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Posterior Expectation of Regularly Paved Random Histograms
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We present a novel method for averaging a sequence of histogram states visited by a Metropolis-Hastings
Markov chain whose stationary distribution is the posterior distribution over a dense space of tree-based
histograms. The computational efficiency of our posterior mean histogram estimate relies on a statistical
data-structure that is sufficient for nonparametric density estimation of massive, multidimensional metric
data. This data-structure is formalized as statistical regular paving (SRP). A regular paving (RP) is a bi-
nary tree obtained by selectively bisecting boxes along their first widest side. SRP augments RP by mutably
caching the recursively computable sufficient statistics of the data. The base Markov chain used to propose
moves for the Metropolis-Hastings chain is a random walk that data-adaptively prunes and grows the SRP
histogram tree. We use a prior distribution based on Catalan numbers and detect convergence heuristi-
cally. The performance of our posterior mean SRP histogram is empirically assessed for large sample sizes
simulated from several multivariate distributions that belong to the space of SRP histograms.
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1. INTRODUCTION

Histograms are commonly used for non-parametric density estimation but the esti-
mates depend on the selection of the histogram bins, which is essentially a partition of
the data space. Stone [1982], as cited by Lugosi and Nobel [1996], showed that data-
dependent partitions can provide estimates which are theoretically superior to those
using partitions based simply on the number of data points in the data set. The prob-
lem, then, is how best to create data-dependent partitions.

A common approach is to use a penalized maximum likelihood estimator, often based
on the Akaike information criterion (AIC) [Akaike 1974]. Taylor [1987] minimized
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AIC to derive the asymptotically optimal bin width for 1-dimensional data. Birgé and
Rozenholc [2006] used a nonasymptotic evaluation of the performances of penalized
maximum likelihood estimator in some exponential families due to Castellan [1999]
and heavy simulations to optimize the form of the penalty function. These methods
were data-based partitioning schemes for regular histograms. Hartigan [1996] then
compared equal-bin-width “Akaike-histograms” to Bayesian histograms constructed
with a subjective smoothing parameter to control the number of elements in his par-
titions. Castellan [1999] extended this to multivariate data and irregular histograms.
Klemelä [2009b] described adaptive density estimation with best basis selection for
multi-dimensional data by determining the dimension on which to subdivide some
element of the partition. This algorithm grows the tree by bisecting each element suc-
cessively on each possible dimension until a specified maximum number of bisections
in each dimension has been reached, followed by pruning to minimize a complexity
penalized L2 error. Klemelä [2007] also discussed a CART-like [Breiman et al. 1984]
methodology for density estimation, involving partitioning using a greedy algorithm to
minimize an empirically approximated L2-based error followed by pruning to minimize
the complexity-penalized error.

Some of the problems with the complexity penalized approach are discussed in Birgé
and Rozenholc [2006]. This methodology relied on the asymptotically optimal perfor-
mance of penalized maximum likelihood estimators but was constrained by the best
form of the penalty function itself being dependent on the unknown underlying den-
sity. Furthermore, Jackson et al. [2005] commented on work by Scargle [1998], which
found that greedy algorithms are not guaranteed to find optimal partitions and pro-
posed the use of a Bayesian model. Knuth [2006] describes a Bayesian framework and
an algorithm for finding the equal-bin-width solution which maximizes the marginal
posterior probability of the number of bins by a brute-force search.

All these methods are not able to computationally cope in high dimensions. Among
the space partitioning tree-based methods for computationally efficient kernel density
estimation and band-width selection using cross-validation, the multiresolution kd-
trees and ball trees of Gray and Moore [2003] can cope better in high dimensions, es-
pecially if the underlying density is highly structured and nonuniform. Various aspects
of statistical regular pavings, our space partitioning tree-based data structure, includ-
ing cached sufficient statistics at internal nodes, were inspired by Gray and Moore
[2003].

A density estimate based on a single partition of the data space, whether this par-
tition is found by a greedy algorithm, by dynamic programming, or by an asymptot-
ically optimal formula, is a point estimate. An alternative approach is to estimate
the expectation of the posterior probability distribution over a set of partitions from
the average of a number of independent random samples of partition states from the
distribution. Klemelä [2009a] has also been involved in work on dealing with the vari-
ability of unstable histogram density estimators by averaging a number of estimates
produced from bootstrapped subsamples from the original data set in the delt package
for R. However, each sample histogram state is obtained from a particular algorithm
(either greedy or CART-pruning) and is not a random sample from the whole sample
space.

The main focus in this work is in obtaining computationally efficient Bayesian den-
sity estimates from averaging histograms as opposed to finding the best partition using
principles such as cross-validation or penalized maximum likelihood. Here we propose
an efficient algorithm that allows for easy averaging of multidimensional histograms
with regularly paved partitions. This space of regular paving histograms is closed un-
der addition and scalar multiplication. We construct a Metropolis-Hastings Markov
chain under a Catalan prior distribution to produce the sample mean estimate of the
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Bayesian posterior expectation over this space of histograms. We apply our method to
complicated mixtures of uniform densities over a range of partitions from the space of
regular pavings and study their L1 error or integrated absolute error (IAE) for sample
sizes as large as 107 points in various multivariate settings.

Posterior inference of density estimates based on a Pólya tree [Lavine 1992] and its
extensions, such as a mixture of Pólya tree [Lavine 1992] and randomized Pólya tree
[Paddock et al. 2003] work from a nested sequence of partitions. The nested partition-
ing strategy of Pólya trees is different from the one we propose here and our parti-
tioning strategy can be combined with the complementary strengths of Pólya trees as
discussed in 5.

Methods for density estimation typically break down in high dimensions because
computational complexity grows exponentially with the dimension. The standard ar-
guments given for this breakdown called the curse of dimensionality, as remarked
by Moore [2000], assume that the data has no underlying structure (e.g., data comes
from the uniform density on [0, 1]d). The multiresolution kd-trees and ball-trees [Gray
and Moore 2003] exploit the nonuniform structure in real-world data to accelerate
high dimensional kernel density estimation. Our methods share several aspects of
the data structures in Moore [2000] and Gray and Moore [2003] but are comple-
mentary in the sense that they work better with highly uniform or mixtures of uni-
form data. Also, our focus is on arithmetic capabilities of the data structures in a
Bayesian context of averaging histograms that are sampled form the posterior over
a family of partitions that are not as strictly nested as Pólya trees and their vari-
ants, as opposed to the focus of Gray and Moore [2003] on computational efficiency
in cross-validation. Finally, we are interested in obtaining the IAE of our estimator
for datasets that have been simulated from high-dimensional densities, unlike other
high-dimensional density estimation studies that either focus on real-world data and
thereby avoid IAE altogether or simply cannot report the IAE exactly in dimensions
higher than 1 or 2. Our SRP trees and their associated arithmetic aided by inter-
val analytic approximation methods allow us to obtain IAEs of our estimator in high
dimensions.

