
9

Accelerating Throughput-Aware Runtime Mapping
for Heterogeneous MPSoCs

AMIT KUMAR SINGH, Nanyang Technological University and National University of Singapore
AKASH KUMAR, National University of Singapore and Eindhoven University of Technology
THAMBIPILLAI SRIKANTHAN, Nanyang Technological University

Modern embedded systems need to support multiple time-constrained multimedia applications that often
employ multiprocessor-systems-on-chip (MPSoCs). Such systems need to be optimized for resource usage and
energy consumption. It is well understood that a design-time approach cannot provide timing guarantees for
all the applications due to its inability to cater for dynamism in applications. However, a runtime approach
consumes large computation requirements at runtime and hence may not lend well to constrained-aware
mapping.

In this article, we present a hybrid approach for efficient mapping of applications in such systems. For
each application to be supported in the system, the approach performs extensive design-space exploration
(DSE) at design time to derive multiple design points representing throughput and energy consumption
at different resource combinations. One of these points is selected at runtime efficiently, depending upon
the desired throughput while optimizing for energy consumption and resource usage. While most of the
existing DSE strategies consider a fixed multiprocessor platform architecture, our DSE considers a generic
architecture, making DSE results applicable to any target platform. All the compute-intensive analysis is
performed during DSE, which leaves for minimum computation at runtime. The approach is capable of
handling dynamism in applications by considering their runtime aspects and providing timing guarantees.

The presented approach is used to carry out a DSE case study for models of real-life multimedia appli-
cations: H.263 decoder, H.263 encoder, MPEG-4 decoder, JPEG decoder, sample rate converter, and MP3
decoder. At runtime, the design points are used to map the applications on a heterogeneous MPSoC. Exper-
imental results reveal that the proposed approach provides faster DSE, better design points, and efficient
runtime mapping when compared to other approaches. In particular, we show that DSE is faster by 83% and
runtime mapping is accelerated by 93% for some cases. Further, we study the scalability of the approach by
considering applications with large numbers of tasks.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys-
tems and embedded systems; J.6 [Computer Application]: Computer-Aided Engineering: Computer-aided
design (CAD)

General Terms: Algorithms, Design, Management, Performance

Additional Key Words and Phrases: Multiprocessor systems-on-chip, embedded systems, multimedia ap-
plications, design-space exploration, runtime mapping, synchronous data-flow graphs, throughput, energy
consumption

ACM Reference Format:
Singh, A. K., Kumar, A., and Srikanthan, T. 2012. Accelerating throughput-aware runtime mapping for
heterogeneous MPSoCs. ACM Trans. Des. Autom. Electron. Syst. 18, 1, Article 9 (December 2012), 29 pages.
DOI = 10.1145/2390191.2390200 http://doi.acm.org/10.1145/2390191.2390200

Author’s addresses: A. K. Singh, A. Kumar, Department of Electrical and Computer Engineering, National
University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077; email: {eleaks,akash}@nus.edu.sg;
T. Srikanthan, School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798; email: astsrikan@ntu.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1084-4309/2012/12-ART9 $15.00

DOI 10.1145/2390191.2390200 http://doi.acm.org/10.1145/2390191.2390200

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:2 A. K. Singh et al.

1. INTRODUCTION

Multiprocessor systems-on-chip (MPSoCs) consist of multiple processing elements
(PEs) connected by a communication infrastructure. Heterogeneous MPSoCs contain
different type of PEs. The distinct features of the different type of PEs can be exploited
in order to achieve high computation performance and energy efficiency. Modern em-
bedded systems are based on MPSoCs to meet high performance demands, for example,
ST Nomadik, NXP Nexperia [Kim et al. 2008], and IBM Cell [Kistler et al. 2006].

Modern embedded systems (e.g., smart phones, PDAs, tablet PCs) often support a
number of multimedia applications concurrently, and this number is increasing faster
than ever. For example, a smart phone might be used to view an image using a JPEG
decoder over the internet and, at the same time, to listen to music using an MP3 decoder.
Users expect that all applications running in the system should satisfy their timing
(throughput) constraints and have a robust behavior [Gangwal et al. 2005]. Thus, the
supported applications should have a predictable timing nature that depends upon
the system resource usages. Synchronous data flow graphs (SDFGs) can be used to
model time-constraint multimedia applications and provide predictability [Lee and
Messerschmitt 1987]. The timing is often analyzed at design time, which, is incapable
of handling runtime aspects, such as supporting a new application.

To support a new application in the system at runtime, the application tasks need to
be mapped onto the system resources such that the throughput constrained is satisfied,
and energy consumption and resource usage are optimized. The timing nature depends
upon how the mapping is performed. Most of the existing mapping strategies are based
on either design-time analysis [Palermo et al. 2005; Stuijk et al. 2007; Ascia et al. 2007]
or on runtime mapping [Ykman-Couvreur et al. 2006; Moreira et al. 2007; Nollet et al.
2008; Carvalho and Moraes 2008; Singh et al. 2009]. The design-time strategies are
unable to handle dynamism in applications incurred at runtime, as they are applicable
only to predefined sets of applications with static behavior. However, the runtime
strategies cannot guarantee schedulability, that is, meeting the strict timing deadlines
due to lack of any prior analysis and limited compute power at runtime. Thus, there
is a need to devise a hybrid strategy that should perform compute-intensive analysis
at design time and should use the analyzed results at runtime to overcome these
problems. While there are some efforts in the hybrid strategy direction [Schranzhofer
et al. 2010; Ykman-Couvreur et al. 2011; Yang et al. 2002], their analysis results are
not optimized from the throughput point of view. Further, they are applicable for the
analyzed platform only. The strategy in Singh et al. [2011] does consider a generic
platform and provides throughput-optimized analysis results, but they are limited to
homogeneous platforms and do not consider energy consumption.

We present a hybrid strategy for heterogeneous platforms containing different types of
processing tiles. A processing tile essentially contains a processor, for example, general
purpose processor (GPP), digital signal processor (DSP), accelerator, reconfigurable
hardware (RH), etc., along with other elements, for example, memory. The RH can be
configured as a processor. The processor type determines the tile type. The presented
strategy considers energy consumption as well.

The presented hybrid strategy has several new design challenges. First, the design
space to be explored becomes μ-dimensional with μ number of tile types, whereas it
is linear (one-dimensional) for the homogeneous case. Figure 1 shows the number of
possible design points (mappings) at different tile combinations for an application with
five tasks, when each task can be mapped on two types of tiles. The five tasks can use a
maximum of five tiles at a time. If we take the number of tiles of 2nd type as zero, then
we get the one-dimensional (homogeneous) design space, shown by the blue color bars
in Figure 1. We get a total of 52 such mappings. For 14 tasks, a total of 190,899,322

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:3

0

1

2
3
4
5

0

20

40

60

80

0 1
2

3
4

5

Fig. 1. Number of mappings at different combination of used tiles.

mappings are obtained, which will take approximately 220 days in evaluation if we
assume 100 milliseconds (ms) to evaluate one mapping. Thus, evaluation of all the
possible mappings is not always feasible. The strategy proposed in Singh et al. [2011]
adopts a pruning technique to discard evaluation of inefficient mappings and performs
the evaluation in a limited time. Therefore, the presented strategy adopts the technique
proposed in Singh et al. [2011] for evaluating homogeneous tile mappings. In Figure 1,
we consider two types of tiles and get a total of 454 design points in the two-dimensional
design space. For 14 tasks, more than 20 billion mappings are obtained, which is going
to take many years to evaluate. The number of mappings increases exponentially with
the number of tile types and in turn, the evaluation time. Therefore, the presented
strategy has the challenge of finishing the evaluation within a limited time without
missing the efficient mappings when the number of tasks and tile types is increased.

Another challenge for heterogeneous platforms is to avoid time-consuming evalua-
tion of mappings using non-supported tile combinations in case all tasks cannot be
supported on all the tile types. The next challenge is to accurately measure energy con-
sumption for all the mappings to be evaluated. The presented hybrid strategy also has
the challenge of finding the Pareto-optimal points at different tile combinations from
a large number of design points and of selecting the best one at runtime, depending
upon the different types of available tiles.

Key Contributions. In this article, these challenges have been addressed through the
presented hybrid strategy by providing the following main contributions.

—A design-time DSE strategy for a generic MPSoC platform computing throughput and
energy consumption at different resource combinations. The platform may contain
different types of processors, such as GPPs, DSPs, accelerators, etc.

—An optimization technique to accelerate the DSE when the maximum number of tiles
in the platform is known in advance.

—A memory optimization technique based on Pareto algebra to be applied on the
available design points to keep only Pareto-optimal points, thereby reducing the
evaluation overhead at runtime.

—An efficient runtime strategy for selecting the best point from the Pareto-optimal
points subject to the desired throughput, while optimizing for energy consumption
and resource usage at runtime.

Existing design-time DSE strategies are applicable only to a fixed architecture plat-
form; they do not scale well with the number of tiles in the platform and do not always
provide the largest throughput mapping. These strategies perform optimization for
some performance metrics, like energy, resource optimization, etc., and in turn map
the potentially parallel executing tasks on the same tile, forcing their execution in

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:4 A. K. Singh et al.

max_sep = 3 hop

GPP

max_hop = 1

max_hop = 2

RH

GPP RH

RH RH

max_hop = 3ACC RH

GPP ACC

GPP

RH

Target Platform 1 Target Platform 2 Target Platform 3

GPP

RH ACC

GPP General Purpose Processor

RH Reconfigurable Hardware

ACC Accelerator

Design-time considered
platform tile types

Runtime Target Platforms

Fig. 2. Analyze once & run everywhere demonstration.

sequence. This often reduces the available parallelism, thereby reducing throughput.
Further, the number of evaluated mappings by existing DSE strategies depends upon
the number of tiles in the platform. The number of evaluated mappings determines
the exploration time. Thus, the existing DSE strategies require a lot of time in ex-
ploration for advanced available commercial platforms containing hundreds of tiles
[Vangal et al. 2007; TILE-Gx100 2009], and even more time for anticipated MPSoCs
containing thousands of tiles [Borkar 2007]. Existing runtime mapping strategies start
mapping without any previous analysis of the application and thus do not perform well.

Our design-time DSE strategy considers a generic multiprocessor platform that con-
tains tiles depending upon the number of tasks and their implementation alternatives
provided in the applications. Implementation alternatives of a task determine the pro-
cessor types onto which it can be supported, such as on a GPP, DSP, and RH block. The
number of used tiles in a mapping is referred to as the tile count. At each tile count,
our technique analyzes a number of mappings at different processing resource combi-
nations and stores the best mapping in terms of throughput and energy consumption
for each combination.Our runtime strategy selects one of the stored mappings depend-
ing upon the desired throughput, without performing any computation to evaluate
mappings and thus performs fast runtime mapping.

The considered generic platform, during design-time DSE, contains tiles that are
separated by a fixed distance from each other, referred to as hop distance in this work.
A real-life platform might have tiles at varying distances from each other, for example,
a 2×2 grided tile platform has a few tiles separated by a hop distance of 1, while others
at a hop distance of 2. The DSE is performed by considering maximum separation
between the tiles in the expected future target platform. The DSE results can be used
for any target platform as long as (i) the target platform tile types are a subset of
the analyzed tile types, and (ii) the maximum distance between the chosen target
platform tiles for mapping is less than or equal to the maximum separation for which
the DSE was performed. Thus, no additional design-time analysis is needed in case
of such different target platforms. This approach is analogous to analyze once & run
everywhere, which is similar to Java’s write-once-run-everywhere capability. Figure 2
shows a demonstration for three types of tiles (GPP, RH, ACC) analyzed during DSE
with maximum separation between the tiles equal to 3 hop (hop distance). The analyzed
results will be applicable to the three shown target platforms, as their tile types and
max hop distance are a subset of the tile types and maximum separation considered
during DSE.

