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EXACT SOLUTIONS IN LOW-RANK APPROXIMATION

WITH ZEROS

KAIE KUBJAS ∗, LUCA SODOMACO † , AND ELIAS TSIGARIDAS ‡

Abstract. Low-rank approximation with zeros aims to find a matrix of fixed rank and with
a fixed zero pattern that minimizes the Euclidean distance to a given data matrix. We study the
critical points of this optimization problem using algebraic tools. In particular, we describe special
linear, affine and determinantal relations satisfied by the critical points. We also investigate the
number of critical points and how the number is related to the complexity of nonnegative matrix
factorization problem.
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1. Introduction. The best rank-r approximation problem aims to find a rank-r
matrix that minimizes the Euclidean distance to a given data matrix. The solution
of this problem is completely addressed by the Eckart-Young-Mirsky theorem which
states that the best rank-r approximation is given by the first r components of the
singular value decomposition (SVD) of a real matrix.

We study the structured best rank-r approximation problem, namely we consider
additional linear constraints on rank-r matrices. We focus on coordinate subspaces,
i.e., linear spaces that are defined by setting some entries to zero. Let S ⊂ [m]× [n]
denote the indices of zero entries and let LS be the linear subspace of Rm×n defined
by the equations xij = 0 for all (i, j) ∈ S. Given U = (uij) ∈ Rm×n, our optimization
problem becomes

(1.1)
min
X

dU (X) :=

m∑

i=1

n∑

j=1

(xij − uij)
2

s.t. X ∈ LS and rank(X) ≤ r .

Structured low-rank approximation problem has been studied in [CFP03, Mar08,
Mar19]. Exact solutions to this problem have been investigated by Golub, Hoff-
man and Stewart [GHS87], and by Ottaviani, Spaenlehauer and Sturmfels [OSS14].
In [GHS87], rank-r critical points are studied under the constraint that entries in a
set of rows or in a set of columns of a matrix stay fixed. This situation is more general
than ours in the aspect that the fixed entries are not required to be zero but more re-
strictive when it comes to the indices of the entries that are fixed. In [OSS14], rank-r
critical points restricted to generic subspaces of matrices are studied. In our paper,
the linear spaces set some entries equal to zero and hence are not generic. Because
of this, we cannot use many powerful tools from algebraic geometry and intersection
theory, and we have to come up with algebraic and computational techniques that
exploit this special structure. Horobet and Rodriguez study the problem when at
least one solution of a certain family of optimization problems satisfies given polyno-
mial conditions, and address the structured low-rank approximation as a particular
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2 K. KUBJAS, L. SODOMACO, AND E. TSIGARIDAS

case [HR20, Example 15].
The optimization problem (1.1) is nonconvex and often local methods are used to

solve it. They return a local minimum of the optimization problem. There are heuris-
tics for finding a global minimum, but these heuristics do not guarantee that a local
minimum is indeed a global minimum. We refer to [Mar08] for various algorithms
and to [SS16] for an algorithm with locally quadratic convergence. Cifuentes recently
introduced convex relaxations for structured low-rank approximation that under cer-
tain assumptions have provable guarantees [Cif19]. Alternatively, the minimization
problem (1.1) can be solved globally by looking at all the complex critical points of
dU on

LS
r := {X ∈ LS | rank(X) ≤ r}

and selecting the real solution that minimizes the Euclidean distance. If U ∈ Cm×n

is general, namely if it belongs to the complement of a Zariski closed set, then the
number of critical points is constant and is called the Euclidean Distance degree (ED
degree) of LS

r . We denote this invariant by EDdegree(LS
r ). The importance of the ED

degree is that it measures the algebraic complexity of writing the optimal solution as
a function of U . More generally, the ED degree of an algebraic variety is introduced
in [DHO+16]. The main goal of this paper is to study the critical points and the ED
degree of the minimization problem (1.1).

When rank is one, then characterizing critical points becomes a combinatorial
problem. More precisely, listing all critical points translates to the problem of listing
minimal vertex covers of a bipartite graph. Proposition 3.6 gives the ED degree of
LS
1 in terms of the minimal covers. The complexity of counting vertex covers in a

bipartite graph is known to be #P-complete [PB83].
Draisma, Ottaviani and Tocino [DOT18] define the critical space of a tensor, a

special linear space which contains the linear span of the critical rank-r tensors. For
matrices without linear constraints, the critical space coincides with the linear span
of the rank-r critical points of dU (see also [OP15, Section 5]). Our first main result
is Theorem 4.5 which studies the linear span of rank-r critical points of dU in the
structured setting. We call it again the critical space in the structured setting. More
precisely, Theorem 4.5 states that certain linear equations from the unstructured
setting in [DOT18, Definition 2.8] are satisfied by the rank-r critical points of dU in
the structured setting. In the unstructured setting, the rank-one critical points form
a basis of the critical space and the rank-r critical points are linear combinations of
the basis vectors with coefficients in {0, 1}. In the structured setting, there are too
few rank-one critical points to give a basis of the critical space. We leave it as an open
question, whether there is a natural extension to a basis and whether the coefficients
that give rank-r critical points as linear combinations of basis elements, have a nice
description.

Our second main result is Proposition 4.13 that describes affine linear relations
that are satisfied by the rank-r critical points of dU in the unstructured setting. In
the structured setting, we conjecture the affine linear relations satisfied by the rank-r
critical points of dU . The last kind of constraints satisfied by the rank-r critical points
that we consider are nonlinear determinantal constraints given in Proposition 4.19.
The ED degree of dU is studied in Section 5. Our experiments indicate that the ED
degree is exponential in |S|.

The optimization problem (1.1) is motivated by the nonnegative matrix factoriza-
tion (NMF) problem. Given a nonnegative matrix X ∈ Rm×n

≥0
, the nonnegative rank
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of X is the smallest r such that

X = AB, where A ∈ R
m×r
≥0

and B ∈ R
r×n
≥0

.

NMF aims to find a matrix X of nonnegative rank at most r that minimizes the
Euclidean distance to a given data matrix U ∈ Rm×n

≥0
.

The nonnegative rank of a nonnegative matrix is always greater or equal than its
rank. Cohen and Rothblum show that for a nonnegative matrix of rank at most two,
its nonnegative rank equals its rank [CR93]. This implies that the set M2 of matrices
of nonnegative rank at most two is defined by the constraints that the rank of a matrix
is at most two and the entries of the matrix are nonnegative. In particular, the rank
constraint is equivalent to a set of equations while the nonnegativity constraints are
given by inequalities.

To solve the NMF problem with guarantee of finding an optimal solution, we
consider all critical points of the Euclidean distance function over M2. There are two
options:

1. A critical point of the Euclidean distance function over M2 is a critical point
of the Euclidean distance function over the set X2 of matrices of rank at most
two.

2. A critical point of the Euclidean distance function overM2 lies on the bound-
ary of M2, i.e. the critical point contains one or more zero entries.

Equivalently, the second item gives a critical point of the optimization problem (1.1)
for a subset S ⊂ [m]× [n]. For r ≥ 3, there are further inequality constraints that are
required to characterize the set of matrices of nonnegative rank at most r, see [KRS15]
for the inequalities when r = 3. Hence there are further critical points in addition to
the two types listed above.

In Section 6, we apply the structured best rank-two approximation problem to
NMF. We use the ED degree of dU for different S to show that the number of relevant
critical points of the Euclidean distance function over M2 for 3 × 3 matrices is 756.
For the same case, we show experimentally that the optimal critical point has a few
zeros.

The rest of the paper is organized as follows. In Section 2 we set our notations
and recall the Eckart-Young-Mirsky Theorem. In Section 3 we address the best rank-
one approximation problem with assigned zero patterns. In Section 4 we investigate
special polynomial relations among the critical points of dU . In Section 5 we provide
conjectural ED degree formulas for special formats and zero patterns S, obtained from
computational experiments. In Section 6 we relate the minimization problem (1.1)
to nonnegative matrix factorization. The code for the computations can be found at
github.com/kaiekubjas/exact-solutions-in-low-rank-approximation-with-zeros.

