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More Is More: The Benefits of Denser Sensor Deployment
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Positioning disk-shaped sensors to optimize certain coverage parameters is a fundamental problem in ad
hoc sensor networks. The hexagon lattice arrangement is known to be optimally efficient in the plane,
even though 20.9% of the area is unnecessarily covered twice, however, the arrangement is very rigid—any
movement of a sensor from its designated grid position (due to, e.g., placement error or obstacle avoidance)
leaves some region uncovered, as would the failure of any one sensor. In this article, we consider how to
arrange sensors in order to guarantee multiple coverage, that is, k-coverage for some value k > 1. A naive
approach is to superimpose multiple hexagon lattices, but for robustness reasons, we may wish to space
sensors evenly apart.

We present two arrangement methods for k-coverage: (1) optimizing a Riesz energy function in order to
evenly distribute nodes, and (2) simply shrinking the hexagon lattice and making it denser. The first method
often approximates the second, and so we focus on the latter. We show that a density increase tantamount to
k copies of the lattice can yield k′-coverage, for k′ > k (e.g., k = 11, k′ = 12 and k = 21, k′ = 24), by exploiting
the double-coverage regions. Our examples’ savings provably converge in the limit to the ≈ 20.9% maximum.
We also provide analogous results for the square lattice and its ≈ 57% inefficiency (e.g., k = 3, k′ = 4 and
k = 5, k′ = 7) and show that for multi-coverage for some values of k′, the square lattice can actually be more
efficient than the hexagon lattice.

We also explore other benefits of shrinking the lattice: Doing so allows all sensors to move about their
intended positions independently while nonetheless guaranteeing full coverage and can also allow us to
tolerate probabilistic sensor failure when providing 1-coverage or k-coverage. We conclude by construing the
shrinking factor as a budget to be divided among these three benefits.
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1. INTRODUCTION

An ad hoc sensor network is composed of sensing devices which can measure or detect
features of their environment and can communicate with one other and possibly with
other devices that perform data fusion. One of the problems motivated by ad hoc sensor
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(a) A rigid 6-grid (hexagon lattice). (b) A 2-covering of the plane.

Fig. 1. Two grid arrangements.

networks is how to position sensors in order to maximize coverage, or equivalently, to
minimize the number of sensors required to cover a given area. In such problems, for
example, in monitoring applications, sensors must be positioned so that every point
in the region of interest is observable by at least one sensor. In the boolean model of
coverage, a sensor is able to observe all points within a certain distance r of its location,
that is, a disk of radius r. The problem them becomes where to place sensors so that
disks centered on them will cover the area. More generally, we may require k-coverage
in which each point must be covered by at least k sensors. This may be required
for robustness reasons, in order to perform triangulation, or to obtain multimodal
data. Even in applications requiring only 1-coverage, it may be desirable for power
management reasons to deploy multiple lattices’ worth of sensors and then alternate
the sensors between active and dormant states (duty cycling [Kansal et al. 2007]), since
wireless sensors are typically powered by finite-lifetime batteries.

For the 1-coverage problem, placing homogeneous sensors in a hexagon grid pattern
(see Figure 1(a)) is known to be optimal [Kershner 1939; Brass et al. 2005]. Every point
is covered at least once, and no other covering structure can achieve this property
with fewer sensors. Notwithstanding this optimality, there are aspects of this config-
uration that could be regarded as deficiencies. Since the sensors’ sensing regions are
circular and therefore not tileable, there inevitably are regions (lens-shaped areas in
Figure 1, totaling about 20.9% of the total area) that are superfluously covered by two
sensors. Second, the configuration is very sensitive. Any movement of one sensor from
its designated grid position leaves some region uncovered. Third, any sensor failure
will similarly cause a gap in coverage.

A 2-covering obtained by overlaying two translated copies of the optimal 1-covering
is shown in Figure 1(b). We give similar coverings for k > 2. For robustness reasons,
we obtain a k-covering by arranging k translated copies of the hexagonal lattice to
maximize the minimum pairwise distance dmin between sensors. Such a k-fold covering
has the additional advantage of being easy to understand and construct by virtue of
being based on the familiar 1-coverage lattice. We show that this reduces to distributing
k points evenly on the torus. This problem can be approached by minimizing a Riesz
s-energy objective function with a sufficiently large parameter s. We show examples in
which the s value needed varies based on the value of k. It turns out that for larger
values of k, the solution provided by optimizing Riesz energy is often simply a denser
hexagon lattice or is close to this. The second method we consider is therefore simply
shrinking the lattice, that is, deploying sensors in a more densely packed hexagon
arrangement, thus avoiding the optimization calculation.

In the optimal hexagonal covering, approximately 20.9% of the overlap offers no
benefit in terms of providing 1-coverage. When the goal is multi-coverage, however, it
may be possible to exploit this inherent redundancy. We show that for many values
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of k, shrinking to increase the number of sensors by a factor of k (often corresponding
to combining k separate 1-covers as previously mentioned) yields k′-coverage for some
k′ > k. We also show that the efficiency ratio k′/k approaches the maximal ≈ 1.209
as k → ∞, for example, 12/11 ≈ 1.09, 24/21 ≈ 1.14, 58/49 ≈ 1.18. In this sense,
the (k′ − k)/k ratio is an efficiency gain over the standard hexagon lattice. Perhaps
counterintuitively, we provide similar results for any regular lattice, such as the square
lattice in which all of its ≈ 57% overlap is recovered with efficiency ratios of 4/3 and
7/5 for small k. This suggests a sense in which the square lattice is competitive with
the hexagon lattice. For some multi-coverage requirements, that is, a fixed area and
a desired k′, a shrunken square arrangement will actually use fewer sensors than the
corresponding shrunken hexagon arrangement.

