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ABSTRACT

In this paper we propose a set of mobility metrics, which
are employed in the generation of supervised classification
learning methods through the decision tree algorithm, with
the goal to recognize user movement patterns in mobile ad
hoc networks. Hundreds of scenarios produced by several
well-known mobility models were employed for training and
testing the supervised algorithms. The most suitable clas-
sification model showed an accuracy of 99.20 % and Kappa
index of 0.991, which indicates a high level of agreement
between the classification model and real classification.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

; C.4 [Performance of Systems]: [Measurement tech-
niques]

General Terms

Theory

Keywords

Mobility model, mobility metric, pattern recognition, super-
vised classification, learning algorithm

1. INTRODUCTION
The study of human mobility applied to the mobile com-

munications industry is among the leading topics of research
nowadays. Several theoretical and experimental studies have
demonstrated that user mobility is an essential factor in
the performance of protocols from different network lay-
ers [1,7]. User’s movement patterns can be described by mo-
bility models. In recent years, several mobility models have
been proposed for modeling individual and group movement
in mobile ad hoc networks (MANETs).
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In order to compare the various possible mobility patterns,
a range of mobility metrics have been designed recently.
They aim at measuring user motion characteristics, such
as the level on movement randomness, the degree of spatial
movement dependence among nodes, and the existence of
geographic restriction on the scenario (e.g., streets) [3].

In this context, a prominent application of mobility met-
rics is to assist in the construction of inference models that
are able to classify any movement trace into some well-
known mobility model (i.e., by choosing the mobility model
more capable of reproducing the characteristics of motion
described in the trace file). Such classification models can be
employed, for example, in determining transportation modes
of mobile users (e.g., stationary, walking, riding, or driving),
which can be used by adaptive protocols and context-aware
applications [15,19].

After detailing the concepts of mobility models and met-
rics (Section 3), we propose a rich set of new mobility metrics
(Section 4) that are employed together on devising some su-
pervised classification methods for user mobility traces (Sec-
tion 5.1). The comparison of the classification models, as
well as the results and discussion of the selected models are
described in Section 5.2. The conclusions of the study are
outlined in Section 6.

2. RELATED WORK
Mousavi et al. [14] used the metrics degree of spatial de-

pendence (DSD), degree of temporal dependence (DTD),
and the relative speed in the development of a classifier
model based on the k-nearest neighbor algorithm. More-
over, the mobility models Random Direction, RandomWalk,
Gauss-Markov, RPGM, and Manhattan were employed for
training and testing the model. Nevertheless, the use of DSD
and DTD metrics has been discouraged due to their critical
limitations as shown in one of our recent studies [6].

Mun et al. [15] proposed a classification model for deter-
mining the type of user movement based on spatial-temporal
characteristics of GSM data (number of unique cell IDs and
residence time in a cell footprint) and WiFi beacons (sig-
nal strength variance and duration of dominant access point
in view). The collected data were used to generate a deci-
sion tree able to classify user movement onto three states:
stopped, walking, and driving.

A step forward was taken by Reddy et al. [19] who have de-
veloped a system able to classify the transportation mode of
a user who carries a mobile phone with built-in GPS receiver.
There are five identifiable transportation modes: stationary,
walking, running, biking, or in motorized transport. The
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Figure 1: Mobility model seen as an input/output
process.

authors also used a decision tree as the classification model,
which achieved an accuracy level of 93.6 %. The former and
the last works differ from this paper since instead of classi-
fying user movements (i.e., traces) into a specific movement
state or type of transportation mode, our model takes into
account mobility metrics in order to classify traces into a
well-known mobility model (i.e., by choosing the mobility
model more capable of producing similar traces).

