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The proliferation of online sensitive data about individuals and organizations makes concern about the pri-
vacy of these data a top priority. There have been many formulations of privacy and, unfortunately, many
negative results about the feasibility of maintaining privacy of sensitive data in realistic networked environ-
ments. We formulate communication-complexity-based definitions, both worst case and average case, of a
problem’s privacy-approximation ratio. We use our definitions to investigate the extent to which approximate
privacy is achievable in a number of standard problems: the 2nd-price Vickrey auction, Yao’s millionaires
problem, the public-good problem, and the set-theoretic disjointness and intersection problems.

For both the 2nd-price Vickrey auction and the millionaires problem, we show that not only is perfect
privacy impossible or infeasibly costly to achieve, but even close approximations of perfect privacy suffer
from the same lower bounds. By contrast, if the inputs are drawn uniformly at random from {0, . . . , 2k − 1},
then, for both problems, simple and natural communication protocols have privacy-approximation ratios
that are linear in k (i.e., logarithmic in the size of the input space). We also demonstrate tradeoffs between
privacy and communication in a family of auction protocols.

We show that the privacy-approximation ratio provided by any protocol for the disjointness and intersec-
tion problems is necessarily exponential (in k). We also use these ratios to argue that one protocol for each
of these problems is significantly fairer than the others we consider (in the sense of relative effects on the
privacy of the different players).
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11:2 J. Feigenbaum et al.

1. INTRODUCTION

Increasing use of computers and networks in business, government, recreation, and
almost all aspects of daily life has led to a proliferation of online sensitive data about
individuals and organizations. Consequently, the study of privacy has become a top
priority in many disciplines. Computer scientists have contributed many formulations
of the notion of privacy-preserving computation that have opened new avenues of in-
vestigation and shed new light on some well-studied problems.

One good example of a new avenue of investigation opened by concern about privacy
can be found in auction design, which was our original motivation for this work. Tra-
ditional auction theory is a central research area in economics, and one of its main
questions is how to incent bidders to behave truthfully, that is, to reveal private in-
formation that auctioneers need in order to compute optimal outcomes. More recently,
attention has turned to the complementary goal of enabling bidders not to reveal pri-
vate information that auctioneers do not need in order to compute optimal outcomes.
The importance of bidders’ privacy, like that of algorithmic efficiency, has become clear
now that many auctions are conducted online, and computer science has become at
least as relevant as economics.

Our approach to privacy is based on communication complexity. Although originally
motivated by agents’ privacy in mechanism design, our definitions and tools can be ap-
plied to distributed function computation in general. Because perfect privacy can be im-
possible or infeasibly costly to achieve, we investigate approximate privacy. Specifically,
we formulate both worst-case and average-case versions of the privacy-approximation
ratio of a function f in order to quantify the amount of privacy that can be maintained
by parties who supply sensitive inputs to a distributed computation of f . We also study
the tradeoff between privacy preservation and communication complexity.

Our points of departure are the work of Chor and Kushilevitz [1991] on characteri-
zation of privately computable functions and that of Kushilevitz [1992] on the commu-
nication complexity of private computation. Starting from the same place, Bar-Yehuda
et al. [2006] also provided a framework in which to quantify the amount of privacy
that can be maintained in the computation of a function and the communication cost of
achieving it. Their definitions and results are significantly different from the ones we
present here (see discussion in Section 1.4); as explained in Section 8, a precise char-
acterization of the relationship between their formulation and ours is an interesting
direction for future work.

1.1. Our Approach

Consider an auction of a Bluetooth headset with two bidders, 1 and 2, in which the
auctioneer accepts bids ranging from $0 to $7 in $1 increments. Each bidder i has a
private value xi ∈ {0, . . . , 7} that is the maximum he is willing to pay for the headset.
The item is sold in a 2nd-price Vickrey auction; that is, the higher bidder gets the
item (with ties broken in favor of bidder 1), and the price he pays is the lower bid.
The demand for privacy arises naturally in such scenarios [Naor et al. 1999]: in a
straightforward protocol, the auctioneer receives sealed bids from both bidders and
computes the outcome based on this information. Say, for example, that bidder 1 bids
$3, and bidder 2 bids $6. The auctioneer sells the headset to bidder 2 for $3. It would not
be at all surprising, however, if, in subsequent auctions of headsets in which bidder 2
participates, the same auctioneer sets a reservation price of $5. This could be avoided
if the auction protocol allowed the auctioneer to learn the fact that bidder 2 was the
higher bidder (something he needs to know in order to determine the outcome) but did
not entail the full revelation of 2’s private value for the headset.

Observe that, in some cases, revelation of the exact private information of the highest
bidder is necessary. For example, if x1 = 6, then bidder 2 will win only if x2 = 7. In
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Fig. 1. The minimal knowledge requirements for 2nd-price auctions.

other cases, the revelation of a lot of information is necessary; for example, if bidder 1’s
bid is 5, and bidder 2 outbids him, then x2 must be either 6 or 7. An auction protocol
is said to achieve perfect objective privacy if the auctioneer learns nothing about the
private information of the bidders that is not needed in order to compute the result
of the auction. Figure 1 illustrates the information the auctioneer must learn in order
to determine the outcome of the 2nd-price auction described earlier. Observe that the
auctioneer’s failure to distinguish between two potential pairs of inputs that belong to
different rectangles in Figure 1 implies his inability to determine the winner or the
price the winner must pay. Also observe, however, that the auctioneer need not be able
to distinguish between two pairs of inputs that belong to the same rectangle.

Using the “minimal knowledge requirements” described in Figure 1, we can now
characterize a perfectly (objective) privacy-preserving auction protocol as one that in-
duces this exact partition of the space of possible inputs into subspaces in which the
inputs are indistinguishable to the auctioneer. Unfortunately, perfect privacy is often
hard or even impossible to achieve. For 2nd-price auctions, Brandt and Sandholm [2008]
show that every perfectly private auction protocol has exponential communication com-
plexity. This provides the motivation for our definition of privacy-approximation ratio:
we are interested in whether there is an auction protocol that achieves “good” privacy
guarantees without paying such a high price in computational efficiency. We no longer
insist that the auction protocol induce a partition of inputs exactly as in Figure 1
but rather that it “approximate” the optimal partition well. We define two kinds of
privacy-approximation ratio (PAR): worst-case PAR and average-case PAR.

The worst-case PAR of a protocol P for the 2nd-price auction is defined as the maxi-
mum ratio between the size of a set S of indistinguishable inputs in Figure 1 and the
size of a set of indistinguishable inputs induced by P that is contained in S. If a protocol
is perfectly privacy preserving, these sets are always the same size, and so the worst-
case PAR is 1. If, however, a protocol fails to achieve perfect privacy, then at least one
“ideal” set of indistinguishable inputs strictly contains a set of indistinguishable inputs
induced by the protocol. In such cases, the worst-case PAR will be strictly higher than 1.
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Consider, for example, the sealed-bid auction protocol in which both bidders reveal
their private information to the auctioneer, who then computes the outcome. Obviously,
this naive protocol enables the auctioneer to distinguish between every two pairs of
private inputs, and so each set of indistinguishable inputs induced by the protocol
contains exactly one element. The worst-case PAR of this protocol is therefore 8

1 = 8. (If
bidder 2’s value is 0, then in Figure 1 the auctioneer is unable to determine which value
in {0, . . . , 7} is x1. In the sealed-bid auction protocol, however, the auctioneer learns the
exact value of x1.) The average-case PAR is a natural Bayesian variant of this definition:
we now assume that the auctioneer has knowledge of some market statistics, in the
form of a probability distribution over the possible private information of the bidders.
PAR in this case is defined as the average ratio and not as the maximum ratio as before.