The remaining sections of this article are organized as follows. We first describe
regular pavings and their associated tree spaces in 2.1 and then show their statistical
extension in 2.2. The Bayesian context for density estimation is set in 2.3 and 2.4
gives the method for averaging histograms. The Metropolis-Hastings Markov chain
and associated convergence heuristics is described in Section 3. The performance of
our density estimator is assessed using simulations in Section 4 and we conclude with
a discussion in Section 5.

2. STATISTICAL REGULAR PAVING (SRP)

2.1. Regular Paving (RP)

Let x := [x, x] be a compact real interval with lower bound x and upper bound x where
x ≤ x. Let the space of such intervals be IR. We can then define a box of dimension d
as an interval vector

x :=
[
x1, x1

]
× . . .×

[
xd, xd

]
.

Let IRd be the set of all such boxes. Consider a box x in IR
d. Let the index ι be the first

coordinate of maximum width, that is,

ι = min

(
argmax

i
(xi – xi)

)
.
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Fig. 1. A sequence of selective bisections of boxes (nodes) along the first widest coordinate, starting from
the root box (root node), produces an RP.

A bisection or split of x at the midpoint along this first widest component gives us the
left- and right-child boxes of x as follows:

xL :=
[
x1, x1

]
× · · · ×

[
xι, (xι + xι)/2) ×

[
xι+1, xι+1

]
× · · · ×

[
xd, xd

]
,

xR :=
[
x1, x1

]
× · · · ×

[
(xι + xι)/2, xι

]
×

[
xι+1, xι + 1

]
× · · · ×

[
xd, xd

]
.

Such a bisection is said to be regular. A recursive sequence of selective regular bisec-
tions of boxes with possibly open boundaries along the first widest coordinate, starting
from the root box x in IR

d is known as a regular paving (RP) [Jaulin et al. 2001] or
n-tree [Samet 1990] of x. An RP of x can also be seen as a binary tree formed by recur-
sively bisecting the box x at the root node. These trees are known as plane binary trees
in enumerative combinatorics [Stanley 1999, Ex. 6.19(d), p. 220] and as finite, rooted
binary trees (frb-trees) in geometric group theory [Meier 2008, Ch. 10]. When the root
box x is clear from the context we refer to an RP of x as merely an RP. Each node of an
RP is associated with a sub-box of the root box that can be attained by a sequence of
selective regular bisections.

Each node in an RP is distinctly labeled by the sequence of child node selections from
the root node. We label these nodes and the associated boxes with strings composed
of L and R for left and right, respectively. For example, in Figure 1, the root node as-
sociated with root box xρ is labeled ρ. First, we split ρ into two child nodes and denote
it by �(ρ) = {ρL, ρR}. These left child and right child nodes are labeled by ρL and ρR,
respectively. The left half of xρ that is now associated with node ρL is denoted by xρL.
Similarly, the right half of xρ that is associated with the right child node ρR is denoted
by xρR. We say ρL and ρR are a pair of sibling nodes since they share the same parent
node ρ. This pair of sibling nodes can be reunited or merged to its parent node ρ and
such a merging operation is denoted by �(ρL, ρR) = ρ. A node with no child nodes is
called a leaf node. A cherry node is a subterminal node with a pair of leaf nodes that are
siblings. These sibling leaf nodes can be reunited or merged back to the cherry node,
thereby turning the cherry node into a leaf node in the process. Note that we can only
split a leaf node or merge a cherry node. Returning to Figure 1, let us further split the
left node ρL by bisecting the associated box xρL to get its left and right child nodes ρLL
and ρLR with the associated sub-boxes xρLL and xρLR, respectively. Next, we split the
right child node ρR similarly into its child nodes ρRL and ρRR, respectively. Let us se-
lect ρLR to do a final split and obtain its child nodes ρLRL and ρLRR. We have obtained
a binary tree from four splits of the root node. A graphical representation of the
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obtained RP is shown in Figure 1. We denote the label set of all nodes by
V := ρ ∪

{
ρ{L, R}j : j ∈ N

}
.

Let the jth interval of a box xρv be [xρv,j, xρv,j]. Then the volume of a d-dimensional
box xρv associated with the node ρv of an RP of xρ is the product of the side-lengths of
the box, that is,

vol
(
xρv

)
=

d∏
j=1

(
xρv,j – xρv,j

)
.

The volume may also be associated with the depth of a node. A node has depth δ if it
can be reached by δ splits from the root node. Then, the volume of any d-dimensional
box xρv associated with node ρv having depth δ is vol (xρv) = 2–δvol (xρ) due to the
recursive nature of the bisections and the restriction to only bisect perpendicularly at
the mid-point along the first widest coordinate. We use the nodes of the RP in Figure 1
for illustration purposes. Assume that the root box xρ is a unit hypercube. Then the
root node ρ has depth 0 and vol (xρ) = 1, the nodes ρL and ρR have depth 1 and volume
2–1, the nodes ρLL, ρLR, ρRL, ρRR have depth 2 and volume 2–2, and finally the nodes
ρLRL, ρLRR have depth 3 and volume 2–3.

We can now label each leaf node of a tree by its depth. The leaf nodes of the RP
in Figure 1, listed in left-right ordering, is [ρLL, ρLRL, ρLRR, ρRL, ρRR]. Then, this RP
has 23322 as its ordered leaf-depth string. Each RP can be uniquely identified by its or-
dered leaf-depth string. Thus, this RP can be denoted by s23322 and the set of leaf boxes
associated with its leaf nodes by �(s23322) = {xρLL, xρLRL, xρLRR, xρRL, xρRR}. Among
these leaf nodes, we can reunite ρLRL and ρLRR to get ρLR, and further reunite ρRL
and ρRR to get ρR. Note that the nodes ρLR and ρR of s23322 are cherry nodes and the
set of boxes associated with its cherry nodes is c(s23322) = {xρLR, xρR}. Each sequence
of splits and merges of an RP with root node ρ returns a partition of its root box xρ
given by the set of its leaf boxes.

Having seen a particular RP s23322 let us study the space of all RPs.
Let Sk be the set of all RPs of xρ made of k splits. Note that |�(s)| = k + 1 if s ∈ Sk.

The number of distinct binary trees with k splits is equal to the Catalan number

Ck =
1

k + 1

(
2k
k

)
=

(2k)!
(k + 1)!(k!)