The rest of the article is organized as follows. Section 2 reviews the related work
in the direction of design-time DSE and runtime mapping. Section 3 introduces the
multiprocessor and application model used in this work. The hybrid mapping flow that
first performs design-time analysis of applications and then maps the applications on a
multiprocessor platform at runtime is presented in Section 4. The experimental results

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:5

to evaluate our methodology are presented in Section 5. Section 6 concludes the article
and provides directions for future work.

2. RELATED WORK

Most of the design-time DSE strategies reported in the literature provide a single
mapping for the application (e.g., see Moreira et al. [2007]; Ahn et al. [2008]; Keinert
et al. [2009]; Liu et al. [2008]; Bonfietti et al. [2009]; Stuijk et al. [2007]). They perform
DSE in view of some optimization parameters, such as computational performance
and energy, and the optimization is very time consuming. These strategies target fixed
MPSoC platforms and do not provide mappings for optimal throughput and energy
consumption, in some cases. Further, they are unable to handle dynamism in resource
availability and throughput requirement at runtime. In contrast, our DSE strategy is
applied to a generic MPSoC platform and generates a set of mappings with different
resource requirements, throughput, and energy consumption, which helps to handle
dynamism at runtime.

Design-time DSE strategies that generate multiple mappings for the application
have recently been reported in [Mariani et al. 2010; Stuijk et al. 2010; Giovanni et al.
2010; Zamora et al. 2007; Angiolini et al. 2006; Lukasiewycz et al. 2008]. The generated
mappings can be used to handle dynamism in resource availability and throughput
requirement at runtime, but these approaches have several drawbacks, such as be-
ing applicable only to fixed platform, not providing optimal mappings in some cases,
evaluating large numbers of mappings for relatively larger platforms (including some
duplicate mappings), and not scaling well with the platform size. The duplicate map-
pings just differ in placement of tasks on different tiles, with the same task-to-tile
bindings, and provide the same performance. Further, the time-consuming DSE needs
to be repeated with any changes in the platform. Jia et al. [2010] perform exploration
for multiple platforms. The applicability of generated mappings is limited to the set of
explored platforms. In contrast, our strategy considers a generic platform that contains
tiles, depending upon the tasks and their implementation alternatives provided in the
application, and provides the mappings having the largest throughput and minimum
energy consumption at different processing resource combinations. The mappings gen-
erated by our approach are applicable to any target platform so long as the target
platform tile types and maximum separation between the tiles are a subset of the tile
types and maximum separation considered during DSE. Thus, repetition of the DSE
for a new platform is avoided. The generation of duplicate mappings is avoided as well
by not considering a bigger platform than required.

There has been quite a lot of research on multiple application DSEs. Some re-
searchers focus on scenario-based approaches where multiple application mapping sce-
narios are explored at design time in order to handle dynamism in the number of active
applications at runtime [van Stralen and Pimentel 2010; Stuijk et al. 2010; Palermo
et al. 2008]. A scenario contains a set of simultaneously active applications. The scenar-
ios also have been referred to as use-cases [Kumar et al. 2008; Benini et al. 2008]. The
scenario-based approaches are not scalable, as the number of scenarios increases ex-
ponentially with the number of applications, which might become intractable. In order
to support multiple active applications at runtime, the applications can be mapped one
after another. We map the applications one after another and thus avoid the overhead
of handling large numbers of use-cases.

To map the application tasks on the platform tiles at runtime, one can start the map-
ping with or without previously analyzed results. Most of the work presented in the
literature start mapping without any previous analysis and thus cannot guarantee for
schedulability and strict timing deadlines, due to limited computational resources at
runtime [Singh et al. 2010; Carvalho and Moraes 2008; Ykman-Couvreur et al. 2006;

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:6 A. K. Singh et al.

Table I. Comparison of Various Approaches for Performing Design-Time Analysis and then Runtime Mapping

Reference Platform Applicability Mappings Evaluation Runtime
[Mariani et al. 2010] Fixed Homogeneous Multiple Non-scalable Yes
[Stuijk et al. 2010] Fixed Homogeneous Multiple Non-scalable No
[Giovanni et al. 2010] Fixed Homogeneous Multiple Non-scalable No
[Ykman-Couvreur et al. 2011] Fixed Homogeneous Multiple Non-scalable Yes
[Singh et al. 2011] Generic Homogeneous Multiple Scalable Yes
[Yang et al. 2002] Fixed Heterogeneous Multiple Non-scalable Yes
[Angiolini et al. 2006] Fixed Heterogeneous Multiple Non-scalable No
[Zamora et al. 2007] Fixed Heterogeneous Multiple Non-scalable No
[Lukasiewycz et al. 2008] Fixed Heterogeneous Multiple Non-scalable No
[Schranzhofer et al. 2010] Fixed Heterogeneous Single Non-scalable Yes
[Jia et al. 2010] Flexible Heterogeneous Multiple Non-scalable No
Our strategy Generic Heterogeneous Multiple Scalable Yes

Nollet et al. 2008; Moreira et al. 2007]. A few strategies using design-time analysis
results have been presented [Schranzhofer et al. 2010; Ykman-Couvreur et al. 2011;
Yang et al. 2002; Singh et al. 2011]. In Schranzhofer et al. [2010], analysis results
include only a single mapping having minimum average power consumption; so, the
mapping may not be optimized from a throughput point of view. Analysis results in
Ykman-Couvreur et al. [2011] and Yang et al. [2002], include multiple mappings hav-
ing trade-offs in terms of target power consumption and performance. The results do
not include mappings that satisfy the constraints in the case of limited resources. At
runtime, this case forces the application to be put into a relaxed application set, so it is
not mapped immediately, which may result in missing the strict timing deadline. The
analysis results of Schranzhofer et al. [2010], Ykman-Couvreur et al. [2011] and Yang
et al. [2002] are applicable to a fixed platform only. In Singh et al. [2011], analysis
results include mappings optimized from the throughput point of view for the lim-
ited resources case, but are applicable to homogeneous platforms and do not include
energy consumption. Our presented strategy considers energy consumption and het-
erogeneous platforms. At runtime, the strategy efficiently uses the analyzed results
and always tries to provide a timing guarantee.

Table I shows a comparison of the approaches reported in the literature which con-
sider design-time analysis and the analyzed results for runtime mapping—where our
approach is different. As can be seen, most of the existing approaches perform design-
time analysis on fixed or flexible (multiple) platforms, are not scalable (Non-scalable)
with application and platform size, and evaluate mappings that are applicable only to
fixed homogeneous, fixed heterogeneous, or a set of heterogeneous (Flexible heteroge-
neous) platforms. However, in our approach, design-time analysis considers a generic
platform and is scalable, while providing multiple mappings that are applicable to
any platform. Our strategy has support for runtime mapping that uses design-time
analysis results.

3. PRELIMINARIES

This section covers some preliminaries necessary to explain our proposed hybrid map-
ping flow. We describe the hardware platform and the application model with the
underlying assumptions and terminology.

3.1. Multiprocessor Platform Model

The multiprocessor platform model used in this work is a tile-based architecture, as
shown in the example platform of Figure 3, where an interconnection network is used
to connect the tiles. The platform has four tiles: t1, t2, t3 and t4. End-to-end connections
(c) with fixed latency between tiles are used to connect the tiles. Each connection may
have a different latency, so the latency of connections through a network-on-chip (NoC)

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:7

12

24

43

31 32

14

23

41

t1 t2

t3 t4

Fig. 3. Example multiprocessor platform.

Table II. Properties of the Example Platform

tile ptype m ci co iω oω pwr connection L
t1 GPP 1000000 8 8 12 12 1000 c12, c24, c43, c31 3
t2 RH 1000000 8 8 12 12 4.60 c14, c23, c41, c32 6
t3 RH 1000000 8 8 12 12 4.60
t4 DSP 1000000 8 8 12 12 330

can be taken into account [Grecu et al. 2005], that is, any type of interconnection
network can be modeled so long as the latencies between tiles are provided. Each tile
contains a processor (e.g., general purpose processor (GPP), digital signal processor
(DSP), or reconfigurable hardware (RH), as shown in Figure 3), a local memory (M),
and a network interface (NI) containing a set of communication buffers that is accessed
both by the interconnect and the local processor.

Definition 3.1 (Platform Graph (PG)). A PG is represented as (T,C,L), which con-
tains a set T of tiles, a set C of connections, and a latency function L that pro-
vides latency (in time units) of a connection (L(c)). A tile t ∈ T is a 7-tuple
(ptype,m,ci,co,iω,oω,pwr), where ptype ∈ PT (PT is a set of processor types), m is the
memory size (in bits), ci and co are the maximum number of input and output con-
nections supported by the NI, iω and oω are the maximum incoming and outgoing
bandwidth (in bits/time-unit), and pwr is the power consumption (in milliwatts) of the
processor type ptype.

Table II shows the values of all the elements in the example platform graph (Figure 3).
Multiprocessor systems, such as StepNP [Paulin et al. 2004], PROPHID [Leijten et al.
1997] and Eclipse [Rutten et al. 2002], fit nicely into this platform model.

In Figure 3, the latencies of end-to-end connections are modeled according to a 2D
mesh network in order to model a mesh interconnection network. The latency of a
connection depends upon the distance between the connecting tiles, and this distance
is referred to as the hop distance. In Figure 3, tiles t1 and t2 are at a hop distance of 1
(just adjacent) and t1 and t4 at a hop distance of 2, as communications are via tile t2 (1
hop in the x-direction to reach tile t2 and then 1 hop in the y-direction to reach tile t4).
The latencies of connections are modeled according to the hop distance, as can be seen
in Table II. The application edges can get mapped onto the connections between tiles.
Each such edge occupies one connection between the tiles at its full bandwidth, and
the occupied connection always serves only the assigned edge. Therefore, the latency
between tiles remains constant. Examples of such NoCs are circuit-switched networks,
AEthereal [Goossens et al. 2005] and Spatial Division Multiplexing (SDM) [Yang et al.
2010], which provide guaranteed throughput that implies constant latency. However,
latency will not be constant in a packet-switched network as it depends upon the traffic
present in the network. In such cases, a reasonable upper bound can be calculated using

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:8 A. K. Singh et al.

mc

idct

iq

vld
2376

2376

11

1

1

1

1

d1 d2

d3

d4

actor

edge
input rate

output rateinitial tokens
2

Fig. 4. SDFG model of an H.263 decoder.

traffic patterns. To incorporate that two tiles are at higher hops, we change the latency
of the connections between the tiles according to the hops. This incorporation helps in
finding mappings when the tiles are further apart in the actual platform.

3.2. Application Model

Synchronous data flow graphs (SDFGs) [Lee and Messerschmitt 1987] are used to
model concurrent multimedia applications with timing constraints. The SDFG model
of the H.263 decoder is shown in Figure 4. The nodes model the tasks and are referred
to as actors, which communicate with tokens sent from one actor to another through
the edges modeling dependencies. The H.263 decoder is modeled with four actors, vld,
iq, idct, and mc, and four edges, d1, d2, d3, and d4. An actor fires (executes) when there
are sufficient input tokens on all of its input edges and sufficient buffer space on all
of its output channels. Every time an actor fires, it consumes a fixed amount of tokens
from the input edges and produces a fixed amount of tokens on the output edges. These
token amounts are referred to as rates. The rates determine how often actors have to
fire with respect to each other. The edges may contain initial tokens indicated by a
bullet point, as in Figure 4.

Definition 3.2 (SDFG). An SDFG (A,E) consists of a set A of actors and a set E of
edges. An edge e = (a1,a2,tk1,tk2) represents a dependency of actor a2 on a1. When a1
fires, it generates tk1 tokens on e, and when a2 fires, it consumes tk2 tokens from e.
Initial tokens on edges are defined as TokIn : E → natural numbers including 0.