For example, in the case of k = 5, we obtain k′ = 7, which yields k′/k = 7/5 = 1.4 and
1.57/(k′/k) ≈ 1.12, which is better than the efficiency 1.209 of the shrunken hexagon
lattice.

We also consider other benefits of the shrunken lattice arrangement. First, it enjoys
greater robustness against placement error, which has practical advantages. If the
designated position for the sensor is not ideal because of difficult terrain, for example,
or because of man-made obstructions, it is natural to place the sensor nearby and hope
to continue to provide full coverage. Or, if (some of) the sensors are mobile, they may
take advantage of any available wiggle room to move about and avoid detection. By
shrinking the lattice, the sensors would still be deployed according to a hexagonal
structure but with a denser structure allowing the sensors some freedom of movement
without invalidating the full coverage guarantee. We call the area in which a sensor
is free to move its wiggle area and explore its shape when, for fairness reasons, each
sensor is obliged to cover the points in its Voronoi cell. In this case, each sensor is free to
move independently within its wiggle area. We note that this area need not be a disk,
though the maximum wiggle disk,1 corresponding to a sensor’s maximum allowable
displacement in any direction would be of particular practical interest. Conversely, we
compute the lattice density (degree of shrinking) required in order to support a certain
desired amount of allowable placement error.

Another benefit of shrinking concerns sensor reliability. Depending on sensor type,
we may expect a certain percentage of deployed sensors to fail. Alternatively, in event
detection applications, there may be a known false negative probability. These consid-
erations provide a third kind of benefit to shrinking the sensor network. By sufficiently
shrinking the lattice (corresponding to k times as many sensors), we can provide full
coverage (in expectation) in the face of a nonzero failure probability, that is, fault
tolerance, and even spend the k → k′ efficiency gain on an allowable failure probability.

Model. We assume a boolean sensor coverage model with sensing coverage areas as
disks. While this is a simplified model, it can be used to provide conservative bounds
in applications with more complex anisotropic or probabilistic sensor models [Bai et al.
2006] and is interesting enough to be widely studied on its own. Throughout the article,
we assume a large convex area of interest which allows us to ignore the edges. If
connectivity is also required, then we assume that rc ≥ 2rs, that is, the communication
range is at least double the sensing range. This is known to suffice for inferring that full
coverage implies connectivity [Zhang and Hou 2005], and so we do not further discuss
connectivity in this article.

Organization. In Section 2, we present related work. In Section 3, we explore a Riesz
energy technique for finding robust k-coverage arrangements before turning to the

1Defined as the largest disk centered at the sensor that is contained within the wiggle area.
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simpler method of simply shrinking the lattice. We demonstrate the efficiency of the
shrunk lattice for multi-covering, showing that the equivalent of k copies can provide k′-
coverage. We give a series of examples, converging on the limit, in which the percentage
of recovered area approaches the ≈ 20.9% maximum. Second, we quantify the flexibility
benefits of shrinking the hexagon lattice, characterize the resulting wiggle area, and
prescribe the amount of shrinking required to support a given flexibility requirement
(Section 4). Third, we study the fault tolerance provided by shrinking (Section 5). We
conclude by construing the shrinking factor as a budget divided between these benefits
(Section 6).

2. RELATED WORK

There have been efforts in various communities to characterize, find approximate so-
lutions to, and analyze the intrinsic properties of the coverage problem based on the
boolean model. Brass [2007] focused on theoretical bounds for various coverage re-
quirements using static as well as mobile sensors, all under the boolean model. Zhang
and Hou [2005] gave a distributed algorithm that attempts to minimize the number of
sensors needed to obtain full coverage by minimizing the amount of intersection areas
of sensor disks. Gupta et al. [2006] gave an O(log n) set cover-style greedy algorithm
for the setting in which sensor locations must be chosen for a given discrete set, which
was extended to k-coverage in Zhou et al. [2004]. Funke et al. [2007] proved a matching
�(log n) approximation ratio lower bound. The setting in which only a discrete set of
clients must be covered is also well studied [Alt et al. 2006]. In this article, however,
our focus is on the setting of full coverage with unrestricted sensor placement.

Some research combines coverage goals with connectivity or other constraints. Bai
et al. [2006], for example, provided sensor deployments yielding 1-coverage and either
1-connectivity or 2-connectivity. Potential field methods have been used to distribute
sensors so that in the resulting graphs, sensor nodes have a minimum degree [Poduri
and Sukhatme 2004].

Bar-Noy et al. [2009] discussed some other problems related to inexact sensor place-
ment. A connection was also drawn between probabilistic placement error and proba-
bilistic (nonbinary) sensing models. Zou and Chakrabarty [2004] combined probabilis-
tic placement error and probabilistic sensing models in seeking a high-confidence full
cover of grid points. They presented experimental results of a heuristic algorithm that
greedily selects grid points with low-current coverage probability.

There is a large literature on k-coverage. Wang and Tseng [2008] provided k-coverage
arrangements for binary and probabilistic sensors. They noted the presence of overlap
among disks but take advantage of it only in the setting of small rc. For large rc, which is
our focus here, they simply duplicate the 1-covering k times. Bartolini et al. [2008] gave
distributed algorithms for assembling sensors into a hexagon lattice, whereas we take
the ability to position sensors as a given and study the benefits of such arrangements.
Focusing on probabilistic sensors, Zhang and Hou [2006] gave bounds on density for
guaranteeing full k-coverage with high probability with various arrangements. This
non-local guarantee requires increasing sensor density by a logarithmic factor. Our
focus in Section 5, however, is purchasing a local coverage guarantee using only a
constant factor increase in density. Huang and Tseng [2005], for example, gave efficient
algorithms for determining the maximum value k for which a given sensor configuration
provides k-coverage, supporting both unit-disk sensors and non-unit-disk sensors.