. (1)

For i, j ∈ Z+, where Z+ := {0, 1, 2, . . .} and i ≤ j, let Si:j be the set of RPs with k splits
where k ∈ {i, i + 1, . . . , j}. The space of all RPs is then S0:∞ := limj→∞ S0:j. Figure 2
displays the transition diagram over S0:3 where the gray arrows represent the transi-
tion from one RP state to another through a split or reunion. There may be more than
one way, that is, distinct sequence of splits, to reach an RP in Sk from the root node by
applying exactly k splits. We are interested in randomized algorithms, which can be
seen as Markov chains on S0:∞.

2.2. Statistical Regular Pavings (SRPs)

Suppose n points X1, X2, . . . , Xn have fallen into the bounding root box xρ of an RP s.
We extend the notion of RP to SRP in order to represent a data-driven partition of xρ.
Recall that each node ρv of an RP has a box xρv associated with it. For the purpose
of statistical set processing we can further associate each node ρv of an RP with
recursively computable statistics, such as, (i) #xρv :=

∑n
i=1 1xρv (Xi), the sample count,
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Fig. 2. Transition diagram over S0:3 with split/reunion transitions from one RP state to another.

(ii) the sample mean, (iii) the sample variance-covariance matrix, etc., of the data
points that fall into xρv. This aspect of our method is inspired by the cached-statistic
metric trees of [Moore 2000]. Each leaf node has associations (via pointers in our C++
implementation) to the data that lie within its leaf box. When a bisection happens,
the data falls into the box associated with either the left or right child node of the
bisected node, depending on its location. The recursively computable statistics in each
child node gets updated in this process. When two sibling nodes are reunited, the
recursively computable statistics of the reunited node remain unchanged. We call this
information structure a statistical regular paving (SRP) since it enhances an RP by
recording recursively computable statistics of the data for subsequent statistical set
processing. Figure 3(a) depicts the details of an SRP tree, nodes, leaf boxes forming
the partition of the root box along with their associations with the data (gray arrows).
This gives an SRP histogram as depicted in Figure 3(b). By an abuse of notation,
we denote an RP as well as an SRP by s and the space of all RPs as well as SRPs
by S0:∞.

2.3. Posterior Mean of SRP Histograms

Suppose X1, . . . , Xn are independent and identical random vectors in R
d, each dis-

tributed according to μ and having a non-atomic density f ∈ L1(λ), that is, P(X1 ∈ A) =
μ(A) =

∫
A fdλ, where μ is absolutely continuous with respect to d-dimensional Lebesgue

measure λ or μ � λ. Using our SRP information structures, we are interested in pro-
ducing the sample mean histogram estimate of the Bayes posterior expectation over
this space of SRP histograms.

After the arrival of a particular data sample x1, . . . , xn into the root box xρ of the
current SRP s, where each point xi is a row vector such that xi = (xi,1, . . . , xi,d), we
get a partition �(s). For each leaf box xρv ∈ �(s), let μn(xρv) := #xρv/n be its empirical
measure based on the sample x1, . . . , xn and λ(xρv) = vol (xρv) be its Lebesgue measure
on R

d. Let x(x) be the leaf box containing x. Then we only need to know the counts and
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Fig. 3. An SRP and its corresponding histogram.

the boxes for the current set of leaf nodes �(s) to produce the histogram estimate as
follows:

fn,s(x) =

{
μn(x(x))
vol (x(x)) = #x(x)

n × 1
vol (x(x)) if 0 < vol (x(x)) < ∞, x(x) ∈ �(s),

0 otherwise.
(2)

Let the height-value of a given node ρv of an SRP histogram be given by h(ρv) =
#xρv/(n · vol (xρv)). Figure 3(b) shows the corresponding histogram estimate of the ten
data points shown in Figure 3(a). Once the SRP has been constructed the associations
to data from the leaf nodes can be removed so that only the height statistics at all
nodes remain. This is a significant memory-saving intermediary step when compar-
ing batches of massive simulated data during simulation-intensive inference problems
or when producing a sequence of density estimates from pulses of massive real-world
data in assimilation and online processing problems [Teng et al. 2012].

Let π be the posterior distribution that is proportional to the product of the likelihood
of the data given s and the prior probability of s, that is,

π(s) := Pr{s|x1, . . . , xn}
∝ Pr{x1, . . . , xn|s}Pr{s}
= Pr{x1|s}Pr{x2|s} · · ·Pr{xn–1|s}Pr{xn|s}Pr{s}

≈
n∏

i=1

fn,s
(
xi
)
Pr{s}

=
∏

xρv∈�(s)

(
#xρv

n · vol
(
xρv

)
)#xρv

Pr{s} .

Note how we approximate the likelihood of the data given s by the maximum likelihood
value from the histogram on s.

We want our prior distribution {Pr(s)} over s ∈ S0:∞ to be proper and uninformative
in some natural sense. Moreover, we also want our prior probabilities to decrease
as the partition size increases in order to penalize large partitions. With these
considerations, we propose a Catalan family of proper priors associated with any
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convergent decreasing sequence. Suppose {ak} for k = 1, 2, . . . is any decreasing
sequence of positive real numbers such that

∑∞
k=1 ak = a < ∞. Recall from Eq. (1) that

the Catalan number Ck gives the number of SRPs in Sk with k splits and k + 1 leaves.
An {ak}-penalized uninformative proper Catalan prior that assigns states in Sk with
probability ak/a and distributes this mass uniformly over Sk is given by:

Pr{s} =
∞∑

k=0

1Sk
(s)

ak
aCk

. (3)

In this work, we fix a particular prior obtained from the sequence of ak = 1/Ck with
a = 2 + 4π/35/2 ≈ 2.806133050770763 [McGarvey and Cloitre 2005]. Such a natural
Catalan prior is given by:

Pr{s} =
∞∑

k=0

1Sk
(s)

1(
2 + 4π/35/2

)
C2

k
. (4)

Thus, the posterior distribution on S0:∞ is given by

π(s) ∝
∏

xρv∈�(s)

(
#xρv

n · vol
(
xρv

)
)#xρv

·
∞∑

k=0

1Sk
(s)

1(
2 + 4π/35/2

)
C2

k
. (5)

We can obtain an estimate of the posterior mean from the sample average of the
thinned-out post-burn-in sequence of states visited by a discrete time Markov chain
{S(t)}, for t ∈ Z+ :={0, 1, 2, . . .}, over the state space S0:∞ with the posterior distribution
π as its stationary distribution. In order to do this, we need to be able to efficiently
obtain the average of a number of SRP histograms.