3. BACKGROUND

3.1 Mobility Models
A mobility model can be seen as an I/O process (Figure

1). The input, 〈Mi〉, consists on mobility model’s parame-
ters such as network lifetime, the length and width of the
geographic area, network size (i.e., number of nodes), and
the average node speed. The output, 〈φ〉, consists on mobil-
ity trace files each containing details about the movements
of all nodes during the network lifetime. From this file, one
can compute mobility metrics.
The first generation of mobility models for MANETs were

introduced in the late 90’s. The main representative for that
generation is the Random Waypoint (RWP), which is still
broadly used in simulation-based works. In the Random
Waypoint a node randomly chooses a destination point and
a constant speed at which it moves until it reaches that
destination. After that, the node may stay still for some
time (in case a pause time is defined) before starting a new
movement.
Among other first generation models, there are the Ran-

dom Walk, Random Direction, RPGM [9], Gauss-Markov
[13], and Manhattan [3]. Random Walks is based on a ran-
dom choice of direction and speed, with no pause time. In
Random Direction, nodes walk until they reach the simula-
tion boundary, where they stop for some time, and then se-
lect a new target walking direction. Using stochastic process
to model node speed, Gauss-Markov overcomes a limitation
(i.e., abrupt speed changes) found in the previous random
models. Lastly, in the Manhattan model nodes follow spe-
cific paths (e.g., streets) distributed in a grid-based scenario.
However, all the aforementioned models are considered syn-
thetic (i.e., based only on mathematical modeling).
The second mobility model generation started around year

2005, when real user movement traces were used for build-
ing and validating them. Among such models, there are the
mobility model based on communities (CMM) [17], SLAW
(Self-similar Least Action Walks) [12], and Smooth [16].
CMM is based on the theory of social networks, taking into
account how people come together and move according to
their social relations, which is estimated from what the au-
thors call the social attractiveness.

Figure 2: A new classification of mobility metrics
for MANETs.

SLAW is a complex model that leverages on several statis-
tical features found in the evaluation of real human walks,
such as pause time power-law distributions, inter-contact
time, and trip length, as well as restriction on node’s mo-
bility within confined areas, and fractal waypoints. Smooth
was proposed as a simple alternative to generate realistic
traces similar to SLAW, but using simpler input parameters.
A good survey of mobility models is covered by Roy [20].

3.2 Mobility Metrics
After several mobility models had been proposed, there

was a need for better analyzing and comparing them. For
this reason, mobility metrics were introduced aiming at eval-
uating any mobility model, and capturing features of user
movement patterns.

The metrics may be classified according to the type of in-
formation employed in their computation. Many of them are
derived from graph theory, such as the vertex degree corre-
sponding to the number of a node’s neighbors in a MANET.
Other metrics, which are based on link/path measurements
between pairs of nodes, also belong to this group, which is
called graph-based mobility metrics. Another group con-
sists on velocity-based metrics, which employs measures re-
lated to the velocity vector (e.g., magnitude, angle), such
as the relative speed [3]. If the metric takes into account
the distance between nodes as the key computation factor,
it is classified as distance-based metric, such as the degree
of node proximity [5]. Likewise, if time is the prime factor,
the metric is considered a time-based metric (e.g., average
link lifetime). Lastly, the metrics that address jointly the
node location and network area are labeled as spatial met-
rics. Figure 2 depicts this classification.

4. NEW MOBILITY METRICS
Before defining the metrics we first present the basic ter-

minology used hereafter. N denotes the number of nodes in
the wireless mobile network, T is the lifetime of the network,
in units of time, and R is the radio communication range.
The main movement variables of a node are depicted in Fig-
ure 3. Next, we present the new mobility metrics grouped
according to the proposed classification.

4.1 Velocity-based metrics

4.1.1 Speed-Angle Rate (SAR)

Consider that from time step t = 0 to t = T a node (i.e.,
mobile user) will present a set of values of magnitude (speed)
and angle of its velocity. Let

〈

V i
〉

=
{

vi1, v
i
2, · · · , v

i
p−1, v

i
p

}

be the sequence of the p-th speeds of node i during a period
of time, where vik 6= vik+1, k, p ∈ N, 0 < k ≤ p−1, and p ≥ 1.
Let also

〈

Ai
〉

=
{

ai
1, a

i
2, · · · , a

i
q−1, a

i
q

}

denote the sequence
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Figure 3: Illustration of a node movement.

of q direction angles that node i had during the same period
of time, such that ai

k 6= ai
k+1, k, q ∈ N, 0 < k ≤ q − 1, and

q ≥ 1.
Given that the minimum time that a speed or angle change

occurs is of one time-stamp, then the maximum amount of
changes of speed/angle is T . Thus, the cardinality of the
sets