Thus, intuitively, PAR captures the effect of a protocol on the privacy (in the sense of
indistinguishability from other inputs) afforded to protocol participants—it indicates
the factor by which, in the worst case or on average, using the protocol to compute the
function, instead of just being told the output, reduces the number of inputs from which
a given input cannot be distinguished. To formalize and generalize the aforementioned
intuitive definitions of PAR, we make use of machinery from communication-complexity
theory. Specifically, we use the concepts of monochromaticity and tilings to make formal
the notions of sets of indistinguishable inputs and of the approximability of privacy.
We discuss other notions of approximate privacy in Section 8.

1.2. Our Findings

We present both upper and lower bounds on the privacy-approximation ratio for both
the millionaires problem and 2nd-price auctions with two bidders. Our analysis of these
two environments takes place within Yao’s two-party communication model [Yao 1979],
in which the private information of each party is a k-bit string, representing a value
in {0, . . . , 2k − 1}. In the millionaires problem, the two parties (the millionaires) wish
to keep their private information hidden from each other. We refer to this goal as the
preservation of subjective privacy. In electronic commerce environments, each party
(bidder) often communicates with the auctioneer via a secure channel, and so the aim
in the 2nd-price auction is to prevent a third party (the auctioneer), who is unfamiliar
with any of the parties’ private inputs, from learning “too much” about the bidders.
This goal is referred to, in this article, as the preservation of objective privacy.

Informally, for both the 2nd-price Vickrey auction and the millionaires problem, we
obtain the following results: we show that not only is perfect privacy impossible or
infeasibly costly to achieve, but even close approximations of perfect privacy suffer
from the same lower bounds. By contrast, we show that, if the values of the parties are
drawn uniformly at random from {0, . . . , 2k − 1}, then, for both problems, simple and
natural communication protocols have privacy-approximation ratios that are linear
in k (i.e., logarithmic in the size of the space of possible inputs). We conjecture that
this improved PAR is achievable for any probability distribution. The correctness of
this conjecture would imply that, no matter what beliefs the protocol designer may
have about the parties’ private values, a protocol that achieves reasonable privacy
guarantees exists.

Importantly, our results for the 2nd-price Vickrey auction are obtained by proving
a more general result for a large family of protocols for single-item auctions, termed
bounded-bisection auctions, that contains both the celebrated ascending-price English
auction and the class of bisection auctions [Fujishima et al. 1999; Grigorieva et al.
2006, 2007; Herings et al. 2009]. We are thus able to quantify a tradeoff between
communication complexity and the effect on privacy within this family of protocols.

We show that our results for the millionaires problem also extend to the clas-
sic economic problem of provisioning a public good, by observing that, in terms of
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privacy-approximation ratios, the two problems are, in fact, equivalent. We also con-
sider a truthful variant of the public-good problem and show that this can have a
bounded PAR (depending on how the cost of the good grows).

We then apply our PAR framework to two classic set-theoretic problems: the inter-
section problem (in which party 1’s input is a set S1, party 2’s input is a set S2, and
the goal of the protocol is to compute S1 ∩ S2) and its decision version disjointness (in
which f (S1, S2) = 1 if S1 ∩ S2 = ∅, and f (S1, S2) = 0 otherwise). From both the privacy
perspective and the communication-complexity perspective, these are extremely natu-
ral problems to study. The intersection problem has served as a motivating example in
the study of privacy-preserving computation for decades; in a typical application, two
organizations wish to compute the set of members that they have in common without
disclosing to each other the people who are members of only one of the organizations.
The disjointness problem plays a central role in the theory and application of commu-
nication complexity, where the fact that n+1 bits of communication are required to test
disjointness of two subsets of {1, . . . , n} is used to prove many worst-case lower bounds.

In applying our PAR framework to the disjointness and intersection problems, we
consider three natural protocols that apply to both problems. We compute the objective
and subjective PARs for all three protocols for both problems. The objective and subjec-
tive PARs are exponential in all cases, but we show that the protocol that is intuitively
the best is quantifiably (and significantly) more fair than the others in the sense de-
scribed later; to do this, we consider the ratios of the subjective PARs (as described in
Section 3.3) and argue that this captures some intuitive sense of fairness.

1.3. Related Work and Follow-Up Work: Defining Privacy-Preserving Computation

1.3.1. Communication-Complexity-Based Privacy Formulations. As explained earlier, the pri-
vacy work of Bar-Yehuda et al. [2006] and the work presented in this article have
common ancestors in Chor and Kushilevitz [1991] and Kushilevitz [1992]. Similarly,
the work of Brandt and Sandholm [2008] uses Kushilevitz’s formulation to prove an
exponential lower bound on the communication complexity of privacy-preserving 2nd-
price Vickrey auctions. We elaborate on the relation of our work to that of Bar-Yehuda
et al. [2006] in Section 1.4.

Similarly to Bar-Yehuda et al. [2006], Chor and Kushilevitz [1991], and Kushilevitz
[1992], our work focuses on the two-party deterministic communication model. We view
our results as a first step in a more general research agenda, outlined in Section 8.

There are many formulations of privacy-preserving computation, both exact and
approximate, that are not based on the definitions and tools in Chor and Kushilevitz
[1991] and Kushilevitz [1992]. We now briefly review some of them and explain how
they differ from ours.

1.3.2. Secure, Multiparty Function Evaluation. The most extensively developed approach
to privacy in distributed computation is that of secure, multiparty function evaluation
(SMFE). Indeed, to achieve agent privacy in algorithmic mechanism design, which
was our original motivation, one could, in principle, simply start with a strategyproof
mechanism and then have the agents themselves compute the outcome and payments
using an SMFE protocol. However, as observed by Brandt and Sandholm [2008], these
protocols fall into two main categories, and both have inherent disadvantages from the
point of view of mechanism design:

—Information-theoretically private protocols, the study of which was initiated by
Ben-Or et al. [1988] and Chaum et al. [1988], rely on the assumption that a constant
fraction of the agents are “honest” (or “obedient” in the terminology of distributed
algorithmic mechanism design [Feigenbaum and Shenker 2002]), that is, that they
follow the protocol perfectly even if they know that doing so will lead to an outcome
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that is not as desirable to them as one that would result from their deviating from the
protocol; clearly, this assumption is antithetical to the main premise of mechanism
design, which is that all agents will behave strategically, deviating from protocols
when and only when doing so will improve the outcome from their points of view.

—Multiparty protocols that use cryptography to achieve privacy, the study of which was
initiated by Yao [1982, 1986], rely on (plausible but currently unprovable) complexity-
theoretic assumptions. Often, they are also very communication intensive (see, e.g.,
Brandt and Sandholm [2008] for an explanation of why some of the deficiencies of
the Vickrey auction cannot be solved via cryptography). Moreover, sometimes the
deployment of cryptographic machinery is infeasible (over the years, many crypto-
graphic variants of the current interdomain routing protocol, BGP, were proposed,
but not deployed due to the infeasibility of deploying a global Internet-wide PKI in-
frastructure and the real-time computational cost of verifying signatures). For some
mechanisms of interest, efficient cryptographic protocols have been obtained (see,
e.g., Dodis et al. [2000] and Naor et al. [1999]).