2.4. Averaging SRP Histograms

We can average m histograms if we are able to add any two histograms together and
get another histogram on the condition that each histogram has the same root box, and
multiply any histogram by a scalar. Since the RP trees, just like frb-trees, are closed
under pairwise union or overlay operations, we can extend these operations to SRPs
from which the histograms are built. This enables us to perform arithmetic over SRPs
in a recursive and efficient manner to obtain averaged histograms.

Consider two SRPs s(1) and s(2) with root nodes ρ(1) and ρ(2), respectively, with the
same root box xρ = xρ(1) = xρ(2) . Let the corresponding histograms of SRPs s(1) and s(2)

be fn,s(1) and fn,s(2) . We can add the two histograms by applying AddSRPHist(ρ(1), ρ(2))
described by Algorithm 1.

Figure 4 illustrates how addition is performed on two SRPs to obtain the
sum SRP. The sum is then divided by 2 to obtain the average histogram
fn,s(1)+(2) = (fn,s(1) + fn,s(2) )/2. The average of m SRPs is obtained similarly as((

· · ·
((

fn,s(1) + fn,s(2)

)
+ fn,s(3)

)
+ · · ·

)
+ fn,s(m)

)
/m.

3. A METROPOLIS-HASTINGS MARKOV CHAIN OVER SRP HISTOGRAMS

In this section, we will first discuss how the space of all SRPs S0:∞ can be bounded
to make a finite state space S̃n. We then show that for a given set of n data points
x1, x2, . . . , xn in the root box xρ, the base chain {Y(t)}t∈Z+ is irreducible and aperiodic on
the machine-representable finite state space S̃n ⊂ S0:∞ and then derive a Metropolis-
Hastings chain {S(t)}t∈Z+ with the desired stationary distribution. We conclude the
section with some heuristics to diagnose and accelerate mixing.
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Fig. 4. Adding two SRP histograms.

ALGORITHM 1: AddSRPHist

input : two SRP histogram root nodes ρ(1) and ρ(2) with same root box xρ = xρ(1) = xρ(2) .

output : the sum SRP histogram with root node ρ(1)+(2).

Make a new node ρ(1)+(2) with box xρ

h(ρ(1)+(2)) ← h(ρ(1)) + h(ρ(2))

if (ρ(1) is a leaf node) & (ρ(2) is not a leaf node) then
Make nodes L′, R′

xL′ ← xρ(1)L, xR′ ← xρ(1)R

h(L′) ← h(ρ(1)), h(R′) ← h(ρ(1))
Graft onto ρ(1)+(2) as left child the node AddSRPHist(ρ(2)L, L′)
Graft onto ρ(1)+(2) as right child the node AddSRPHist(ρ(2)R, R′)

end

if (ρ(2) is a leaf node) & (ρ(1) is not a leaf node) then
Make nodes L′, R′

xL′ ← xρ(2)L, xR′ ← xρ(2)R

h(L′) ← h(ρ(2)), h(R′) ← h(ρ(2))
Graft onto ρ(1)+(2) as left child the node AddSRPHist(ρ(1)L, L′)
Graft onto ρ(1)+(2) as right child the node AddSRPHist(ρ(1)R, R′)

end

if (both ρ(1) and ρ(2) are not leaf nodes) then
Graft onto ρ(1)+(2) as left child the node AddSRPHist(ρ(1)L, ρ(2)L)
Graft onto ρ(1)+(2) as right child the node AddSRPHist(ρ(1)R, ρ(2)R)

end
return ρ(1)+(2)

State Space. Let us note that on a computer with double-precision floating-point num-
bers [ANSI/IEEE 754-1985 ], S̃n is necessarily a finite subset of S0:∞. For instance, we
cannot represent the child boxes with our number screen if the widest side of the par-
ent box to be bisected is already given by two adjacent floating-point numbers. First, let
us appreciate how the data-dependent states in S̃n are dictated by the boundary of “un-
splittable states” in S0:∞ in addition to the hard boundaries imposed by the machine’s
floating-point number screen. There are three natural ways to define the boundary of
unsplittable SRP states.

The first and simplest way to define such a boundary in S0:∞ is by saying that we
cannot split an SRP state beyond a maximal number of splits mn. We can allow this
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mn = nβ for some β < 1 in order to ensure a sub-linear growth of the number of leaves
with the number of data points, that is, mn/n → 0 as n → ∞, for instance. Using
this hard boundary based on the maximum number of allowed splits our finite state
space of the base chain is S̃n = S0:mn . In this case, we know that |S0:mn | =

∑mn
k=0 Ck.

We typically take β close to 1 under this approach to ensure a sufficiently large S̃n
provided the density f is sufficiently bounded away from 0 uniformly over xρ.

The second and less simple way to define such a boundary in S0:∞ is by saying that
we cannot split any leaf of an SRP state beyond a minimum volume, say λn. Recall that
the volume of a box at a leaf node ρv at depth δ in an SRP s is vol (xρv) = vol (xρ)/2δ.
Thus, the minimum volume boundary constraint is equivalent to a maximal leaf-depth
constraint on states in S̃n, where we ensure that all states visited by the chain have an
λn-dependent maximal depth δn =

⌊
log2

(
vol (xρ)/λn

)⌋
. This gives an upper bound by

considering the tip of the parabolic tongue of the unsplittable boundary of leaf-depth
constrained SRP states in S0:∞ over an arrangement similar to the transition diagram
of Figure 2. In this case, S̃n is contained in S0:τ , where τ = 2δn – 1. Once again we can
allow the maximal depth δn to increase appropriately with the number of data points
n to ensure that λn → 0 as n → ∞.