2. Preliminaries. We start by setting up the notations used throughout the
paper. Without loss of generality, we always assume that m ≤ n when considering
the vector space Rm×n. Let Xr denote the variety of m×n matrices of rank at most r.
An important tool to study low-rank approximation problem is given by the following
decomposition of a real matrix.

Theorem 2.1 (Singular Value Decomposition). Any matrix U ∈ Rm×n admits
the Singular Value Decomposition (SVD)

(2.1) U = AΣBT ,

where A ∈ Rm×m and B × Rn×n are orthogonal matrices and Σ ∈ Rm×n is such
that Σii = σi for some real numbers σ1 ≥ σ2 ≥ · · ·σm ≥ 0, otherwise Σij = 0. The

https://github.com/kaiekubjas/exact-solutions-in-low-rank-approximation-with-zeros


4 K. KUBJAS, L. SODOMACO, AND E. TSIGARIDAS

numbers σi are called singular values of U . Denoting by ai and bi the columns of A
and B respectively, for all i ∈ [m] the pair (ai, bi) is called a singular vector pair of
U . If the singular values are all distinct, then all singular vector pairs are unique up
to a simultaneous change of sign.

Remark 2.2. Theorem 2.1 extends to complex matrices using unitary matrices
and their conjugates, but complex conjugation is not an algebraic operation. If we
can factor a complex matrix U ∈ Cm×n as in (2.1), then U admits an algebraic
SVD. The complex matrices admitting an algebraic SVD are characterized in [CH87,
Theorem 2 and Corollary 3], see also [DLOT17, Section 3].

Since dU is a polynomial function and Xr has the structure of an affine variety, the
problem of finding all critical points of the function dU on Xr can be attacked using
algebraic tools. More precisely, a matrix X ∈ Xr is a critical point of the function
dU if the vector U −X is orthogonal to the tangent space TXXr with respect to the
Frobenius inner product. Recall that the Frobenius inner product of twom×nmatrices
A and B is 〈A,B〉F := trace(ABT ). The following result describes completely all such
critical points.

Theorem 2.3 (Eckart-Young-Mirsky). Consider a matrix U ∈ R
m×n of rank k

and its SVD as in (2.1). Let r ∈ [k]. Then all the critical points of dU on Xr are of
the form

A(Σi1 + · · ·+Σir )B
T

for all subsets {i1 < · · · < ir} ⊂ [k], where Σj is the m×n matrix whose only non-zero
entry is Σj,j = σj. If the non-zero singular values of U are distinct then the number

of critical points is
(
k
r

)
.

Therefore, Theorem 2.3 solves the best rank-r approximation problem and the nice
structure of critical points leads to various interesting consequences. In particular,
assuming that U is full rank, their number is independent from the largest dimension
n. Moreover, their linear span does not depend on the rank r; it is studied in [OP15,
DOT18] in the more general context of tensor spaces, see also Proposition 4.1.

The following are two basic lemmas needed in the following sections.

Lemma 2.4. In the Euclidean space (V, 〈·, ·〉), consider an affine variety X con-
tained in the proper affine subspace W ⊂ V . Let πW : V → W be the projection onto
V . Then, for all u ∈ V , the critical points on X of the squared distance functions du
and dπW (u) coincide.

Proof. Let x ∈ X be a critical point of du. In particular 〈u − x, y〉 = 0 for all
y ∈ TxX . Furthermore 〈πW (u)− x, y〉 = 〈u− x, y〉 − 〈u− πW (u), y〉 = 0− 0 = 0 since
u− πW (u) and y sit in orthogonal subspaces.

Lemma 2.5. In the Euclidean space (V, 〈·, ·〉), consider affine varieties X1, . . . ,Xp

such that Xi 6⊂ Xj for all i 6= j. Then EDdegree(X1∪· · ·∪Xp) =
∑p

i=1 EDdegree(Xi).

Proof. The statement follows since, for all i ∈ [p], a general data point u ∈ V
admits critical points on Xi outside the singular locus of X1 ∪ · · · ∪ Xp.

3. Rank-one structured approximation. In this section, we focus on rank-
one Euclidean distance minimization in the presence of zeros. We build on the ob-
servation that non-zero entries of a rank-one matrix form a rectangular submatrix.
Hence, finding the best rank-one approximation with zeros in S consists of three steps:

1. Identify the supports of all maximal rectangular submatrices such that their
complement contains the zero pattern S.
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2. Find the best rank-one approximation for each of the rectangular supports.
3. Choose the best rank-one approximation over all the supports.

Example 3.1. Let U be an m × n matrix and S = {(1, 1)}. Finding the best
structured rank-one approximate of U requires us to solve the rank-one approximation
problem for two rectangular submatrices of sizes m× (n− 1) and (m− 1)× n.

We start by considering two cases for which the structured best rank-r approxi-
mation problem with zeros is easy.

Remark 3.2 (Rectangular low-rank approximation). Let U ∈ Rm×n and let S be
such that the non-zero entries of X form an m′ ×n′ rectangular submatrix X ′. Then
solving the structured best rank-r approximation problem (1.1) for X is equivalent
to solving the unstructured best rank-r approximation problem for X ′. By Theorem

2.3, there are
(
m′

r

)
critical points of dU and they are given by the Singular Value

Decomposition (2.1) of U .

Remark 3.3. Let S be a zero pattern such that the non-zero entries of X form a
block diagonal matrix with s blocks. Since the rank of a block diagonal matrix equals
the sum of ranks of blocks, consider all partitions of r into s parts. Let ri denote
the size of the i-th part. Then for i-th block consider the critical points of rank-ri
approximation. Taking any possible combination of critical points for each block over
all partitions gives all critical points of the original problem.

The main difficulty in studying the best rank-one approximation problem with
assigned zero pattern S lies in identifying the supports of all maximal rectangular
submatrices such that their complements contain S.

Definition 3.4. We say that a zero pattern S ⊂ [m] × [n] is rectangular if the
indices that are not in S form a rectangular matrix. More precisely, a rectangular
zero pattern has the form S = (S1× [n])∪ ([m]×S2), for some S1 ⊂ [m] and S2 ⊂ [n].
Sometimes we denote this zero pattern also by (S1, S2).

Definition 3.5. Let S, T ⊂ [m]× [n] be two zero patterns.
1. The zero pattern T is a cover of the zero pattern S, if S ⊂ T and if T is

rectangular.
2. The zero pattern T is a minimal cover of S, if it is minimal among all covers

of the zero pattern S with respect to inclusion. We denote by MC(S,m, n)
the set of all minimal covers of S ⊂ [m]× [n].

For example, if S = {(1, 1), (1, 2), (2, 2)}, then

MC(S, 3, 3) = {([2], ∅), (∅, [2]), ({1}, {2})} .

Proposition 3.6. Let S ⊂ [m] × [n] be a zero pattern. Consider the variety X1

of m× n matrices of rank at most one and the intersection LS
1 = X1 ∩ LS. Then

EDdegree(LS
1 ) =

∑

(Ar,Ac)∈MC(S,m,n)

min(m− |Ar|, n− |Ac|) .

Proof. There is a bijection between the irreducible components of LS
1 and the

elements of MC(S,m, n). More precisely, for every pair (Ar , Ac) ∈ MC(S,m, n), the
corresponding component of LS

1 is isomorphic to the variety of (m−|Ar|)× (n−|Ac|)
matrices of rank at most one, and by Theorem 2.3 this component has ED degree
equal to min(m − |Ar|, n − |Ac|). Moreover, given two distinct minimal covers in
MC(S,m, n), their corresponding irreducible components are not comparable under
inclusion. The statement follows by Lemma 2.5.
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Definition 3.7. Two zero patterns S1 and S2 are said to be permutationally
equivalent if there exist permutation matrices P1 and P2 such that we can write every
element A of LS1 as A = P1BP2 for some B ∈ LS2 .

Corollary 3.8. Let S ⊂ [m] × [n] be a zero pattern which is permutationally
equivalent to the row zero pattern {(1, 1), . . . , (1, |S|)}. Then

EDdegree(LS
1 ) = min{m,n− |S|}+min{m− 1, n} .