In certain scenarios, the demand for perfect privacy preservation cannot be relaxed.
In such cases, if the function cannot be computed in a privacy-preserving manner with-
out the use of cryptography, there is no choice but to resort to a cryptographic protocol.
There is an extensive body of work on cryptography-based identity protocols, and we
are not offering our notion of PAR as an extension of that work. (In fact, the framework
described here might be applied to SMFE protocols by replacing indistinguishability
by computational indistinguishability. However, this does not appear to yield any new
insights.)

However, in other cases, we argue that privacy preservation should be regarded
as one of several design goals, alongside low computational/communication complex-
ity, protocol simplicity, incentive compatibility, and more. (See, e.g., Muthukrishnan
[2009].) Therefore, it is necessary to be able to quantify privacy preservation in order
to understand the tradeoffs among the different design goals and obtain “reasonable”
(but not necessarily perfect) privacy guarantees. Our PAR approach continues the long
line of research about information-theoretic notions of privacy, initiated by Ben-Or
et al. and by Chaum et al. Regardless of the aforementioned argument, we believe
that information-theoretic formulations of privacy and approximate privacy are also
natural to consider in their own right.

1.3.3. Private Approximations and Approximate Privacy. In this article, we consider protocols
that compute exact results but preserve privacy only approximately. One can also ask
what it means for a protocol to compute approximate results in a privacy-preserving
manner; indeed, this question has also been studied Beimel et al. [2008], Feigenbaum
et al. [2006], and Halevi et al. [2001], but it is unrelated to the questions we ask here.
Similarly, definitions and techniques from differential privacy [Dwork 2006] (see also
Ghosh et al. [2009]), in which the goal is to add noise to the result of a database query
in such a way as to preserve the privacy of the individual database records (and hence
protect the data subjects) but still have the result convey nontrivial information, are
inapplicable to the problems that we study here. Ghosh and Roth [2011] have used
the differential-privacy framework to consider the problem of selling privacy, which
leads to the use of an auction for privacy; in addition to using different techniques,
that problem is different from that of how much privacy is provided by the auction
protocol itself (which is one of the problems to which we apply our framework). Ghosh
and Roth show that no mechanism can compensate agents sufficiently to guarantee
incentive compatibility if the values that agents place on their privacy are unbounded;
moreover, they do not attempt to hide the privacy valuations from the mechanism.
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McGregor et al. [2010] study the setting of a database distributed between two parties
who run a protocol such that each party’s view is a differentially private function of the
other’s data. They proved lower bounds on the accuracy of such protocols, in part using
connections between differential privacy and communication complexity. Nissim et al.
[2012] design privacy-aware mechanisms that are incentive compatible with respect
to all agents whose privacy valuations are below a certain threshold and differentially
private with respect to all other agents.

1.4. Relation to the Work of Bar-Yehuda et al.

While there are certainly some parallels between the work here and the Bar-Yehuda
et al. work [Bar-Yehuda et al. 2006], there are significant differences in what the two
frameworks capture. Specifically:

(1) The results in Bar-Yehuda et al. [2006] deal with what can be learned by a party
who knows one of the inputs. By contrast, our notion of objective PAR captures the
effect of a protocol on privacy with respect to an external observer who does not
know any of the players’ private values.

(2) More importantly, the framework of Bar-Yehuda et al. [2006] does not address the
size of monochromatic regions. As illustrated by the following example, the ability
to do so is necessary to capture the effects of protocols on interesting aspects of
privacy that are captured by our definitions of PAR.

Consider the function f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → {0, . . . , 2n−2} defined by
f (x, y) = f loor( x

2 ) if x < 2n−1 and f (x, y) = 2n−2 otherwise. Consider the following
two protocols for f : in P, player 1 announces his value x if x < 2n−1 and otherwise
sends 2n−1 (which indicates that f (x, y) = 2n−2); in Q, player 1 announces f loor( x

2 ) if
x < 2n − 1 and x if x = 2n − 1. Observe that each protocol induces 2n−1 + 1 rectangles.
Intuitively, the effect on privacy of these two protocols is different. For half of the inputs,
P reduces by a factor of 2 the number of inputs from which they are indistinguishable
while not affecting the indistinguishability of the other inputs. Q does not affect the
indistinguishability of the inputs affected by P, but it does reduce the number of inputs
indistinguishable from a given input with x ≥ 2n−1 by at least a factor of 2n−2.

Our notion of PAR is able to capture the different effects on privacy of the proto-
cols P and Q. (The average-case objective PARs are constant and exponential in n,
respectively.) By contrast, the three quantifications of privacy from Bar-Yehuda et al.
[2006]—Ic, Ii, and Ic−i—do not distinguish between these two protocols; we now sketch
the arguments for this claim.

For each protocol, any function h for which the protocol is weakly h-private must
take at least 2n−1 + 1 different values. This bound is tight for both P and Q. Thus, Ic
cannot distinguish between the effects of P and Q on f .

The number of rectangles induced by P that intersect each row and column equals
the number induced by Q. Considering the geometric interpretation of IP and IQ in
Lemma 7 of Bar-Yehuda et al. [2006], as well as the discussion in Section VII.A of
Bar-Yehuda et al. [2006], we see that Ii and Ic−i (when restricted to a single protocol,
which erases the distinction between them) cannot distinguish between the effects of
P and Q on f .

In Section 8, we give examples that show that the objective (i.e., from the perspective
of an outside observer) analogs of the information-theoretic measures used in defining
Ii and Ic−i can disagree with PAR on whether the effect of two protocols is similar and
even on which protocol is more private.
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1.5. Follow-Up Work

Subsequent to our preliminary work, several papers adopted our approximate-privacy
framework to further explore the research directions outlined in this work [Ada et al.
2012], to analyze other objective functions and communication protocols of interest
[Comi et al. 2012], and to study efficiency and privacy tradeoffs in mechanism design
[Sui and Boutilier 2011].

1.6. Article Outline

In the next section, we review and expand upon the connection between perfect privacy
and communication complexity. We present our formulations of approximate privacy,
both worst case and average case, in Section 3; we present our PAR results on second-
price auctions, the millionaires problem, and public good problems in Sections 5 and 4.
Section 6 gives formal definitions of the disjointness and intersection problems, de-
scribes the protocols that we consider for these problems, and gives a summary and
discussion of our related PAR results. Section 7 gives the full statements and proofs
of our PAR results for intersection. In Section 8, we discuss other approaches that
might be taken to the problem of quantifying partial privacy; we also discuss various
directions for future research in this area.

2. PERFECT PRIVACY AND COMMUNICATION COMPLEXITY

We now briefly review Yao’s model of two-party communication and notions of objective
and subjective perfect privacy; see Kushilevitz and Nisan [1997] for a comprehensive
overview of communication complexity theory. Note that we only deal with deterministic
communication protocols. Our definitions can be extended to randomized protocols.