Analysis techniques for calculating throughput and storage requirements for an
SDFG already exist [Ghamarian et al. 2006]. Throughput is an important constraint
for multimedia applications and is defined as the inverse of the long-term period,
that is, the average time needed for one iteration of the application. An iteration is
defined as the minimum nonzero execution such that the original state of the SDFG
is obtained. For example, in Figure 4, a period of the H.263 decoder is (ExecTime(vld)
+ 2376.ExecTime(iq) + 2376.ExecTime(idct) + ExecTime(mc)), where ExecTime is the
execution time. It should be noted that actors iq and idct have to execute 2,376 times
in one iteration and that the number of executions for each actor is referred to as the
repetition vector of the actor. This period is just for demonstration and does not include
network and memory access delays. An SDFG with a throughput of 100 Hz takes 10
ms to complete one iteration.

For modeling an application, the resource requirements of the actors and edges are
clearly specified. The application model also specifies a throughput constraint that
must be satisfied when the application is mapped onto the platform.

Definition 3.3 (Application Graph (AG)). An AG is represented as (A,E,AP,EP)
which is derived from SDFG (A,E). AP and EP provide the resource requirements
of actors and edges on the platform, respectively. For each actor a ∈ A, AP provides
a tuple (ET,mem) for each implementation alternative (∈ ptypes), where ptypes repre-
sents the implementation alternatives of the actor, and ET and mem represent the
execution time (in time units) and memory needed (in bits) on the implementation

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:9

Table III. Resource Requirement of Actors and Edges of H.263 Decoder

actors ptypes GPP(ET,mem) ACC(ET,mem) RH(ET,mem)
vld GPP,ACC (26018,10848) (13009,10848) (–,–)
iq GPP,ACC (559,400) (450,400) (–,–)

idct GPP (486,400) (–,–) (–,–)
mc GPP,RH (10958,8000) (–,–) (5479,8000)

edges sz mreqt mreqsrc mreqdst ω

d1 512 2376 2376 1 5
d2 512 1 1 1 5
d3 512 2376 1 2376 5
d4 1216512 3 1 1 5

vld

d1

iq

d2

idct

. .
 .

260180

. . .

Time

Fig. 5. Execution trace of an H.263 decoder.

alternative, respectively. AP provides null values for ET and mem for unsupported im-
plementation alternatives. For each edge e = (a1,a2,tk1,tk2) ∈ E, EP provides a 5-tuple
(sz,mreqt,mreqsrc,mreqdst,ω), where sz is the size of a token (in bits), mreqt are the mem-
ory (in tokens) needed when a1 and a2 are allocated to the same tile, mreqsrc and mreqdst
are the memory (in tokens) needed in source and destination tile, respectively, and ω
is the bandwidth (in bits/time unit) needed when a1 and a2 are allocated to different
tiles. The throughput constraint of the AG is represented as τ .

Table III represents the values of AP and EP for actors and edges of an H.263 decoder
application. The execution pattern of the H.263 decoder (consisting of four actors)
mapped on a 4-tile MPSoC platform such that each actor is mapped on a different
GPP (ARM7TDMI processor) tile is shown in Figure 5. It is clearly seen that actors iq
and idct have the potential to execute in parallel. It has been observed that when the
existing strategies are applied to perform design-time analysis for the H.263 decoder
on a 3-tile platform, in some cases, the best produced mapping contains actors iq and
idct on the same tile while optimizing for some performance metrics, such as power and
resource usage. For example, Stuijk et al. [2007] maps actors iq and idct on the same
tile while optimizing for load balancing on the three used tiles for the application. This
forces execution of actors iq and idct sequentially, resulting in reduced throughput.
However, our approach finds the best mapping, which has the maximum throughput
where actors iq and idct are not allocated on the same tile, but sequentially executing
actors like vld and iq are on the same tile. Mapping the connected and sequentially
executing actors on the same tile results in reduced communication overhead between
the actors, which may maximize the throughput, even on smaller tile counts.

4. HYBRID MAPPING STRATEGY

This section details our hybrid mapping strategy. The strategy is presented in Figure 6.
It has two main steps: (1) analysis of applications at design time (design-time analysis),
and (2) mapping of the applications on a platform by using the analysis results (optimal
mappings with throughput and energy) with the help of a platform manager (runtime
manager) at runtime.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:10 A. K. Singh et al.

Appln.
Graphs

max_hop_distance

Optimal Mappings
with Throughput

& Energy

Runtime
Manager

Applns. Throughput of Applns.

Mapping

Platform

Design-time Analysis

DSE
Mappings with
Throughput &

Energy
Optimization

Runtime Mapping

Fig. 6. Hybrid mapping strategy.

4.1. Design-Time Analysis

The design-time analysis step evaluates a number of mappings for each application to
be supported on a hardware platform. The applications are evaluated one after another.
The evaluation considers finding different mappings and their throughput and energy
consumption. For each mapping, actors (A) and edges (E) of the application graph AG
are bound to tiles (T) and connections (C) between two tiles or the memory inside a tile
in the platform graph PG. This binding gives a resource allocation for the application
graph AG on the platform graph PG with the following constraints for each tile t ∈ T.

(1) (memory imposed by actors and edges bound on t) ≤ (memory (m) on t).
(2) (allocated input connections on t) ≤ (maximum input connections (ci) on t).
(3) (allocated output connections on t) ≤ (maximum output connections (co) on t).
(4) (allocated incoming bandwidth on t) ≤ (maximum incoming bandwidth (iω) on t).
(5) (allocated outgoing bandwidth on t) ≤ (maximum outgoing bandwidth (oω) on t).

Throughput and Energy Consumption Computation. The throughput for a mapping is com-
puted by taking the resource allocations into account. First, a static-order schedule
for each tile is constructed that orders the execution of bound actors. A list scheduler
is used to construct the static-order schedules for all the tiles at once. Then, all the
binding and scheduling decisions are modeled in a graph called binding-aware SDFG.
Finally, throughput is computed by self-timed state-space exploration of the binding-
aware SDFG [Ghamarian et al. 2006].

The energy consumption for a mapping is computed as the sum of the communication
and computation energy for all the tasks for one iteration of the application. Commu-
nication energy is required to transfer data from the source tile to the destination tile
through a connection when actors mapped on the two tiles need to communicate with
each other. The communication energy is estimated as the product of the number of
bits to be transferred, the number of hops to be traversed between the two tiles, and
the energy required to transfer one bit through one hop, for each edge (e) mapped to
a connection (conn) from Equation (1). The transferred bits through a connection are
calculated as the product of the number of tokens to be transferred and the token size
for the edge mapped on the connection. The number of tokens for an edge (e) is com-
puted as the product of the repetition vectors of the source (or destination) actor and
the source (or destination) port rate of the edge from Equation (2). The energy required
to transfer one bit through one hop is denoted as ELbit [Palma et al. 2005; Hu and
Marculescu 2004]. Computation energy is required to process the transferred token on
the destination tile after it is received and able to fire (execute) the mapped actor. The
computation energy for each actor (a) mapped to tile (t) is estimated as the product of
the number of executions of actor a, and the execution time and power consumption
on tile t from Equation (3). Total energy consumption is measured as the sum of the
communication and computation energy.

Ecomm =
∑

[(e → nrT okens) × (e → tokenSize) × hopCount × ELbit]. (1)

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:11

Consider a Platform of n Tiles of each
implementation alternative

Appln. Graph max_hop_distance

Evaluate Homogeneous Tiles mappings

No

Yes

hop_distance = max_hop_distance ?

Finish

ho
p_

di
st

an
ce

+
+

n = nrActors(Appln. Graph);
IA[] = ImplementAlternatives(Appln. Graph);

Evaluate Heterogeneous Tiles mappings and
add them to the mapping set M

Select best mappings at
each resource combination

hop_distance = 1

M

Updated set M

Mappings with
Throughput & Energy

(MTED)

Fig. 7. Design-time DSE flow.

e → nrT okens = repV ector[e → srcActor] × (e → srcPortRate). (2)

Ecomp =
∑

[repV ector[a] × (a → execT ime(t → procT ype)) × procPower]. (3)

The total energy consumption does not include static energy. In our approach, we
focus on mapping of applications on the architecture after it is designed. So, we cannot
do much with the static energy and focus only on dynamic energy consumption that
can be optimized.

The design-time analysis for an application (Appln. Graph) first performs design
space exploration (DSE) to obtain design points that contain mappings and their corre-
sponding throughput and energy consumption (mappings with throughput and energy).
Then, an optimization on the explored design points to get only the Pareto-optimal de-
sign points is performed (optimal mappings with throughput and energy), providing
throughout and energy consumption at different resource combinations (Figure 6). The
DSE flow is presented in Figure 7.

The presented DSE flow first considers a suitable platform graph (T,C,L) that can
cover all the possible mappings for the application graph (A,E,AP,EP) to be analyzed. A
platform is considered, containing n tiles of each implementation alternative provided
in the application, where n is the number of actors in the application. This platform is
capable of covering all the potential mappings. Considering a bigger platform wouldn’t
provide better performance, as the considered one can exploit all parallelism present
in the application. However, all the parallelism might not be exploited if a small-size
platform is considered, where concurrent executing tasks will get mapped on the same
tile.

Initially, the considered platform contains tiles with a separation between them
of one hop distance (hop distance = 1), which provides a minimum fixed latency
for all the connections between the tiles. The DSE flow is repeated by consider-
ing a similar platform that contains tiles with separation of one hop distance more
(hop distance++) between them, that is, with increased latency for connections, until
the hop distance reaches max hop distance (one of the inputs to the DSE flow). The

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:12 A. K. Singh et al.

Algorithm 1: GPP Tiles Mappings Evaluation at Reduced Tile Count
Input: Best mapping α using (p + 1) GPP tiles.
Output: Mappings using p GPP tiles.
Select p + 1 GPP tiles (∈ T) containing actor(s);
for each unique pair of selected tiles do

Move actor(s) from one GPP tile to another to generate a new mapping β;
Compute throughput and energyConsumption of β;
Add β with its throughput and energyConsumption to set M;

end

designers can choose an appropriate value of max hop distance depending upon the
expected hardware platform at runtime, where maximum separation between the tiles
can be up to max hop distance. For a higher value of max hop distance, the design-
time DSE evaluates larger numbers of mappings. This requires more evaluation time,
but the applicability of mappings increases. For example, evaluated mappings with a
max hop distance value of 6 are applicable to any platform where the maximum sep-
aration between the tile is less than or equal to 6 hops, such as a mesh of 2×2, 2×3,
3×3 and 4×4 tile platforms. However, when platforms are very large (say 10×10), it
is unrealistic to expect tasks of an application to be mapped on extreme ends of the
platform. The maximum hop distance in such cases is the maximum separation of the
tiles on which various tasks of an application are mapped.

By considering varying values of hop distance, we get mappings where each edge of
the application is mapped to a connection at hop distance of one (to account for mini-
mum latency) to max hop distance (to account for maximum latency). This facilitates
catering to the runtime aspects when the available tiles are at different hop distances.
A strategy to find the best mapping in such runtime scenarios is presented in
Section 4.2. We have considered generic tile architecture so that any type of inter-
connection network can be modeled. The main steps of the DSE flow (highlighted in
Figure 7) and the optimization technique are described next.

