈1β〉 γ3

〈
4ε2
〉

2 44 10,43〈
ζ0α−3

〉
〈1β〉 γ3

〈
4ε2
〉

3 45 11,43,44
〈ζ0〉

〈
α+
3 1β

〉
γ3
〈
4ε2
〉

3 46 12,43,44
{0, 4} 4 {1} {2} ∅ 〈ζ0〉α◦31

〈
β+2γ2

〉
δε2 2 47 13,14,33,44

〈ζ0〉
〈
α+
3 1
〉 〈
β+2γ2

〉
δε2 3 48 13,34,45,47〈

ζ0α−3
〉

1
〈
β+2γ2

〉
δε2 3 49 14,35,46,47

{2} 〈ζ0〉α◦3 〈1β−〉
〈
2γ2
〉
δε2 3 50 15,16,36,44,47

〈ζ0〉
〈
α+
3 1β−

〉 〈
2γ2
〉
δε2 4 51 16,37,45,48,50〈

ζ0α−3
〉
〈1β−〉

〈
2γ2
〉
δε2 4 52 15,38,46,49,50

0 ∅ {1,2} ∅ ζα−1
〈
β+2γ2

〉 〈
δ+4ε2

〉
1 53 14,17

ζα−1
〈
β+2γ2

〉
δ−
〈
4ε2
〉

2 54 14,18,39,53
{1} ζ 〈α+1〉

〈
β+2γ2

〉 〈
δ+4ε2

〉
2 55 13,19,53

ζ 〈α+1〉
〈
β+2γ2

〉
δ−
〈
4ε2
〉

3 56 13,20,40,54,55
{2} ζα− 〈1β−〉

〈
2γ2
〉 〈
δ+4ε2

〉
2 57 15,21,53

ζα− 〈1β−〉
〈
2γ2
〉
δ−
〈
4ε2
〉

3 58 15,22,41,54,57
{1,2} ζ 〈α+1β−〉

〈
2γ2
〉 〈
δ+4ε2

〉
3 59 16,23,55,57

ζ 〈α+1β−〉
〈
2γ2
〉
δ−
〈
4ε2
〉

4 60 16,24,42,56,58,59
1 ∅ ∅ 〈ζ0α〉

〈
β2γ2

〉 〈
δ+4ε2

〉
2 61 25,53,57

〈ζ0α〉
〈
β2γ2

〉
δ−
〈
4ε2
〉

3 62 26,43,54,58,61
2 {1} ∅ ∅ 〈ζ0〉α◦3 〈1β〉 γ2

〈
δ+4ε2

〉
2 63 27,61〈

ζ0α−3
〉
〈1β〉 γ2

〈
δ+4ε2

〉
3 64 29,61,63

〈ζ0〉
〈
α+
3 1β

〉
γ2
〈
δ+4ε2

〉
3 65 31,61,63

〈ζ0〉α◦3 〈1β〉 γ2δ−
〈
4ε2
〉

3 66 28,44,62,63〈
ζ0α−3

〉
〈1β〉 γ2δ−

〈
4ε2
〉

4 67 30,44,62,64,66
〈ζ0〉

〈
α+
3 1β

〉
γ2δ−

〈
4ε2
〉

4 68 32,45,62,65,66

Table 19. Part 3 of XI , I = {0, 1, 2, 4}, from T 11. The
pattern for s = 4 is new: also see Tables 9, 20.
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Table 20 details the start of the handle decomposition of XI from T 15 with
I = {0, 1, 2, 4, 6}, focusing on the first few pieces Yz. Those pieces have
J = ∅, i∗ = 6, U = ∅, V = {1, 2, 3, 4}. The interesting feature of this
example is the ordering of these pieces. Compare to (20).

