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ABSTRACT
We propose in this paper a method to automatically map function-
alities (blocks of code corresponding to high-level features) with
real-time constraints to tasks (or threads). We aim at reducing
the number of tasks functions are mapped to, while preserving the
schedulability of the initial system. We consider independent tasks
running on a single processor. Our approach has been applied with
fixed-task or fixed-job priorities assigned in a Deadline Monotonic
(DM) or a Earliest Deadline First (EDF) manner.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

Keywords
real-time, scheduling, task clustering, functionality to task mapping

1. INTRODUCTION
Our work falls within the scope of real-time systems program-

ming. Usually, real-time system developers design a system as a set
of functionalities with real-time constraints. A functionality is here
considered a block of code corresponding to a high-level feature.
Implementing such systems requires to map each functionality to a
real-time task (thread). On the one hand, the number of those func-
tionalities is quite high. For instance, it ranges from 500 to 1000
in the flight control system of an aircraft or of a space vehicle [7,
11]. On the other hand, a large number of threads implies a signif-
icant time overhead in context switching [27, 15] and an important
memory footprint (e.g. task control block, size of the stack, etc.).
Thus, the number of tasks supported by embedded real-time oper-
ating systems is limited, rarely over one hundred, and developers
cannot map each functionality to a different task. This mapping
is currently mainly performed manually and, given the number of
functionalities to process, this work can be tedious and error-prone.

In our work, we address this question from the scheduling point
of view. We model a system as a set of tasks with real-time con-
straints, where each task is characterized by an execution time, an
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activation period and a deadline, in the same way as Liu and Lay-
land’s task model [18]. With respect to this model, functionalities
can simply be considered as finer grain tasks, while threads are just
coarser tasks. Thus, mapping functionalities to tasks amounts to
gathering several tasks into a single one, which we call task clus-
tering. Clustering several tasks implies to choose only one deadline
for the cluster, which effectively reduces some task deadlines. As
a consequence, we have to check that the system schedulability is
preserved after the clustering.

Related Work.
In the literature, task clustering is most often studied in the con-

text of distributed systems implementation, where it consists in dis-
tributing a set of tasks over a set of computing nodes (processors or
cores). This is different from our context, because in the distributed
systems context a cluster corresponds to the set of tasks allocated
to the same computing resource. For instance, [23, 1] aim at mini-
mizing communications by clustering tasks that communicate a lot.
The approaches in [22, 13] cluster tasks based on communications,
in order to reduce the system makespan. The number of tasks of
the resulting implementation is however not reduced.

Functionality to task mapping is known as runnable-to-task map-
ping and is identified as a step of the development process in the
augmented real-time specification for AUTomotive Open System
ARchitecture (AUTOSAR) [5]. This document and [27] also pro-
vide guidelines defining under which conditions runnables can be
mapped to the same tasks. Authors in [32] propose an automated
mapping in that context, but that work is restricted to functionali-
ties that have deadlines equal to their periods. In [8, 21], the authors
study the multi-task implementation of multi-periodic synchronous
programs and must allocate the different elements of the program to
tasks. The clustering is out of the scope of [21], while the heuristic
proposed in [8] is very specific to the language structure.

In [26], authors aim at reducing the number of tasks in order to
reduce the complexity of the scheduling problem. However, they
only focus on functional requirements to group tasks, without con-
sidering timing constraints.

This research.
Our objective is to automate the task clustering, so as to reach

a minimal task number, while preserving the system schedulabil-
ity. The number of possible clusterings of a task set is equal to the
number of partitions of the set, which is in the range of the Bell
number [24]. The Bell number is exponential with respect to the
cardinality of the set, so given the huge number of possibilities to
explore, we use a greedy heuristic to search the partitions space.
For now, we do not consider communications and the execution
platform is made up of a single processor. These are strong restric-
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tions, which will be lifted in future work. The aim of the paper is
to properly define the problem and to study it in a simple setting,
so as to serve as a basis for future work.

Organization.
The rest of the paper is organized as follows. In Section 2, we

describe our clustering model. Section 3 is dedicated to the verifi-
cation of cluster schedulability. We describe the way we generate
solutions and the heuristic applied in Section 4. Section 5 contains
the experimental results conducted on large sets of tasks, randomly
generated. Finally, we expose our conclusion and the future work
involved in the Section 6.