The third, more complicated, and more data-driven way to define such a boundary of
unsplittable states in S0:∞ in order to produce a finite data-dependent state space S̃n
for our base chain is by looking at the number of points inside the boxes. Here we only
allow a leaf box to be split if each resulting child box will have at least #n points in it
except when one of the child boxes will be empty and the other child box will get all of
the #n or more points from its parent box. This way, we ensure that all the leaves of a
tree in S̃n have at least #n points, provided they have any points at all. This splitting
procedure is more data-driven than the previous two and also concentrates the base
chain over SRP states whose partitions refine on the locations of the given data set
x1, x2, . . . , xn. Observe that for a tree s at the boundary of splittable states in S̃n only
a subset of its leaf nodes are splittable by this criterion. For instance, a leaf node with
no data points in its associated leaf box cannot be split further and a leaf box with at
least #n many points in its leaf box cannot be split further if the split will result in a
nonempty child box with fewer that #n points in it. We refer to the set of leaf boxes cor-
responding to this set of splittable leaf nodes of s as �̂(s) and note that �̂(s) ⊆ �(s) for all
s ∈ S̃n. We take #n to either be a constant, say 1 or 2, for all values of n in our simula-
tions and thereby ensure that S̃n is one of the largest finite state spaces. We can also al-
low #n to be a sublinear function of n, say #n = nα with an appropriate α < 1, in order to
parametrically control the size of S̃n. In all the simulations carried out here, we use this
#n-specified splitting rule and fix #n = 1 in order to work conservatively with a large
state space S̃n. The finite state space S̃n determined by such a #n-specified splitting
rule has advantages due to its data-dependent partitioning nature and thereby bet-
ter computational performance when compared to the exclusively n-dependent global
splitting rules based on mn, the maximal number of splits allowed or on δn, the max-
imal depth of a leaf node. We sometimes use these two globally determined boundary
of unsplittable states in logical conjunction with this #n-based data-dependent rule in
order to study the effects of δn and mn on the jointly determined state space S̃n. In
all simulation experiments of Section 4, we found that the effect of the #n-determined
state space S̃n is minimal on the performance of the posterior mean histogram esti-
mate, provided S̃n is large enough to contain partitions that can represent the under-
lying unknown density. We observe no significant change in integrated absolute errors
when #n = 0, 1, 2, 3 because states close to these boundaries have the most number of
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leaves with either 0 or #n points in their leaf boxes and such states are rarely visited
by our Markov chain due to the strong penalizing effect of the Catalan prior.

Base Markov Chain. Consider the stay-split-merge base Markov chain {Y(t)}t∈Z+ on
the state space S̃n with initial state Y(0) = s0. We propose to stay in the current state
with positive probability σ and move to another state with probability 1 – σ. If a move
is chosen, it can be a permitted bisection or a reunion with equally probability (1–σ)/2.
If a bisection is chosen, each splittable leaf node in the current state s has an equal
probability (1 –σ)/2|�̂(s)| of being bisected. Similarly, if a reunion is chosen, each cherry
node in s has an equal probability (1 – σ)/2|c(s)| of having its sibling nodes reunited to
itself. Then, the transition probabilities between any two states s, s′ ∈ S̃n are:

Q(s, s′) =

⎧⎪⎪⎨
⎪⎪⎩

(1 – σ)/2|�̂(s)| if s can be split once to get s′
(1 – σ)/2|c(s)| if s can be reunited once to get s′
σ if s = s′
0 otherwise.

(6)

The chain {Y(t)}t∈Z+ on the finite state space S̃n, that is obtained by the #n-specified
splitting rule with #n = 1 for instance, is irreducible since we can eventually go from
any state s to any other state s′ and vice versa by reuniting cherries to reach s0 from s
and then from s0 to s′ by selectively splitting leaves (in effect by reversing the reunion
operations that take you from s′ to s0). Note that any SRP state can be reached from
the root SRP s0 by a sequence of selective splits. The chain is also aperiodic since there
is a positive probability σ of staying in the current state. Therefore, the base chain has
a unique stationary distribution. This base chain {Y(t)} is more uniformly distributed
than the random walk base chain {X(t)} on the stay-split-merge graph of SRP states
but not as uniformly distributed as the uniform Metropolis-Hastings walk {Z(t)} with
base chain {X(t)} and uniform stationary distribution on S̃n. We find {Y(t)} to be better
in practice when compared to {X(t)} and {Z(t)}, the other base chains explored here.

Metropolis-Hasting Markov Chain. Using the irreducible and aperiodic base chain
{Y(t)}t∈Z+

on the finite state space S̃n with transition matrix Q in Eq. (6) and the
posterior distribution π given in Eq. (5), we can now proceed to construct a Metropolis-
Hastings chain {S(t)}t∈Z+ on S̃n with π truncated to S̃n as its stationary distribution
with the following transition probabilities:

P(s, s′) =

⎧⎨
⎩

Q(s, s′)a(s, s′) if s leads to s′ by a split or a merge
1 –

∑
s∈{z∈S:z�=s} Q(s, z)a(s, z) if s = s′

0 otherwise,

where the acceptance probability is

a(s, s′) := min

{
1,

π(s′)Q(s′, s)
π(s)Q(s, s′)

}
.

Gelman-Rubin Diagnostics. One of the difficulties with any MCMC algorithm
is to determine when convergence has taken place. We use the heuristic Gelman-
Rubin convergence diagnostic statistic [Gelman and Rubin 1992] to automatically
stop {S(t)} after trying to produce the desired number of post-burn-in thinned-out
samples from the desired stationary distribution π over S̃n. To obtain this heuristic
auto-stopping rule we run C parallel independent Metropolis-Hastings Markov
chains

(
{S1(t)}, . . . , {SC(t)}

)
for t ∈ {1, 2, . . . , M} of maximum allowed length M and

calculate R̂(t), the Gelman-Rubin convergence diagnostic statistic that gives the ratio
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of between-sequence variance to the within-sequence variance for a scalar summary
of the histogram states in the C chains up to time t. The heuristic Gelman-Rubin
diagnostic method is based on the idea that the sample variance of the scalar
summary within a single chain will be less than that in the combined sequences, if
convergence has not taken place. Gelman recommends that the sequences be run until
R̂(t) is less than 1.1 or 1.2 [Gelman and Rubin 1992]. We try to produce the required
samples from the chain after R̂(t) for the number of leaves gets below 1.1. Finally, the
algorithm stops, possibly without all the needed samples if all C chains have run for
the maximum length of M. We focus on the scalar summary of the SRP state that gives
the number of leaves. Our simple GR diagnostics was successful for some densities
but can be misleading for others. Therefore, we look at trace plots of log likelihood
values as well as the number of leaves of the current state to heuristically assess
convergence.

Initial Condition. If the Metropolis-Hastings chain {S(t)} is initialized far from the
states with high posterior mass then the mixing time can be prohibitively large. Choos-
ing an initial state S(0) = š with too few splits or too many splits can lead to poor
mixing of {S(t)}. Thus, we want a heuristic strategy to produce good initial states for
{S(t)}. Algorithm 2 is a simple histogram partitioning scheme that traverses through
S̃n by a sequence of selective bisections from the root node or some given SRP tree
containing the data. The leaf box for the next bisection is drawn uniformly at random
from argmaxxρv∈�̂(s) #xρv, the set of current leaf boxes containing the most data points.
Such draws are made using a randomized queue of the current leaf boxes prioritized
by the number of data points. This data-driven partitioning criterion is based on the
statistically equivalent blocks principle [Anderson 1966; Gessaman 1970] and priori-
tizes the splits on leaf boxes with the most data points. The splitting stops when we
leave S̃n. Finally, we initialize our Metropolis-Hastings chain S(t) from the state with
the maximum log-posterior among all the states visited by our InitSEBPQ. This initial-
ization strategy, coupled with monitoring the log-posterior and the number of leaves of
S(t) leads to reasonable estimates with small IAEs in all the simulation experiments
of Section 4. However, acceleration by InitSEBPQ is not necessary for simpler unstruc-
tured densities.