V − Y ∗z h z glue to
∅ 0 〈α+1〉 〈β+2〉 〈γ+3〉

〈
δ+4ε3

〉
η3 0 1

{1} 〈0α−〉 1 〈β+2〉 〈γ+3〉
〈
δ+4ε3

〉
η3 1 2 1

{1, 2} 〈0α−〉 〈1β−〉 2 〈γ+3〉
〈
δ+4ε3

〉
η3 1 3 2

{2} 0 〈α+1β−〉 2 〈γ+3〉
〈
δ+4ε3

〉
η3 2 4 1,3

{2, 3} 0 〈α+1β−〉 〈2γ−〉 3
〈
δ+4ε3

〉
η3 1 5 4

{1, 2, 3} 〈0α−〉 〈1β−〉 〈2γ−〉 3
〈
δ+4ε3

〉
η3 2 6 3,5

{1, 3} 〈0α−〉 1 〈β+2γ−〉 3
〈
δ+4ε3

〉
η3 2 7 2,6

{3} 0 〈α+1〉 〈β+2γ−〉 3
〈
δ+4ε3

〉
η3 3 8 1,5,7

{3, 4} 0 〈α+1〉 〈β+2γ−〉 〈3δ−〉
〈
4ε3
〉
η3 1 9 8

{1, 3, 4} 〈0α−〉 1 〈β+2γ−〉 〈3δ−〉
〈
4ε3
〉
η3 2 10 7,9

{1, 2, 3, 4} 〈0α−〉 〈1β−〉 〈2γ−〉 〈3δ−〉
〈
4ε3
〉
η3 2 11 6,10

{2, 3, 4} 0 〈α+1β−〉 〈2γ−〉 〈3δ−〉
〈
4ε3
〉
η3 3 12 5,9,11

{2, 4} 0 〈α+1β−〉 2 〈γ+3δ−〉
〈
4ε3
〉
η3 2 13 4,12

{1, 2, 4} 〈0α−〉 〈1β−〉 2 〈γ+3δ−〉
〈
4ε3
〉
η3 3 14 3,11,13

{1, 4} 〈0α−〉 1 〈β+2〉 〈γ+3δ−〉
〈
4ε3
〉
η3 3 15 2,10,14

{4} 0 〈α+1〉 〈β+2〉 〈γ+3δ−〉
〈
4ε3
〉
η3 4 16 1,9,13,15

Table 20. Start of the handle decomposition from T 15 with
I = {0, 1, 2, 4, 6}, J = ∅, i∗ = 6, U = ∅, V = {1, 2, 3, 4}.

Tables 21, 22, and 23 list the possible forms for ξr(z). Table 21 lists those
with no singleton factor. Table 22 lists those with a singleton factor {i},
where i ∈ V + and i+1 ∈ U◦∪U+∪V +, or i ∈ U−∪U◦∪V − and i+1 ∈ V −;
the class of this case depends on the parity of #(V − ∩ {i+ 1, . . . ,max Is}),
where i ∈ Is. Table 22 lists the remaining possibilities for ξr(z).

class ξr(z) conditions
(A) [i∗ − 1, i∗] i∗ ∈ J
(A)

[
i− 1, i− 1

2

]
i ∈ J ∩ V − =⇒ i 6= i∗, i+ 1 /∈ I

(B)
[
i∗, i∗ + 1

2

]
a ≤ i∗ ≤ b− 2, i∗ + 1 ∈ V −

(B)
[
i− 2

3 , i−
1
3

]
i ∈ U◦

(B)
∏c−1
j=i∗+1[i∗, j]

2 i∗ = b, c ∈ J
(B)

∏c−2
j=i∗+1[i∗, j]

2[i∗, c− 1]3 i∗ = b, c /∈ J

Table 21. The possible forms for ξr(z) with no singleton
factor, where i∗ ∈ Is, a = min Is, b = max Is, c = min Is+1.
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class ξr(z) conditions on i conditions on i+ 1 parity

(A)
[
i− 1

2 , i
]
{i} i ∈ V + i+ 1 ∈ U◦ ∪ U+ ∪ V + odd

(A) {i}
[
i, i+ 1

2

]
i ∈ U− ∪ U◦ ∪ V − i+ 1 ∈ V − odd

(A)
[
i− 1

2 , i
]
{i}
[
i, i+ 1

2

]
i ∈ V + i+ 1 ∈ V − odd

(B)
[
i− 1

2 , i
]
{i} i ∈ V + i+ 1 ∈ U◦ ∪ U+ ∪ V + even

(B) {i}
[
i, i+ 1

2

]
i ∈ U− ∪ U◦ ∪ V − i+ 1 ∈ V − even

(B)
[
i− 1

2 , i
]
{i}
[
i, i+ 1

2

]
i ∈ V + i+ 1 ∈ V − even

Table 22. The possible forms for each ξr(z) containing a
singleton factor {i}, where i ∈ V + and i+1 ∈ U◦∪U+∪V +,
or i ∈ U− ∪ U◦ ∪ V − and i + 1 ∈ V −; the class depends on
the parity of #(V − ∩ {i+ 1, . . . ,max Is}), where i ∈ Is.