〈

V i
〉

and
〈

Ai
〉

is always less than or equal to T (i.e.,

〈V i〉, 〈Ai〉 ≤ T ). Since 〈V i〉 = p and 〈Ai〉 = q, the rate
p

q
refers to the amount of times the node speed changes for

each angle change. As both p and q varies from 1 to T, it
follows that 1

T
≤ p

q
≤ T . We call p

q
as the Speed-Angle Rate

(SAR).
In scenarios where the user’s speed varies more frequently

than the angle, SAR > 1, which is the default case (e.g., in
vehicular mobility the vehicle speed changes several times
along a straight line segment). On the other hand, if the
node speed remains constant even in presence of direction
changes (i.e., curves), then SAR < 1. Although unlikely
in realistic scenarios, the third and last case, SAR = 1,
is valid in many synthetic mobility models (e.g. Random
Waypoint), where a new speed and angle are selected for
each new movement, which remain constant till the end of
the trip.

4.1.2 Speed and Angle Coefficient of Variation (SVC
and AVC)

There are several units for speed measure, angle, and time
(Table 4.1.2). With regards to speed, if the mobile node is a
pedestrian, m/s is often more appropriate, whereas Km/h
or mph are used for ground vehicles. Moreover, the angle of
a vector can be expressed in degrees, radians, or grads, while
the time can be measured in seconds (typically in MANETs)
or in minutes (more adequate for Delay Tolerant Networks,
DTNs). Due to this diversity, velocity-based mobility met-
rics should be independent of unit (dimensionless), in order
to avoid misleading conclusions.

Mobile node’s variables Usual measurement units

speed m
s
, Km

h
, Mph

direction angle degrees, radians, grads
pause time seconds, minutes

One of the measures used to characterize the variability
of a variable that can be represented by different units of
measure is the coefficient of variation (CV), which is defined
as the ratio of the standard deviation to the mean. CV
is a normalized measure of dispersion and is free of scales
(i.e., dimensionless). Since the magnitude and angle of the

velocity are ratio variables, the CV can be used without
restrictions.

Let µv denotes the average between all nodes’ speed dur-
ing T , and σv be the standard deviation of these values. The
speed coefficient of variation (SCV) is given by σv/µv.

Analogously, the angle coefficient of variation (ACV) is
given by σa/µa.

4.2 Distance-based Metrics

4.2.1 Average Trip Length (ATL)

The displacement between two consecutive waypoints of a
node is known as a trip (also known as a flight). Let

〈

W i
〉

=
{

wi
1, w

i
2, · · · , w

i
n−1, w

i
n

}

be the waypoints of node i during a
period of time (as illustrated in Figure 3). The displacement
of the trip from wk to wk+1 is given as follows:

ATL(wi
k, w

i
k+1) = Dist((xi

wk
, yi

wk
), (xi

wk+1
, yi

wk+1
)) (1)

where xi
wk

and yi
wk

are the x and y-coordinate of node i at

the k-th waypoint, and Dist(wi
k, w

i
k+1) the Euclidean dis-

tance between two consecutive waypoints.

4.2.2 Average Path Length (APL)

We define pathlength as the total distance accomplished
by a node between two consecutive waypoints. In some mo-
bility models, as in the Random Waypoint, the displacement
between two waypoints will be equal to the distance between
them (i.e., ATL = APL). This occurs because nodes always
keep the same speed and direction angle until reach the next
waypoint. Obviously, independent of the movement behav-
ior, ATL ≤ APL.

Let twi

k

and twi

k+1
be the time steps when node i reaches

the k-th and (k+1)-th waypoints. The total distance trav-
eled by i between wi

k and wi
k+1 is as follows:

APL(wi
k, w

i
k+1) =

t
wi

k+1
∑

j=t
wi

k

Dist((xj , yj), (xj+1, yj+1)) (2)

4.3 Temporal Metrics

4.3.1 Pause time Variation of Coefficient (PVC)

This metric is computed analogously to the speed coef-
ficient of variation. If µp is the average node pause time
between all nodes during the network lifetime, and σv the
standard deviation, we have that CV P = σp/µp.