4.1.1. Evaluating Homogeneous Tile Mappings. The mappings using only GPP tiles are
generated by using the DSE strategy proposed in Singh et al. [2011]. This strategy
discards evaluation of inefficient mappings (providing less throughput) and performs
faster evaluation without missing the efficient mappings. Therefore, the same strategy
has been adopted to generate homogeneous tile mappings. For each generated mapping,
the strategy in Singh et al. [2011] computes throughput only, whereas the presented
strategy computes energy consumption as well. The strategy first evaluates 1 actor-
to-1 GPP tile mapping, where n actors of the application are mapped onto n GPP
tiles so that each GPP tile contains exactly one actor and the edges are mapped onto
connections. Then, mappings at reduced tile count (p = n− 1), that is, mappings using
(n− 1) GPP tiles are evaluated by Algorithm 1. The algorithm takes the best mapping
using (p + 1) GPP tiles as input and evaluates mappings using p GPP tiles. First,
(p + 1) GPP tiles containing actor(s) are selected. Then, for each pair of selected tiles,
all the actors from one GPP tile are moved to another to generate a new mapping. Each
generated mapping is added to a mapping set M after computing its throughput and
energy consumption. For the selected (p + 1) GPP tiles, the algorithm finds (p + 1)-
choose-2 ((p+1)C2) unique pairs and thus evaluates the same number of mappings using
p GPP tiles, where 0 < p < n.

Out of all the evaluated mappings using p GPP tiles, the maximum throughput
mapping is selected as the best mapping to evaluate mappings at further-reduced tile
count, that is, mappings using (p − 1) GPP tiles by following the steps of Algorithm
1. The same process is repeated until the tile count reduces to one. Thus, all the

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:13

Algorithm 2: Heterogeneous Tile-Combinations Mappings Evaluation
Input: GPP Tiles Mappings M.
Output: Heterogeneous tile-combinations mappings to be added to set M.
for tileCount = n (number of actors in the AG); tileCount >= 1; tileCount − − do

Select maximum throughput mapping γ using tileCount GPP tiles from set M;
maxNrT ileT ypesUsed = 1 // only GPP tiles used;
repeat

Initialize the mapping set S, i.e., S = { };
for each GPP tile t (∈ T) in the current mapping γ do

for each implementation alternative κ (e.g., DSP, ACC, RH tiles) do
if t contains actor(s) ∈ A and all have their implementation alternatives as κ then

Move actor(s) to a κ having no previous actor to generate a new mapping δ;
Compute throughput and energyConsumption of δ;
Add δ with its throughput and energyConsumption to set S and to global set M;
Move actor(s) back on the initial tile t to reset γ ;

end
end

end
Select maximum throughput mapping from set S and assign as current mapping γ ;
maxNrT ileT ypesUsed + +;

until maxNrT ileT ypesUsed ≤ tileCount;
end

mappings using different numbers of GPP tiles get stored into the mapping set M. We
have assumed that a GPP implementation alternative is available for all the actors.
However, this assumption can easily be removed by allocating the actors to their first
available implementation alternatives.

4.1.2. Evaluating Heterogeneous Tile Mappings. The heterogeneous tile-combinations
mappings are evaluated by using the GPP tiles mappings (M) obtained in the pre-
vious step. Such mappings are possible only when implementation alternatives other
than GPP tiles are also available. The mappings are evaluated by following the steps in
Algorithm 2 and added to M. At each tile count (tileCount), the maximum throughput
mapping using GPP tiles is selected to generate mappings at different processing tile-
combinations. This type of selection facilitates evaluation of efficient mappings (pro-
viding maximum throughput) at heterogeneous tiles as well. For the selected mapping,
the actors on each GPP tile are moved to another tile type (implementation alternative)
in order to generate a new mapping, provided that all the actors on the GPP tile can
be supported on the other tile type. Such movement of actors avoids the evaluation
of mappings using non-supported tile combinations. The generated mapping, with its
throughput and energy consumption, is added to set M and temporary set S. The map-
pings at the next possible tile combinations are evaluated by selecting the maximum
throughput mapping from the temporary set S. By selecting the maximum through-
put mapping at different places in the algorithm, evaluation of inefficient mappings is
discarded. The gain in evaluation time is described in experiments in Section 5.

4.1.3. Selecting and Storing Best Mappings at Each Processing Resource Combination. At each
possible processing tile combination, we get a number of mappings. This step se-
lects the maximum throughput mapping and minimum energy consumption mapping
at each tile combination and stores them into the mappings with throughput and
energy database (MTED) (Figure 7). In cases when both the maximum throughput and
minimum energy consumption mapping are the same, only one mapping is stored. The
stored mappings are sorted by the number of tiles used by them in increasing order. The
number of used tiles are referred to as the tile count. At each tile count, the mappings

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:14 A. K. Singh et al.

get stored in increasing order of heterogeneity, as explained in Algorithm 2. Increasing
heterogeneity implies the use of more numbers of tile types.

Storing the mappings in such order facilitates runtime selection from lower tile
count to higher tile count and in increasing order of heterogeneity at each tile count.
The runtime approach finds a throughput-satisfying mapping using the minimum
number of tiles (tile count) and having minimum energy consumption. While evaluating
mappings by Algorithm 2, may all the possible tile combinations may not be covered
because the pruning consideration speeds up exploration. In such cases, we need to
look for a combination that is a subset of the covered combination at runtime. The
runtime algorithm is described later in Section 4.2.

4.1.4. Optimization. Amongst the stored mappings in the database MTED, some of
them might be sub-optimal. The sub-optimal mappings require a greater number of
processing tiles compared to others and have less throughput (performance) and higher
energy consumption. For example, for an application, a mapping requiring three GPP
and one ACC tiles might have less throughput and higher energy consumption com-
pared to a mapping requiring only two GPP and one ACC tiles. The former mapping is
sub-optimal, and it has to cater to larger communication overhead without much gain
in parallel processing, thus providing less throughput and consuming higher energy.
There is no point in keeping such sub-optimal mappings, so we perform an optimiza-
tion on MTED to discard all such mappings, storing Pareto-optimal mappings (optimal
mappings with throughput and energy (OMTED)), see Figure 6.

The concepts of Pareto algebra have been used to find the Pareto-optimal mappings
[Geilen et al. 2005]. In the optimization process, we compare throughput and energy
consumption of mappings that require higher numbers of tiles to ones that require
lower numbers of tiles. If the throughput of a mapping using a higher number of tiles
is the same as or smaller than the throughput of a mapping using a lower number
of tiles, the energy consumption in the latter mapping is the same as or lower than
the former mapping, and the processing tiles in the latter mapping are a subset of the
processing tiles in the former mapping, then the former mapping is discarded. The
same process is performed for each processing tile combination to discard all the sub-
optimal mappings. The optimization result includes Pareto-optimal mappings, and each
such mapping is better than another in terms of throughput, energy consumption, or
resource usage. Keeping only the optimal mappings reduces the memory required to
store them and the overhead in selecting the best mapping, since the runtime mapping
strategy needs to select from a relatively small set of mappings.

Design-Time Analysis: Complexity. The design-time analysis complexity in terms of
the number of actors n, the number of implementation alternatives μ, and
max hop distance h has been computed. The worst-case complexity (C) is determined
by the total number of evaluated mappings (M) in the DSE flow (Figure 7) when all the
actors have μ implementation alternatives. For a given value of n, μ, and h, the total
number of mappings evaluated over the DSE loops is calculated by Equation (4). The
number of homogeneous and heterogeneous tiles mappings are evaluated by Equations
(5) and (6), respectively.

C = h × [
nrHomogeneousT ilesMappings + nrHeterogeneousT ilesMappings

]
. (4)

nrHomogeneousT ilesMappings = 1 +
n−1∑
p=1

((p+1)C2) = 1 +
n−1∑
p=1

(
p2

2
+ p

2

)
= 1 + n3 − n

6
. (5)

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:15

nrHeterogeneousT ilesMappings = (μ − 1)
n∑

p=1

{
p + (p − 1) + (p − 2) + ... + 2 + 1

}

= (μ − 1)
n∑

p=1

(
p2

2
+ p

2

)
= (μ − 1)

(
n3

6
+ n2

2
+ 2n

6

)
.

(6)

Thus, the total number of mappings can be calculated as follows.

C = h ×
[
1 + n3 − n

6
+ (μ − 1)

(
n3

6
+ n2

2
+ 2n

6

)]
= h ×

[
μn3

6
+ (μ − 1)n2

2
+ (2μ − 3)n

6
+ 1

]
.

(7)
In Equation (5), (p+1)C2 is the number of unique pairs of GPP tiles at a tile count

of p + 1. Each pair forms a mapping using p GPP tiles. Heterogeneous tiles map-
pings are possible only when an actor has more than one implementation alternative,
that is, μ > 1, so Equation (6) is valid for μ > 1. At each tile count p, heteroge-
neous tiles mappings are evaluated by selecting the best mapping using p GPP tiles.
The total number of mappings can be calculated from Equation (7), which has a com-
plexity of O(hμn3). The existing strategies evaluate a greater number of mappings
compared to our strategy and thus have complexities of higher orders. The mappings
evaluated by existing strategies are discussed and compared with our strategy in
Section 5.

Design-Time Analysis for a Given Platform Size. The DSE strategy presented in Figure 7
considers a generic MPSoC platform, so the generated mappings are applicable to
any target MPSoC platform. For a given platform (PG) containing a smaller num-
ber of tiles than the number of actors in the application (AG), the mappings with
a greater number of tiles than present in the given platform will never be used.
Such mappings have been referred to as infeasible mappings for the given platform.
The DSE process can be speed up by discarding the evaluation of these infeasible
mappings.

Evaluation of infeasible mappings is discarded by extending the DSE flow presented
in Figure 7. The number of tiles (nrTiles) in the given platform is taken as one additional
input to the DSE flow. Homogeneous tile mappings are evaluated in a similar manner.
While evaluating heterogeneous tile-combination mappings, Algorithm 2 is modified to
start the mappings evaluation from the tile-count value of nrTiles in order to discard
evaluation of infeasible mappings. All the mappings using a maximum of nrTiles tiles
are then selected and stored, which will be applicable to the given platform.

4.2. Runtime Mapping

The design-time analysis step performs all compute-intensive analysis, thus leaving
minimum computation for runtime. Runtime mapping of throughput-constrained mul-
timedia applications onto a platform is handled by the runtime manager (Figure 6).
Out of the many available processors on the platform, one is used as a manager proces-
sor that is responsible for actor mapping, actor scheduling, platform resource control,
and configuration control. The resource status is updated at runtime when an actor is
loaded on the platform in order to provide the manager processor with accurate knowl-
edge of resource occupancy, which is required for taking the mapping decision based on
available resources at runtime. The runtime manager (RTM) maps the applications on
the platform one after another, that is, after mapping one application, it goes on to map
the next application, and so forth, until all the applications are mapped. The sequential
mapping is scalable, because we need not to worry about the large number of scenar-
ios containing different simultaneously active applications, as described in Section 2.
The strategy adopted by the RTM to map an application is presented in Algorithm 3.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:16 A. K. Singh et al.

Algorithm 3: Runtime Mapping Strategy
Input: Application AG, Required throughput τ , Platform PG, Optimized mapping database OMTED.
Output: The best mapping satisfying the throughput-constraint τ .
Max T iles Used = nrActors(AG); T iles Available = nrAvailTiles(PG); Max T iles Iter = 0; tile count = 1;
if T iles Available > 0 then

Max T iles Iter = min(Max T iles Used, T iles Available);
repeat

for each mapping φ using tile count tiles in OMTED do
Select closest available tile count tiles used by φ in PG;
hop max = findMaximumHop(selected tiles);
thrMapping = Find(OMTED, AG, tile count, φ, hop max);
if τ ≤ thrMapping then

Mapping list = Find all throughput satisfying mappings using the same resource
combination as of φ from OMTED;
Select the mapping having minimum energyConsumption from Mapping list and exit;

end
end
tile count++;

until tile count ≤ Max T iles Iter;
No mapping found;

else
Application can’t be supported, i.e., no mapping found;

end

The strategy takes the application, its desired throughput, the platform with updated
resource statuses and the optimized mapping storage OMTED as input and selects
the best mapping from the OMTED depending upon the desired throughput and avail-
able platform tiles. The selected best mapping satisfies the throughput requirement,
uses minimum resources, and has minimum energy consumption. The platform is then
configured based on the actors to tiles allocations provided in the selected mapping.