2.1. Two-Party Communication Model

There are two parties, 1 and 2, each holding a k-bit input string. The input of party
i, xi ∈ {0, 1}k, is the private information of i. The parties communicate with each
other in order to compute the value of a function f : {0, 1}k × {0, 1}k → {0, 1}t. The
two parties alternately send messages to each other. In communication round j, one
of the parties sends a bit qj that is a function of that party’s input and the history
(q1, . . . , qj−1) of previously sent messages. We say that a bit is meaningful if it is not a
constant function of this input and history and if, for every meaningful bit transmitted
previously, there is some combination of input and history for which the bit differs
from the earlier meaningful bit. Nonmeaningful bits (e.g., those sent as part of protocol-
message headers) are irrelevant to our work here and will be ignored. A communication
protocol dictates, for each party, when it is that party’s turn to transmit a message and
what message he or she should transmit, based on the history of messages and his or
her value.

A communication protocol P is said to compute f if, for every pair of inputs (x1, x2),
it holds that P(x1, x2) = f (x1, x2). As in Kushilevitz [1992], the last message sent in a
protocol P is assumed to contain the value f (x1, x2) and therefore may require up to
t bits. The communication complexity of a protocol P is the maximum, over all input
pairs, of the number of bits transmitted during the execution of P.

Any function f : {0, 1}k × {0, 1}k → {0, 1}t can be visualized as a 2k × 2k matrix
with entries in {0, 1}t, in which the rows represent the possible inputs of party 1, the
columns represent the possible inputs of party 2, and each entry contains the value of
f associated with its row and column inputs. This matrix is denoted by A( f ).

Definition 2.1 (Regions, partitions). A region in a matrix A is any subset of entries in
A (not necessarily a submatrix of A). A partition of A is a collection of disjoint regions
in A whose union equals A.

ACM Transactions on Algorithms, Vol. 10, No. 3, Article 11, Publication date: April 2014.



Approximate Privacy: Foundations and Quantification 11:9

Fig. 2. A tiling that cannot be induced by any communication protocol [Kushilevitz 1992].

Definition 2.2 (Monochromaticity). A region R in a matrix A is called monochromatic
if all entries in R contain the same value. A monochromatic partition of A is a partition
all of whose regions are monochromatic.

Of special interest in communication complexity are specific kinds of regions and
partitions called rectangles and tilings, respectively:

Definition 2.3 (Rectangles, tilings). A rectangle in a matrix A is a submatrix of A. A
tiling of a matrix A is a partition of A into rectangles.

Definition 2.4 (Refinements). A partition or tiling P1( f ) of a matrix A( f ) is said to
be a refinement of another partition or tiling P2( f ) of A( f ) if every region in P1( f ) is
contained in some region in P2( f ).

Monochromatic rectangles and tilings are an important concept in communication-
complexity theory, because they are linked to the execution of communication protocols.
Every communication protocol P for a function f can be thought of as follows:

(1) Let R and C be the sets of row and column indices of A( f ), respectively. For R′ ⊆ R
and C ′ ⊆ C, we will abuse notation and write R′ × C ′ to denote the submatrix of
A( f ) obtained by deleting the rows not in R′ and the columns not in C ′.

(2) While R × C is not monochromatic:
—One party i ∈ {1, 2} sends a single bit q (whose value is based on xi and the

history of communication).
—If i = 1, q indicates whether 1’s value is in one of two disjoint sets R1, R2 whose

union equals R. If x1 ∈ R1, both parties set R = R1. If x1 ∈ R2, both parties set
R = R2.

—If i = 2, q indicates whether 2’s value is in one of two disjoint sets C1, C2 whose
union equals C. If x2 ∈ C1, both parties set C = C1. If x2 ∈ C2, both parties set
C = C2.

(3) One of the parties sends a last message (consisting of up to t bits) containing the
value in all entries of the monochromatic rectangle R × C.

Observe that, for every pair of private inputs (x1, x2), P terminates at some monochro-
matic rectangle in A( f ) that contains (x1, x2). We refer to this rectangle as the monochro-
matic rectangle induced by P for (x1, x2). We refer to the tiling that consists of all rect-
angles induced by P (for all pairs of inputs) as the monochromatic tiling induced by
P.

Remark 2.5. There are monochromatic tilings that cannot be induced by communi-
cation protocols. For example, observe that the tiling in Figure 2 (which is essentially
an example from Kushilevitz [1992]) has this property. The first input-dependent bit
that is sent in the protocol will divide at least one monochromatic region into two parts.
If this bit is sent by party 1, whose possible input values correspond to the rows, then at
least one of the bottom-left and top-right regions shown will be divided unnecessarily.
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Fig. 3. Matrix for f (x1, x2) = 1⊕ x1 ⊕ x2 (with x1 shown in the left column and x2 in the top row) illustrating
the differences between subjective and objective privacy.

(It is possible that the function takes the same value on these regions, so that they in
fact form a single monochromatic region; that single region would still be divided.)

2.2. Perfect Privacy

Informally, we say that a two-party protocol is perfectly privacy preserving if the two
parties (or a third party observing the communication between them) cannot learn
more from the execution of the protocol than the value of the function the protocol
computes. (These definitions can be extended naturally to protocols involving more
than two participants.)

Formally, let P be a communication protocol for a function f . The communication
string passed in P is the concatenation of all the messages (q1, q2 . . .) sent in the course of
the execution of P. Let s(x1,x2) denote the communication string passed in P if the inputs
of the parties are (x1, x2). We are now ready to define perfect privacy. The following two
definitions handle privacy from the point of view of a party i that does not want the
other party (who is, of course, familiar not only with the communication string but also
with his own value) to learn more than necessary about i’s private information. We say
that a protocol is perfectly private with respect to party 1 if 1 never learns more about
party 2’s private information than necessary to compute the outcome.

Definition 2.6 (Perfect privacy with respect to 1). Chor and Kushilevitz [1991],
Kushilevitz [1992] P is perfectly private with respect to party 1 if, for every x1, x2, x′

2
such that f (x1, x2) = f (x1, x′

2), it holds that s(x1,x2) = s(x1,x′
2).

Informally, Definition 2.6 says that party 1’s knowledge of the communication string
passed in the protocol and his knowledge of x1 do not aid him in distinguishing between
two possible inputs of 2. Similarly:

Definition 2.7 (Perfect privacy with respect to 2). Chor and Kushilevitz [1991],
Kushilevitz [1992] P is perfectly private with respect to party 2 if, for every x1, x′

1, x2
such that f (x1, x2) = f (x′

1, x2), it holds that s(x1,x2) = s(x′
1,x2).

Observation 2.8. For any function f , the protocol in which party i reveals xi and the
other party computes the outcome of the function is perfectly private with respect to i.

Definition 2.9 (Perfect subjective privacy). P achieves perfect subjective privacy if it
is perfectly private with respect to both parties.

The following definition considers a different form of privacy—privacy from a third
party that observes the communication string but has no a priori knowledge about
the private information of the two communicating parties. We refer to this notion as
objective privacy.

Definition 2.10 (Perfect objective privacy). P achieves perfect objective privacy if, for
every two pairs of inputs (x1, x2) and (x′

1, x′
2) such that f (x1, x2) = f (x′

1, x′
2), it holds that

s(x1,x2) = s(x′
1,x′

2).