2. PROBLEM DEFINITION
Our model, illustrated in Figure 1, is based on Liu and Layland’s

model [18]. A system consists of a synchronous (i.e. with offsets
equal to zero) set of real-time tasks S = ({τi(Ci, Di, Ti)}1≤i≤n)
where Ci is the worst-case execution time (WCET) of τi, Ti is the
activation period, Di is the relative deadline with Di ≤ Ti. We
denote τi.k the (k + 1)th (k ≥ 0) instance, or job, of τi. The
job τi.k is released at time oi.k = kTi. Every job τi.k must be
completed before its absolute deadline di.k = oi.k +Di

oi.0

Ci

di.0Di

oi.1

Ci

di.1Di

oi.2

0

Ti Ti

Figure 1: Task Diagram.

2.1 Scheduling
In this paper, we focus on priority-based scheduling policies, ei-

ther fixed-job with Earliest Deadline First (EDF) [18] or fixed-task
priority policies with Deadline Monotonic (DM) [16].

Let J denote the infinite set of job J = {τi.k, 1 ≤ i ≤ n, k ∈
N}. Given a priority assignment Φ, we define two functions sΦ, eΦ :
J → N, where sΦ(τi.k) is the start time and eΦ(τi.k) is the com-
pletion time of τi.k in the schedule produced by Φ.

DEFINITION 1. Let S = ({τi}1≤i≤n) be a task set and Φ be
a priority assignment. S is schedulable under Φ if and only if:
∀τi.k, eΦ(τi.k) ≤ di.k ∧ sΦ(τi.k) ≥ oi.k

In the sequel, we will also rely on the notion of laxity.

DEFINITION 2. Laxity L (or slack time) indicates the maxi-
mum delay that can be taken by the task without exceeding its dead-
line: Li = Di − Ci.

2.2 Clustering
DEFINITION 3. Clustering τi and τj , where Di ≤ Dj , pro-

duces a cluster τij with the following parameters:

Cij = Ci + Cj

Tij = Ti = Tj

Dij = Di

The cluster deadline is the shortest of the two tasks. Taking the
minimum deadline ensures we respect both initial deadlines, even
though the constraints will be, in general, more stringent than the
initial constraints. By definition, we only group tasks with identical
periods.

DEFINITION 4. Let S = ({τi}1≤i≤n) be a task set and τx and
τy be two tasks of S such thatDx ≤ Dy . We say that τxy is a valid
cluster if and only if:

1. Lx ≥ Cy

2. The task set obtained after clustering is schedulable

In industrial practices, functionalities of different periods are some-
times mapped together, especially when these functionalities inter-
act a lot, to minimize communication as explained in [28]. This
possibility makes the clustering more complex because it requires
to manage scheduling inside a cluster. For this reason, we do not
deal with this option in this paper. Nevertheless, we could relax
this assumption via, e.g., hierarchical scheduling [17].

The laxity test is just an optimization. It is redundant with the
schedulability test but it is simpler to check (constant time). Laxity
is depicted in Subfigure 2(a).

A schedulable system might become non schedulable after clus-
tering, as illustrated in Figure 2. Indeed, we notice in Subfig-
ure 2(b) that the task τb misses its first deadline after the cluster-
ing of tasks τa and τc. Thus, we must check the resulting task set
schedulability after clustering.
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(a) Initial schedulable system of tasks τa,τb and τc under DM.
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(b) Resulting unschedulable system after clustering of tasks τa
and τc.

Figure 2: Influence of task clustering on system schedulability.

3. CHECKING CLUSTER SCHEDULABIL-
ITY

Conditions 1 of the Definition 4 can be checked trivially in con-
stant time. Nevertheless, condition 2 is more complex. Indeed, as
we intend to check schedulability of a large number of solutions
(i.e. at each step of the clustering process), considering a suitable
schedulability test is important.

A schedulability test is called sufficient if all task sets considered
schedulable by the test are actually schedulable. In the same man-
ner, a schedulability test is called necessary if all task sets consid-
ered unschedulable by the test are in fact unschedulable. Schedula-
bility tests that are both sufficient and necessary are referred to as
exact.