The RTM first finds the maximum number of tiles that might get used
(Max T iles Used) by the application and then the number of available tiles
(T iles Available) in the platform. A mapping satisfying the throughput constraint of
the application (τ ≤ thrMapping) and having minimum energyConsumption is selected
from the OMTED by iterating from the tile count one to Max T iles Iter. The maximum
tile iteration value Max T iles Iter is calculated as the minimum of T iles Available and
Max T iles Used in order to restrict unnecessary search in the OMTED. For each map-
ping using tile count tiles, the RTM first selects the closest available tiles in the plat-
form, then finds the maximum hop distance (hop max) between the selected tiles, and
finally the throughput of the mapping (thrMapping) is checked against the throughput
constraint τ . As soon as a throughput-satisfying mapping φ is found (τ ≤ thrMapping),
all the throughput-satisfying mappings using the same resource combination as φ are
found and added into a mapping list (Mapping list). Thereafter, the mapping having
minimum energy consumption is selected from the mapping list, and the platform is
configured based on the selected mapping. If a throughput-satisfying mapping is not
found, then the application cannot be supported on the platform with the available re-
sources. In such a case, the application mapping may be tried with relaxed throughput
requirements in order to support it on the platform.

Throughput computation for a mapping takes much more time than the time it takes
to find the mapping, that is, tasks-to-tiles allocations. Our RTM just selects the best
mapping without involving throughput computation at runtime, thus accelerating the
runtime mapping process. Further, the selected throughput-satisfying mapping uses a
minimum number of tiles, as the search is performed from lower tile count to higher

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:17

Mappings using 3 tiles
(tile_count = 3)

Maximum throughput mapping

a1

Forward the mapping

Maximum throughput mapping

Forward the mapping
Maximum
throughput
mapping

Maximum throughput mapping

Maximum throughput mapping

Maximum throughput mapping

Mappings using 2 tiles
(tile_count = 2)

Mappings using 1 tile
(tile_count = 1)

General Purpose Processor (GPP)

Digital Signal Processor (DSP)

Accelerator (ACC)a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1,a2 a3

a1 a2,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a1,a2,a3

a1,a2a3

a1,a2,a3

Fig. 8. Design space exploration for an application modeled with three actors:a1, a2, and a3.

tile count. The selected mapping has minimum energy consumption as well. Therefore,
the RTM performs effective and efficient mapping.

Hybrid Mapping Flow: Example Demonstration. The hybrid mapping flow has been applied
to applications to demonstrate how the flow first performs design-time analysis and
then maps the required applications onto a platform at runtime.

Design-Time Analysis. The DSE step of design-time analysis evaluates multiple map-
pings for an application. Let us consider an application modeled with three actors (a1,
a2, and a3), each having implementation alternatives (GPP, DSP, and ACC tiles). The
DSE flow first considers a platform containing three tiles of each implementation al-
ternative and then evaluates mappings using GPP tiles, followed by mappings using
combinations of GPP, DSP, and ACC tiles. The GPP, DSP, and ACC tiles are represented
in different shades, as shown in Figure 8.

Mappings using only GPP tiles are evaluated by the method described in
Section 4.1.1. First, 1 actor-to-1 GPP tile mapping is evaluated, where each GPP tile
contains exactly one actor, as shown in Figure 8 (top-left mapping). Only the used
tiles of the mapping are shown. The edges are mapped on connections between the
tiles, which we have not shown, as we want to focus only on the number of mappings
that depend upon the placement of the actors. Here, the tiles are shown in a linear
arrangement for each mapping, as we just want to illustrate the DSE flow, whereas in
the actual flow, the separation between the tiles can be any fixed value of hop distance.
Next, mappings at a reduced tile count, that is, mappings using two GPP tiles are
evaluated by Algorithm 1. The algorithm finds three (3C2) unique pairs of tiles contain-
ing actor(s) from 1 actor-to-1 GPP tile mapping, as shown in Figure 8. The maximum
throughput mapping at each tile count is selected and forwarded to evaluate mappings
at reduced tile count. We have considered the highlighted mapping as the maximum
throughput one, so the same is forwarded. We get one mapping using one GPP tile. The
flow evaluates a total of five mappings, which is the same as the ones calculated from
Equation (5), that is, [1 + (33 - 3)/6].

Mappings using combinations of GPP, DSP, and ACC tiles are evaluated by Algo-
rithm 2, described in Section 4.1.2. At each tile count, Algorithm 2 takes a maximum
throughput mapping using GPP tiles as input and evaluates mappings using combina-
tions of tiles, as shown in Figure 8. Each task is moved from GPP tiles to DSP and ACC

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:18 A. K. Singh et al.

BUSY

a2a1,a3idct,mc

BUSYiqvld

BUSYBUSYBUSYBUSY

BUSYBUSYBUSY

t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12

t13 t14 t15 t16
BUSY

BUSY

BUSY

Busy GPP Tile

Busy DSP Tile

Busy ACC Tile

Available GPP Tile

Available DSP Tile

Available ACC Tile

H.263 decoder mapping Example application mapping

Fig. 9. Runtime mapping of an H.263 decoder (four actors) and the example application (three actors:a1,
a2, and a3).

tiles in order to generate mappings. The maximum throughput mapping (highlighted)
is selected and forwarded to evaluate mappings at further tile combinations, by moving
only the tasks of GPP tiles to DSP and ACC tiles. The same process is repeated until
all the tasks of GPP tiles are moved to DSP or ACC tiles. The algorithm evaluates a
total of 20 mappings, which is the same as the ones calculated from Equation (6) by
setting n and μ equal to 3.

Similarly, DSE can be demonstrated for multimedia applications—H.263 decoder,
H.263 encoder, JPEG decoder, and MP3 decoder—modeled with 4, 5, 6, and 14 actors,
respectively. Let us assume that the target platform on which the applications need to
be mapped is a 4×4 grid of tiles, as shown in Figure 9. For this platform, the value of
max hop distance is six, so the DSE is repeated six times by considering platform tiles
separated by hop distance of one to six.

Runtime Mapping. The runtime mapping of the analyzed applications on the target
platform is handled by Algorithm 3. The applications are mapped one after another.
For each application, the strategy selects the best mapping from the OMTED subject
to the desired throughput and available platform tiles. Let the H.263 encoder, JPEG
decoder, and MP3 decoder be mapped already on the platform using the busy tiles
(Figure 9). Runtime mapping of the H.263 decoder (Figure 4) and DSE demonstrated
application (modeled with three actors a1, a2, and a3) on the available tiles is shown in
Figure 9. Let us assume that for the H.263 decoder and the demonstrated application,
throughput-satisfying mappings using three and two tiles, respectively, are found,
which use different tile-type combinations.

The four actors vld, iq, idct, and mc of the H.263 decoder (Figure 4) are mapped onto
the three closest available tiles t2, t5, and t6, based on the allocations provided in its
mapping, as shown in Figure 9. In the found mapping, all the edges are separated by a
hop distance of two. Therefore, mapping the actors on the available tiles (as shown in
Figure 9) will satisfy the throughput constraint, as some edges will be mapped at lower
hop distances (i.e., lower latencies). Edges are mapped on the connections between
the tiles. Similarly, three actors a1, a2, and a3—of the demonstrated application are
mapped onto the two closest available tiles, t3 and t4, based on its found mapping, as
shown in Figure 9.

5. PERFORMANCE EVALUATION

The proposed hybrid mapping strategy has been implemented as an extension of the
publicly available SDF3 tool set [Stuijk et al. 2006]. As a benchmark for evaluating
the runtime and quality of the strategy, models of real-life multimedia applications—
H.263 decoder (four actors), H.263 encoder (five actors), MPEG-4 decoder (five actors),

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:19

JPEG decoder (six actors), sample rate converter (6 actors), MP3 decoder (14 actors),
and models of synthetic applications containing varying numbers of actors—have been
considered. Experiments are performed on a Core 2 Duo processor at 3.16 GHz.

The same generic platform graph is considered in evaluating the different strategies
for an application. In the platform, the number of tiles and their types depend upon the
number of actors and their implementation alternatives provided in the application.
We consider tile-based architecture, but any other type of architecture can also be
considered based on the known latencies between the tiles, as previously discussed.
For an actor, the implementation alternative could be GPP, DSP, accelerator, RH, etc.
ARM7TDMI [Segars 1997] and Texas Instruments TMS320C6412 [Texas Instruments
2010] are used as the GPP and DSP, respectively. The accelerator for each actor is
different, as it is customized for a specific task to be performed by the actor. The
RH can be configured to support actors according to their requirements and as an
accelerator. The considered applications contain some common actors, and we have
considered the same RH for an actor. The common actors’ video length decoding (vld)
[Cho et al. 1999], inverse quantization (iq) [Hentati et al. 2011], inverse discrete cosine
transform (idct) [Sung et al. 2006], motion compensation (mc), motion estimation (me),
and deblocking [Ren and Kehtarnavaz 2007] are considered to have RH as one of their
implementation alternatives. While performing simulation, execution time and power
consumption are considered based on the actors’ mappings on different types of tiles.

Particularly, we present results obtained from our design-time analysis flow referred
to as heuristic analysis (HDSE) flow, and compare them to that of the flows presented
in Stuijk et al. [2007], [Stuijk et al. 2010] and an exhaustive analysis (EDSE) flow,
adopted in Yang et al. [2002]. We implemented these flows with steps similar to that of
our flow in order to make a fair comparison. The flow in Stuijk et al. [2007] performs
exploration aimed at load balancing on used tiles. The flow in Stuijk et al. [2010] is
applied to scenarios in which each scenario contains a different version of the same
application. The different versions model different behaviors of an application at dif-
ferent times. We consider a single scenario, that is, a single version of the application
that always has the same behavior. Therefore mappings obtained with this flow can
be fairly compared with the HDSE flow. The flow in Yang et al. [2002] performs explo-
ration aimed at power consumption reduction of tiles. We have compared the HDSE
flow with previously mentioned flows, as they all perform exploration to evaluate map-
pings providing different throughput values, and we target throughput-aware runtime
mapping. The results from our runtime technique are compared to those of runtime
techniques presented in Carvalho and Moraes [2008] and Singh et al. [2010].

A number of experiments have been performed for extensive evaluation of our pro-
posed strategy. First, design-time HDSE results are presented to show how the explored
results are stored and used at runtime. Then, the number of mappings evaluated by
EDSE (e.g., [Yang et al. 2002]), Stuijk et al. [2010] and HDSE flows are computed and
compared to show that the HDSE flow is faster and provides high-quality mappings.
All the DSE flows also have been applied on 100 randomly generated applications to
show the quality of the mappings and speed-up obtained by the Stuijk et al. [2010]
and HDSE flows over those of EDSE. Next, DSE of multimedia applications are per-
formed for given platforms in order to compare the exploration time and best mapping
throughput by different DSE flows. Thereafter, runtime mapping results are presented
to show the efficiency of our runtime technique over existing techniques.

5.1. Design-Time Analysis

Table IV shows the design-time HDSE results for the H.263 decoder (four actors) at
max hop distance of four when each actor has two implementation alternatives, ARM
and RH. The DSE flow runs four times from hop distance of one (hop 1) to four (hop 4).

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:20 A. K. Singh et al.