Figure 3 illustrates the difference between perfect subjective and objective privacy.
The function is f (x1, x2) = 1⊕x1 ⊕x2, and we assume that different input pairs produce
different communication strings. For every value of x1, the conditions of Definition 2.6
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are trivially satisfied; in terms of the matrix, for each row, the inputs in the row that
produce the same function value also have the same communication string. This also
holds for fixed values of x2 and the conditions of Def. 2.7 or, equivalently, for fixed
columns of the matrix. By contrast, because (0, 0) and (1, 1) produce the same output
value, perfect objective privacy would require that those inputs as well as (0, 1) and
(1, 0) produce the same communication strings (including output values).1

Kushilevitz [1992] was the first to point out the interesting connections between
perfect privacy and communication-complexity theory. Intuitively, we can think of any
monochromatic rectangle R in the tiling induced by a protocol P as a set of inputs
that are indistinguishable to a third party. This is because, by definition of R, for any
two pairs of inputs in R, the communication string passed in P must be the same.
Hence, we can think of the privacy of the protocol in terms of the tiling induced by that
protocol.

Ideally, every two pairs of inputs that are assigned the same outcome by a function
f will belong to the same monochromatic rectangle in the tiling induced by a protocol
for f . This observation enables a simple characterization of perfect privacy-preserving
mechanisms.

Definition 2.11 (Ideal monochromatic partitions). A monochromatic region in a
matrix A is said to be a maximal monochromatic region if no monochromatic region
in A properly contains it. The ideal monochromatic partition of A is made up of the
maximal monochromatic regions.

Observation 2.12. For every possible value in a matrix A, the maximal monochro-
matic region that corresponds to this value is unique. This implies the uniqueness of
the ideal monochromatic partition for A.

Observation 2.13 (A characterization of perfectly privacy-preserving protocols). A
communication protocol P for f is perfectly privacy preserving iff the monochromatic
tiling induced by P is the ideal monochromatic partition of A( f ). This holds for all of
the previous notions of privacy.

3. PRIVACY-APPROXIMATION RATIOS

Unfortunately, perfect privacy should not be taken for granted. As shown by our re-
sults, in many environments, perfect privacy can be either impossible or very costly (in
terms of communication complexity) to obtain. To measure a protocol’s effect on pri-
vacy, relative to the ideal—but perhaps impossible to implement—computation of the
outcome of a problem, we introduce the notion of privacy-approximation ratios (PARs).

3.1. Worst-Case PARs

For any communication protocol P for a function f , we denote by RP(x1, x2) the
monochromatic rectangle induced by P for (x1, x2). We denote by RI(x1, x2) the
monochromatic region containing A( f )(x1,x2) in the ideal monochromatic partition of
A( f ). Intuitively, RP(x1, x2) is the set of inputs that are indistinguishable from (x1, x2)
to P. RI(x1, x2) is the set of inputs that would be indistinguishable from (x1, x2) if perfect
privacy were preserved. We wish to assess how far one is from the other. The size of a
region R, denoted by |R|, is the cardinality of R, that is, the number of inputs in R.

We can now define worst-case objective PAR as follows:

1This check will be useful in subsequent examples. We may look at the matrix for the function as in Figure 3;
if there are two input pairs (i, j) and (i′, j ′) that produce the same function value, the function cannot be
computed perfectly privately if the inputs (i, j′) and (i′, j) do not also produce this same function value. The
tiling from Figure 2 shows that satisfying this is necessary but not sufficient, however.
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Definition 3.1 (Worst-case objective PAR of P). The worst-case objective privacy-
approximation ratio of communication protocol P for function f is

α = max
(x1,x2)

|RI(x1, x2)|
|RP(x1, x2)| .

We say that P is α-objective privacy preserving in the worst case.

Definition 3.2 (i-partitions). The 1-partition of a region R in a matrix A is the set
of disjoint rectangles Rx1 = {x1} × {x2 s.t. (x1, x2) ∈ R} (over all possible inputs x1).
2-Partitions are defined analogously.

Intuitively, given any region R in the matrix A( f ), if party i’s actual private informa-
tion is xi, then i can use this knowledge to eliminate all the parts of R other than Rxi .
Hence, the other party should be concerned not with R but rather with the i-partition
of R.

Definition 3.3 (i-induced tilings). The i-induced tiling of a protocol P is the refine-
ment of the tiling induced by P obtained by i-partitioning each rectangle in it.

Definition 3.4 (i-ideal monochromatic partitions). The i-ideal monochromatic parti-
tion is the refinement of the ideal monochromatic partition obtained by i-partitioning
each region in it.

For any communication protocol P for a function f , we use RP
i (x1, x2) to denote

the monochromatic rectangle containing A( f )(x1,x2) in the i-induced tiling for P. We
denote by RI

i (x1, x2) the monochromatic rectangle containing A( f )(x1,x2) in the i-ideal
monochromatic partition of A( f ).

Definition 3.5 (Worst-case PAR of P with respect to i). The worst-case privacy-
approximation ratio with respect to i of communication protocol P for function f is

α = max
(x1,x2)

|RI
i (x1, x2)|

|RP
i (x1, x2)| .

We say that P is α-privacy preserving with respect to i in the worst case.

Definition 3.6 (Worst-case subjective PAR of P). The worst-case subjective privacy-
approximation ratio of communication protocol P for function f is the maximum of the
worst-case privacy-approximation ratio with respect to each party.

Definition 3.7 (Worst-case PAR). The worst-case objective (subjective) PAR for a
function f is the minimum, over all protocols P for f , of the worst-case objective
(subjective) PAR of P.

3.2. Average-Case PARs

As we shall see later, it is also useful to define an average-case version of PAR. As the
name suggests, the average-case objective PAR is the average ratio between the size
of the monochromatic rectangle containing the private inputs and the corresponding
region in the ideal monochromatic partition.

Definition 3.8 (Average-case objective PAR of P). Let D be a probability distribution
over the space of inputs. The average-case objective privacy-approximation ratio of
communication protocol P for function f is

α = ED

[ |RI(x1, x2)|
|RP(x1, x2)|

]
.
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We say that P is α-objective privacy preserving in the average case with distribution
D (or with respect to D).

We define average-case PAR with respect to i analogously, and average-case subjec-
tive PAR as the maximum over all players i of the average-case PAR with respect to i.
We define the average-case objective (subjective) PAR for a function f as the minimum,
over all protocols P for f , of the average-case objective (subjective) PAR of P.

In computing the average-case PAR (either objective or subjective) with respect to
the uniform distribution, we may simplify the previous expressions for PAR values. If
each player’s value space has k bits, then the average-case objective PAR with respect
to the uniform distribution equals

PAR(k) =
∑

(x1,x2)

1
22k

|RI(x1, x2)|
|RP(x1, x2)| ,

where the sum is over all pairs (x1, x2) in the value space. We may combine all of the
terms corresponding to points in the same protocol-induced rectangle to obtain

PAR(k) =
∑

S

|S|
22k

|RI(S)|
|S| = 1

22k

∑
S

|RI(S)|, (1)

where the sums are now over protocol-induced rectangles S. Note also that the average-
case PAR with respect to i and with respect to the uniform distribution is obtained by
replacing RI(S) with RI

i (S) in Eq. 1.
It may seem that the occurrences of set cardinality in the quantity considered in

Definition 3.8 should be replaced by the probability measure of the regions in question.
However, as we discuss in Section 8.1, such a definition is unable to distinguish between
examples that should be viewed as having very different levels of privacy; by contrast,
the definition that we consider here is able to distinguish between such cases.

We note that extending a function and protocol to a larger domain can significantly
change the value of the protocol’s PAR. If the domain is enlarged sufficiently and the
expanded protocol is sufficiently private (or input revealing), the extended protocol’s
PAR will be dominated by the contribution from the extended domain.