In this section, we review existing schedulability tests that can
be used for clustering under DM and EDF scheduling policies. We
only consider exact or sufficient tests insuring that the task sets ob-
tained after clustering are schedulable. Indeed, applying sufficient
tests means that we might not get the minimum number of clusters
but we are sure to obtain a valid clustering. Notice that we work
with synchronous (with offsets equal to zero) task sets that have
constrained deadlines (i.e. with Di ≤ Ti).
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3.1 Exact schedulability tests
Authors in [9] distinguishe two types of tests: Boolean schedu-

lability tests and response time tests. On the one hand, Boolean
tests give a Boolean answer, determining only whether a task set
is schedulable or not, for instance with processor demand analy-
sis (PDA) as the Quick convergence Processor-demand Analysis
(QPA) [31]. On the other hand, exact tests based on response time
analysis (RTA) provide worst response time for each task. The re-
sponse time of a task is the time elapsed between its release and the
time when it finishes its job.

Deadline Monotonic.
RTA [14, 3] of a task τi is based on the concept of level-i busy

period. The level-i busy period is the maximum continuous time
interval during which a processor executes tasks of higher or equal
priority to the priority of the considered task τi, until τi finishes its
active job. Then, the computation of the worst response time for
each task τi is based on the length of level-i busy period. RTA for
DM can be performed with a pseudo-polynomial time algorithm.

Earliest Deadline First.
Contrary to fixed-task priority (FP) systems, the worst response

time is not necessarily found on the first processor busy period in a
task set scheduled by EDF [30]. Thus, computing RTA for EDF is
more complex and has an exponential complexity.

3.2 Sufficient schedulability conditions
In order to reduce the complexity of the computations, we also

considered linear sufficient schedulability tests. Audsley [4] and
Devi [10] propose sufficient but not necessary schedulability tests,
respectively for DM and EDF in O(n) complexity. As far as we
know, there are no more efficient tests for DM and EDF in linear
complexity. The first results show that the test for DM behaves well
for clustering and better than that of EDF. Those two sufficient tests
actually provide an approximate worst response time for each task.
They can be considered an approximate RTA analysis.

4. MINIMIZING THE NUMBER OF TASKS
In this section, we detail our approach for minimizing the size

of the initial task set by successive clusterings. Due to size of the
search space, we rely on a heuristic instead of an exact algorithm.

4.1 Search space
Our problem consists in finding a partition of the task set that is

schedulable and with a minimum number of subsets. A partition of
a set X is a set of nonempty subsets of X such that every element
n in X is in exactly one of these subsets. The number of partitions
of a set is the Bell number [24]. The Bell number is exponential
with respect to the size of X and can be computed by the following
recurrence relation:
Bn+1 =

n∑
k=0

(
n
k

)
Bk with B0 = 1

As we only cluster tasks with identical periods, the search space

can be restricted to
m∏
i=0

Bni where Bni is the Bell number of set i

of n tasks with equal periods and m is the number of sets. Never-
theless, this number remains exponential. To give a better idea of
the size of the search, notice that for instance, B500 ' 10844.

4.2 Partitions enumeration
A naive solution might be to conduct an exhaustive search among

all partitions of the initial task set, e.g. by applying partitions

generation algorithms [2, 20]. Nonetheless, our first experimen-
tations show that, even using sufficient linear tests, this solution is
not achievable due to the exponential number of partitions to ex-
plore. For instance, experiments conducted on a 2.3GHz Intel Core
i7 quad-core with 4GByte memory, from an initial set of 20 tasks,
lead to more than several days of computation. Thus, we think that
it is necessary to limit the search space by applying a heuristic.

Our technique is derived from a simple recursive method found
in Section 17.1 of [2]. For instance, for the set {{A}, {B}, {C}}
we generate the following 3 partitions in a first step:

{{A}, {B,C}}
{{A,C}, {B}}
{{A,B}, {C}}

We apply recursively this principle for each partition generated
until we obtain a partition with a unique element. This situation
corresponds to having all tasks regrouped in a single cluster. This
enumeration produces a tree as illustrated in Figure 3. Notice that
this recursive algorithm generates many duplicates. For example,
we can observe in the Figure 3 that the partition {{A}, {B,C,D}}
appears twice. However, our heuristic always selects a single child
by recursive call so we do not encounter duplicates.

Figure 3: Recursive generation of partitions.