Finally, Pach and Tóth [2007] studied the problem of decomposing a k-cover into a
maximum number of disjoint 1-covers. They noted that when the region of interest
is a disk, the only positive result that has been claimed is that any 33-cover may
be decomposed into two disjoint 1-covers. Abrams et al. [2004] solved a related but
relaxed problem in which a set of sensors is partitioned into subsets with the objective
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of maximizing the sum of the (partial) covers of the sets. We remark that our second
motivation for shrinking the lattice is the reverse of this, that is, of combining multiple
1-covers.

3. K-COVERAGE

Under k-coverage, each point in the region R is covered by at least k different sensors. A
2-covering (see Figure 1(b)) can be obtained by concatenating two optimal 1-coverings
where there is a translation between the two 1-coverings. This approach enjoys a
robustness property, namely, the sensors are placed maximally far away from one
another. We now explore how k-coverings for higher k can be achieved that also satisfy
this property. Sufficiently increasing the density of the sensor network lattice will yield
a k-fold coverage. Furthermore, we will see how to exploit the overlap in a single lattice
and improve the efficiency of the obtained coverage relative to the number of sensors
used.

3.1. Riesz Energy

We construct a k-covering by superimposing k translated copies of the hexagonal 1-
covering. Because of the lattice structure of the optimal 1-covering, each sensor within
the 1-covering can be construed as lying on the surface of a torus, that it, the 1-covering
is reduced to a single sensor located on the surface of a torus. This can be seen as follows.
The lattice can be deformed into a regular square lattice and each sensor is located in
the same place in each lattice square. This means that if we glue the right and left
edges of the square and the top and bottom edges of the square (i.e., we form a quotient
of the square lattice by identifying the left with the right edge and the top with the
bottom edge), we obtain a torus with a single sensor.

Since this lattice is the same for all the 1-coverings, the tori for the different 1-
coverings can be thought of as the same object. The distance metric d on the torus
is induced by the distance metric dR in the region R. Since each point on the torus
corresponds to a lattice in the plane, when unwrapped onto R, d is the Hausdorff
distance between two lattices. (This follows readily from the definition of the Hausdorff
distance [Rockafellar and Wets 2009].) In this case, for robustness reasons, that is, to
maximize dmin = min1≤i< j≤k d(ai, aj), the problem is reduced to dispersing k points on a
torus.2 This problem has been studied using the approach of Riesz energy minimization
[Hardin and Saff 2004]. The s-Riesz energy of a set of points {ai} is defined as

Es =
∑

i �= j

1
d(ai, aj)s

for a distance metric d and exponent s > 0. For s = 0, the Riesz energy is defined as

E0 =
∑

i �= j

log
1

d(ai, aj)

Womersley [Womersley ] reports experiments in best-effort (local search) optimization
algorithms to minimize Es for s → ∞, which experimentally appear to often produce
solutions with maximum dmin. He also reports that Quasi-Newton-based optimization
algorithms have been developed for cases in which the number of points is in the
thousands.

2The problem of maximizing the pairwise distance between a fixed number of points, known as a best packing
of the points [Hardin and Saff 2004], has previously been studied on the sphere, where it is known as Fejes
Tóth’s problem [Brass et al. 2005]. Exact solutions are known for k ≤ 12 and k = 24, but no general solutions
are known.

ACM Transactions on Sensor Networks, Vol. 8, No. 3, Article 22, Publication date: July 2012.



22:6 M. P. JOHNSON et al.

(a) A 3-covering of the plane with dmin =
1√
3
. Note that the union of 3 hexagonal 1-

coverings forms a hexagonal covering.
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(b) A 4-covering of the plane with dmin = 1
2
.

Note that the union of the 4 hexagonal 1-
coverings is again a hexagonal covering.
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(c) A 5-covering of the plane with dmin =
0.3937.
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(d) A 17-covering of the plane with dmin =
0.2198.

Fig. 2. Computed k-coverings for various values of k.
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(b) Optimized using s = 2. dmin = 1
3
.

Fig. 3. Two 9-coverings of the plane.

3.2. Experimental Results

By minimizing the Riesz energy Es, we obtain configurations of k-coverings for various
values of k. In our experiments, we choose s = 10 and dR(ai, aj) = ‖ai − aj‖2 to be the
Euclidean distance on the plane. For 2-coverings, we obtain the same result as shown
in Figure 1(b). The results for k-coverings for various values of k > 2 are shown in
Figure 2. In these figures, sensors labeled with the same number belong to the same
hexagonal 1-covering. Note that the union of all the sensors can form a regular geomet-
ric structure and, in some instances, a hexagonal lattice. For instance, for k = 3, 4, 7, 9
(see Figures 2(a), 2(b), and 3(b)), the union of all the sensors form a hexagonal
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Fig. 4. dmin obtained in a 7-covering by minimizing Es for various s.

lattice—the optimal 1-covering. (The configuration for k = 3 is used in Sun et al.
[2005].) Equivalently, the hexagon lattice can be decomposed into k disjoint hexagon
lattices scaled by factor

√
k. Such values of k are said to “divide the lattice”.

Let Q′ be the set of all such hexagon lattice divisors. Observe that by repeated decom-
position, it follows that for any k = �qi∈Q′qmi

i for mi ∈ N, we also have k ∈ Q′. It is known
[Bernstein et al. 1997] that Q′ = {a2 + ab+ b2|a, b ∈ N1} = {3, 4, 7, 9, 12, 13, 16, . . .} (the
Loeschian numbers other than 0,1),3 several of which we saw in the figures.4

For arbitrary integers k′, we can round up to the first k = �qi∈Q′qmi
i bounding k′ and

use the resulting optimal k-covering (in general suboptimally) as the k′-covering. Then,
the optimal dmin for a k′-covering is lower bounded by 1√

k
and upper bounded by 1√

k′

(due to the optimality of the hexagonal lattice).