3.3. Ratios of Subjective PARs

We may also be interested in another quantity related to PAR. Given some protocol P
for a function f , let PARi

D(k) be the average-case subjective PAR of P with respect to
protocol participant i and distribution D on the k-bit input space. We then let

PARmax
D (k) = max

i
PARi

D(k) and PARmin
D (k) = min

i
PARi

D(k),

where the max and min are taken over all protocol participants. We then define the
ratio of (average-case with respect to D) subjective PARs to be

PARmax
D (k)

PARmin
D (k)

≥ 1.

Intuitively, in a two-participant protocol, this captures how much greater a negative
effect the protocol P can have on one participant than on the other participant. The
average-case subjective PAR of a protocol P identifies the maximum effect that P can
have on the privacy with respect to a participant. However, it does not capture whether
this effect is similar for both players, and in fact this effect can be quite different. Later
we show that, for both the disjointness and intersection problems, there are protocols
that have exponentially large subjective PARs; for some protocols, the subjective PAR
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Table I. Average-Case PARs (with Respect to the Uniform Distribution) for 2ND-PRICE AUCTIONk

Avg.-Case Obj. PAR Avg.-Case Subj. PAR
English Auction 1 1

BISECTION AUCTIONg(k)
g(k)+3

2 − 2g(k)

2k+1 + g(k)+5
4 − 1

2g(k)+2 +
1

2k+1 − 1
2g(k)+1

g(k)
2k+2

BISECTION AUCTION k
2 + 1 k+5

4 + k−1
2k+2

Sealed-Bid Auction 2k+1

3 + 1
3·2k

2k

3 + 1 − 1
3·2k

with respect to one player is exponentially larger than that with respect to the other
player, while for one protocol for each problem, the subjective PARs with respect to the
different players differ only by a constant (asymptotic) factor. We argue that this is an
important distinction and that the ratio of average-case subjective PARs captures some
intuitive notion of the fairness of the protocol. If a protocol has a much larger PAR with
respect to player 2 than with respect to player 1, an agent might agree to participate
in a protocol run only if he is assigned the role of player 2 (so that he learns much
more about the other player than the other player learns about him). Thus, from the
perspective of the protocol implementer who needs to induce participation, protocols
with small ratios of average-case subjective PARs would likely be more desirable.

4. 2ND-PRICE AUCTIONS: BOUNDS ON PARS

In this section, we present upper and lower bounds on the privacy-approximation ratios
for the 2nd-price Vickrey auction and discuss the tradeoff between average-case PAR
and communication complexity for a family of auction protocols. We start with a formal
statement of the problem.

4.1. Problem Specification and Summary of Results

2nd-price Vickrey auction. A single item is offered to two bidders, each with a private
value for the item. The auctioneer’s goal is to allocate the item to the bidder with the
higher value. The fundamental technique in mechanism design for inducing truthful
behavior in single-item auctions is Vickrey’s 2nd-price auction [Vickrey 1961]: Allocate
the item to the highest bidder, and charge him the second-highest bid.

Definition 4.1 (2ND-PRICE AUCTIONk).
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: the identity of the party with the higher value, that is, arg maxi∈{1,2} xi

(breaking ties lexicographically), and the private information of the other party.

Brandt and Sandholm [2008] show that a perfectly privacy-preserving communica-
tion protocol exists for 2ND-PRICE AUCTIONk. Specifically, perfect privacy is obtained via
the ascending-price English auction: start with a price of p = 0 for the item. In each
time step, increase p by 1 until one of the bidders indicates that his value for the item
is less than p (in each step first asking bidder 1 and then, if necessary, asking bidder 2).
At that point, allocate the item to the other bidder for a price of p − 1. If p reaches a
value of 2k − 1 (i.e., the values of both bidders are 2k − 1), allocate the item to bidder 1
for a price of 2k − 1.

Moreover, it is shown in Brandt and Sandholm [2008] that the English auction is
essentially the only perfectly privacy-preserving protocol for 2ND-PRICE AUCTIONk. Thus,
perfect privacy requires, in the worst case, the transmission of �(2k) bits. 2k bits suffice
to compute the function without privacy because bidders can simply reveal their inputs.
Can we obtain “good” privacy without paying such a high price in communication?

Table I summarizes the average-case PAR results (with respect to the uniform distri-
bution) for 2ND-PRICE AUCTIONk that we obtain in the rest of this section. As discussed in
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Section 4.4, BISECTION AUCTIONg(k), which is parameterized by a function g : Z
+ → Z

≥0,
interpolates between the ascending-price English auction (g(k) = 0) and the BISECTION

AUCTION (g(k) = k), which is discussed in Section 4.2.

4.2. Objective Privacy PARs

We now consider objective privacy for 2ND-PRICE AUCTIONk (i.e., privacy with respect to
the auctioneer). The BISECTION AUCTION [Fujishima et al. 1999; Grigorieva et al. 2006,
2007; Herings et al. 2009] for 2ND-PRICE AUCTIONk is defined as follows: start by asking
each player whether his value lies in [0, 2k−1) or in [2k−1, 2k); continue this binary search
until the players’ answers differ, at which point we know which bidder has the higher
value. (If the values do not differ, we will also discover this; in this case, award the
item to bidder 1, who must pay the common value.) Then use another binary search
on the interval that contains the value of the lower bidder in order to find his value.
Truthfulness is a weakly dominant strategy in BISECTION AUCTION [Grigorieva et al.
2006, 2007; Herings et al. 2009]. Furthermore, for every k and every other protocol for
2ND-PRICE AUCTIONk, the number of input pairs for which the BISECTION AUCTION requires
at most k steps is at least as large as the number of pairs for which the other protocol
requires at most k steps [Grigorieva et al. 2010, Theorem 4.7].

More generally, we refer to an auction protocol as a c-bisection auction, for a constant
c ∈ (0, 1), if in each step the interval R is partitioned into two disjoint subintervals: a
lower subinterval of size c|R| and an upper subinterval of size (1 − c)|R|. Hence, the
BISECTION AUCTION is a c-bisection auction with c = 1

2 . We prove that no c-bisection
auction for 2ND-PRICE AUCTIONk obtains a subexponential objective PAR:

THEOREM 4.2 (A WORST-CASE LOWER BOUND FOR c-BISECTION AUCTIONS). For any constant
c > 1

2k , the c-bisection auction for 2ND-PRICE AUCTIONk has a worst-case PAR of at least
2

k
2 .

PROOF. Consider the ideal monochromatic partition of 2ND-PRICE AUCTIONk depicted
for k = 3 in Figure 1. Observe that, for perfect privacy to be preserved, it must be that
bidder 2 transmits the first (meaningful) bit, and that this bit partitions the space of
inputs into the leftmost shaded rectangle (the set {0, . . . , 2k − 1} × {0}) and the rest of
the value space (ignoring the rectangles depicted that further refine {0, . . . , 2k − 1} ×
{1, . . . , 2k − 1}). What if the first bit is transmitted by player 2 and does not partition
the space into rectangles in that way? We observe that any other partition of the space
into two rectangles is such that, in the worst case, the privacy-approximation ratio is
at least 2

k
2 (for any value of c): if c ≤ 1 − 2− k

2 , then the case in which x1 = c2k − 1
gives us the lower bound. If, on the other hand, c > 1 − 2− k

2 , then the case that x1 = 0
gives us the lower bound. Observe that such a bad PAR is also the result of bidder 1’s
transmitting the first (meaningful) bit.