Similarly, let S ⊂ [m] × [n] be a zero pattern which is permutationally equivalent to
the column zero pattern {(1, 1), . . . , (|S|, 1)}. Then

EDdegree(LS
1 ) = min{m,n− 1}+min{m− |S|, n} .

Corollary 3.9. Let S ⊂ [m] × [n] be a zero pattern which is permutationally
equivalent to the diagonal zero pattern {(1, 1), . . . , (|S|, |S|)}. Then

EDdegree(LS
1 ) =

|S|∑

j=0

(
|S|

j

)
min{m− j, n− |S|+ j} .

Enumerating minimal covers of a zero pattern translates to the problem of enu-
merating minimal vertex covers of a bipartite graph. A bipartite graph G can be
associated to a zero pattern of an m × n-matrix X = (xij) in the following way:
the bipartite graph G has m and n vertices in the two parts, corresponding to the
rows and columns of the matrix. The edges of G correspond to the zero entries of
the matrix, i.e. (i, j) ∈ E(G) if and only if xij = 0. A (minimal) cover of a zero
pattern is then equivalent to a (minimal) vertex cover of the corresponding bipartite
graph. By König’s Theorem, in bipartite graphs the minimum vertex cover problem
is equivalent to the maximum matching problem, and it can be solved in polynomial
time. However, counting vertex covers in a bipartite graph is #P-complete [PB83].

We suggest Algorithm 3.1, that is based on dynamic programming, to find all
minimal covers of a zero pattern S. To simplify notation, we present the algorithm
for the bipartite graphG corresponding to the zero pattern S. In particular, we use the
following notation. Let G = (U, V,E), where U = {u1, . . . , um} and V = {v1, . . . , vn}
are the two parts of vertices. For u ∈ U , we denote by N (u) the set of neighbors of u.
Let U ′ ⊂ U and V ′ ⊂ V . We denote by G[U ′, V ′] the induced subgraph of G, i.e., the
graph whose vertex set is U ′ ∪ V ′ and whose edge set is the subset of E that consists
of edges whose both endpoints are in U ′ ∪ V ′. We consider the graph G[U ′, V ′] as a
bipartite graph with U ′ and V ′ being the two parts of vertices.

The following example illustrates that it is not enough, even to consider minimal
covers with the least number of elements.

Example 3.10. Consider the 3× 4 matrix

U =



1 −1 −2 −2
1 0 1 −2
2 0 0 2


 .

We look for the closest rank-one matrix to U with zero pattern S = {(1, 1), (1, 2)}. We
have MC(S, 3, 4) = {({1}, ∅), (∅, [2])}. In particular, the first minimal cover consists
of four elements, while the second minimal cover consists of six elements. One verifies
that the closest critical point to U is of the second type and is equal to

X =



0 0 −0.627896 −2.36438
0 0 −0.430261 −1.62017
0 0 0.496139 1.86824


 .
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Algorithm 3.1 Minimal covers of a bipartite graph G = (U, V,E)

1: procedure MinimalCovers(G = (U, V,E))
2: if G is null graph then

3: return {(∅, ∅)}
4: else

5: MC = ∅
6: MC1 = MinimalCovers(G[U \ {u1}, V ])
7: for (S1, S2) ∈ MC1 do

8: append (S1 ∪ {u1}, S2) to MC
9: end for

10: MC2 = MinimalCovers(G[U \ {u1}, V \ N (u1)])
11: for (S1, S2) ∈ MC2 do

12: append (S1, S2 ∪ N (u1)) to MC
13: end for

14: return MC
15: end if

16: end procedure

4. Special relations among critical points. In this section we provide (some
of) the generators of the ideal of critical points on LS

r of dU . In particular, we
concentrate on particular linear and affine relations among critical points, and some
special nonlinear relations. Some of the results are stated for general linear constraints
not necessarily coming from assigned zero patterns.

We first set a few notations. Let X be an m× n matrix and consider the subsets
I ⊂ [m] and J ⊂ [n]. We always assume that the elements of I and J are ordered in
increasing order. We denote by XI,J the submatrix obtained selecting the rows of X
with indices in I and the columns of X with indices in J . Moreover, if |I| = |J | we
denote by MI,J(X) the minor of X corresponding to rows in I and columns in J . If
I = J = ∅, we set M∅,∅(X) := 1.

4.1. Linear relations among critical points. Consider a data matrix U ∈
Rm×n and let ZU,r be the set of critical points of dU on LS

r . We denote by 〈ZU,r〉 the
linear span of ZU,r in Rm×n. A consequence of Theorem 2.3 is that in the unstructured
case 〈ZU,r〉 = 〈ZU,1〉 for all r ∈ [m]. The following result is a special case of [DOT18,
Theorem 1.1] and gives the equations of 〈ZU,r〉 in the unstructured case.

Proposition 4.1. Assume m ≤ n and S = ∅. Given U ∈ Rm×n, the subspace
〈ZU,r〉 has dimension m and is defined by the system

(4.1)

{
r
(i,j)
U := (XUT − UXT )ij = 0 ∀ i, j ∈ [m]

c
(i,j)
U := (XTU − UTX)ij = 0 ∀ i, j ∈ [n] .

In particular, the first
(
m
2

)
equations are linearly independent and m(n − 1) −

(
m
2

)

equations in the second set are linearly independent. Moreover, no equation of one
set is linear combination of equations in the other set.

The study of 〈ZU,r〉 is more involved when S 6= ∅. First of all, in the structured
setting critical points are not necessarily real: for this reason, we study our problem
in Cm×n.
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Question 4.2. If we replace LS with a general subspace L ⊂ Cm×n, is it true
that L = 〈ZU,r〉 for every r ∈ [m− 1]?

Small numerical experiments suggest that the answer to Question 4.2 is positive.
We show in Theorem 4.5 that the same is not true for L = LS for some zero pattern
S.

Definition 4.3. Let S ⊂ [m] × [n] be a zero pattern. We consider the following
equivalence relations ∼S

R and ∼S
C in the sets [m] and [n], respectively:

i ∼S
R j if and only if χS [(i, k)] = χS [(j, k)] ∀k ∈ [n]

i ∼S
C j if and only if χS [(k, i)] = χS [(k, j)] ∀k ∈ [m] ,

where χS is the characteristic function of S.

Definition 4.4. We define critical space of U ∈ R
m×n to be the linear space HU

defined by relations

(4.2)
〈
r
(i,j)
U | i ∼S

R j
〉
+
〈
c
(i,j)
U | i ∼S

C j
〉
+ 〈xij | (i, j) ∈ S〉 .

The previous definition is inspired by [DOT18, Definition 2.8] in the context of
unstructured low-rank tensor approximation. Observe that the critical space HU does
not depend on the rank r. If S = ∅, then 〈ZU,r〉 = HU for all r ∈ [m−1] by Proposition
4.1.

The next result tells that, when passing from unstructured to structured opti-
mization with zero patterns, not all the information about the unstructured critical
points is lost.

Theorem 4.5. Let S ⊂ [m]× [n], U ∈ R
m×n and r ∈ [m−1]. Then 〈ZU,r〉 ⊂ HU .

Proof. Let L1, . . . , Ls be the constraints that set s entries of the matrix to be
equal to zero. We denote by JacXr

(X) and JacLS (X) the Jacobian matrices of Xr

and LS evaluated at X , respectively. The rank-r critical points X ∈ LS
r of dU satisfy

the equality constraints

{
MI,J(X) = 0 ∀ |I| = |J | = r + 1

Lk(X) = 0 ∀ k ∈ [s]

[
λ µ 1

]



JacXr
(X)

JacLS (X)
X − U


 =

[
0 0 0

]
,

where λ = (λI,J )I,J and µ = (µ1, . . . , µs) are vectors of Lagrange multipliers.
We denote by v the vector of polynomials that is obtained when multiplying the

vector and the augmented Jacobian matrix above. Its entries are naturally indexed
by (1, 1),. . . ,(m,n). Let

X i↔j :=
[
0 · · · 0 −xj1 · · · −xjn 0 · · · 0 xi1 · · · xin 0 · · · 0

]T

be the vector with the entry xjk at the position (i, k) and the entry xik at the position
(j, k) for all k ∈ [n].