4.3 Heuristic
We start from an initial task set where each task is considered a

cluster with one element, we gradually try to group more and more
clusters together to minimize the cardinality of the task set. At each
step, we try to group one cluster with another and we have, several
candidates that fullfilled conditions 1 and 2. As some possiblities
are better than the others, we must select the best candidate. This
can be achieved by a heuristic cost (or evaluation) function that es-
timates which candidate will the most likely lead to the best cluster-
ing. We propose to achieve task clustering using classic heuristics
based on cost functions.

4.3.1 Cost functions
We need a schedulability test to determine a valid task cluster-

ing because grouping tasks makes the resulting task set more and
more difficult to schedule. Moreover, we need a relevant heuris-
tic cost function to determine the best candidate for the clustering.
We want a schedulability test that exhibits some features that might
allow us to compare the potential of two task sets. Therefore, in
this section, we explore the compatibility of the tests presented in
Section 3 with a heuristic based on a cost function.

Boolean exact tests only give a Boolean answer on the schedula-
bility of a task set. Thus, they do not exhibit any clear feature that
could be considered a heuristic cost function.

On the one hand, exact tests based on RTA gives worst response
times for each task. On the other hand, sufficient tests for DM
and EDF presented below are based on a pessimistic approximation
of the RTA. Considering a task τk with its worst response time
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denotedRk, the closer to 1 Rk
Dk

is, the less we have margin to group
the task τk with another. Thus, we can use the sum of each task
response time divided by its respective deadline as heuristic cost
function in both cases. Then, we have a heuristic cost function
h(S), such that

h(S) =
|S|∑
k=0

Rk
Dk

The RTA for EDF has an exponential complexity and experi-
ments show that the test is not practicable (it takes more than sev-
eral days of computation for 20 tasks). However, even though
the RTA for FP has a pseudo-polynomial complexity, experiments
show that run-time is not significantly slower than run-time with
sufficient test under DM when the former gives an exact answer.

As a consequence, we can use the exact test based on RTA for
DM and the sufficient test for EDF to achieve the best task cluster-
ing possible in a reasonable time.

4.3.2 Algorithm
Several heuristics based on a cost function exist such as greedy

best-first search (greedy BFS), A* algorithm, simulated annealing,
etc. We do not aim in this paper at comparing their different perfor-
mances but at proposing a tractable solution. We moved towards a
heuristic based on greedy BFS [25] detailed in Algorithm 1. The
choice of the heuristic (as BFS here) is not central in this work. The
main idea is the heuristic cost function that may also be applied
with other heuristics, as those cited above. In this algorithm, we re-
cursively enumerate partitions as explained in Section 4.2. At each
recursive call, we choose the most promising local child (partition
generated as in Section 4.2) according to a heuristic cost function
as those presented in Section 4.3.1

LEMMA 1. The complexity of Algorithm 1 with linear tests is
O(n4) and pseudo-polynomial with pseudo-polynomial tests (RTA
for DM).

PROOF. The number of children (or direct successors) gener-
ated by the technique described in Section 4.2 from a partition of
i elements is equal to i × (i − 1)/2. We only explore one among
all visited children at each step with our greedy heuristic. Thus,

the maximum number of visited partitions is equal to
n∑

i=0

i×(i−1)
2

.

This sum corresponds to the sum of the first n triangular numbers
(also called tetrahedral numbers) and its closed-form expression
is f(n) = n(n+1)(n+2)

6
[29]. Hence, this sequence complexity

is O(n3). We apply a sufficient schedulability test in O(n) com-
plexity (whether with DM or EDF) on each visited partition, so the
heuristic complexity isO(n3)×O(n) = O(n4). In a similar way,
applying schedulability tests with a pseudo-polynomial complexity
gives a pseudo-polynomial complexity to the whole algorithm.

5. EXPERIMENTAL RESULTS

5.1 Task set generation
We chose the following model to generate random task sets:

• Ui: each task utilization (Ci
Ti

) is computed following the clas-
sic UUnifast [6] method. We denote as u the overall utiliza-
tion factor of the processor.

• Ti: each task period is uniformly distributed between a set of
10 coprime periods. We observed that in industrial real-time
embedded systems, the number of different tasks periods is
usually limited (most often less than 10).