By contrast, as for THE MILLIONAIRES PROBLEMk, reasonable privacy guarantees are
achievable in the average case; this follows from general results later (Theorem 4.9
with g(k) = k).

THEOREM 4.3 (THE AVERAGE-CASE OBJECTIVE PAR OF THE BISECTION AUCTION). The average-
case objective PAR of the BISECTION AUCTION is k

2 + 1 with respect to the uniform distri-
bution.

We conjecture that, for any distribution, similarly good objective PAR can be achieved
for the 2nd-price Vickrey auction. Ada et al. [2012] have proved the analog of this
conjecture for the variant of PAR that they use.
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Fig. 4. The BISECTION-AUCTION-induced refinement of the 1-partition for 2ND-PRICE AUCTIONk (k = 4).

CONJECTURE 4.4. For any probability distribution D over the k-bit input space, the
average-case objective PAR of 2ND-PRICE AUCTIONk is linear in k.

We note that the worst-possible approximation of objective privacy comes when each
value in the space is in a distinct tile; this is the tiling induced by the sealed-bid auction.
The resulting average-case privacy-approximation ratio is exponential in k.

Observation 4.5 (Largest possible objective PAR). The largest possible (for any proto-
col) average-case objective PAR with respect to the uniform distribution for 2ND-PRICE

AUCTIONk is 2
3 2k + 1

3 2−k.

4.3. Subjective Privacy PARs

We now look briefly at subjective privacy for 2ND-PRICE AUCTIONk. For subjective privacy
with respect to 1, we start with the 1-partition for 2ND-PRICE AUCTIONk; Figure 4 shows
the refinement of the 1-partition induced by the BISECTION AUCTION for k = 4. Separately
considering the refinement of the 2-partition for 2ND-PRICE AUCTIONk by the BISECTION

AUCTION, we have the following results.
Using more general results later, we may obtain the average-case PARs with respect

to 1 and 2 (taking g(k) = k in Theorems 4.13 and 4.14, respectively) for the bisection
auction with respect to the uniform distribution. For 1, this is k+3

4 − k−1
2k+2 ; for 2, this is

k+5
4 + k−1

2k+2 , and we immediately have the following corollary:

COROLLARY 4.6 (THE AVERAGE-CASE SUBJECTIVE PAR OF THE BISECTION AUCTION). The
average-case subjective PAR of the BISECTION AUCTION with respect to the uniform distri-
bution is

k + 5
4

+ k − 1
2k+2 .

As with objective privacy, we conjecture that, for any distribution, similarly good
subjective PAR can be achieved for the 2nd-price Vickrey auction.

CONJECTURE 4.7. For any probability distribution D over the k-bit input space, the
average-case subjective PAR of 2ND-PRICE AUCTIONk is linear in k.

Also as with objective privacy, the sealed-bid auction gives the largest possible
average-case subjective PAR.

Observation 4.8 (Largest possible subjective PAR). The largest possible (for any
protocol) average-case subjective PAR with respect to the uniform distribution for 2ND-
PRICE AUCTIONk is 2k

3 + 1 − 1
3·2k .
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Fig. 5. Illustration for the proof of Theorem 4.9.

4.4. Bounded-Bisection Auctions

We now present a middle ground between the perfectly private yet highly inefficient (in
terms of communication) ascending English auction and the communication-efficient
BISECTION AUCTION whose average-case objective PAR is linear in k (and is thus un-
bounded as k goes to infinity): we bound the number of bisections, using an ascending
English auction to determine the outcome if it is not resolved by the limited number of
bisections.

We define the BISECTION AUCTIONg(k) as follows: given an instance of 2ND-PRICE AUCTIONk
and an integer-valued function g(k) such that 0 ≤ g(k) ≤ k, run the BISECTION AUCTION

as earlier but do at most g(k) bisection operations. (Note that we will never do more
than k bisections.) If the outcome is undetermined after g(k) bisection operations, so
that both players’ values lie in an interval I of size 2k−g(k), apply the ascending-price
English auction to this interval to determine the identity of the winning bidder and
the value of the losing bidder.

As g(k) ranges from 0 to k, the BISECTION AUCTIONg(k) ranges from the ascending-
price English auction to the BISECTION AUCTION. If we allow a fixed, positive number of
bisections (g(k) = c > 0), computations show that for c = 1, 2, 3, we obtain examples
of protocols that do not provide perfect privacy but that do have bounded average-case
objective PARs with respect to the uniform distribution. We wish to see if this holds for
all positive c, determine the average-case objective PAR for general g(k), and connect
the amount of communication needed with the approximation of privacy in this family
of protocols. The following theorem allows us to do these things.

THEOREM 4.9. For the BISECTION AUCTIONg(k), the average-case objective PAR with
respect to the uniform distribution equals

g(k) + 3
2

− 2g(k)

2k+1 + 1
2k+1 − 1

2g(k)+1
.

PROOF. Fix k, the number of bits used for bidding, and let c = g(k) be the number
of bisections; we have 0 ≤ c ≤ k, and we let i = k − c. Figure 5 illustrates this tiling
for k = 4, c = 2, and i = 2; note that the upper-left and lower-right quadrants have
identical structure and that the lower-left and upper-right quadrants have no structure
other than that of the ideal partition and the quadrant boundaries (which are induced
by the first bisection operation performed).

Recall from Eq. (1) that

PAR(k) = 1
22k

∑
S

|R(S)| (2)
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gives the average-case objective PAR of a protocol with respect to the uniform distribu-
tion, where the sum is over protocol-induced rectangles S, and R(S) denotes the ideal
region containing S. Each ideal region in which bidder 1 wins is a rectangle of width 1
and height at most 2k; each ideal region in which bidder 2 wins is a rectangle of height 1
and width strictly less than 2k. For a protocol-induced rectangle S, let jS = 2k − |R(S)|.
Let ac,i be the total number of tiles that appear in the tiling of the k-bit value space
induced by the BISECTION AUCTIONg(k) with g(k) = c, and let bc,i = ∑

S jS (with this sum
being over the protocol-induced tiles in this same partition). Then we may rewrite
Equation (2) as

PARc,i = 1
22k

∑
S

(2k − jS) = ac,i2k − bc,i

22k . (3)

(Note that Eq. 2 holds for general protocols; we now add the subscripts “c, i” to indicate
the particular protocol whose PAR we are computing.) We now determine ac,i and bc,i.

Considering the tiling induced by c + 1 bisections of a (c + i + 1)-bit space (which has
ac+1,i total tiles), the upper-left and lower-right quadrants each contain ac,i tiles, while
the lower-left and upper-right quadrants (as depicted in Figure 5) each contribute 2c+i

tiles, so ac+1,i = 2ac,i + 2c+i+1. When there are no bisections, the i-bit value space has
a0,i = 2i+1 − 1 tiles, from which we obtain ac,i = 2c(2i(c + 2) − 1). The sum of jS over
protocol-induced rectangles S in the upper-left quadrant is bc,i. For a rectangle S in the
lower-right quadrant, jS equals 2c+i plus jS′ , where S′ is the corresponding rectangle
in the upper-left quadrant; there are ac,i such S, so the sum of jS over protocol-induced
rectangles S in the upper-left quadrant is bc,i + ac,i2c+i. Finally, the sum of jS over S in
the bottom-left quadrant equals

∑2c+i−1
h=0 h and the sum over S in the top-right quadrant

equals
∑2c+i

h=1 h. Thus, bc+1,i = 2bc,i + ac,i2c+i + 22(c+i); with b0,i = ∑2i−1
h=0 h + ∑2i−1

h=1 h, we
obtain bc,i = 2c+i−1((1 + 2c)(−1 + 2i) + 2c+ic). Rewriting Eq. 3, we obtain

PARc,i(k) = c + 3
2

− 2c

2c+i+1 + 1
2c+i+1 − 1

2c+1 .