4.3.2 Relative Link Duration (RLD)

Link duration (LD), also known as link lifetime and con-
tact time, is a well-known metric that refers to the total
amount of time where there is communication between pairs
of nodes; i.e., when nodes are distant from each other up to
R meters. However, LD is an absolute value, which value
depends on the network lifetime (T). A good mobility metric
should not rely on a single input parameter. For example,
one should expect LD in a group-based mobility model (e.g.,
RPGM) to be greater than LD for an individual random
mobility (e.g., RWP). However, if we compare a scenario of
1000 seconds of a RWP mobility trace file with a scenario of
100 s of RPGM trace file, LD is likely to be greater in RWP
compared to RPGM. To avoid this drawback, we propose
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Figure 4: Node Spatial Distribution in a square NxN
matrix (N= number of nodes).

the relative link duration (RLD), which is equal to the ratio
between LD and the network lifetime T .

4.4 Spatial Metrics

4.4.1 Degree of Network Spatial Distribution (DNSD)

Let D = [ci,j ], 1 ≤ i, j ≤ N , denotes a square matrix N ×
N , where N is the number of nodes in the network. Let us
assume that ci,j is a rectangular region (cell) in the scenario
where there may be a number between 0 to N nodes. Matrix
D represents the node spatial distribution in the network.
Formally,

D =

∣

∣

∣

∣

∣

∣

∣

c11 c12 · · · c1n
...

...
. . .

...
cn1 cn2 · · · cnn

∣

∣

∣

∣

∣

∣

∣

Figure 4 shows the node distribution at a certain time.
The additional row and column matrices in the figure ex-
press the horizontal and vertical node distribution, respec-
tively. These matrices are called Horizontal Distribution
Matrix (HDM) and Vertical Distribution Matrix (VDM),

where [h1,j ], 1 ≤ j ≤ N and h1,j =
∑N

i=1
ci,j and MDV =

[hi,1], 1 ≤ i ≤ N and hi,1 =
∑N

j=1
ci,j .

Taking into account this representation, the lower and up-
per bounds of DNSD will occur in cases of minor and major
uniformity, respectively. The DNSD is upper bound if all
elements of HDM and VDM are equal to 1, meaning that in
each row and column should exist exactly one node. On the
other hand, the lower bound is reached when all nodes are
in the same cell. An example of lower bound configuration
is given below.

D =

∣

∣

∣

∣

∣

∣

∣

N 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∣

∣

∣

∣

∣

∣

∣

Thereby, let L = [c1,j ], c1,j = 1, 1 ≤ j ≤ N be a row
matrix wherein all values equal to 1. Analogously, let C =
[ci,1], ci,1 = 1, 1 ≤ i ≤ N be a column matrix wherein all
values are also equal to 1. Thus, the vertical distribution
deviation is given as the difference between the matrices

VDM and C (in absolute terms):
∣

∣

∣

∣

∣

∣

∣

∣

∣

N
0
...
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
1
...
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

(N − 1)
1
...
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

The sum of the vertical deviation is equals to (N − 1) +
(N − 1).1 = 2(N − 1). Likewise, the sum of horizontal
deviation is also 2(N − 1). As a result, the total deviation
of node distribution is equal to 4(N − 1). Thus, we define
the degree of spatial distribution at time t as follows:

DNSD(t) = 1− log(DEV (t) + 1)/ log(MAX + 1) (3)

where MAX = log(4(N − 1)) is the maximum theoretical
deviation of node distribution, and DEV (t) is the sum of all
elements of HDM and VDM matrices at time step t. The
DNSD value will be the average between DNSD(t), 0 < t ≤
T (e.g., Figure 4 DNSD(t) = 1 − log(14/36) ≈ 0, 59). The
use of a logarithmic scale is suitable due to the wide range
of possible values1.

4.4.2 Degree of Spatial Accessibility (DSA)

Considering the same modeling employed for computing
DNSD, the degree of spatial accessibility is given as the pro-
portion of visited cells by the total number of cells. Note
that a cell c(i, j) is said to be visited if at least one node was
placed in the cell at some moment.

In geographic restricted mobility models, there are regions
on the map where a node can never be. Consequently, the
DSA will be lower in those models than in random models
(e.g., Random Waypoint), where a node may be anywhere.
Thus, the benefits of this metric are twofold: a) to distin-
guish between geographic restricted and geographic unre-
stricted mobility models, and for somehow quantifying the
user movement freedom level for a given scenario.