Algorithm 1 Automated task clustering algorithm
Function clustering(S)
Require: S = ({τi}1≤i≤n): initial set of tasks in ascending dead-

line order

minSumTests← n+ 1
minSet← null
for i = n− 1 to 0 do //find the best child

for j = i− 1 to 0 do
if Ti == Tj then

if Ci + Cj ≤ min(Di, Dj) then //laxity
S′ ← {S \ {τi, τj}} ∪ τij
if schedulable(S′) then

if h(S) < minSumTests then
minSumTests← h(S)
minSet← S′

end if
end if

end if
end if

end for
end for

if minSet 6= null then
return clustering(minSet) //continue with best child

else
return S

end if

• Ci = Ti × Ui

• Di = round((Ti−Ci)×rand(d1, d2))+Ci with 0 ≤ d1 ≤
d2. This computation comes from [12] and use the follow-
ing functions: rand(d1, d2) which returns a pseudo-random
real number uniformly distributed in the interval [d1, d2] and
round(x) which returns the closest integer to x. We notice
that d1 = d2 = 1 corresponds to implicit deadlines and
d1 ≤ d2 = 1 to constrained deadlines.

5.2 Results
Unfortunately, as mentioned in Section 4.2, we cannot compare

our heuristic with an optimal solution because the task clustering
is not achievable with an exhaustive search among all partitions.
Instead, we study how our heuristic behaves with various task set
parameters (for example, deadline bounds).

We have implemented the heuristic in Scala [19]. Task sets range
from 50 to 300 tasks by step of 50 tasks. Maximum utilization
factor is fixed at 0.80 for DM and at 0.75 for EDF. Indeed, our tests
show that there are only few schedulable task sets (according to the
tests used) generated above those values. We only take into account
task sets that are initially schedulable. We compute average results
by executing several times the heuristic on randomly generated task
sets with the same parameters.

We observe in Figure 4(a) that the technique is efficient under
DM. Indeed, the number of tasks obtained after clustering is ap-
proximately linear in the number of tasks and the slope of the curve
is rather limited. However, results under EDF test in Figure 4(b)
are not as satisfying. Clustering is less efficient, especially when
the utilization goes over 0.6. This difference probably comes from
the fact that the clustering affects more the test under EDF than the
test under DM. Finally notice that, the higher the utilization factor
is, the less the tasks are clustered.
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(a) Task clustering under DM.
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(b) Task clustering under EDF.

Figure 4: Results of task clustering.

Figure 5(a) and Figure 5(b) present the clustering depending on
deadline bound variations with DM. For instance, [0.4−1.0] on the
horizontal axis means that the deadline is chosen between 40% and
100% of the period minus the execution time. We can see in Fig-
ure 5(a) that the number of clusters is minimal (equal to the number
of different periods) when the deadline lower bound is about 40%
of the period minus the execution time. Figure 5(b) shows that no
clustering is possible before the upper bound gets to around 60%.
Above that bound, the efficiency of the clustering improves steadily
(the number of clusters decreases).

Figure 6(a) and Figure 6(b) present the clustering for the same
deadline variations with EDF. The overall trends of the curves are
similar, though the clustering is overall less efficient.

These results show that the deadline bounds have the most sig-
nificant impact on the clustering (even more than the number of
tasks for DM). Both with DM and EDF, the clustering is the most
efficient with deadlines bounds in the interval [0.5,1]. Indeed, the
closer deadlines are to the period, the more margin is left for the
clustering. The clustering is even maximal in that interval because
we get as many tasks as the number of different periods, both for
DM and EDF. Notice that according to further experiments, this
remains true for a higher number of distinct periods.

6. CONCLUSION AND FUTURE WORK
We proposed a heuristic to automatically reduce a large set of in-

dependent tasks to a smaller set, while preserving the schedulability
of the task set. The current assumption that tasks are independent
will be lifted in future work. The present work is meant to lay the
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Figure 5: Task clustering with DM: impact of deadline bounds.

foundations of automated task clustering, which, as far as we know,
has not been studied formally before.

Experimental results point out that under some ranges of dead-
line bounds, the clusterings are maximal (i.e. the number of tasks
equals the number of periods). As these ranges are actually realis-
tic, it would be interesting to try to formally prove that we can al-
ways reach maximal clusterings for these bounds. Such a property
would allow to directly gather all the tasks with the same periods
without using any clustering algorithm.
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