For each run, the numbers of evaluated and best mappings at different tile combina-
tions are shown as nrMaps and nrBestMaps, respectively. A total of 31 mappings are
evaluated, which is the same as that calculated from Equation (7) with n and μ as 4
and 2, respectively. At each tile combination, the best mappings (nrBestMaps) excel
in throughput or energy consumption that are chosen from the evaluated mappings
(nrMaps). In case of throughput-energy trade-offs, more than one best mapping may
need to be stored. At each hop, the best mappings’ throughput and energy consump-
tion are shown. When all the actors are mapped on a single tile, the hop distance is
referred to as hop 0, denoted as ×. Similar DSE results have been obtained for other
multimedia applications. The results can easily be extended for higher hops by taking
a large value of max hop distance, which can cater to future larger target platforms.
At runtime, one can select a mapping having maximum throughput and minimum en-
ergy consumption, depending upon the available tiles and the maximum hop distance
between them.

The Pareto-optimal mappings are highlighted in Table IV. These mappings require
fewer numbers of tiles and provide the same or better performance (throughput and
energy consumption). It can be seen in Table IV that the mappings using three or four
tiles have worse performance than mappings using only two tiles is because there is
larger communication overhead when using a larger number of tiles and not much
is gained in parallel processing. Similar optimization results have been obtained for
other multimedia applications. For applications with a larger number of tasks, it has
been observed that the performance increases with the number of tiles used by the
mappings and saturates after some fixed number of used tiles.

We have applied an exhaustive analysis (i.e., EDSE, e.g., [Yang et al. 2002]), the flow
in Stuijk et al. [2010], and the HDSE flow in order to find the number of mappings to be
evaluated by the them. The EDSE flow evaluates all the possible mappings at different
tile-combinations. The number of mappings evaluated by the EDSE flow increases ex-
ponentially with the number of actors. Further, the number of mappings increases even
more when the implementation alternatives of the actors, that is, number of tile types
on which the actors can be supported, increases. For n actors, each having nrTileTypes
implementation alternatives, the EDSE flow considers a platform containing n tiles
of each implementation alternative and uses a maximum of n tiles in mappings to be
evaluated. The total number of mappings is calculated as the number of ways of plac-
ing n labeled balls into n unlabeled (but nrTileTypes-colored) boxes, where balls and
boxes represent tasks and tiles, respectively [OEIS 2012]. The number of mappings by
the DSE flow in Stuijk et al. [2010] is limited by X times the number of actors times
the number of tiles, where X is the maximum number of partial bindings that is car-
ried over to the next iteration for evaluating the mappings. The HDSE flow considers
pruning where maximum throughput mapping is selected for further evaluation, thus
limiting the number of mappings to be evaluated.

Table V shows the number of mappings evaluated by the EDSE (e.g., Yang et al.
[2002]), the DSE of Stuijk et al. [2010], and HDSE flow, as the numbers of actors
(nrActors) increases at different numbers of available implementation alternatives
(nrTileTypes) for each actor. At nrTileTypes = 1, the number of mappings evaluated
by the EDSE at increasing values of nrActors follows bell numbers which represents
the number of ways of placing nrActors-labeled balls into nrActors-indistinguishable
boxes [OEIS 2012]. The number of mappings by the Stuijk et al. [2010] flow is shown
for X = 10. The number of mappings increases with the value of X and may lead to an
explosion in the number of mappings. The number of mappings evaluated by HDSE
follows Equation (7). For nrActors and nrTileTypes equal to 14 and 3, respectively,
the EDSE evaluates 461,101,962,108 mappings. Evaluating such a large number of

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:21

Ta
bl

e
IV

.D
S

E
R

es
ul

ts
fo

r
an

H
.2

63
D

ec
od

er

T
il

e
T

il
e

B
es

t
m

ap
pi

n
gs

’t
h

ro
u

gh
pu

t
(×

10
−1

0
/t

im
e-

u
n

it
s)

&
en

er
gy

co
n

su
m

pt
io

n
(×

10
−3

m
J

)
C

ou
n

t
C

om
bi

n
at

io
n

s
n

rM
ap

s
n

rB
es

tM
ap

s
h

op
0

h
op

1
h

op
2

h
op

3
h

op
4

4
4A

R
M

1
1

×
28

,6
55

&
39

3
28

,6
16

&
51

5
28

,5
78

&
63

8
28

,5
40

&
76

1
3A

R
M

&
1R

H
4

1
×

29
,1

70
&

30
1

29
,1

30
&

42
4

29
,0

90
&

54
7

29
,0

50
&

67
0

2A
R

M
&

2R
H

3
2

×
29

,1
70

&
24

9
29

,1
30

&
37

2
29

,0
90

&
49

5
29

,0
51

&
61

8
×

29
,6

12
&

26
8

29
,5

71
&

39
0

29
,5

30
&

51
3

29
,4

89
&

63
6

1A
R

M
&

3R
H

2
1

×
29

,6
12

&
21

6
29

,5
71

&
36

9
29

,5
30

&
46

1
29

,4
89

&
58

4
4R

H
1

1
×

29
,6

12
&

19
4

29
,5

71
&

31
7

29
,5

30
&

43
9

29
,4

89
&

56
2

3
3A

R
M

6
1

×
62

,6
69

&
35

2
62

,6
65

&
43

4
62

,6
61

&
51

5
62

,6
57

&
59

7
2A

R
M

&
1R

H
3

1
×

67
,3

87
&

22
7

67
,3

82
&

30
9

67
,3

78
&

39
0

67
,3

73
&

47
2

1A
R

M
&

2R
H

2
2

×
67

,3
87

&
17

5
67

,3
83

&
25

7
67

,3
78

&
33

8
67

,3
74

&
42

0
×

69
,9

70
&

20
5

69
,9

65
&

28
7

69
,9

60
&

36
9

69
,9

56
&

45
0

3R
H

1
1

×
69

,9
70

&
15

3
69

,9
65

&
23

5
69

,9
60

&
31

7
69

,9
56

&
39

8
2

2A
R

M
3

1
×

91
,5

85
&

31
1

91
,5

83
&

35
2

91
,5

80
&

39
3

91
,5

78
&

43
4

1A
R

M
&

1R
H

2
1

×
12

3,
23

0
&

16
4

12
3,

22
8

&
20

5
12

3,
22

7
&

24
6

12
3,

22
6

&
28

7
2R

H
1

1
×

12
3,

23
0

&
11

2
12

3,
22

8
&

15
3

12
3,

22
7

&
19

4
12

3,
22

6
&

23
5

1
1A

R
M

1
1

73
,9

61
&

27
0

×
×

×
×

1R
H

1
1

10
6,

20
4

&
71

×
×

×
×

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:22 A. K. Singh et al.

Table V. Number of Mappings by Exhaustive DSE (EDSE), [Stuijk et al. 2010] DSE, and Heuristic DSE (HDSE)
at Different Number of Actors (nrActors) and Their Available Implementation Alternatives (nrTileTypes)

EDSE Flow [Stuijk et al. 2010] Flow HDSE Flow
nrTileTypes nrTileTypes nrTileTypes

nrActors 1 2 3 1 2 3 1 2 3
1 1 2 3 1 2 3 1 2 3
2 2 6 12 6 20 42 2 6 10
3 5 22 57 39 102 180 5 15 25
4 15 94 309 100 132 372 11 31 51
5 52 454 1,866 180 410 615 21 56 91
6 203 2,430 12,351 282 612 918 36 92 148
7 877 14,214 88,563 406 854 1,281 57 141 225
8 4,140 89,918 681,870 552 1,136 1,704 85 205 325
9 21,147 610,182 5,597,643 720 1,458 2,187 121 286 451
10 115,975 4,412,798 48,718,569 910 1,820 2,730 166 386 606
14 190,899,322 20,732,504,062 461,101,962,108 1,834 3,668 5,502 456 1,016 1,576

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

HDSE [Stuijk et al. 2010]

Th
ro
ug

hp
ut

(n
or
m
al
iz
ed

w
.r
.t
.E
D
SE
)

Applica�ons (sorted by normalized throughput values)

Fig. 10. Quality of mappings by the HDSE and the Stuijk et al. [2010] flow over that of the EDSE for 100
random applications.

mappings would take many years, even if we assume only a few milliseconds for a
single mapping. Thus, the EDSE is not scalable, and evaluation is not always feasible.

The HDSE has been employed to speed up the exploration process while providing
almost the same quality of mappings as that of EDSE. The flow in Stuijk et al. [2010]
also speeds up the exploration process over the EDSE, but the quality of mappings is
reduced. Figure 10 shows the quality (throughput) of the best mapping using three tiles
for 100 random applications when the EDSE, Stuijk et al. [2010] flow, and the HDSE
are employed. The applications are modeled as SDFGs with four, five, six, and seven
actors having their implementation alternatives (as ARM and RH tiles) generated
randomly. The tiles are assumed to be separated by a fixed hop distance. The best
mapping throughput obtained by HDSE and Stuijk et al. [2010] flow is normalized
with respect to EDSE. The normalized throughput values are plotted after sorting
them in descending order for each flow. It has been observed that loss in quality of
mappings by the HDSE is greater when the number of actors increases and the same
best mappings are obtained for more than 80% of the applications. The Stuijk et al.
[2010] flow provides mappings having even worse quality than those of HDSE, and
the same best mappings are obtained only for about 20% of the applications. Similar
behavior is obtained at other resource combinations. For the applications where we
don’t get the same quality of mappings, the variation in quality with the HDSE is only
10%, whereas it varies largely with the Stuijk et al. [2010] flow, as shown in Figure 10.

Figure 11 shows the speedup obtained by the HDSE and the [Stuijk et al. 2010] flow
over that of EDSE for the same set of applications. The applications are sorted by the
number of actors within them. A couple of observations can be made from Figure 11.
First, the HDSE is faster over the EDSE and Stuijk et al. [2010] flow for all applications.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:23

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

HDSE [Stuijk et al. 2010]

Sp
ee
d
up

(w
.r
.t
.E
D
SE
)

Applica�ons (sorted by number of actors within the applica�ons)

Fig. 11. Speed up obtained by HDSE and [Stuijk et al. 2010] flow over EDSE for 100 random applications.

Second, as the number of actors increases in the applications, the speedup obtained by
Stuijk et al. [2010] flow increases, because the difference in the number of evaluated
mappings by the EDSE and Stuijk et al. [2010] flow increases as shown in Table V.
The HDSE shows further speedup as it evaluates even lower number of mappings.
Third, Stuijk et al. [2010] flow is slower than the EDSE for some of the applications,
as it evaluates more mappings (including some duplicates) than the speedup EDSE.
Thus, exploration provids almost the same quality of mappings when employing the
HDSE. We also have applied DSE flows on a number of multimedia applications:
H.263 decoder (four actors), H.263 encoder (five actors), and JPEG decoder (six actors).
It has been observed that for H.263 decoder/encoder, the best mapping at different
tile-combinations is the same as those of the EDSE and HDSE, whereas for the JPEG
decoder, the HDSE misses the best mapping at few tile-combinations.

Design Space Exploration for a Given Platform. We performed multimedia application DSE
for given platforms that may contain any arbitrary number of tiles. Table VI shows
the DSE results for the following multimedia applications: H.263 decoder, H.263 en-
coder, and sample rate converter for platforms containing 1×2, 2×2, 3×3, and 4×4 grid
of tiles. For each platform, the exploration time (milliseconds) and the best mapping
throughput (× 10−12/time units) have been tabulated when the exploration approaches
of Stuijk et al. [2010], EDSE, and HDSE are employed. The different platform tiles
are ARM tiles. The number of evaluated mappings by the Stuijk et al. [2010] approach
depends upon the number of tiles present in the platform. So, for larger platforms (con-
taining a greater number of tiles), the Stuijk et al. [2010] approach evaluates higher
numbers of mappings, thus showing increased exploration time, as shown in Table VI.
The approach evaluates some duplicate mappings which differ only in the placement
of actors on different tiles providing the same throughput. So, in some cases, it evalu-
ates a larger number of mappings (including duplicates) than the EDSE, thus taking
more time than the EDSE, as shown in Table VI. The EDSE flow evaluates all the
possible mappings without any duplicate ones, and the HDSE flow performs pruning
to discard evaluation of inefficient mappings. The EDSE and HDSE flows are executed
in a similar manner. Larger platforms are covered by executing the flow repeatedly by
considering higher separation (hop distance) between the tiles. For 1×2, 2×2, 3×3, and
4×4 platforms, the maximum hop distance between the tiles is 1, 2, 4, and 6 respec-
tively, so the flow is repeated maximum hop distance times by increasing the delay of
connections according to the hop distance. In each execution of the flow (for the H.263
decoder (four actors), the H.263 encoder (five actors), and the sample rate converter
(six actors)), the EDSE flow evaluates a total of 15, 52, and 203 mappings, whereas the
HDSE flow evaluates a total of 11, 21, and 36 mappings, respectively, as previously dis-
cussed earlier in Table V. Table VI shows the exploration time for complete execution of
the EDSE and HDSE flows. The difference in the number of explored mappings by the
EDSE and HDSE flows increases with the number of actors in the application and thus

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:24 A. K. Singh et al.