Let x(i, j) be an indicator random variable that informs
whether a cell was visited by at least one user, which means
that x(i, t) = 0 if c(i, j) = 0 or x(i, t) = 1 if c(i, j) > 0. Thus,
we define the degree of spatial accessibility of a network at
time t as follows:

DSA(t) =

∑N

i=1

∑N

j=1
x(i, j)

N2
(4)

4.5 Graph-based metrics

4.5.1 Relative Node Degree (RND)

The node degree (ND) represents the number of neighbors
of a node, having a direct impact on the analysis of mobile
networks. If G(i, t) denotes the node degree of node i at
time t, N the network size, and T the network lifetime, ND
is defined as follows:

ND =
1

N · T

N
∑

i=1

T
∑

t=1

G(i, t) (5)

However, since ND is an absolute value, it seems not ap-
propriate for mobility classification purposes. For instance,
a scenario provided by a random mobility model may show

1It can be proven that the number of non-negative integer
n x n matrices with sum of elements equal to n is given by

the formula
(

n2
+n−1

n

)

http://oeis.org/A054688.
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greater ND than a group-based model, depending on the
network size (N) and area (A). For this reason, we propose
the definition of a relative and normalized node degree met-
ric, based not only on the number of neighbors, but also
on N and A. Let ρ be the node density of the network, de-
fined as N/A. Considering an homogeneous random node
distribution in a wireless network, the expected number of
neighbors of a node is ρπR2−1 [4]. Hence, the relative node
degree (RND) is defined as follows:

RND =
ND − (ρπR2 − 1)

(N − 1)− (ρπR2 − 1)
(6)

=
ND − (ρπR2 − 1)

N − ρπR2
(7)

where (N-1) is the maximum node degree. RND is a nor-
malized metric within interval [0, 1], with lower bound when
RND is equal to the expected node degree in a completely
homogeneous network node distribution, and upper bound
when RND = N − 1; i.e., when all nodes are always neigh-
bors to each other.

4.5.2 Neighborhood Probability (NP)

NP represents the probability that two randomly selected
nodes of the network are neighbors at an arbitrary instant
of time. In a low node density network, NP should present
lower values than in scenarios with a higher node density.
Taking E(i, j, t) as a boolean variable equal to 1 when there
is a communication link between nodes i, j, and 0 otherwise,
the NP between them is given by the equation 8, whereas
the NP of the network is computed according to equation 9.

PCN(i, j) =
1

T

T
∑

t=1

E(i, j, t) (8)

PCN = 100×
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

PCN(i, j) (9)

4.5.3 Degree of Link Changes (DLC)

The number of link changes (LC) for a pair of nodes i and
j is the number of times the link between them transitions
from down to up [3]. Let E(i, j, t) be a boolean variable equal
to 1 when there is a communication link between nodes i, j
and 0 otherwise. Additionally, let E(i, j) denotes a boolean
value that is equal to 1 if there was at least one communica-
tion link between i and j during the network lifetime, and 0
otherwise. Thus, LC is define as follows:

LC(i, j) =
1

P

N−1
∑

i=1

N
∑

j=i+1

T
∑

t=1

C(i, j, t) (10)

where P is the number of node pairs i, j such that E(i,j) =
1, and C(i,j,t) = 1 if E(i,j,t − 1) = 0 and E(i,j,t) = 1 or
E(i,j,t− 1) = 1 and E(i,j,t) = 0.
However, as the ND drawback aforementioned, LC share

a similar limitation as it is an absolute value. We propose
a relative and normalized link change metric, what we call
the degree of link changes (DLC):

DLC =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

LC(i, j). (11)

5. CLASSIFICATION MODEL OF MOBIL-

ITY PATTERNS

5.1 Materials and Methods
Ten mobility models were used for constructing the clas-

sification model, briefly described in Table 1Mobility trace
files for Smooth and CMM were computed by running the
code made publicly available by their authors, whereas for
the other models we used the BonnMotion tool [2] (version
2.0). For building the classification model, the RapidMiner
tool was employed [18], an open source software for knowl-
edge discovery, machine learning, and data mining.

The configuration of the mobility models’s variables are
described in Table 2. In our approach, each variable under
consideration is assigned a list of possible (common) val-
ues, resulting in thousands of combinations of scenarios for
each model. For each mobility model, we have chosen 50 of
these combinations at random for generating the mobility
trace files (a similar methodology procedure was done by
Kurkowski [10]). As a result, 500 random generated trace
files were taken into account in this study.