3.2.1. Choosing the Exponent s. How large should the value of the exponent s be when
computing the Riesz energy Es? In order to approximate the energy function that
maximizes dmin, the parameter s should be chosen to be large. However, a large s leads
to large gradients and can cause problems in the numerical computations. On the
other hand, in our experiments, we found that choosing small values of s can produce
suboptimal results. For instance, we show in the subfigures of Figure 3 the 9-coverings
produced by optimized Riesz energy with s = 1 and s = 2, respectively. According to
the a preceding discussion, the latter subfigure illustrates the optimal configuration
maximizing dmin. Numerical experiments show that there is a transition from one
configuration to the other configuration around s = 1.2.

In fact, by the so-called Poppy-seed Bagel Theorem [Hardin and Saff 2004], as the
number of points k approaches infinity, minimizing the s-energy for any value s ≥ 2 will
distribute the points uniformly on the surface of the torus, thus maximizing dmin. This
result only refers to k in the limit, however, and may not hold for small k. For small
values of k, exponent s may need to be large in order to maximize dmin. In practice, it
could be difficult to know for certain whether the s value chosen is large enough for the
chosen k. For example, for k = 7, Figure 4 shows dmin as Es is minimized for various
values of s. We see that dmin reaches the optimal value of

√
3/

√
7 at s ≈ 3.2 after passing

through several other configurations. On the other hand, for k = 9, the only transition
occurs at s ≈ 1.2. As we noted before, we cannot simply increase s until we obtain a
hexagonal solution, since the optimal configuration need not be hexagonal.

3http://oeis.org/A003136.
4Members of Q′ not expressible as products of members of Q′ are known as prime divisors of the lattice:
{3, 4, 7, 13, 19, 25, . . .} (the norms of Eisenstein-Jacobi primes; http://oeis.org/A055664).
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Fig. 5. Two 4-coverings of the plane.
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(a) A 6-covering of the plane. The base 1-
covering is the square grid lattice and dmin =
0.2708.

(b) The square lattice shrunk by a factor 
of five, providing 7-covering.

Fig. 6. Two grid arrangements.

3.3. Incremental k-Coverings and Other Base Coverings

Consider the scenario where a k-covering is in place and we want to expand the sensor
network to a k′-covering (k′ > k) by adding more sensors: where should the new sensors
go. Again, the same optimization approach can be used with the additional constraint
that the sensors in the original k-covering remain fixed. In Figure 5(a), we show a
4-covering obtained by extending the 3-covering in Figure 2(a). Compare this with the
optimal 4-covering in Figure 2(b).

So far we have applied this algorithm to the case where the underlying 1-covering
(i.e., the base covering) is the hexagonal lattice. This approach can also be applied to
other base 1-coverings. For instance, Figure 5(b) shows a 4-covering obtained by trans-
lating four square grid 1-coverings and optimizing the arrangement by minimizing E10.
We see that the totality of sensors form a hexagonal lattice. A more irregular-looking
6-covering based on six square grid lattices is shown in Figure 6(a).

There is a close relationship between these k-coverings and dispersed-dither digital
halftoning [Ulichney 1997]. In dispersed dither, a pattern is tiled on the plane such
that it forms a visually pleasing pattern. The dispersed-ordered dither patterns (e.g.,
blue noise dispersed dither [Spaulding et al. 1997]) are regular patterns that are
repeated and similar to k-coverings, such as in Figure 6(a). The stacking constraint
in these dither patterns dictates that a pattern with more dots is a superset of a
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pattern with fewer dots—the same constraint as with the incremental k-coverings
discussed previously. Indeed, many algorithms for generating blue noise dither patterns
are based on energy minimization [Wu et al. 2003]. In a k-covering, however, the
sensors can be positioned at any point on the plane, resulting in a linear programming
problem, whereas in a dispersed-dither pattern, the dots are constrained to lie on the
printer addressability grid (e.g., a 600 dpi or a 1,200 dpi grid), resulting in an integer
programming problem.

3.4. Definitions

Definition 1. Let r be the sensing radius. Let the granularity δ of a lattice be the
minimum distance between two nodes. Let A indicate the size of the area to cover.

When the hexagon lattice is used to provide 1-coverage, we have δ = r
√

3.

Definition 2. Let n be the number of sensors used in a given deployment. Let the
coverage density ρ of the deployment be the ratio of the sum of all sensors’ coverage
region sizes to the area size A. Let nopt = nhex and ρopt = ρhex indicate these values in
the case of the hexagon lattice, and let nsq and ρsq indicate them in that of the square
lattice. Let g = n/nopt be the number of hexagon lattices’ worth of sensors used in the
deployment.

The density ρopt is simply the ratio of the areas of circle and hexagon.

ρopt = 2π

3
√

3
≈ 1.209. (1)

Hence, the number of sensors nopt needed to cover a region of area A is given by

nopt = A · ρopt

πr2 = 2A

r23
√

3
≈ 0.385A

r2 . (2)

Although the hexagon lattice uses fewer sensors than any other, many other grid forma-
tions could be considered, some of which have practical advantages. One example is the
square lattice which has the following coverage density and sensor count, respectively.

ρsq = π

2
≈ 1.57; (3)

nsq = A
2r2 . (4)

Definition 3. Let (a, b) and (c, d) indicate the two basis vectors generating the
lattice.