We show that v ·X i↔j is equal to a linear constraint in (4.2) plus some (r + 1)-
minors MI,J(X) and linear constraints Lk(X) multiplied with Lagrange multipliers.
To do this, we study the products of the rows of the augmented Jacobian with the
vector X i↔j .

First, observe that the last row of the augmented Jacobian multiplied with X i↔j

is precisely the linear form r
(i,j)
U . Secondly, we show that the rows of the augmented
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Jacobian corresponding to minors multiplied with X i↔j are either zero or a sum of
(r + 1)-minors. Let A = {a1, . . . , ar+1} ⊂ [m] and B = {b1, . . . , br+1} ⊂ [n]. We
consider the product

(4.3)
[
∂MA,B(X)

∂xi1
· · ·

∂MA,B(X)
∂xin

]
·X(j) .

If i /∈ A, then the product (4.3) is equal to zero. Otherwise i ∈ A and the product (4.3)
can be seen as the Laplace expansion of the matrix with rows in (A \ {i}) ∪ {j}
considered as a multiset and columns in B. Hence if j /∈ A, then the product (4.3) is
equal to the minor corresponding to rows in (A\{i})∪{j} and columns in B. Finally,
if j ∈ A, then the product (4.3) is zero again, because the row indexed by j appears
twice.

Finally, we consider the rows of the augmented Jacobian corresponding to con-
straints that xkl = 0. The Jacobian of xkl consists of the entry (k, l) being equal to
one and all other entries being equal to zero. If i 6= k and j 6= k, then the Jacobian
of this constraint multiplied by X i↔j is clearly zero. Otherwise the Jacobian of xkl

multiplied by X i↔j is either xil of xjl. However both xil = xjl = 0 by the assumption
i ∼S

R j.

This proves that r
(i,j)
U ∈ I(ZU,r) for all i ∼S

R j. Similarly, one verifies that

c
(i,j)
U ∈ I(ZU,r) for all i ∼S

C j by applying the same argument with the vector

Xi↔j :=
[
−x1j 0 · · · 0 x1i 0 · · · 0 −xnj 0 · · · 0 xni 0 · · · 0

]T
.

The statement of Theorem 4.5 can be adapted to arbitrary linear sections of Xr.

Proposition 4.6. Let U ∈ Rm×n. Let L ⊂ Cm×n be the linear subspace defined
by the linear forms L1, . . . , Ls and let 〈ZU,r〉 be the linear span of the critical points
of dU on the variety Lr. For all i < j, i, j ∈ [m] and k ∈ [s], if ∇Lk · X i↔j ∈

〈L1, . . . , Ls〉, then r
(i,j)
U ∈ I(ZU,r). Similarly, for all i < j, i, j ∈ [n] and k ∈ [s], if

∇Lk ·Xi↔j ∈ 〈L1, . . . , Ls〉, then c
(i,j)
U ∈ I(ZU,r).

Conjecture 4.7. Let S ⊂ [m]× [n], U ∈ Rm×n and r ∈ [m− 1]. Then 〈ZU,r〉 =
HU if and only if LS

r is irreducible.

The irreducibility of LS
r in Conjecture 4.7 is necessary. In particular, we know

from Proposition 3.6 that LS
1 is never irreducible if S 6= ∅. We give an example of

structured rank-one approximation.

Example 4.8 (m = n = 3, r = 1, S = {(1, 1)}). In this case, the variety LS
1

has two irreducible components corresponding to the minimal coverings ({1}, ∅) and
(∅, {1}). Moreover EDdegree(LS

1 ) = 4 by Corollary 3.9. The four critical points on
LS
1 are obtained in this way:

(i) by computing the SVD of the 3×3 matrix having zero first row and coinciding
with U elsewhere (two critical points C1, C2),

(ii) by computing the SVD of the 3× 3 matrix having zero first column and coin-
ciding with U elsewhere (two critical points C3, C4).

One verifies immediately that the critical space HU is six-dimensional. Therefore
〈ZU,1〉 is strictly contained in HU and motivates our hypothesis in Conjecture 4.7.

A higher rank example is showed below.

Example 4.9 (m = n = 3, r = 2, S = {(1, 1), (1, 2)}). The determinant of a
3 × 3 matrix X = (xij) with zero pattern S is det(X) = x13(x21x32 − x31x22). Then
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the variety LS
2 has two components V1 = V(x11, x12, x13), V2 = V(x11, x12, x21x32 −

x31x22) and by Lemma 2.5

EDdegree(LS
2 ) = EDdegree(V1) + EDdegree(V2) = 1 + 2 = 3 .

The critical point on V1 is the projection of U onto V1. The two critical points on
V2 come by projecting the third column of U and computing the SVD of the non-zero
2 × 2 block. In particular, the linear span 〈ZU,2〉 is three-dimensional, whereas the
critical space HU has dimension five.

Corollary 4.10. Let S ⊂ [m]× [n]. The codimension of HU ⊂ Cm×n is

codim(HU ) =
∑

C∈[m]/∼S
R

(
|C|

2

)
+

∑

D∈[n]/∼S
C

γD + |S|,

where

γD =

{(
|D|
2

)
if |D| ≤ m

m(|D| − 1)−
(
m
2

)
if |D| ≥ m.

We explain an implication of Proposition 4.1 which is used in the proof of Corol-
lary 4.10.

Remark 4.11. Let U ∈ Rm×n and let UI,J be a submatrix of U . Consider the
system

r
(i,j)
UI,J

= 0 ∀ i, j ∈ [|I|] , c
(i,j)
UI,J

= 0 ∀ i, j ∈ [|J |] .

If |I| ≤ |J |, then the first
(
|I|
2

)
equations are linearly independent. What is more,

there are |I|(|J | − 1)−
(
|I|
2

)
linearly independent equations in the second set. Finally,

no equation in one set is linear combination of equations in the other set.

Proof of Corollary 4.10. We have to show how many of all the linear polynomials
appearing in (4.2) are linearly independent.

The first two sets of generators in (4.2) are precisely of the type explained in
Remark 4.11. On one hand, since m ≤ n, then |C| ≤ n for every equivalence class

C ∈ [m]/∼S
R. This means that all relations r

(i,j)
U , where i, j ∈ C, are linearly in-

dependent. By Remark 4.11 and since equivalence classes on rows are disjoint, this
gives in total the first

∑
C∈[m]/∼S

R

(
|C|
2

)
independent conditions. On the other hand,

if D ∈ [n]/∼S
C and |D| ≤ m, then again by Remark 4.11 all relations c

(i,j)
U , where

i, j ∈ D, are linearly independent, thus giving
(
|D|
2

)
independent conditions. Oth-

erwise if |D| ≥ m, then m(|D| − 1) −
(
m
2

)
among the last equations are linearly

independent. Since equivalence classes on columns are disjoint, this gives in total the
second

∑
D∈[n]/∼S

C
γD independent conditions. Moreover, again by Remark 4.11, each

condition on rows is not a linear combination of equations involving columns, and vice
versa.

Finally, consider the last |S| conditions coming from the zero pattern. Trivially
each relation xij is independent from the other variables xrs with (r, s) ∈ S. Moreover,
all the conditions {xij | (i, j) ∈ S} are independent from the first two sets of equations
because the first two contain no variables with indices in S.

If Conjecture 4.7 is true, then the statement in Corollary 4.10 holds for 〈ZU,r〉
when LS

r is irreducible.
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Remark 4.12. Consider again the situation of Example 4.8, but with r = 2. By
experimental computation, we observe that EDdegree(LS

2 ) = 8 (see Table 2). If
linearly independent, the eight critical points should span an eight-dimensional linear
space 〈ZU,2〉 ⊂ C3×3. We verified symbolically using Gröbner bases and elimination

that I(〈ZU,r〉) = 〈r
(2,3)
U , c

(2,3)
U , x11〉, thus confirming Conjecture 4.7. In particular

dim(〈ZU,r〉) = dim(HU ) = 6. One might try to extend the basis {C1, C2, C3, C4} of
〈ZU,1〉 given in Example 4.8 to form a basis of HU , in the most “natural” way. In
this example, we consider the additional two rank-one matrices C5, C6 obtained by
computing the SVD of the 3×3 matrix having zero first row and column and coinciding
with U elsewhere. One might check that the six rank-one matrices C1, . . . , C6 are
linearly independent and form a basis of HU .