Table VI. Multimedia Applications DSE at Different Platforms for Exploration Time (seconds) and Best
Mappings’ Throughput (× 10−6/time-units) and Energy Consumption (× 10−3mJ)

Best mappings’
Exploration Time (seconds) throughput & energy consumption

Application Platform [Stuijk et al. 2010] EDSE HDSE [Stuijk et al. 2010] EDSE & HDSE
1×2 7.24 4.73 2.89 7.40 & 270 9.16 & 311

H.263 2×2 11.47 9.47 5.78 7.40 & 270 9.16 & 311
decoder 3×3 19.01 18.95 11.57 7.40 & 270 9.16 & 311

(4 actors) 4×4 24.73 28.44 17.35 7.40 & 270 9.16 & 311
1×2 10.57 18.55 5.81 0.54 & 4520 0.79 & 4261

H.263 2×2 21.91 37.12 11.63 0.54 & 4520 0.79 & 4261
encoder 3×3 38.65 74.15 23.26 0.54 & 4520 0.79 & 4261

(5 actors) 4×4 45.37 111.36 34.89 0.54 & 4520 0.79 & 4261
1×2 59.41 111.58 19.78 410.00 & 4.87 410.00 & 4.87

sample rate 2×2 118.84 202.34 38.57 410.00 & 4.87 410.00 & 4.87
converter 3×3 236.77 426.72 78.16 410.00 & 4.87 410.00 & 4.87
(6 actors) 4×4 356.63 632.56 107.82 410.00 & 4.87 410.00 & 4.87

the percentage savings (difference) in the exploration time. Further, the evaluation by
EDSE is not feasible within a reasonable time for applications with a larger number of
tasks, whereas HDSE converges fast. For example, HDSE evaluates 456 mappings for
the MP3 decoder (14 actors) in a single iteration, taking close to 103,167 milliseconds,
whereas EDSE needs to evaluate 190,899,322 mappings (Table V) which will take more
than a year (which is unacceptable).

It can be observed from Table VI that the HDSE flow does not miss the best through-
put mapping despite requiring much less time for exploration. On the average, for H.263
decoder, H.263 encoder, and sample rate converter, exploration time of the HDSE flow
is lowered by 39%, 35%, and 68% compared to the Stuijk et al. [2010] flow, and by 38%,
68%, and 83% compared to the EDSE flow, respectively. The best mapping throughput
for the H.263 decoder, H.263 encoder, and sample rate converter is improved by 23%,
37%, and 38%, respectively, over the Stuijk et al. [2010] approach.

Figure 12 shows the throughput for the best mappings for multimedia applications
where different numbers of ARM tiles is are used for the HDSE flow and the flows
presented in Stuijk et al. [2007] and Stuijk et al. [2010]. The throughput at each
tile count (number of used tiles by the mappings) has been normalized with respect
to the HDSE flow. It can be observed that the HDSE flow always provides better
quality (throughput) of mappings at all tile counts. For each application, the same
best mapping is obtained by all the flows at platforms containing one tile (1 tile) and
platforms containing the same number of tiles as number of actors.

We also performed DSE of multimedia applications for given platforms containing
different types of tiles, such as GPP, DSP, and RH tiles. For a given platform containing
five GPP and five RH tiles, the HDSE flow explores a total of 56 mappings for the H.263
encoder (five actors) when each actor has implementation alternatives of GPP and RH
tiles. The exploration took a runtime of 35,178 ms. For given platforms of two GPP and
one RH tiles and one GPP and one RH tiles, the HDSE flow takes tile-count values of
three and two respectively, and evaluates 31 and 25 mappings in a runtime of 19,683
and 15,825 ms, respectively. For given platforms containing tiles which are a subset
of the total available implementation alternatives of actors in the application, the
HDSE flow discards evaluations of infeasible mappings requiring more tiles than are
available. Thus, the DSE process gets speed up in the case of smaller platforms.

5.2. Runtime Mapping

The results obtained from our runtime strategy have been compared with existing run-
time strategies: Nearest Neighbor (NN) proposed in Carvalho and Moraes [2008] and

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:25

0.2

0.4

0.6

0.8

1

1.2

4
�l
es

3
�l
es

2
�l
es

1
�l
e

5
�l
es

4
�l
es

3
�l
es

2
�l
es

1
�l
e

6
�l
es

5
�l
es

4
�l
es

3
�l
es

2
�l
es

1
�l
e

14
�l
es

13
�l
es

12
�l
es

11
�l
es

10
�l
es

9
�l
es

8
�l
es

7
�l
es

6
�l
es

5
�l
es

4
�l
es

3
�l
es

2
�l
es

1
�l
e

H.263 decoder
(4 actors)

MPEG 4 decoder
(5 actors)

JPEG decoder
(6 actors)

MP3 decoder
(14 actors)

HDSE Flow [Stuijk et al. 2007] Flow [Stuijk et al. 2010] Flow

Th
ro
ug

hp
ut

(n
or
m
al
iz
ed

w
.r
.t
.H

D
SE

flo
w
at

ea
ch

�l
e
co
un

t)

Fig. 12. The best mapping throughput comparison at different platforms for different applications.

Table VII. Time Required (in ms) to Map the Applications
by Different Runtime Mapping Strategies

NN CNN Our Runtime
H.263 decoder 27.98 27.96 2.47
H.263 encoder 29.98 29.97 2.84
JPEG decoder 35.74 35.32 3.21
MP3 decoder 771.87 771.83 3.93

Communication-aware Nearest Neighbor (CNN) proposed in Singh et al. [2010]. NN
and CNN start mapping an application without any previous analysis and perform the
required analysis at runtime. The NN strategy tries to map the communicating actors
on the neighboring tiles, whereas the CNN strategy tries to map the maximum commu-
nicating pairs of actors on the same tile and throughput and energy consumption for
the mapping are then computed at runtime. Throughput computation for a mapping
takes much more time than the time to find the mapping. These strategies need to find
a new mapping and then calculate throughput and energy consumption for the same,
in case throughput-constraint is not fulfilled with the current mapping. Such strategies
take time, first in finding a mapping and second in computing throughput and energy
consumption for the mapping at runtime, whereas our strategy just selects the best
mapping satisfying the throughput-constraint from the optimized mappings database.
The selected mapping is used to configure the actors on the platform tiles. So, in our
runtime strategy, the total time consists of selection and placement time only. Table
VII shows the time required (in milliseconds) to map throughput-constrained multi-
media applications on a 4×4 MPSoC platform when the NN, CNN, and our runtime
mapping strategy are employed. On average, our runtime strategy is faster by about
93% compared to CNN (which requires less time than NN).

Penalty for Overestimation of hop distances. Our flow evaluates mappings by assuming
that all the platform tiles are separated by some fixed hop distance. However, in real
situations, it is quite possible that not all available tiles at runtime are at the same
hop distance. Thus, our flow enforces a penalty for estimating higher hop distances.
At runtime, we look for a throughput satisfying mapping from the explored design-
time mappings, which contains tiles separated by the maximum possible hop distance
between the available tiles. So, mapping the actors on the available tiles based on
the found mapping will definitely satisfy the throughput constraint, since latency of
some connections will be smaller compared to ones considered during analysis. To map
the H.263 decoder on four ARM tiles when all edges are mapped at a hop distance
of two, that is, tiles containing actors are separated by two hops, the throughput

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:26 A. K. Singh et al.

is 2.86168 × 10−6 (1/time units) (Table IV), and when two edges are mapped at a
hop distance of one and the remaining edges at a hop distance of two, the throughput
is 2.86343 × 10−6 (1/time units). The two throughput values vary only by 0.0006%, thus
there is very little penalty in overestimating hop distances. Thus, the stored results
from our design-time analysis are acceptable for use in runtime mapping. Further, we
always get better throughput than the stored one, as actors are mapped on available
tiles, making the approach suitable for real time situations.

6. CONCLUSIONS

It has been observed that most of the existing mapping strategies perform mapping
either at design time or at runtime without any previous analysis of the applica-
tions. A design-time strategy is incapable of handling dynamism in applications, and a
runtime approach can miss the timing deadline due to large computation requirements.
This article describes a hybrid mapping strategy for efficient mapping of throughput-
constrained applications on MPSoC platforms. The hybrid strategy first performs ex-
tensive design-time analysis of the applications, providing multiple design points. This
is followed by a runtime mapping strategy to select the best point from the many avail-
able points (subject to available resources and desired throughput) in order to map
an application. The best selected point satisfies the throughput constraint and has
minimum energy consumption and resource usage.

Our flow considers a generic MPSoC platform while performing design-time analysis,
so the generated design points are applicable to any MPSoC. The analysis strategy is
scalable with the number of application tasks and platform tiles. During design-time
analysis, an optimization is performed on the design points to discard sub-optimal
points that results in reduced memory requirement to store them and facilitates faster
runtime selection. Our design-time analysis is very fast and provides better-quality
of solutions when compared to other approaches. Our runtime mapping strategy is
very efficient as it uses the design-time analysis results in contrast to the conventional
runtime approaches where the time-consuming analysis is performed at runtime.

In the future, we plan to develop more efficient runtime mapping strategies. We also
plan to incorporate task migration to further optimize throughput and energy con-
sumption at runtime by migrating tasks from one processor type to another processor
type.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable feedback that has improved the quality of
the article. The authors would also like to thank Dr. Sander Stuijk of the Eindhoven University of Technology
for providing specifications about the application scenarios used in Stuijk et al. [2010].

REFERENCES

AHN, Y., HAN, K., LEE, G., SONG, H., YOO, J., CHOI, K., AND FENG, X. 2008. SoCDAL: System-on-chip design
acceLerator. ACM Trans. Des. Autom. Electron. Syst. 13, 17, 1–38.

ANGIOLINI, F., CENG, J., LEUPERS, R., FERRARI, F., FERRI, C., AND BENINI, L. 2006. An integrated open framework
for heterogeneous MPSoC design space exploration. In Proceedings of the Design, Automation and Test
Conference in Europe. 1–6.

ASCIA, G., CATANIA, V., DI NUOVO, A. G., PALESI, M., AND PATTI, D. 2007. Efficient design space exploration for
application specific systems-on-a-chip. J. Syst. Archit. 53, 733–750.

BENINI, L., BERTOZZI, D., AND MILANO, M. 2008. Resource management policy handling multiple use-cases
in MPSoC platforms using constraint programming. In Proceedings of the International Conference on
Logic Programming. 470–484.

BONFIETTI, A., LOMBARDI, M., MILANO, M., AND BENINI, L. 2009. Throughput constraint for synchronous data
flow graphs. In Proceedings of the International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems. 26–40.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:27

BORKAR, S. 2007. Thousand core chips: A technology perspective. In Proceedings of the Annual Design Au-
tomation Conference. 746–749.

CARVALHO, E. AND MORAES, F. 2008. Congestion-aware task mapping in heterogeneous MPSoCs. In Interna-
tional Symposium on System-on-Chop (SoC). 1–4.