The classification method employed was based on the su-
pervised learning algorithm of decision tree (DT), which is
considered one of the most widespread and consolidated su-
pervised classification algorithms [11].

For each trace file we compute all metrics outlined in Sec-
tion 4, adding a label indicating the class (i.e., mobility
model’s name). The tabular data were stored in a sheet,
wherein each line contains the values of the metrics and the
label.

Besides the proposed metrics, we added three more met-
rics from our recent works [5,6]: (a) the Improved Degree of
Spatial Dependence (IDSD), a spatial metric able to capture
both movement and pause correlation among mobile nodes;
(b) the Improved Degree of Temporal Dependence (IDTD),
a metric that captures to which extent the current node
speed depends on its past moving pattern; and the Degree
of Node Proximity (DNP), another spatial metric.

After this pre-processing step, we started the DT algo-
rithm, which consists of two phases: training and testing.
During the training phase, the classifier model is built from
the input data. After that, an unlabeled data is used in the
testing phase, which should be classified by the model. The
stratified ten-fold cross-validation approach was employed
for validating the model [11]. In this technique, the data
is randomly and uniformly spread into 10 parts (stratified
sampling). Each part is used as a holdout set and the other
nine parts are used to train the model, totalizing ten combi-
nations for testing. For each one, the error rate is calculated
on the holdout set, and thus the learning procedure is ex-
ecuted 10 times using different training sets. Finally, the
10 error estimations are averaged to yield an overall error
estimate.

5.2 Results and Discussion
We have developed several classification models, each based

on a specific class of mobility metrics. The objective was to
determine the level of quality in pattern recognition of user
movement when using solely metrics of a certain category.
For evaluating the models we used the performance metrics
Accuracy and Kappa index k̂. The k̂ statistics indicates the
level of agreement between the classification model and real
classification (i.e., the one known in advance). As outlined
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Table 1: Characteristics of the selected mobility models.

Characteristic RWP RPGM GM1 Manhattan Column RD2 RW3 CMM SLAW Smooth

Entity movement X X X X X X X

Collective movement X X X

Temporal dependence X X X X

Geographic restricted X X X X

1st generation (synthetic) X X X X X X X

2nd generation X X X
1 Gauss-Markov. 2 Random Direction. 3 Random Walk.

Table 2: Mobility Models Configuration

Parameter Values Parameter Values

Simulation time 900 s Number of nodes 25, 50, 75, 100, 125, 150, 175, 200

Scenario length 1, 1.5, 2 km Scenario width 1, 1.5, 2 km

Min. speed 1, 2, 3 m/s Max. speed 5, 10, 20, 30 m/s

Group length1 5, 10, 20, 25 Number of rows2 5, 10, 20

Transmission range 200 m Number of columns2 5, 10, 20

Turn probability4 0.25, 0.5, 0.75 Speed std. deviation4 2, 4, 6 m/s

Alpha distance 2, 3, 4 Memory parameter7 0.2, 0.4, 0.5, 0.6, 0.8

Min. pause time 1, 5, 10 Max. pause time8 5, 10, 50, 100, 200, 500 s

Clustering range8 20, 50, 100, 200 Number of waypoints8 20, 40, 60, 80, 100
1 For RPGM, Column and CMM. 2 For Manhattan and CMM. 3 For SLAW and Smooth. 4 For Manhattan.
5 For CMM. 6 For RPGM and Column. 7 For Gauss-Markov. 8For SLAW and Smooth.

in Table 3, both accuracy and k̂ are strongly affected when
more mobility metrics are used in the supervised algorithm.
The best classification model was achieved when all metrics
were taken into account, reaching an accuracy of 99.20% and
0.991 Kappa. We next describe the model’s DT algorithm.
The DT algorithm (Figure 5) starts classifying movement

traces in which the average trip length (ATL) is zero as de-
rived from the Gauss-Markov model. ATL=0 only when
nodes move continuously, never stopping, which is exactly
what happens for Gauss-Markov (GM). The speed coeffi-
cient of variation (SCV) is close to zero only when its stan-
dard deviation is also close to zero, indicating a nearly con-
stant speed. Among the evaluated models, only SLAW’s
node speed is almost always constant (as provided in the
authors’ code).
The speed angle rate (SAR) is greater for both Smooth