We have (a, b) = ( r
√

3
2 , r3

2 ), (c, d) = (r
√

3, 0) for the hexagonal lattice and (a, b) = (r, 0),
(c, d) = (0, r) for the square lattice. Then the coverage density is equal to πr2

|ad−bc| , which
generalizes the two densities just stated.

3.5. Analysis

The observation that in some k-coverings generated by the Riesz energy method all
the sensors themselves form a denser hexagon lattice suggests another scheme for ob-
taining k coverage, that is, take the standard hexagon lattice initially drawn on a scale
where r = 1 and δ = √

3, and rather than minimizing Riesz energy, simply increase its
density (or equivalently increase the value r) until k-coverage has been achieved. No-
tice that there is an equivalence between increasing the density and increasing r: We
always have g = r2. For example, in the unscaled hexagon lattice, we have g = 1 = r2.
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Unlike in single coverage, a hexagon lattice is not the most efficient configuration for
every value k, for example, consider the 2-coverage configuration shown in Figure 1(b).
By what factor must the hexagon lattice be shrunk in order to provide, for example, 2-
coverage? Consider a neighborhood Nε(x) centered on point x which is a sensor location
in the hexagon lattice. The first cover of this area comes from the sensor located at x.
The second cover must be provided by (perhaps some of) the sensors surrounding it, that
is, x’s six neighbors in the hexagon lattice. Unfortunately, any radius assigned to those
points that yields an additional cover for Nε(x) will actually provide two more covers for
it. That is, the required shrinking factor corresponds to three times as many sensors
as a single lattice (i.e., the hexagon lattice with g = 3 or r = √

3). The corresponding
arrangements of disks is known as the Flower of Life. Naively shrinking until we
double the number of sensors (i.e., until g = 2) would fail to produce 2-coverage. Riesz
energy minimization provides a 2-cover using two copies of the hexagon lattice with
δ = r = 1 (see Figure 1(b)). Nonetheless, for many values (including but not limited to
k ∈ Q), shrinking performs well.

The proposed k-covering satisfies a stronger property of providing k-coverage, using
one sensor from each of the underlying k lattices, which may be useful in multimodal
data fusion applications, where there are k types of sensors, and each point in the
region of interest needs to be covered by at least one sensor of each type. On the other
hand, there is overlap in the coverage area, that is, there are areas in a 1-covering
that are covered by more than one sensor (e.g., Figure 1(a)). We observed previously
that the overlap density ρ is equal to πr2

c
|ad−bc| , which is 2π

3
√

3
≈ 1.209 and π

2 ≈ 1.57 for the
hexagonal and square lattices, respectively.

In the absence of such data fusion applications, we can take advantage of this overlap,
that is, for sufficiently large k, the k-covering constructed is actually a k′-covering with
k′/k ≈ ρopt.

Proposition 4. For all ε > 0, there exists k such that the k-covering constructed by
concatenating k 1-coverings is also a k′-covering, and k′/k > ρopt − ε.

PROOF. Let k be chosen such that the lattice can be decomposed as k identical sub-
lattices, for example, we pick k ∈ Q for the hexagonal lattice. The distance between the
sensors is 1/

√
k times the corresponding distance in the sublattice. For each point p in

the region, consider the neighborhood Nr(p). The number of lattice points in Nr(p)—
all of which cover point p—is approximately k · πr2

|ad−bc| as k → ∞. Therefore, this is a

k′-covering where k′ ≈ k · πr2
c

|ad−bc| = kρopt.

We now discuss the speed of convergence of k′/k to ρopt in the preceding proposition.
It follows from Huxley [1995] that for k′/k approaching ρopt as k → ∞, we have k′/k >

ρopt − ε, where ε = O(k− 2
3 +ν) for any ν > 0. First consider the easier case of a unit

square grid in which case |ad − bc| = 1. The number of lattice points in the circular
disk is k′, and the area of the disk is kπ . A corollary in Huxley [1995] (substituting k1/2

in for M in the corollary of Huxley [1995]) shows that the discrepancy in the number
of lattice points in the disk, that is, k′ − kπ , is O(k

1
3 (log k)

1
3 ) = O(k

1
3 +ν). Therefore,

k′/k = π + O(k− 2
3 +ν). For a general lattice, an affine transformation transforms the

lattice into a unit square lattice, and the area of the unit disk is transformed into an
ellipse of area π

|ad−bc| , but the conclusion still holds.
In fact, ρopt upper-bounds the maximum achievable gain.

Proposition 5. k′/k cannot exceed ρopt.
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Table I. k → k′ Values for k ∈ [1, 27] such
that k′

k > 1

Sensing Range k k′ Gain Ratio
3.31662 11 12 1.09091
3.60555 13 14 1.07692
3.87298 15 16 1.06667
4.00000 16 18 1.12500
4.12311 17 19 1.11765
4.24264 18 19 1.05556
4.58258 21 24 1.14286
4.69042 22 25 1.13636
4.79583 23 26 1.13043
4.89898 24 27 1.12500
5.00000 25 28 1.12000
5.09902 26 28 1.07692
5.19615 27 30 1.11111

PROOF. We consider the hexagon lattice case here, but the same argument is valid
for other lattices. Let nopt be the number of sensors appearing in the hexagon lattice
covering a certain area of size A (see Definition 2). Suppose knopt sensors (i.e., k hexagon
lattices’ worth) provide a k′-coverage. A hexagon lattice covers the entire area at least
once and approximately 20.9% of it twice, that is, noptS ≈ 1.209A, where S is the
size of a single sensor’s sensing range (with radius r). Then, the total amount of area
covered by k lattice’s worth of sensors is knoptS ≈ k1.209A. Therefore, with knopt sensors,
the best we could hope for is that the full area A is covered ≈ 1.209k times, that is,
k′/k ≤ ρopt.