The matrices C5 and C6 are “good” in the sense that they are computed directly
from the data matrix U via projections and SVDs. Any critical point X ∈ LS

2 may be
written as X = α1C1 + · · ·+ α6C6 for some complex coefficients α1, . . . , α6. In Table
1 we display the coefficients αi of the eight critical points on LS

2 with respect to the
data matrix

U =



0 1 2
1 2 3
2 3 4


 .

α1 α2 α3 α4 α5 α6

X1 1.000 1.000 1.000 1.000 −1.000 −1.000

X2 0.000 1.003 0.000 1.003 −0.000 −0.993

X3 0.999 −0.024 0.001 −0.024 0.000 0.929

X4 0.001 −0.024 0.999 −0.024 0.000 0.929

X5 1.163 0.500 − 2.994i 1.163 0.500 + 2.994i −1.347 5.835

X6 1.163 0.500 + 2.994i 1.163 0.500 − 2.994i −1.347 5.835

X7 1.082 + 0.127i −1.021 + 2.368i 1.082 + 0.127i −1.021 + 2.368i −1.173 − 0.271i −2.455 − 7.814i

X8 1.082 − 0.127i −1.021 − 2.368i 1.082 − 0.127i −1.021 − 2.368i −1.173 + 0.271i −2.455 + 7.814i

Table 1

The critical points Xi ∈ LS
2
⊂ C3×3 of dU in the basis {C1, . . . , C6}.

More generally, knowing the ideal of critical points X ∈ LS
r for dU and a basis

{C1, . . . , Ck} of 〈ZU,r〉 whose elements depend only on U , allows to compute the ideal
Jα ⊂ C[α1, . . . , αk] of relations among the coefficients αi of a representation of X .

This idea needs further investigation and is motivated by the unstructured case.
Indeed, given U ∈ Rm×n, the critical points C1, . . . , Cm on X1 of dU computed from
the SVD of U form a basis of 〈ZU,r〉 = HU for any r ∈ [m]. By Theorem 2.3, the
critical points on Xr are written uniquely as X = α1C1 + · · · + αmCm for some
coefficients αj ∈ {0, 1}. In this case, the ideal Jα is zero-dimensional in C[α1, . . . , αm]
and its degree is equal to EDdegree(Xr) =

(
m
r

)
.

4.2. The affine span of critical points. In the previous section, we regarded
structured critical points on LS

r as vectors in Cm×n and studied all linear relations
among them. In this section, we look for their affine span. Once more we start from
the unstructured case.

Proposition 4.13. Assume m = n and S = ∅. Given U = (uij) ∈ Rm×m, for
every r ∈ [m] the

(
m
r

)
critical points of dU on Xr span an affine hyperplane WU,r ⊂ HU
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of equation

WU,r :

m∑

i,j=1

xijCij(U)− r det(U) = 0 ,

where Cij(U) = (−1)i+jM[m]\{i},[m]\{j}(U) is the (i, j)-th cofactor of U .
In particular, {WU,r}r∈[m] is a finite family of parallel hyperplanes in HU .

Proof. Let U ∈ Rm×m, written in SVD form as U = AΣBT . By Theorem 2.3
a critical point X ∈ Xr of dU is of the form X = AΣIB

T for some I = {i1 <
· · · < ir} ⊂ [m], where A = (aij), B = (bij) and ΣI = diag(0, . . . , σi1 , . . . , σir , . . . , 0).
Therefore X is a linear combination of rank-one critical points with coefficients in
{0, 1}. Moreover, the m critical points on X1 of dU are linearly independent in HU .
This implies immediately that, for any r ∈ [m], the

(
m
r

)
critical points on Xr span an

affine hyperplane WU,r, and {WU,r}r∈[m] is a finite family of parallel hyperplanes in
HU

∼= Rm.
It remains to show how to obtain the equation of WU,r in the variables xij . We

do this for r = 1. The statement follows for general r because a rank-r critical
point is a sum of r rank-one critical points. In the following, we apply two times the
Cauchy-Binet formula

MI,J(PQ) =
∑

L⊂[m]
|L|=|I|

MI,L(P )ML,J(Q) ∀P,Q ∈ C
m×m .

Let X = (xij) = AΣlB
T be a rank-one critical point of dU . In particular, xij =

σl ail bjl for all i, j ∈ [m]. Then

m∑

i,j=1

xijCij(U) = σl

m∑

i,j=1

ail bjl Cij(AΣB
T )

= σl

m∑

i,j=1

ail bjl (−1)i+j
∑

L⊂[m]
|L|=m−1

Mî,L(A)ML,ĵ(ΣB
T )

= σl

m∑

i,j=1

ail bjl (−1)i+j
∑

L,T⊂[m]
|L|=|T |=m−1

Mî,L(A)ML,T (Σ)Mĵ,T (B)

= σl

m∑

i,j=1

ail bjl (−1)i+j
∑

L⊂[m]
|L|=m−1

Mî,L(A)ML,L(Σ)Mĵ,L(B)

= σl

∑

L⊂[m]
|L|=m−1

∏

h∈L

σh

[
m∑

i=1

(−1)i+lailMî,L(A)

]


m∑

j=1

(−1)j+lbjlMĵ,L(B)




(⋆)
= σ1 · · ·σm

[
m∑

i=1

(−1)i+lailMî,l̂(A)

]


m∑

j=1

(−1)j+lbjlMĵ,l̂(B)




= det(Σ) det(A) det(B) = det(U) ,

where î = [m]\ {i} and identity (⋆) holds because the only subset L giving a non-zero

summand is L = l̂.
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The following corollary generalizes Proposition 4.13 to non-squared case.

Corollary 4.14. Given U ∈ R
m×n (m ≤ n), the

(
m
r

)
critical points of dU on

Xr span an affine hyperplane WU,r ⊂ HU of equation

WU,r :

m∑

i,j=1

(XI)ijCij(U[m],I)− r det(U[m],I) = 0 ,

where I = {i1 < · · · < im} ⊂ [n] and, modulo the ideal I(HU ), the above equation
does not depend on the particular choice of I.

In the next example we observe which of the affine relations of Corollary 4.14 still
hold true in the structured case.

Example 4.15. Let U ∈ R3×4. In this example we investigate the best rank-two
approximation of U with zero pattern S = {(1, 1)}. By experimental computation,
we observe that EDdegree(LS

r ) = 8. The eight critical points of dU span a seven-
dimensional linear space 〈ZU,2〉 = HU whose ideal is

I(HU ) = 〈r
(2,3)
U , c

(2,3)
U , c

(2,4)
U , c

(3,4)
U , x11〉 .

Moreover, the critical points satisfy the affine relation in HU

3∑

i,j=1

(XI)ijCij(U[3],I)− 2 det(U[3],I) = 0 for I = {2, 3, 4} .

The previous example motivates the following conjecture in structured setting.

Conjecture 4.16. Assume that LS
r is irreducible. Given a subset I ⊂ [n] with

|I| = m, the complex critical points of dU on LS
r satisfy the additional affine relation

(4.4)
m∑

i,j=1

(X[m],I)ijCij(U[m],I)− r det(U[m],I) = 0

if any only if S ∩ ([m]× I) = ∅.

Conjecture 4.16 is not valid if LS
r is not irreducible, as showed in the next example.