CHO, S. H., XANTHOPOULOS, T., AND CHANDRAKASAN, A. 1999. A low power variable length decoder for MPEG-2
based on nonuniform fine-grain table partitioning. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 7, 2,
249–257.

GANGWAL, O. P., RADULESCU, A., GOOSSENS, K., PESTANA, S. G., AND RIJPKEMA, E. 2005. Building predictable
systems on chip: An analysis of guaranteed communication in the Æthereal network on chip. In Dynamic
and Robust Streaming in and between Connected Consumer-Electronic Devices, vol. 3, Springer, 1–36.

GEILEN, M., BASTEN, T., THEELEN, B., AND OTTEN, R. 2005. An algebra of Pareto points. In Proceedings of the
International Conference on Application of Concurrency to System Design. 88–97.

GHAMARIAN, A. H., GEILEN, M. C. W., STUIJK, S., BASTEN, T., THEELEN, B. D., MOUSAVI, M. R., MOONEN, A. J. M.,
AND BEKOOIJ, M. J. G. 2006. Throughput analysis of synchronous data flow graphs. In Proceedings of the
International Conference on Application of Concurrency to System Design. 25–36.

GIOVANNI, B., FOSSATI, L., AND SCIUTO, D. 2010. Decision-theoretic design space exploration of multiprocessor
platforms. IEEE Trans. Comput. Aided Des. Integ. Cir. Sys. 29, 1083–1095.

GOOSSENS, K., DIELISSEN, J., AND RADULESCU, A. 2005. AEthereal network on chip: Concepts, architectures, and
implementations. IEEE Des. Test 22, 5, 414–421.

GRECU, C., PANDE, P., IVANOV, A., AND SALEH, R. 2005. Timing analysis of network on chip architectures for
mp-soc platforms. Microelectronics J. 36, 9, 833–845.

HENTATI, M., AOUDNI, Y., NEZAN, J., ABID, M., AND DEFORGES, O. 2011. FPGA dynamic reconfiguration using
the RVC technology: Inverse quantization case study. In Proceedings of the Conference on Design and
Architectures for Signal and Image Processing. 1–7.

HU, J. AND MARCULESCU, R. 2004. Energy-aware communication and task scheduling for network-on-chip
architectures under real-time constraints. In Proceedings of the conference on Design, automation and
Test in Europe (DATE’04).

JIA, Z. J., PIMENTEL, A., THOMPSON, M., BAUTISTA, T., AND NUNEZ, A. 2010. NASA: A generic infrastructure for
system-level MP-SoC design space exploration. In Proceedings of the Workshop on Embedded Systems
for Real-Time Multimedia. 41–50.

KEINERT, J., STREUBÜHR, M., SCHLICHTER, T., FALK, J., GLADIGAU, J., HAUBELT, C., TEICH, J., AND MEREDITH, M. 2009.
SystemCoDesigner—an automatic ESL synthesis approach by design space exploration and behavioral
synthesis for streaming applications. ACM Trans. Des. Autom. Electron. Syst. 14, 1, 1–23.

KIM, M., BANERJEE, S., DUTT, N., AND VENKATASUBRAMANIAN, N. 2008. Energy-aware cosynthesis of real-time mul-
timedia applications on MPSoCs using heterogeneous scheduling policies. ACM Trans. Embed. Comput.
Syst. 7, 1, 1–19.

KISTLER, M., PERRONE, M., AND PETRINI, F. 2006. Cell multiprocessor communication network: Built for speed.
IEEE Micro 26, 10–23.

KUMAR, A., FERNANDO, S., HA, Y., MESMAN, B., AND CORPORAAL, H. 2008. Multiprocessor systems synthesis for
multiple use-cases of multiple applications on FPGA. ACM Trans. Des. Autom. Electron. Syst. 13, 40,
1–27.

LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Static scheduling of synchronous data flow programs for digital
signal processing. IEEE Trans. Comput. 36, 24–35.

LEIJTEN, J., VAN MEERBERGEN, J., TIMMER, A., AND JESS, J. 1997. PROPHID: A heterogeneous multi-processor
architecture for multimedia. In Proceedings of the International Conference on Computer Design. 164–
169.

LIU, W., YUAN, M., HE, X., GU, Z., AND LIU, X. 2008. Efficient SAT-based mapping and scheduling of homogeneous
synchronous dataflow graphs for throughput optimization. In Proceedings of the Real-Time Systems
Symposium. 492–504.

LUKASIEWYCZ, M., GLASS, M., HAUBELT, C., AND TEICH, J. 2008. Efficient symbolic multi-objective design space
exploration. In Proceedings of the Asia and South Pacific Design Automation Conference. 691–696.

MARIANI, G., AVASARE, P., VANMEERBEECK, G., YKMAN-COUVREUR, C., PALERMO, G., SILVANO, C., AND ZACCARIA, V.
2010. An industrial design space exploration framework for supporting run-time resource management
on multi-core systems. In Proceedings of the Conference on Design, Automation and Test in Europe.
196–201.

MOREIRA, O., MOL, J. J.-D., AND BEKOOIJ, M. 2007. Online resource management in a multiprocessor with a
network-on-chip. In Proceedings of the Symposium on Applied Computing. 1557–1564.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

9:28 A. K. Singh et al.

MOREIRA, O., VALENTE, F., AND BEKOOIJ, M. 2007. Scheduling multiple independent hard-real-time jobs on a
heterogeneous multiprocessor. In Proceedings of the International Conference on Embedded Software.
57–66.

NOLLET, V., AVASARE, P., EECKHAUT, H., VERKEST, D., AND CORPORAAL, H. 2008. Run-time management of a MPSoC
containing FPGA fabric tiles. IEEE Trans. Very Large Scale Integr. Syst. 16, 24–33.

OEIS. 2012. Encyclopedia of integer sequences. http://oeis.org/.
PALERMO, G., SILVANO, C., AND ZACCARIA, V. 2005. Multi-objective design space exploration of embedded systems.

J. Embed. Comput. 1, 305–316.
PALERMO, G., SILVANO, C., AND ZACCARIA, V. 2008. Robust optimization of SoC architectures: A multi-scenario

approach. In Proceedings of the Workshop on Embedded Systems for Real-Time Multimedia. 7–12.
PALMA, J., MARCON, C., MORAES, F., CALAZANS, N., REIS, R., AND SUSIN, A. 2005. Mapping embedded systems onto

NoCs—The traffic effect on dynamic energy estimation. In Proceedings of the Symposium on Integrated
Circuits and Systems Design. 196–201.

PAULIN, P. G., PILKINGTON, C., BENSOUDANE, E., LANGEVIN, M., AND LYONNARD, D. 2004. Application of a multi-
processor SoC platform to high-speed packet forwarding. In Proceedings of the Conference on Design,
Automation and Test in Europe. 58–63.

REN, J. AND KEHTARNAVAZ, N. 2007. Comparison of power consumption for motion compensation and deblocking
filters in high definition video coding. In Proceedings of the International Symposium on Consumer
Electronics. 1–5.

RUTTEN, M. J., VAN EIJNDHOVEN, J. T. J., JASPERS, E. G. T., VAN DER WOLF, P., POL, E.-J. D., GANGWAL, O. P., AND

TIMMER, A. 2002. A heterogeneous multiprocessor architecture for flexible media processing. IEEE Des.
Test 19, 39–50.

SCHRANZHOFER, A., CHEN, J.-J., AND THIELE, L. 2010. Dynamic power-aware mapping of applications onto
heterogeneous MPSoC platforms. IEEE Trans. Ind. Inf. 6, 4, 692–707.

SEGARS, S. 1997. ARM7TDMI power consumption. IEEE Micro 17, 4, 12 –19.
SINGH, A. K., JIGANG, W., PRAKASH, A., AND SRIKANTHAN, T. 2009. Efficient heuristics for minimizing commu-

nication overhead in noc-based heterogeneous MPSoC platforms. In Proceedings of the International
Symposium on Rapid System Prototyping. 55–60.

SINGH, A. K., KUMAR, A., AND SRIKANTHAN, T. 2011. A hybrid strategy for mapping multiple throughput-
constrained applications on MPSoCs. In Proceedings of the International Conference on Compilers, Ar-
chitectures and Synthesis of Embedded Systems.

SINGH, A. K., SRIKANTHAN, T., KUMAR, A., AND JIGANG, W. 2010. Communication-aware heuristics for run-time
task mapping on NoC-based MPSoC platforms. J. Syst. Archit. 56, 242–255.

STUIJK, S., BASTEN, T., GEILEN, M. C. W., AND CORPORAAL, H. 2007. Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In Proceedings of the 44th Annual Design Au-
tomation Conference. 777–782.

STUIJK, S., GEILEN, M., AND BASTEN, T. 2006. SDF3: SDF for free. In Proceedings of the 6th International
Conference on Application of Concurrency to System Design. 276–278.

STUIJK, S., GEILEN, M., AND BASTEN, T. 2010. A predictable multiprocessor design flow for streaming applications
with dynamic behaviour. In Proceedings of Euromicro Conference on Digital System Design. 548–555.

SUNG, T.-Y., SHIEH, Y.-S., YU, C.-W., AND HSIN, H.-C. 2006. High-efficiency and low-power architectures for
2-D DCT and IDCT based on CORDIC rotation. In International Conference on Parallel and Distributed
Computing, Applications and Technologies. 191–196.

Texas Instruments. 2010. TMS320C6412 DSP. http://www.ti.com/product/tms320c6412.
TILE-Gx100 2009. First 100-core processor with the new TILE-Gx family. http://www.tilera.com/

products/processors/TILE-Gx Family.
VAN STRALEN, P. AND PIMENTEL, A. 2010. Scenario-based design space exploration of MPSoCs. In International

Conference on Computer Design. 305–312.
VANGAL, S., HOWARD, J., RUHL, G., DIGHE, S., WILSON, H., TSCHANZ, J., FINAN, D., IYER, P., SINGH, A., JACOB, T.,

JAIN, S., VENKATARAMAN, S., HOSKOTE, Y., AND BORKAR, N. 2007. An 80-tile 1.28TFLOPS network-on-chip
in 65nm CMOS. In Proceedings of the International Solid-State Circuits Conference. 98–589.

YANG, P., MARCHAL, P., WONG, C., HIMPE, S., CATTHOOR, F., DAVID, P., VOUNCKX, J., AND LAUWEREINS, R. 2002.
Managing dynamic concurrent tasks in embedded real-time multimedia systems. In Proceedings of the
International Symposium on System Synthesis. 112–119.

YANG, Z., KUMAR, A., AND HA, Y. 2010. An area-efficient dynamically reconfigurable spatial division multiplex-
ing network-on-chip with static throughput guarantee. In Proceedings of the International Conference
on Field-Programmable Technology. 389–392.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

Accelerating Throughput-Aware Runtime Mapping for Heterogeneous MPSoCs 9:29

YKMAN-COUVREUR, C., AVASARE, P., MARIANI, G., PALERMO, G., SILVANO, C., AND ZACCARIA, V. 2011. Linking run-
time resource management of embedded multi-core platforms with automated design-time exploration.
Computers Digital Techniques, IET 5, 2, 123–135.

YKMAN-COUVREUR, C., NOLLET, V., CATTHOOR, F., AND CORPORAAL, H. 2006. Fast multi-dimension multi-choice
knapsack heuristic for MP-SoC run-time management. In Proceedings of the International Symposium
on System-on-Chip. 1–4.

ZAMORA, N. H., HU, X., AND MARCULESCU, R. 2007. System-level performance/power analysis for platform-based
design of multimedia applications. ACM Trans. Des. Autom. Electron. Syst. 12, 2, 1–29.

Received September 2011; revised April 2012; accepted August 2012

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 9, Pub. date: December 2012.