ALGORITHM 2: InitSEBPQ

input : (i) data x1, x2, . . . , xn ∈ R
d;

(ii) s // initial SRP
output : š to initialize the M-H MC {S(t)}.

initialize: S ← ∅ // a list to track SRP histograms

repeat
xv* ← Uniform(argmaxxρv∈�(s) #xρv) // sample a leaf box with most data

bisect xv* of s
update counts in the child nodes
S.append(s) // update list of states visited

until s ∈ S̃n;
return š ← argmaxs∈S log(posterior(fn,s))

4. SIMULATION RESULTS

We now present the mean integrated absolute error (MIAE) and standard error
(std. err.) for various sample sizes, densities and dimensions to empirically evaluate
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Table I. MIAE (std. err.) for n Samples from Uniform Density in Various Dimensions. 1000 samples
collected with thin-out rate of 50. A dash (-) indicates the lack of RAM to store the sample data

n 1D 2D 10D 100D 1000D
102 0.1014 (0.0655) 0.1006 (0.0659) 0.1225 (0.0670) 0.1408 (0.0711) 0.1187 (0.0771)
103 0.0380 (0.0231) 0.0333 (0.0221) 0.0294 (0.0178) 0.0330 (0.0204) 0.0386 (0.0231)
104 0.0118 (0.0066) 0.0121 (0.0090) 0.0123 (0.0067) 0.0115 (0.0061) 0.0121 (0.0075)
105 0.0035 (0.0020) 0.0040 (0.0025) 0.0038 (0.0023) 0.0042 (0.0025) 0.0034 (0.0023)
106 0.0011 (0.0006) 0.0012 (0.0006) 0.0013 (0.0006) 0.0011 (0.0007) 0.0012 (0.0010)
107 0.0004 (0.0002) 0.0004 (0.0002) 0.0003 (0.0002) - -
108 0.0001 (0.0001) 0.0001 (0.0001) - - -

Fig. 5. A typical run of two Metropolis-Hastings chains based on 106 data points from the 2D-uniform
density. The chains have been started from the root node and a state with 1247 leaf nodes. 10000 histogram
samples were collected with a thin-out of 10 after burn-in at time step 44861.

the performance of our estimator. All of our programs were run on a machine with
dual Intel X5670 2.93Ghz 6 core Xeon CPUs, 48GB of RAM, 2 x 320GB 15K SAS hard
drives and OpenSuSE 11.2 (x86 64) OS. Mean integrated absolute errors and their
standard errors were obtained from 25 replicate data sets for each density. We ob-
tained the posterior mean histogram estimate by averaging over 10000 samples from
our Metropolis-Hastings Markov chain {S(t)} after burn-in with a thin-out rate of 10
to 50 samples. We determined burn-in time and thin-out rate heuristically from di-
agnostic and trace plots and emphasize that our method is not averaging perfectly
independent samples from the posterior distribution. The two types of densities (un-
structured and structured) that we estimate are described in the next two subsections.

4.1. Multivariate Uniform Densities

We first test the performance of our density estimator with data simulated from d di-
mensional uniform (dD-uniform) density, that is, the uniform density on [0, 1]d. For our
simulations summarized in Table I, we worked with the uniform density in dimensions
1D, 2D, 10D, 100D, and 1000D for various sample sizes as shown in Table I. A dash (-)
is used in Table I to indicate machine memory (RAM) limitations for the storage of the
required data.

We start the two chains with initial states as the root box (only one leaf node) and
a state with a large number of leaf nodes respectively, so that we have two starting
states that are “far” from each other. Histogram samples from {S(t)} are thinned out
and collected for averaging after R̂(t) gets below 1.1 Figure 5(b) shows the convergence
diagnostic plots for the 2D-uniform density. The trace plots for the number of leaves
show that the chains eventually hover around states with similar number of leaves
(between 1-10 leaves). The posterior mean histogram estimate is given by Figure 5(a).
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From Table I, it is clear that as the sample size n increases from 102 to 108 in
multiples of 10 the MIAE decreases by at least a factor of 2 across all dimensions
d ∈ {1, 2, 10, 100, 1000}. Observe how the MIAE of the density estimate of the uniform
random vector on the hypercube [0, 1]d is independent of the dimension d. This is
because the target density being estimated for any d is the SRP histogram fn,s0 (x) =
1[0,1]d (x) at the root SRP s0 ∈ S̃n. Observe that our posterior mean estimate is so close
in MIAE to the true density and the chains initialised far from s0 quickly converge
to it due to the penalizing effect of our Catalan prior on states with unnecessarily
high number of leaves. We are not aware of other multivariate density estimators that
can handle the sample sizes and dimensions in Table I for such highly unstructured
data from this family of uniform densities on [0, 1]d. Thus, we seem to have found an
estimator that contradicts the following pessimistic view in Moore [2000]: “If there is
no underlying structure in the data (e.g. if it is uniformly distributed) there will be
little or no acceleration in high dimensions no matter what we do.” On the other hand,
as the two families of structured densities in the next section show, our estimator is
not immune to the curse of dimensionality when there is underlying structure in the
data.

4.2. Multivariate Gaussian and Rosenbrock Densities

Approximated Functions. We now test the performance of our density estimator with
data simulated from a refining family of approximations to multivariate Gaussian and
Rosenbrock densities. These multivariate densities were chosen for their underlying
non-uniform structures as opposed to the uniform densities in 4.1. The Rosenbrock
density in d dimensions over some box x ∈ IR

d is obtained by appropriately normaliz-
ing the Rosenbrock shape given by:

rd(x) = exp

⎛
⎝–

d∑
j=2

(
100

(
xj – x2

j–1

)2
+
(
1 – xj–1

)2
)⎞
⎠ , (7)

for d ≥ 2. In our simulation studies, the standard 1D-, 2D-, and 5D-Gaussian densi-
ties and the 2D- and 5D-Rosenbrock densities are approximated by simple functions
in order to simplify the multivariate integrations during absolute error evaluations,
especially in higher dimensions.

The multivariate Gaussian and Rosenbrock densities are approximated using simple
functions over SRP partitions and simulated from corresponding mixtures of uniform
densities using interval analytic methods of Sainudiin and York [2005]. Briefly, we use
an RP tree s with root box representing the domain of the target density f . The sub-
boxes associated with the leaves �(s) of the tree represent a partition of the domain. The
range of the target density f over each leaf box xv in �(s) is enclosed rigorously in an in-
terval yv, that is, yv :=

[
yv, yv

]
⊇ {f (x) : x ∈ xv}, using interval arithmetic [Moore 1967].