Example 4.17 (m = n = 3, r = 2, S = {(1, 1), (1, 2)}). Following up Example
4.9, we observe that the ideal of affine relations among the critical points is

(4.5)

〈
r
(2,3)
U , c

(1,2)
U , x11, x12, x23 − u23, x33 − u33,

3∑

i,j=1

X̃ijCij(Ũ)− 2 det(Ũ)

〉
,

where the matrices Ũ and X̃ coincide with U and X outside S, respectively, and are
zero otherwise. The seven affine relations are independent and thus define an affine
plane in C

3×3.
The first four relations are linear and define the critical space HU . The last affine

relation in (4.5) is equivalent to
∑3

i,j=1 xijCij(U) − r det(U) = 0 modulo I(LS) =
〈x11, x12〉, since by Lemma 2.4 the matrix U shares the same critical points of its
projection πLS (U) onto LS. On one hand, this affine relation coincides with (4.4) for
I = J = [3]. On the other hand, in this case S ∩ ([3]× [3]) 6= ∅.
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4.3. Special nonlinear relations among structured critical points. In
Section 4.1, we observed that the special linear constraints LS coming from zero
patterns S ⊂ [m]×[n] preserve some of the linear relations among unstructured critical
points. In this subsection, we deal with special nonlinear relations among unstructured
or structured critical points. The following is a consequence of [DHO+16, Theorem
5.2] and Theorem 2.3.

Proposition 4.18. Let U ∈ Rm×n. Every critical point X ∈ Xr of dU is such
that U −X ∈ X∨

r = Xm−r and U −X is a critical point of dU as well. In particular,
for every subset A ⊂ [m] and B ⊂ [n] with |A| = |B| ≥ m− r + 1, we have that

(4.6) MA,B(U −X) = 0 .

The main result of this subsection is the next proposition which states that some
of the relations in (4.6) hold even in the structured case.

Proposition 4.19. Let S ⊂ [m] × [n], U ∈ Rm×n and consider a critical point
X = (xij) ∈ LS

r of dU . Let A × B ⊂ [m]× [n] with |A| = |B| ≥ m − r + 1 and such
that S ∩ (A×B) = 0. Then MA,B(U −X) = 0.

Proof. In the following, we denote by L1, . . . , L|S| the constraints that set the
entries in S ⊂ [m]× [n] of the structured matrices to be equal to zero. We recall from
Theorem 4.5 that the critical points X = (xij) ∈ LS

r of dU are the solutions of the
system

(4.7)






MI,J(X) = 0 ∀ |I| = |J | = r + 1

Lk(X) = 0 ∀ k ∈ [|S|]

uij − xij =
∑

I,J
∂MI,J

∂xij
λI,J +

∑t
k=1

∂Lk

∂xij
µk ∀ (i, j) ∈ [m]× [n] .

Let A×B ⊂ [m]×[n] with |A| = |B| = s and assume S∩(A×B) = 0. Equivalently
we have ∂Lk

∂xij
= 0 for all k ∈ [t] and for all (i, j) ∈ A×B. Define the matrix

∂(f) :=

(
∂f

∂xij

)
∈ C

m×n ∀ f = f(xij) ∈ C[xij ] .

Using the third set of equations in (4.7), we get the identity

(4.8) MA,B(U −X) = MA,B




∑

I,J

∂(MI,J(X))λI,J



 =: FA,B.

Under the assumption S ∩ (A × B) = 0, the polynomial FA,B does not depend
on the linear constraints Lk(X) = 0, and thus it is independent of S. Hence the
equality (4.8) for S = ∅ involves the same FA,B as for any other S satisfying S ∩ (A×
B) = 0. By Proposition 4.18, MA,B(U −X) = 0 in the unstructured case, and hence
MA,B(U −X) = 0 in the structured case.

Remark 4.20. The polynomial FA,B is homogeneous in the ℓI,J ’s and all coeffi-
cients of the monomials of FA,B in the ℓI,J ’s belong to I(Xr) for all A×B ⊂ [m]× [n]
with s ≥ m− r + 1.

Remark 4.21. The condition S ∩ (A×B) = 0 in Proposition 4.19 is sufficient but
not necessary to prove that MA,B(U −X) = 0. For example, let m = n = 3, r = 2,
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s = 1 and S = {(1, 1)}. If A = B = [3], we obtain that (here λ[3],[3] = λ, µ1 = µ and
M[3],[3](X) = det(X))

F[3],[3] = det(X)2λ3 + x11 det(X)λ2µ ,

that is, F[3],[3] ∈ I(X2) and consequently det(U −X) = 0.

The statement of Proposition 4.19 can be generalized to arbitrary linear sections
Lr of Xr. The condition which replaces S∩ (A×B) = 0 is simply that ∂L

∂xij
= 0 for all

L ∈ I(L), namely no linear constraint depends by variables xij with indices in A×B.
Again this condition is far from being necessary. To show this, below we restrict
to one constraint L =

∑
i,j vijxij and to the variety of corank one square matrices

Xm−1 ⊂ Cm×m. We prove that the rank of U −X is completely characterized by the
rank of the coefficient matrix V = (vij).

Proposition 4.22. Consider a linear form L =
∑m

i,j=1 vijxij for some matrix

V = (vij) ∈ Cm×m. Let U ∈ Rm×m and let X ∈ Lm−1 = Xm−1 ∩ V(L) be a critical
point of dU . Then for all 2 ≤ k ≤ m

rk(U −X) ≤ k − 1 if and only if rank(V ) ≤ k − 2 .

In particular rank(U −X) ≥ 1 if V 6= 0 and rank(U −X) = 1 if and only if V = 0,
namely in the unstructured case.

Proof. Recall the notation introduced at the beginning of Section 4. We have
I(Lm−1) = 〈det(X), L〉. Suppose that rk(U −X) ≤ k− 1, namely MA,B(U −X) = 0
for all A,B ⊂ [m] with |A| = |B| = k. Using the system (4.7) we get that

(4.9) MA,B(U −X) = MA,B(λ∂(det(X)) + µ∂(L)) = MA,B(λC(X) + µV ) ,

where C(X) = (Cij(X)) is the cofactor matrix ofX . Assume A = B = [k]. Our goal is
to expand the polynomial at the right-hand side of (4.9), which we call Gk for brevity.
First, we consider the following expansion of M[k],[k](P +Q) for all P,Q ∈ Cm×m:

M[k],[k](P +Q) =
∑

I,J⊂[k]
|I|=|J|

(−1)I+JMI,J(P )M[k]\I,[k]\J (Q) ,

where (−1)I+J = (−1)
∑

i∈I i+
∑

j∈J j . This identity follows from the Laplace expansion
of the determinant in multiple columns, that can be found for example in [CSS13,
Lemma A.1(f)]. We apply it in the case P = λC(X) and Q = µV :

Gk =
∑

I,J⊂[k]
|I|=|J|

(−1)I+JMI,J(C(X))M[k]\I,[k]\J(V )λ|I|µk−|I| .

Then we apply the identity

MI,J(C(X)) =

{
1 if I = J = ∅

(−1)I+J det(X)|I|−1M[k]\I,[k]\J(X) if |I| = |J | ≥ 1

which follows from the relation C(X) = det(X)X−T and the Jacobi complementary
minor Theorem, see [Lal96] and [CSS13, Lemma A.1(e)]. Hence we get

Gk = M[k],[k](V )µk +
∑

I,J⊂[k]
|I|=|J|≥1

det(X)|I|−1M[k]\I,[k]\J(X)M[k]\I,[k]\J (V )λ|I|µk−|I| .



16 K. KUBJAS, L. SODOMACO, AND E. TSIGARIDAS

Finally, using the condition det(X) = 0, the previous identity simplifies to

Gk = M[k],[k](C)µk +
∑

i,j∈[k]

M[k]\{i},[k]\{j}(X)M[k]\{i},[k]\{j}(V )λµk−1 .

Similarly, for arbitrary A,B ⊂ [m] with |A| = |B| = k, we get that

MA,B(U −X) = MA,B(C)µk +
∑

i∈A,j∈B

MA\{i},B\{j}(X)MA\{i},B\{j}(V )λµk−1 .

The consequence is that a critical pointX of dU is such that rank(U−X) ≤ k−1 if and
only if MA\{i},B\{j}(V ) = 0 for all i ∈ A, j ∈ B and A,B ⊂ [m] with |A| = |B| = k,
or equivalently rank(V ) ≤ k − 2.