class ξr(z) conditions on i
(A) [i− 1, i]{i} i ∈ J , i+ 1 ∈ U◦ ∪ U+ ∪ V +

(A) [i− 1, i]{i}[i, i+ 1] i ∈ J , i∗ = i+ 1
(A) [i− 1, i]{i}

[
i, i+ 1

3

]
i ∈ J , i+ 1 ∈ U−

(A) [i− 1, i]{i}
[
i, i+ 1

2

]
i ∈ J , i+ 1 ∈ V −

(A)
[
i− 1

3 , i
]
{i} i ∈ U+, i+ 1 ∈ U◦ ∪ U+ ∪ V +

(A) {i}
[
i, i+ 1

3

]
i+ 1 ∈ U−, i ∈ U− ∪ U◦ ∪ V −

(A)
[
i− 1

3 , i
]
{i}
[
i, i+ 1

3

]
i ∈ U+, i+ 1 ∈ U−

(A)
[
i− 1

3 , i
]
{i}
[
i, i+ 1

2

]
, i ∈ U+, i+ 1 ∈ V −

=⇒ i+ 1 = max Is 6= i∗
(A)

[
i− 1

2 , i
]
{i}
[
i, i+ 1

3

]
, i ∈ V +, i+ 1 ∈ U−

=⇒ i = i∗ + 1 ≤ max Is − 1
(A) {i} i ∈ (T \ J) ∪ U− ∪ U◦ ∪ V −,

i+ 1 ∈ U◦ ∪ U+ ∪ V +

(B) [i− 1, i]{i}
∏c−2
j=i+1[i, j]

2[i, c− 1]q i∗ = min Is = i− 1 = max Is − 1

(B)
[
i− 1

2 , i
]
{i}
∏c−2
j=i+1[i, j]

2[i, c− 1]q i = max Is ∈ V +

(B) {i}
∏c−2
j=i+1[i, j]

2[i, c− 1]q i = max Is ∈ V −

Table 23. The possible forms for each ξr(z) not listed in
Tables 21, 22. Each contains a singleton factor {i}, i∗ 6= i ∈
Is, s ∈ Zm. Denote c = min Is+1 with q ∈ {2, 3}.

Appendix 2: Three other attempts to multisect T n for n odd

From the handle decomposition. The n-torus has a natural handle de-
composition, with

(
n
r

)
h-handles for each h = 0, . . . , n. Viewing Tn as

(R/2Z)n, each unit cube with vertices in (Z/2Z)n corresponds to a handle;
more precisely, each permutation of αn−hβh corresponds to an h-handle.
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Figure 10. Another construction of the minimal genus Hee-
gaard splitting of S3

One might hope that Xi =
〈
αn−iβi

〉
∪
〈
αn+1−iβi−1

〉
determines a multisec-

tion. Indeed, in dimension 3, this is the Heegaard splitting shown in Figure
1. Yet, the construction does not work beyond dimension 3, as one can see
by noting, e.g., that X0 ∩Xk−1 =

〈
αβ1n−2

〉
is always 2-dimensional.

Partition cubes into pairs of balls. Instead, at least in odd dimensions,
one might attempt to generalize the following construction. See Figure 10.

First, somewhat like the approach taken throughout the paper, view Tn =
[0, 2k]n/∼ = (R/2kZ)n. Partition the (2k)n unit cubes with vertices in the
lattice (Z/2kZ)n so as to form V0, . . . , Vn subject to the following conditions:7

• If ~x ∈ V0, then ~x+ (r, . . . , r) ∈ Vr;
• The permutation action on the indices fixes each Vr;
• V0 contains [0, 1]n, is star-shaped about (0, . . . , 0), and contains no

points with any coordinate in (n− 1, n).

For i = 0, . . . , k = n+1
2 , let Xi = V2i ∪ V2i+1. This construction does in fact

give a genus 3 Heegaard splitting of T 3. See Figure 10.