and Manhattan models, because in these models nodes usu-
ally change the speed several times during the trip between
two waypoints, while the direction keeps unchanged (in Smooth)
or it has only a few changes (in Manhattan). However, the
angle distribution is uniform in Smooth, whereas it is vari-
able in Manhattan, depending on factors such as turn prob-
ability and number and layout of the roads in the simula-
tion area. Thus, the angle coefficient of variation (ACV) is
greater in Smooth (> 0.53) than in Manhattan.
The improved degree of spatial dependence (IDSD) met-

ric, which measures the level of movement correlation among
nodes, was the key factor for detecting the RPGM, a group-
based model, while the IDTD distinguishes CMM trace files
from the models where node speed values are independent
of past values (especially the random models).
The column model showed lower values of the degree of

spatial accessibility (DSA) due to its group movement con-

straints. The degree of node proximity (DNP) was capable
of distinguishing Random Direction (RD) traces from Ran-
dom Walk (RW) and Random Waypoint (RWP) ones. In
RD the number of users is greater at the edges than in the
central area, resulting in lower values of DNP compared to
RW and RWP.

In the next step of the algorithm, DSA and degree of node
spatial distribution (DNSD) were used for recognizing RW
and RWP traces among others, with few cases of misclas-
sification. Finally, the degree of link changes (DLC) was
lower for RWP than RW. As RWP is known for showing a
non-uniform distribution, with a higher node density in the
central area, as a result the number of link changes is smaller
than in Random Walk.

The classification model performance metrics are show in
Table 4. A class recall is defined as the ratio between the
number of correctly documents (i.e., mobility trace files)
classified and all documents belonging to the class (i.e., mo-
bility model). Precision is the ratio between the number of
correctly classified documents and all documents considered
by the model as belonging to that class [8].

6. CONCLUSIONS
In this paper we proposed a new and comprehensive set

of mobility metrics, which were employed for building a user
mobility pattern recognition model through a decision tree
supervised learning algorithm. Hundreds of movement trace
files from ten well-known mobility models were randomly
generated and taken into account by the learning algorithm.
The Decision Tree supervised classification model showed an
accuracy of 99.2% and a Kappa index of 0.991. The DT al-
gorithm can be used as some sort of oracle for classifying an
unknown mobility trace into a know mobility model. The
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Table 3: Comparison of classification models based on different sets of mobility metrics.
Performance Metrics

Classification Model Accuracy Kappa

A) Employing velocity-based metrics only (i.e., AVC, SVC, SAR, IDSD and IDTD) 80.00% 0.7778
B) Employing distance-based metrics only (i.e., APT, ATL and DNP) 61.40% 0.5711
C) Employing spatial metrics only (i.e., DNSD and DSA) 55.40% 0.5044
D) Employing temporal metrics only (i.e., RLD and PVC) 55.60% 0.5067
E) Employing graph-based metrics only (i.e., RND and DLC) 50.00% 0.4444
F) Employing all mobility metrics 99.20% 0.9911

Figure 5: Decision tree for classifying mobility traces.
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Table 4: Multiclass Classification Performance (Confusion Matrix).
TRUE CLASSIFICATION

CMM Smooth RD GM SLAW RPGM Column Manhattan RW RWP Precision

P CMM 500 0 0 0 0 0 0 0 0 0 100%
R Smooth 0 500 0 0 0 0 0 0 0 0 100%
E RD 0 0 480 0 0 0 0 0 0 0 100%
D GM 0 0 0 500 0 0 0 0 0 0 100%
I SLAW 0 0 0 0 500 0 0 0 0 0 100%
C RPGM 0 0 10 0 0 500 0 0 0 0 98.04%
T Column 0 0 0 0 0 0 500 0 0 0 100%
I Manhattan 0 0 0 0 0 0 0 500 0 0 100%
O RW 0 0 0 0 0 0 0 0 500 20 96.15%
N RWP 0 0 10 0 0 0 0 0 0 480 97.96%

class recall 100% 100% 96% 100% 100% 100% 100% 100% 100% 96%

proposed mobility metrics which have not been employed
by the algorithm (i.e., APL, PVC, RLD and RND) will be
subject for future research. Also, we intend to consider yet
other mobility models as well as additional classification al-
gorithms.
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