The main observation coming from Proposition 4.22 is that a general linear con-
straint L destroys the structure of critical points coming from Theorem 2.3, in par-
ticular the relations MA,B(U − X) for suitable A and B. However, if L is special,
these conditions might still hold, even in the case when L involves entries xij with
(i, j) ∈ A×B.

5. Computations of Euclidean Distance degrees. In this section we present
various experiments that study the ED degree of LS

r , when r ≥ 2 and the zero pattern
S involves only elements in the diagonal.

First, we restrict to square matrices and consider the zero pattern S = {(1, 1)}.
Since the number of (complex) critical points of dU on LS

n−1 is constant for a gen-
eral (complex) data matrix U , it is reasonable to apply a monodromy technique
for computing these critical points numerically. For this, we use a Julia package
HomotopyContinuation.jl [BT18]. The number of solutions obtained (that is, the
ED degree of LS

n−1 with respect to the Frobenius inner product) is reported in Table 2.

n 3 4 5 6 7 8 9 10

EDdegree(LS
n−1) 8 13 18 23 28 33 38 43

Table 2

ED degrees for n× n matrices of rank ≤ n− 1 and S = {(1, 1)}.

Our experimental results support the following conjecture.

Conjecture 5.1. Consider the variety LS
n−1 ⊂ C

n×n, where S = {(1, 1)}. Then

EDdegree(LS
n−1) = 5(n− 1)− 2 .

Next, we fix the diagonal zero pattern S = {(1, 1), . . . , (s, s)} for s ∈ [4], and
we consider the variety LS

2 ⊂ Cm×n. We present in Tables 3,4,5,6 the values of
EDdegree(LS

2 ) computed depending on the format m× n. Our experiments support
the following conjectural formulas.

Conjecture 5.2. Consider the variety LS
2 ⊂ Cm×n with respect to the zero pat-

tern S = {(1, 1), . . . , (s, s)} for s ∈ [4]. Let l = min(m,n). Then

EDdegree(LS
2 ) =





3(l − 1)2 − 2(l − 1) if s = 1

18(l− 2)2 + 6(l− 2) + 1 if s = 2 and m 6= n

18(l− 2)2 + 10(l− 2) + 1 if s = 2 and m = n

108(m− 3)2 + 144(m− 3) + 30 if s = 3 and m = n

648(m− 4)2 + 1600(m− 4) + 488 if s = 4 and m = n .
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s
n 3 4 5 6 7 8 9 10 11 12

3 8 8 8 8 8 8 8 8 8 8

4 8 21 21 21 21 21 21 21 21 21

5 8 21 40 40 40 40 40 40 40 40

6 8 21 40 65 65 65 65 65 65 65

7 8 21 40 65 96 96 96 96 96 96

8 8 21 40 65 96 133 133 133 133 133

9 8 21 40 65 96 133 176 176 176 176

10 8 21 40 65 96 133 176 225 225 225

11 8 21 40 65 96 133 176 225 280 280

12 8 21 40 65 96 133 176 225 280 341

Table 3

Values of EDdegree(LS
2 ) for S = {(1, 1)}.

s
n 3 4 5 6 7 8 9 10 11 12

3 25 29 29 29 29 29 29 29 29 29

4 29 85 93 93 93 93 93 93 93 93

5 29 93 181 193 193 193 193 193 193 193

6 29 93 193 313 329 329 329 329 329 329

7 29 93 193 329 481 501 501 501 501 501

Table 4

Values of EDdegree(LS
2 ) for S = {(1, 1), (2, 2)}.

Remark 5.3. The values of EDdegree(LS
2 ) in Table 3 are known as octagonal num-

bers: writing 0, 1, 2, . . . in a hexagonal spiral around 0, then these are numbers on the
line starting from 0 and going in the direction of 1 [Slo, A000567]. Also the diagonal
entries of Table 4 form another interesting integer sequence, see [Slo, A081272].

Our experiments suggest a formula for EDdegree(LS
2 ) in the square case.

Conjecture 5.4. Consider the variety LS
2 ⊂ Cm×m, where S is the zero pattern

{(1, 1), . . . , (s, s)} for some s ≥ 2. Then for some constant c

EDdegree(LS
2 ) = 3s 2s−1(n− s)2 + ss−1(s+ 1)⌈s/2⌉(n− s) + c .

Remark 5.5. In Tables 3,4,5,6 we observe the following symmetry property for
the variety LS

r ⊂ Cm×n, where S = {(1, 1), . . . , (s, s)} for some s ≥ 2:

EDdegree(LS
r )(m,n, r, s) = EDdegree(LS

r )(n,m, r, s) .

This identity always holds, because the two structured best rank-r approximation
problems are the same after relabeling variables.

We conclude by performing the same experiments showed at the beginning of the
section, but restricting our study to the subspace Symn(C) ⊂ Cn×n of n×n symmetric
matrices. We denote again by LS

2 the variety of symmetric matrices of rank at most
2 with (symmetric) zero pattern S ⊂ [n] × [n]. The values of EDdegree(LS

2 ) with
respect to the diagonal zero pattern S = {(1, 1), . . . , (s, s)} are reported in Table 7.

http://oeis.org/A000567
https://oeis.org/A081272
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s
n 3 4 5 6 7

3 30 62 66 66 66

4 62 282 358 366 366

5 66 358 750 870 882

6 66 366 870 1434 1598

7 66 366 882 1598 2334

Table 5

Values of EDdegree(LS
2 ) for S = {(1, 1), (2, 2), (3, 3)}.

s
n 4 5 6 7 8

4 488 968 1072 1080 1080

5 968 2736 ? ? ?

Table 6

Values of EDdegree(LS
2 ) for S = {(1, 1), (2, 2), (3, 3), (4, 4)}.

Conjecture 5.6. Consider the variety LS
2 ⊂ Symn(C), where S is the zero pat-

tern {(1, 1), . . . , (s, s)} for all s ∈ [4]. Then

EDdegree(LS
2 ) =





3(n− 1)− 2 if s = 1

9(n− 2)− 2 if s = 2

27(n− 3) + 4 if s = 3

81(n− 4) + 28 if s = 4 .

6. Nonnegative low-rank matrix approximation. In this section, we apply
rank-two approximation with zeros to the problem of nonnegative rank-two approxi-
mation. Our goal is to find the best nonnegative rank-two approximate with a guar-
antee that we have found the correct solution. We recall that there are two options
for the critical points of the Euclidean distance function over M2:

1. A critical point of the Euclidean distance function over M2 is a critical point
of the Euclidean distance function over the set X2 of matrices of rank at most
two.

2. A critical point of the Euclidean distance function overM2 lies on the bound-
ary of M2, i.e. the critical point contains one or more zero entries.

In Example 6.2, we consider 3×3 matrices and show that computing the Euclidean
distance to 756 points guarantees finding the best nonnegative rank-two approximate.
This example together with the ED degree computations in Section 5 suggests that the
exact nonnegative rank-two approximation problem is highly nontrivial, although in
general problems on nonnegative decompositions tend to be easier for decompositions
of size at most 2 or 3.

Recall, that for a m × n matrix M there is an algorithm for nonnegative factor-
ization with complexity O((mn)O(r22r)), where r is the nonnegative rank [AGKM16],
see also [Moi16]. We can also compute a rank r approximate nonnegative factoriza-
tion, under the Frobenius norm ‖M‖F , in 2poly(r lg(1/ǫ)) with relative error O(ǫ1/2r1/4)
[AGKM16]. We notice that both algorithms run in polynomial time when the rank
is fixed. Nevertheless, their implementation is far from straightforward and the exact
constants hidden in the big-O notation could be rather big.
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s
n 2 3 4 5 6 7 8 9 10

1 1 4 7 10 13 16 19 22 25

2 1 7 16 25 34 43 52 61 70

3 4 31 58 85 112 139 166 193

4 28 109 190 271 352 433 514

Table 7

Values of EDdegree(LS
2 ) ⊂ Symn(C) for S = {(1, 1), . . . , (s, s)}.