We show the following by machine computation. We verified the results by hand for
several cases.

Proposition 6. The coverage multiplicity k′ provided by the shrinking factor cor-
responding to a k-fold duplication of the hexagon lattice can be computed in time
O(k2 log k).

PROOF. (sketch) The multiplicity of coverage provided by a given arrangement can be
found efficiently by applying the algorithm of Huang and Tseng [2005]. Their algorithm
computes the minimum value k′ for which all sensor disks are k′-perimeter covered,
which means that all points on the perimeter are covered by k′ sensors other than
itself, on the assumption that no two sensors lie at the same location. Let r be the
sensing range, then computing the perimeter coverage of one sensor s can be done
in time O(c log c), where c is the number of sensors within distance 2r of s. Due to
symmetry, we only need to compute the perimeter coverage of a single sensor in the
hexagon lattice (in fact, for only 1/6 of its perimeter). Since there are O(k2) sensors
in the hexagon lattice within distance 2k of any point, the total running time will be
O(k2 log k).

We used the method just described to compute the coverage multiplicity k′ provided
by a number of small duplication values k = 1, . . . , 27. The values k in this range
yielding an improved multiplicity (i.e., those with k′ > k) are shown in Table I). In
particular, 11 copies of the hexagon grid suffice to provide 12-coverage.

In Figure 7(a) we show the obtained efficiency gain k′/k for various values of k. We see
that it approaches ρopt = 1.209 for large k, as promised by Proposition 4. Analogously,
Figure 7(b) shows the obtained efficiency gain for a shrunken square lattice, which
correspondingly approaches a recovery of the ≈ 57% inefficiency of the square grid.
We emphasize here that although the square lattice is typically considered inferior
to the hexagon lattice, these results argue that the hexagon’s advantage disappears
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(a) Shrunken hexagon lattice efficiency gain k
k

v. k.
(b) Shrunken square lattice efficiency gain k

k
v. k.

(c) Coverage efficiency (coverage size / sum of
disk sizes)

(d) Coverage provided vs. cost

Fig. 7. Computational results.

when comparing shrunken lattices. In the limit, all the single lattice’s redundancy is
recovered.

Figure 7(c) plots the coverage efficiency of the two lattices as we vary the number
of sensors used. For both curves in this figure, the X coordinate indicates the number
of hexagon lattice’s worth used, which is a 1/nopt fraction (ignoring remainders) of
the total number of sensors used (see Definition 2). The Y coordinate indicates the
efficiency, that is, ρopt/(k′/k). This efficiency measure is equivalent to the coverage area
size divided by the total coverage paid for, that is, the number of sensors times the
coverage area size of one sensor. Following the known discrepancies in this efficiency
for values k = 1 and k = 2, we observe as expected that both efficiency ratios converge
to unity in the limit. Finally, Figure 7(d) illustrates a portion of this data differently,
plotting the coverage provided by hexagon and square lattices as a function of the
number of sensors used (varying from 1 to 14 hexagon lattices’ worth). Note that each
time one of these curves supersedes the dashed y = x line, it corresponds to a particular
shrunken lattice arrangement that is more efficient than the base hexagon lattice.

Again, we find potential grounds for using the square lattice. Suppose, for example,
that we wish to cover a given area with 4-coverage. Shrinking the hexagon lattice by
a factor of four will provide 4-coverage, yielding the same efficiency ratio as simply
using four copies of the hexagon lattice. Shrinking the square lattice by a factor of
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Fig. 8. In hexagon and square lattices, wiggle regions such that sensors cover their responsibility regions.

three, however, will provide 4-coverage while using 3 · ρsq/ρopt ≈ 3 · 1.57/1.209 ≈ 3.896
times as many sensors as one hexagon lattice. Or, if our goal is, for example, 7-coverage
(see Figure 6(b)), we find that shrinking the square lattice by a factor of five will
provide 7-coverage for the cost of ≈ 5 ·1.57/1.209 ≈ 6.493 hexagon lattices. That is, the
hexagon lattice shrunken by a factor of seven provides 7-coverage using approximately
7 ·1.209 ≈ 8.463 sensors per unit area, whereas the square lattice shrunken by a factor
of five provides the same coverage with a per-unit area sensor count of only about
5 · 1.57 ≈ 7.85.

4. WIGGLE ROOM

As we noted previously, the optimal hexagon lattice is very rigid in the sense that the
movement of a single sensor will result in uncovered space. In this section, we will
explore a trade-off between density and position flexibility.

Although our main focus is on the hexagon lattice, the square lattice is popular
because of practical convenience, and so we sometimes include calculations for the
square lattice for comparison. By a rigid lattice, we mean a lattice (hexagon or square)
with the smallest number of sensors among lattice arrangements (of the same kind,
hexagon or square) providing full coverage. An operational difficulty of these rigid
solutions is that sensors must be placed exactly, with no room for placement error.
After all, any room for error would imply that the lattice was not tight and so used
more sensors, or sensors with larger sensing radii, than necessary. Conversely, if we do
use more or larger-radius sensors than the absolute minimum needed, there may be
flexibility in allowable sensor placement while maintaining full sensing coverage over
the region. We refer to the region within which a sensor can be placed while full coverage
is maintained as the sensor’s wiggle region. Given a particular feasible configuration
(meaning one which covers the entire region of interest), we may be interested in the
wiggle regions of all the individual sensors. Wiggle regions are such that full coverage
is maintained as sensors move about, perhaps simultaneously, as long as each sensor
remains in its wiggle region. For sensors in any lattice configuration, the wiggle regions
would be congruent but translated; for an arbitrary arrangement, different sensors may
have different sorts of wiggle regions. Given a placement of sensors, we may compute
the shape and size of the wiggle region for each.