Each leaf box xv is prioritized for the next bisection on the basis of vol (xv) ×
(

yv – yv

)
,

that is, the uncertainty in the enclosure of μ(xv) =
∫
xv

fdλ. The bisection stops once the
partition has exactly Λ leaves and the target density at the midpoint of each leaf box
is used to construct a simple function approximation to the target density. Finally, this
simple function is normalized to give a weighted mixture of uniform densities over the
RP tree with Λ leaf boxes. We can easily produce perfect samples to simulate data from
this normalized simple function approximation of the target density. The fundamental
theorems of interval analysis guarantee that the simple function converges uniformly
to the target density as the mesh approaches 0 and Λ = |�(s)| approaches ∞, provided
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Table II. MIAE (std. err.) for n Samples from Approximated 1D-, 2D- and 5D-Gaussian Densities, 1D- , 2D- and
5D- Rosenbrock Densities. 10000 Samples Were Collected

Λ n Standard Gaussian densities Rosenbrock densities
1D 2D 5D 2D 5D

102 104 0.0568 (0.0057) 0.0826 (0.0076) 0.0587 (0.0015) 0.0322 (0.0053) 0.0054 (0.0077)
105 0.0256 (0.0019) 0.0231 (0.0022) 0.0144 (0.0005) 0.0102 (0.0022) 0.0009 (0.0012)
106 0.0083 (0.0003) 0.0075 (0.0006) 0.0038 (0.0004) 0.0032 (0.0009) 0.0002 (0.0003)
107 0.0025 (0.0002) 0.0023 (0.0002) 0.0011 (0.0001) 0.0023 (0.0002) 0.0001 (0.0001)

104 104 0.0583 (0.0054) 0.1650 (0.0042) 0.5137 (0.0070) 0.3620 (0.0111) 0.3186 (0.0106)
105 0.0274 (0.0015) 0.0826 (0.0076) 0.2509 (0.0026) 0.1821 (0.0053) 0.0885 (0.0030)
106 0.0128 (0.0004) 0.0508 (0.0005) 0.0771 (0.0009) 0.0797 (0.0006) 0.0265 (0.0008)
107 0.0060 (0.0002) 0.0256 (0.0003) 0.0222 (0.0003) 0.0063 (0.0001) 0.0086 (0.0003)

106 104 0.0565 (0.0053) 0.1673 (0.0046) 0.6467 (0.0051) 0.3717 (0.0103) 1.0190 (0.0059)
105 0.0274 (0.0011) 0.0932 (0.0002) 0.4655 (0.0020) 0.1982 (0.0067) 0.7250 (0.0011)
106 0.0129 (0.0006) 0.0533 (0.0005) 0.3274 (0.0009) 0.1102 (0.0006) 0.4812 (0.0012)
107 0.0060 (0.0001) 0.0304 (0.0002) 0.2292 (0.0034) 0.0608 (0.0049) 0.3302 (0.0004)

Fig. 6. 2D-Gaussian: Plots of the exact density and its approximations with Λ = 100, 10000, 1000000.

Fig. 7. 2D-Rosenbrock: Plots of the exact density and its approximations with Λ = 100, 10000, 1000000.

the target density is given by a locally Lipschitz arithmetical expression [Neumaier
1990, 2.1.1-3]. The Λ in Table II denotes the number of leaf nodes used to approximate
the densities. Figures 6 and 7 show 2D-Gaussian and 2D-Rosenbrock densities and
their Λ-specific approximations.

These simple approximating densities were chosen for two fundamental reasons:
(i) to keep the true density that the data is simulated from within the class of SRP
histograms for easier interpretation of our simulation results and (ii) to compute the
exact IAE by taking advantage of SRP histogram arithmetic (for details, see Harlow
et al. [2012]).

However, we are not simulating from the Gaussian and Rosenbrock densities any
longer but from their Λ-specific approximations. To quantify the extent of these
approximations we use an estimated Hellinger distance between the original target
density and its Λ-specific approximation. The Hellinger distance can be estimated
from the first two sample moments of each distribution. The sample moments for
the Rosenbrock densities are obtained from the Moore rejection sampler in Sainudiin
and York [2005]. Figure 8 shows the estimated Hellinger distances for various
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Fig. 8. Hellinger distances for the Gaussian (solid line) and Rosenbrock (dashed lines) densities.

Gaussian (solid lines) and Rosenbrock (dashed lines) densities from their Λ-specific
approximations based on 107 samples. As the dimension increases, the Hellinger
distance increases for each density as well, but decreases and eventually stabilizes
as Λ increases. Overall the Hellinger distances for the more complex Rosenbrock
densities are higher than that of the centrally concentrated Gaussian densities across
dimensions. The curse of dimensionality for a non-uniform density thus manifests
itself in terms of the size of Λ needed to approximate it, in a manner that depends
on the complexity of its underlying structure. The estimated Hellinger distances in
Figure 8 highlight the limitations of using Λ-specific SRP partitions to approximate
a desired density, especially as the dimension increases. However, the simulation of
data from the approximations allows us to compute the integrated absolute errors
exactly in high dimensions using arithmetic over trees representing SRP histograms.

From Table II, it is clear that as the sample size n increases from 102 to 107 in mul-
tiples of 10 the MIAE decreases in each Λ-specific approximation of the multivariate
Gaussian and Rosenbrock target densities. Once again, we simulate n data points from
each Λ-specific approximation given by an SRP histograms and efficiently compute the
IAE of our Bayesian SRP histogram estimate. We get the MIAE and standard error
from 25 replications. The Hellinger distance of each Λ-specific SRP histogram from
the target (Gaussian or Rosenbrock) density is given in Figure 8. Observe that the
Hellinger distance of the λ-specific approximation for the Rosenbrock density is much
larger than that for the Gaussian density for each Λ. Thus, the Rosenbrock density
has a higher structural complexity than the Gaussian density in terms of requiring
an SRP histogram with more leaf boxes or Λ to approximate it to a given Hellinger
distance. We ensured that when Λ = 106 the Hellinger distance to Gaussian or Rosen-
brock density is well below 0.05 in all our simulation experiments. The MIAE values
clearly show that the dimension as well as the structural complexity of the density
determines the performance of our estimator. We use trace plots of the log-posterior
and the number of leaf nodes shown in Subfigures 9(c) and 9(d) to heuristically de-
termine convergence of the chain. Notice how the IAE for current histogram state of
the chain (gray) is worse than that of the current average histogram state (black) in
Figure 9(b).
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Fig. 9. The 2D-Gaussian density and its resulting posterior mean histogram estimate with 6022 boxes
with IAE = 0.0502. The starting state has 1404 leaf nodes. Burnin is taken at time step 500000 and 10000
samples are collected with a thin-out of 10.