In higher dimensions, this construction is promising for many of the same
reasons as the construction behind Theorem 7.11. This construction has at
least one additional advantage, namely that each Vi is a ball. This makes
it easy to check that each Xi is indeed an n-dimensional handlebody of
genus n. Unfortunately, the complexity of this construction grows much
more rapidly than the construction behind Theorem 7.11, making it hard to
check the other details, even in dimension 5. Indeed, see Figure 11.

Question 8.6. Does this construction also give a (PL or smooth) trisection
of T 5? Does it give a multisection of Tn for arbitrary n = 2k − 1?

7These conditions uniquely determine V0, . . . , Vn.
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Figure 11. Decomposing T 5 = [0, 6]5 as V0 ∪ · · · ∪V5. Does
(V0 ∪ V1, V2 ∪ V3, V4 ∪ V5) determine a trisection?

v0 v1
v0 v1

v2

v0

v1

v2

v3

Figure 12. The decompositions ∆k−1 =
⋃
i∈Zk

Zi of the 1-,
2-, and 3-simplices following Rubinstein–Tillmann.

Using the symmetric space Tn/Sn. Given a triangulation K of an n-
manifold X, Rubinstein–Tillmann multisect X by mapping each n-simplex
of K to the standard (k − 1)-simplex

∆k−1 = [~v0, . . . , ~vk−1] =

{∑
j∈Zk

aj~vj : 0 ≤ aj ,
∑
j∈Zk

aj = 1

}
,

decomposing ∆k−1 =
⋃
i∈Zk

Zi where each

(24) Zi = {~x ∈ ∆k−1 : |~x− ~vi| ≤ |~x− ~vj | ∀j ∈ Zk},
(see Figure 12), and pulling back. Their maps from the n-simplices of K to
∆k−1 are simplest to construct in odd dimension n = 2k − 1. Namely:

• map the barycenter of each r-face to ~vj ∈ ∆k−1, j = 2r, 2r + 1; and
• extend linearly in the first barycentric subdivision of K.

The even-dimensional case is similar, but with an extra move.

For example, the triangulation of S3 with two 3-simplices gives a genus 3
Heegaard splitting, as shown in Figure 13.
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v0 v1

Figure 13. A genus 3 Heegaard splitting (right) of S3, fol-
lowing Rubinstein–Tillmann’s construction.

Following Rubinstein-Tillmann, one might try to construct a, say PL, mul-
tisection of Tn using the symmetric space Tn/Sn, which is homeomorphic
to a disk-bundle over the circle; this bundle is twisted when n is even and
untwisted when n is odd.

One can also view the symmetric space Tn/Sn as an n-simplex ∆n =
[~v0, . . . , ~vn] with certain faces identified. When n = 2k − 1, one can also
view ∆n as an iterated join of intervals,

∆n = [~v0, ~v1] ∗ · · · ∗ [~v2(k−1), ~v2k−1].

Hence, there is a map φ : ∆n → ∆k−1 = [~v0, . . . , ~vn] given by

φ : ~x =
k−1∑
i=0

wi(ci~v2i + (1− ci)~v2i+1) 7→
k−1∑
i=0

wi~vi.

One can then decompose ∆k−1 symmetrically into k pieces using barycen-
tric coordinates as in (24) and Figure 14. Following Rubinstein–Tillmann’s
construction of PL multisections from triangulations [7], one might attempt
to construct a multisection of Tn by pulling back each Xi via φ, mapping
forward by the quotient map ∆n → Tn/Sn, and pulling back by the quotient
map Tn → Tn/Sn.

This construction works for T 3 and cuts any Tn into k 1-handlebodies of
genus n. Unfortunately, the needed intersection properties fail, even for T 5,
so the decomposition is not a multisection. Note that by writing

∆n = [~v0, ~v1] ∗ · · · ∗ [~v2(k−1), ~v2k−1]

we made an asymmetric choice, and that the resulting decomposition is
generally different than the one obtained by writing

∆n = [~vσ(0), ~vσ(1)] ∗ · · · ∗ [~vσ(2k−2), ~vσ(2k−1)]

for arbitrary σ ∈ Sn and then following the same procedure.
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v0 v1

v2

v0 v2

v4

v3

v5

v1

Figure 14. Try viewing Tn/Sn as ∆n/ ∼ and ∆n as an it-
erated join of k intervals. Then map ∆n → ∆k−1, decompose
∆k−1, and pull back. It fails, even for n = 5, shown.
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