A sensor’s intended location is the location where it lies if there is zero placement
error. A simple and practical way of characterizing the size of a wiggle region is by
the wiggle radius w, that is, the radius of the largest circle centered on the intended
sensor location inscribable in it. We call this circle the wiggle disk. The wiggle disk will
be of practical importance when placement error is isotropic, that is, the same for all
directions. For some configurations, such as the hexagon lattice, the difference between
the wiggle disk and the full wiggle area will be quite small (see Figure 8 (left), where
the shaded wiggle area is itself close to disk-shaped), though this need not be the case
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Fig. 9. In hexagon and square lattices, congruent responsibility regions that tile the region.

in general (see Figure 8 (right), where the four-pointed shaded wiggle area is far from
disk-shaped).

If (conversely) we are given desired amounts of allowable placement error, we could
compute a configuration that is robust enough to continue to guarantee full coverage
in spite of this error. While lattice-based solutions have desirable properties and are
straightforward to apply, it may in reality be impractical to place sensors exactly on
grid points. A dual problem is to find an efficient configuration that compensates for
the placement error that we wish to allow and, therefore, assume to occur. It is for this
second problem that we provide the denser hexagon lattice as a solution.

4.1. From Arrangements to Wiggle Regions

In this section, we examine the scenario in which all the sensors can be repositioned
from their intended position. Locally, this means that a sensor and all its neighbors
may be inexactly positioned. There must be some overlap among sensors’ coverage disks
in any arrangement fully covering a region. We now characterize the wiggle region,
comprising all those points on which this sensor could be repositioned such that full
coverage is maintained, for these two settings. We focus on lattice-based solutions with
congruent wiggle regions.

We introduce the notion of the responsibility region (RR) for a sensor s, which is
the region that s must fully cover no matter where the other sensors lie. By achieving
coverage for each RR, we therefore achieve full coverage. We say that s is responsible for
any point p whose distance to the initially designated position of sensor s is no greater
than its distance to the initially designated position of any other sensor, in which
case s’s responsibility region is simply its Voronoi neighborhood [Pach and Agarwal
1995]. Figure 9 shows the boundaries of the Voronoi neighborhoods of sensors in lattice
arrangements. Due to symmetry in lattice arrangements (and due to the nature of
Voronoi diagrams), these RRs will tile the plane, as shown in Figure 9.

The wiggle regions based on these congruent responsibility regions can once again
be constructively obtained. Let R be the bounded responsibility region of a particular
sensor s with sensing radius r, and let P be the set of extreme points of R. Then full
coverage is maintained if and only if s lies in the intersection of closed disks with radius
r centered at the points in P. We take the extreme points to be the Voronoi points in
the resulting Voronoi diagram.

Each responsibility region R in a lattice-based arrangement is its own convex hull
and will be covered by placing a sensor anywhere within the intersection of radius-r
disks centered at R’s extreme points. We show the wiggle regions for a hexagon lattice in
Figure 8. Since each sensor can be placed within its wiggle region independently of the
choice of where others are placed within their wiggle regions, the placement policies
must naturally be more conservative. Treating Voronoi neighborhoods in arbitrary
arrangements as responsibility regions implies corresponding wiggle regions as well.
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Since Voronoi neighborhoods are always convex, the construction in Proposition 1 can
be applied in every case in order to obtain the wiggle region.

In a general arrangement of sensors, given a designated sensor with position p, let
X be the set of extreme points of its responsibility region, and for each q ∈ X, let s(q)
denote the distance between p and q. Let d(q) denote the distance between q and the
boundary of the same sensor’s coverage disk. That is, d(q) = r − s(q) for 0 ≤ s(q) ≤ r.
Then the disk centered at p with radius minq∈X d(q) necessarily fits within the wiggle
region. In the field, it may be easier to work with this smaller disk instead of the
whole wiggle region, since it is easier to calculate and specify. Note that for non-lattice
arrangements, this need not be the largest disk that can be inscribed in the wiggle
region.

4.2. From Desired Flexibility to Required Density

We use the preceding characterization in calculating the lattice granularity (and thus
the number of sensors) required for covering a region with a lattice, in accordance with
a minimum required wiggle radius.

Suppose we are given an upper bound on placement error w, and we would like
to find a lattice arrangement that attains full coverage. Observe that it is necessary
and sufficient to position sensors in a lattice such that a circle of radius w could be
inscribed in the wiggle region of every hypothetical sensor placed exactly at grid points.
In other words, no matter where the sensor is placed inside this disk, its distance to
every extreme point of the (Voronoi) responsibility region must be at most r. The
best arrangement, that is, one with the largest granularity, under these additional
constraints is one in which the distance from every critical point to the center of a
Voronoi region is exactly r − w.

By definition, in a rigid lattice arrangement, the distance from each sensor to the
extreme points of its Voronoi region is r; we can allow for wiggle room w by scaling the
rigid lattice by a factor of (r − w)/r. Because a disk with radius r and placement error
w can be treated as an exactly placed disk with radius r − w [Bar-Noy et al. 2009], we
can compensate for the inexact placement by scaling the lattice.

Since in the rigid hexagon lattice, the granularity is r
√

3, the granularity δhex of the
hexagon lattice accommodating w-bounded placement error is given by δhex = (r−w)

√
3.

Conversely, if all sensors are free to move in a hexagon lattice with granularity δhex and
coverage radius r, solving for w indicates how far the sensors may be allowed to stray
from their original positions without violating the coverage guarantee.

For a hexagon lattice, or indeed for any sensor configuration in general, the number
of sensors used when we allow wiggle room w is in general scaled by a factor r2/(r−w)2.