5. DISCUSSIONS AND CONCLUSIONS

The algorithms described in this article to obtain the posterior mean of adaptive, regu-
larly paved, multivariate histograms are implemented in MRS: a C++ class library for
statistical set processing and publicly available under the terms of the GNU General
Public License from http://www.math.canterbury.ac.nz/ r.sainudiin/codes/mrs/.
We have shown that the algorithm performs well for massive data problems in high
dimensional settings using simulations from multivariate uniform densities and mix-
tures of uniform densities that approximate multivariate Gaussian and Rosenbrock
densities. We chose mixtures of uniform densities to simplify the multivariate integra-
tions in absolute error evaluations. Given that the space of regular paving histograms
with their countably infinite family of partitions in S0:∞ are dense in the space of
continuous densities over the root box, one can get uniformly close to any continuous
density when given enough data points from the space of SRP histograms. The rate of
uniform convergence, in terms of the number of splits, to a particular density within
a given class, from the space of SRP histograms for a given sample size n would shed
light on the statistical efficiency of our estimator. However, we are able to achieve low
integrated absolute errors because of the large sample sizes we assume in our mas-
sive data setting. Such a large number of data points allow our Markov chains to dive
as deep as necessary into the SRP space of trees to get to the partitions of the true
densities that are generating the data.

We are currently using heuristics for determining when the chain has converged. It
is not straightforward to produce perfect samples from the posterior distribution on the
state space of adaptive SRP histograms due to its size and combinatorially complicated
transition structure. We used one prior distribution in this study and show that the
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simulations are reasonably good when the size of the data is large. The effect of other
prior distributions on the posterior (especially for smaller sample sizes) and other base
chains on mixing time should be further explored.

The methods developed in this project consider only partitions formed by successive
bisections of the data space on the widest dimension of the box being bisected. There
are two important constraints in this: first, we consider only bisections, or division
of a box into two equal-volume halves. Secondly, the choice of basis, or dimension to
split on, is not directly data driven. These constraints give the partitions very attrac-
tive qualities from the point of view of creating binary tree structures to represent
the histograms, and also mean that the process of adding and averaging histograms
is relatively straightforward. More crucially, this simple bisecting strategy that only
depends on the box as opposed to the structure of the data points it contains allows
us to easily obtain integrated absolute errors for our estimates from the Λ-specific ap-
proximations to the true density with SRP trees. Once we allow more data-dependent
bisecting strategies, which could potentially improve the partitioning scheme, as dis-
cussed below, we lose our efficient IAE computations in high dimensional settings – a
feature that allows us to study performance measure of our estimators in the universal
IAE scale of [0, 2].

For any root box xρ ∈ IR
d, a typical nested sequence of Pólya tree partitions with

the uniformly distributed base measure is the sequence

{sdi di ···di di}∞i=0 , sdi di···di di ∈ S2di–1, xρ ∈ IR
d .

Posterior inference of density estimates based on Pólya trees [Lavine 1992] for exam-
ple can be strongly influenced by the choice of partition. This is a direct consequence
of the fact that all random distributions from a Pólya tree have a common partition in
a nested sequence of partitions. Extensions, such as a mixture of Pólya trees [Lavine
1992] and randomized Pólya trees [Paddock et al. 2003], alleviate this problem by
allowing the random distributions to have different partitions. Our space of SRP his-
tograms S̃n ⊂ S0:∞ is quite different from the partition generated by a nested sequence
of Pólya trees because it contains about

∑2di–1
k=0 Ck many histograms with distinct par-

titions in S0:2di–1 that are made of splits no larger than 2di –1 such that they are not all
nested in the strict Pólya sense. Our density estimator is the posterior mean over this
SRP histogram space, and therefore is not reliant on a single partition of the sample
space. Thus, our partitioning scheme and the space of histograms in S0:∞, that are
dense in the space of continuous densities on xρ, seem not to influence the posterior
estimates too much at least for the target densities in our simulation studies. The key
motivation for our method is the ability to perform arithmetic over density estimates
with tree-based partitions. A thorough study of the effect of prior distributions would
be a natural sequel to this work.

A current limitation of our posterior mean density estimate over SRP histograms
is the approximation of the likelihood of the data given an s by the maximum likeli-
hood value from the histogram on �(s), the leaf boxes of s. A fully Bayesian approach
involving a prior distribution on a class of simple functions over leaf boxes of s that
are non-negative and integrate to 1 by an adaptation of Dirichlet distributions used
in the constructions of classical Pólya trees [Lavine 1992, 1994] would be a natural
extension of our estimator. Such a Dirichlet process over SRP histograms would have
the arithmetical efficiency of the dense space of SRP histograms as well as the fully
Bayesian setting of classical Pólya trees and their mixtures. We hope that research in
this integrative direction will continue.

Our density estimator copes well with high dimensional data with little structure,
while others [Gray and Moore 2003] cope well with data with underlying structure.
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Clearly, getting a density estimator that can cope well with both structured and
unstructured data is harder. We suggest some trivial and non-trivial extensions that
will help SRPs to better cope with structured high dimensional data. If we use the
sample mean and the sample variance in each SRP node, then we can make the bi-
secting procedure for SRPs much closer to that of the multiresolution kd-trees of Gray
and Moore [2003] as follows. We can now bisect a leaf box along the first coordinate
with largest sample variance either at the mid-point or at the sample mean at this
coordinate. Note that plane binary trees still represent the SRPs formed under this
new way of bisecting and therefore SRP trees are still closed under union operations.
Therefore, averaging operations can be done with minor modifications. However, once
we allow bisections to be data-dependent as opposed to being box-dependent, we
cannot easily obtain integrated absolute errors for our estimates from the Λ-specific
approximations to the true density with SRP trees. For structured data in dimensions
larger than 10, the ball trees of Gray and Moore [2003, Sec. 3.2], which replace the
boxes in kd-trees with centroids and spheres, and built with the anchor’s hierarchy
[Moore 2000], perform significantly better by growing sub-exponentially in the number
of dimensions. It would be interesting to extend arithmetic over densities represented
by ball trees. Given that plane binary trees can represent ball trees as well as SRP
trees, we can see that ball trees just like SRP trees are closed under union operations.
However, arithmetic operations with ball trees may need more refined notions than
the space partitions used for SRP trees. We hope that new research will also continue
in the direction of arithmetic for ball trees.
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