We end this section with simulations demonstrating that most of the time, the
optimal solution is given by a critical point with a few zeros. The reader might wonder
whether it is interesting to consider the 3 × 3 case, when in practical applications
much larger matrices are considered. We believe that thoroughly understanding small
cases is important for understanding the structure of the problem, and might provide
insights for developing better numerical algorithms.

In the following example, we demonstrate that in the case of 3 × 3-matrices,
the critical points of the rank-two approximation with zeros can be often described
explicitly.

Example 6.1. Let U = (uij) ∈ R3×3. We consider the best rank-two approxi-
mation problem with zeros in S = {(1, 1), (1, 2), (2, 2)}. Then there are three critical
points, each of which has in addition to the entries in S one further entry equal to
zero and all other entries are equal to the corresponding entries of the matrix U .
Specifically, the critical points are





0 0 0

u21 0 u23

u31 u32 u33



 ,





0 0 u13

0 0 u23

u31 u32 u33



 ,





0 0 u13

u21 0 u23

u31 0 u33



 .

The additional entries that are set to zero can be read from the determinant of the
matrix





0 0 x13

x21 0 x23

x31 x32 x33



 ,

that is x13x21x32. Its factors correspond precisely to the additional entries that are
set to zero to obtain the three critical points.

In other words, we consider the Euclidean distance minimization problem to the
variety defined by x13x21x32. Since this variety is reducible, we can consider the
Euclidean distance minimization problem to each of its three irreducible components.
Each of the irreducible components has ED degree 1.

This example generalizes to n× n matrices whose non-zero entries form a lower
triangular submatrix. The determinant of such a matrix is the product of the diagonal
elements, and hence the critical points of the best rank (n− 1)-approximation problem
are obtained by adding a zero to the diagonal.

A more interesting example is given when S = {(1, 1), (1, 2)}. In this case, the
determinant is x13(−x22x31 + x21x32). One of the critical points has the entry x13

equal to zero and other entries equal to the corresponding entries of U . The two other
critical points agree with U in the third column and the 2 × 2 submatrix defined by
the rows 2, 3 and columns 1, 2 is equal to one of the critical points of the rank-one
approximation for the corresponding 2× 2 submatrix of U .

This example generalizes to a zero pattern that contains all but one entry in a row
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or in a column. Then the determinant factors as a variable times a (n− 1)× (n− 1)
subdeterminant. One critical point is obtained by adding the missing zero and the rest
of the critical points are obtained by rank (n−2)-approximations for the (n−1)×(n−1)
submatrix whose determinant is a factor in the above product.

In the following example, we discuss how to find the best nonnegative rank-two
estimate of a 3× 3-nonnegative matrix with guarantee.

Example 6.2. Consider the group whose elements are simultaneous permutations
of rows and columns of a 3× 3 matrix, and permutations of rows with columns. This
group acts on the set zero patterns of a 3 × 3 matrix. There are 26 orbits of this
group action, 13 of which are listed in Table 8. The columns of Table 8 list an orbit
representative, the orbit size, the ED degree and the description of critical points if
available.

The 13 orbit representatives listed in Table 8 have the property that there is no
zero pattern S with less zeros such that the zero pattern of a critical point for S is
contained in the orbit representative. For example, no zero pattern that contains a
row or a column is listed in Table 8, because a critical point on the line three of the
table has a row of zeros. If a critical point agrees with U at all its non-zero entries,
then adding more zeros causes the Euclidean distance to the data matrix to increase,
so such critical points can be discarded.

Moreover, we can also discard the seven orbits of zero patterns marked with star
in Table 8, because their critical points either appear earlier in the table or the zero
patterns of critical points contain the zero pattern of a critical point that appears
earlier in the table.

In summary, there are five different kinds of critical points to be considered:
1. Sum of any 2 components of the SVD of U . In total: 1 · 3 = 3.
2. Critical points of diagonal zero patterns. In total: 9 · 8+18 · 25+6 ·30 = 702.
3. Critical points that set one row or column of U to zero. In total: 6 · 1 = 6.
4. Critical points where a 2×2-submatrix is given by a rank-one critical point of

the corresponding submatrix of U . These critical points also have two zeros
and one row or column equal to the corresponding row or column of U . In
total: 18 · 2 = 36.

5. Critical points where zeros form a 2× 2-submatrix. In total: 9 · 1 = 9.
In total, the number of critical points is 3 + 702 + 6 + 36 + 9 = 756. Thus, given
a nonnegative 3 × 3-matrix U , if we construct the 756 critical points described above
and choose among the nonnegative critical points the one that is closest to U , then it
is guaranteed to be the best nonnegative rank-two approximation of the matrix U .

Example 6.2 suggests that finding the best nonnegative rank-two approximation
of a general matrix with guarantee might be hopeless, because we expect the number
of critical points to increase at least exponentially in the matrix size by the conjectures
in Section 5. In practice, the best rank-two approximation often has a few zeros.

Using Macaulay2 [GS] we sampled uniformly randomly 105 matrices from the set
of 3× 3 matrices with real nonnegative entries and the sum of entries being equal to
1000. In 88561 cases, the best approximation has no zeros; in 10550 cases, the best
approximation has one zero; in 889 cases, the best approximation has two zeros in
different rows and columns. Based on this experiment, we observed two interesting
phenomena:

(a) We never encountered a best nonnegative rank-two approximation with three
zeros or with two aligned zeros.

(b) If the best nonnegative rank-two approximation has zero pattern S, then the
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S #orbit EDdegree(LS
r ) critical points

1











· · ·

· · ·

· · ·











1 3 sum of any 2 components of SVD

2











0 · ·

· · ·

· · ·











9 8 no interpretation

3











0 0 ·

· · ·

· · ·











18 3











0 0 0

· · ·

· · ·











or rank(X{2,3},{1,2}) = 1

4











0 · ·

· 0 ·

· · ·











18 25 no interpretation

5*











0 0 ·

0 · ·

· · ·











36 3











0 0 ·

0 0 ·

· · ·











or











0 0 0

0 · ·

· · ·











or











0 0 ·

0 · ·

0 · ·











6*











0 0 ·

· · 0

· · ·











36 3











0 0 0

· · 0

· · ·











or rank(X{2,3},{1,2}) = 1

7











0 · ·

· 0 ·

· · 0











6 30 no interpretation

8











0 0 ·

0 0 ·

· · ·











9 1 projection onto LS

9*











0 0 ·

0 · 0

· · ·











36 3











0 0 0

0 · 0

· · ·











or











0 0 ·

0 0 0

· · ·











or











0 0 ·

0 · 0

0 · ·











10*











0 0 ·

0 · ·

· · 0











36 3











0 0 0

0 · ·

· · 0











or











0 0 ·

0 0 ·

· · 0











or











0 0 ·

0 · ·

0 · 0











11*











0 0 ·

· · 0

· · 0











9 3











0 0 0

· · 0

· · 0











or rank(X{2,3},{1,2}) = 1

12*











0 0 ·

0 · 0

· 0 ·











36 3











0 0 0

0 · 0

· 0 ·











or











0 0 ·

0 0 0

· 0 ·











or











0 0 ·

0 · 0

0 0 ·











13*











0 0 ·

0 · 0

· 0 0











6 3











0 0 0

0 · 0

· 0 0











or











0 0 ·

0 0 0

· 0 0











or











0 0 ·

0 · 0

0 0 0











Table 8

The 13 orbit representatives of zero patterns of 3× 3 matrices that have the property that there

is no zero pattern S with less zeros such that the zero pattern of a critical point for S is contained

in the orbit representative.

best rank-two approximation given by SVD has negative entries in S.
These facts lead to the following open questions.

Question 6.3. 1. Are the experimental observations (a) and (b) true for
any nonnegative matrix U ∈ R3×3?

2. Given a nonnegative matrix U ∈ R
m×n
≥0

whose best nonnegative rank-2 ap-
proximation has zero pattern S, does the best rank-2 approximation given by
SVD have negative entries in S?

3. For which zero patterns S ⊂ [m]× [n] and target ranks r ∈ [m−1] there exists
a full rank nonnegative matrix U ∈ Rm×n

≥0
whose best nonnegative rank-r

approximation has zero pattern S?
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