Since given r and w the number of sensors required is affected by the same factor in
all cases, and since the rigid hexagon lattice is optimal, the best solution in the case
of inexact placement with bounded placement error is the 6-grid previously discussed.
From Eq. (1), the density of sensors ρhex(w) in a hexagon lattice which permits a
placement error of w is given by

ρhex(w) = 2πr2

3(r − w)2
√

3
≈ 1.209r2

(r − w)2 . (5)

Recalling Eq. (2), where A is the area of the entire region of interest, the number of
sensors nhex(w) needed in this hexagon lattice is found to be

nhex(w) = 2A

3(r − w)2
√

3
≈ 0.385A

(r − w)2 . (6)
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Similarly, if it were an additional requirement to use a 4-grid, recalling Eq. (3), the
density of sensors ρsq(w) in such an arrangement allowing a placement error of w is
given by

ρsq(w) = πr2

2(r − w)2 ≈ 1.57r2

(r − w)2 · (7)

Recalling Eq. (4), the number of sensors nsq(w) required in this square lattice is found
to be

nsq(w) = A
2(r − w)2 = 0.5A

(r − w)2 · (8)

We note that the ratio of required densities for coverage by square or hexagon lattices
is invariant with w, that is, is the same as the efficiency ratio for the two underlying
(exactly placed) lattices.

5. ROBUSTNESS TO SENSOR FAILURE

A third benefit of shrinking is robustness to sensor failure. Suppose each deployed
sensor fails with probability p. Clearly this will tend to break the full coverage of the
hexagon lattice, but shrinking will decrease this tendency. Computing the probability
of full coverage in this case is problematic, since the probability of full coverage will
depend heavily on the size of the relative coverage area. One alternative measure is
the probability that a single local triangle (i.e., a triangle formed by three mutually
adjacent sensors) is covered (or k′′-covered for each k′′ ∈ [1, k′]). Restricting our attention
to the disks that fully cover the triangle (in the case of k = 49, there are 48 such disks),
we obtain the following lower bound on the expected coverage multiplicity (shown with
a faint dashed line) through linearity of expectation.

Proposition 7. The expected coverage multiplicity k′′ for a local triangle T is at least
(1 − p) · nf , where nf is the number of sensors fully covering T .

We performed simulations to estimate the coverage obtained when sensors fail (in-
dependently) with a fixed probability, as well as the most generous failure probabilities
that will yield coverage. Figure 10(a) illustrates the expected multiplicity k′′ of coverage
for a deployment with k = 49 for varying failure probabilities p. Two faint bounding
lines are shown, indicating that k′′ is bounded below by the stated Bernoulli distribu-
tion mean but is strictly convex. Conversely, Figure 10(b) shows the minimum success
probabilities required, when the lattice has been shrunk by a factor k, in order to
maintain 1-coverage or k-coverage (in expectation).

6. DISCUSSION

We have examined three separate motivations for shrinking the hexagon lattice (or
increasing the sensor radii): obtaining flexibility in sensor placement, increasing the
sensor efficiency in obtaining k-coverage, and providing fault tolerance. Increasing the
radius by value w allows for amount w of placement error, as discussed in Section 4.
For values k ∈ Q′, this is equivalent to k-covering where the distance between sensors
is shrunk by a factor of 1/

√
k. The third benefit to shrinking is to maintain coverage

when sensors fail.
Thus, increasing the radius r from 1 to a larger value can be construed as providing

a redundancy budget which may be spent in multiple ways. If the enlarged radius r
is spent entirely on wiggle room w = r − 1, then we may only rely upon 1-coverage.
Conversely, if r is spent entirely on getting k′ ≈ 1.209k coverage, then no flexibility in
sensor placement is provided. Finally, it can be spent entirely on failure probability
(as in the lower curve in Figure 10(a)). First of all, we can partition the benefit of r as
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(a) Expected coverage multiplicity (k ) with
k = 49).

(b) Success probabilities for 1- and k-coverage.

(c) Efficiency gain after allocating wiggle room
budget.

Fig. 10. Computational results.

r = rw + rc, yielding wiggle room w = rw and at least k-coverage for k ≥ r2
c (which may,

as previously indicated, be made probabilistic). A single shrinking factor could provide
a range of possible trade-offs between benefits, with the degree of coverage and the
amount of allowable placement error varying depending on how the shrunken lattice
is interpreted. Figure 10(c) illustrates the amount of efficiency gain received after
allocating some amount w < r to wiggle room, starting with the radius r corresponding
to k = 49. Notice that in varying the effective radius, we revisit some of the values k
shown in Table I. For example, for k = 27 and w = 0.613, we have r = √

27 − w ≥ √
21,

which implies that 24-coverage is obtained.
Second, after allocating wiggle room, there are various potential ways to further di-

vide the shrinking benefit between multi-coverage and failure robustness. Figure 10(a),
for example, can be interpreted as characterizing the possible ways of allocating the
shrinking factor 7 (corresponding to k = 49) between allowable sensor failure probabil-
ity and expected multiplicity of coverage. For a particular value k, two natural trade-off
choices are those in which the maximum allowable failure probabilities are chosen that
yield either 1-coverage or k-coverage in expectation (see Figure 10(b) for an estimation
of these curves based on random trials). In the case of k = 49, these two choices can be
extracted from the points on the curve in Figure 10(a) with x = 1 or x = 49.

In conclusion, we have examined three kinds of benefits between which the shrinking
budget can be divided. We emphasize that this budget need not be merely metaphor-
ical. As we saw in Section 4, the size of the coverage region and the lattice density
together determine the number of sensors used; their cost can be significant in terms
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of equipment costs, placement, and energy. In this article, we have considered three
reasons to pay this price.
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