Recalling that k = c + i, the proof is complete.

For the protocols corresponding to values of g(k) ranging from 0 to k (ranging from
the ascending-price English auction to the BISECTION AUCTION), we may thus relate the
amount of communication saved (relative to the English auction) to the effect of this
on the PAR.

COROLLARY 4.10. Let g be a function that maps nonnegative integers to nonnegative
integers. Then the average-case objective PAR with respect to the uniform distribution for
the BISECTION AUCTIONg(k) is bounded if g is bounded and is unbounded if g is unbounded.
We then have that the BISECTION AUCTIONg(k) may require the exchange of �(k + 2k−g(k))
bits, and it has an average-case objective PAR of �(1 + g(k)).

Remark 4.11. Some of the sequences that appear in the previous proof also ap-
pear in other settings. For example, the sequences {a0,i}i, {a1,i}i, and {a2,i}i are slightly
shifted versions of sequences A000225, A033484, and A028399, respectively, in the On-
Line Encyclopedia of Integer Sequences [OIES 2010], which notes other combinatorial
interpretations of them.

We also conjecture that the tradeoff in Corollary 4.10 generalizes to other protocols.

CONJECTURE 4.12. There is no protocol for 2ND-PRICE AUCTIONk that achieves bounded
average-case objective PAR (w.r.t. the uniform distribution, as k → ∞) and has subex-
ponential communication complexity.
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4.4.1. Subjective privacy for bounded-bisection auctions. We now turn to the subjective pri-
vacy of bounded-bisection auctions.

THEOREM 4.13 (THE AVERAGE-CASE PAR W.R.T. 1 OF THE BOUNDED-BISECTION AUCTION).
The average-case PAR with respect to 1 of the BISECTION AUCTIONg(k) is

g(k) + 5
4

− 1
2g(k)+2

− 1
2k−g(k)+1

− g(k) − 2
2k+2

with respect to the uniform distribution.

PROOF. The approach is similar to that in the proof of Theorem 4.9. We start by
specializing Eq. 2 to the present case.

Each ideal region in which bidder 1 wins is a rectangle of size 1; each ideal region
in which bidder 2 wins is a rectangle of height 1 and width strictly less than 2k. For a
protocol-induced rectangle R, let jR = 2k − |RI(R)|. Let c = g(k) and let i = k − c ≥ 0.
Let T 1

c,i be the refinement of the 2ND-PRICE-AUCTIONk 1-partition of the k-bit value space
induced by the BISECTION-AUCTIONg(k). Let xc,i be the number of rectangles in T 1

c,i in
which bidder 2 (the column player) wins, and let yc,i be the sum, over all rectangles
R in which bidder 2 wins, of the quantity 2c+i − |RI(R)|. Let zc,i be the number of
rectangles R in which bidder 1 (the row player) wins.

Using PAR1
c,i to denote the PAR w.r.t. bidder 1 in this case (c bisections and i = k− c),

we may rewrite Eq. 2 as

PAR1
c,i = 1

22 (c+i)

⎡
⎢⎣

⎛
⎜⎝ ∑

RP in which
1 wins

|RI(RP)|

⎞
⎟⎠ +

⎛
⎜⎝ ∑

RP in which
2 wins

|RI(RP)|

⎞
⎟⎠

⎤
⎥⎦

= 1
22 (c+i)

[
(zc,i) + (

2c+ixc,i − yc,i
)]

.

We now turn to the computation of xc,i, yc,i, and zc,i.
Following the same approach as in the proof of Theorem 4.9, we have xc+1,i = 2xc,i +

2c+i, yc+1,i = 2yc,i + ∑2c+i

j=1 j + 2c+ixc,i, and zc+1,i = 2zc,i + 22 (c+i). With x0,i = 2i − 1,

y0,i = ∑2i−1
j=1 j, and z0,i = ∑2c+1

j=1 j, we obtain

xc,i = 2c−1(2ic + 2i+1 − 2
)
,

yc,i = 2c+i−2(2c+ic + 2c+i + 2i − 2c+1 + c
)
, and

zc,i = 2c+i−1(2c+i + 1).

Using these in our expression for PAR1
c,i, we obtain

PAR1
c,i = c + 5

4
+ 2 − c

2c+i+2 − 1
2i+1 − 1

2c+2 .

Recalling that k = c + i and g(k) = c completes the proof.

THEOREM 4.14 (THE AVERAGE-CASE PAR W.R.T. 2 OF THE BOUNDED-BISECTION AUCTION).
The average-case PAR with respect to 2 of the BISECTION AUCTIONg(k) is

g(k) + 5
4

− 1
2g(k)+2

+ g(k)
2k+2

with respect to the uniform distribution.

ACM Transactions on Algorithms, Vol. 10, No. 3, Article 11, Publication date: April 2014.



11:20 J. Feigenbaum et al.

PROOF. The approach is essentially the same as in the proof of Theorem 4.13, although
the induced partition differs slightly.

Let c = g(k) and let i = k−c ≥ 0. Let T 2
c,i be the refinement of the 2ND-PRICE-AUCTIONk

2-partition of the k-bit value space induced by the BISECTION-AUCTIONg(k). Let uc,i be the
number of rectangles in T 2

c,i in which bidder 1 (the row player) wins, and let vc,i be the
sum, over all rectangles R in which bidder 1 wins, of the quantity 2c+i − |RI(R)|. Let
wc,i be the number of rectangles R in which bidder 2 (the column player) wins. Using
PAR2

c,i to denote the PAR w.r.t. bidder 2 in this case (c bisections and i = k− c), we may
rewrite Eq. 2 as

PAR2
c,i = 1

22(c+i)

[(
2c+iuc,i − vc,i

) + (wc,i)
]
.

Mirroring the approach of the proof of Theorem 4.13, we have uc+1,i = 2uc,i + 2c+i,
vc+1,i = 2vc,i + 2c+i−1(2c+i − 1) + 2c+iuc,i, and wc,i = 2c+i−1(2c+i − 1). With u0,i = 2i and
v0,i = 2i−1(2i − 1), we obtain

uc,i = 2c+i−1(c + 2),

vc,i = 2c+i−2 (
2c+i(c + 1) + 2i − c − 2

)
, and

wc,i = 2c+i−1(2c+i − 1).

Using these in our expression for PAR2
c,i, we obtain

PAR2
c,i = c + 5

4
− 1

2c+2 + c
2c+i+2 .

Recalling that k = c + i and g(k) = c completes the proof.

Because g(k) ≥ 0, the average-case PAR with respect to 2 is at least as large as
the average-case PAR with respect to 1; this gives the average-case subjective PAR of
the BISECTION AUCTIONg(k) as follows.

COROLLARY 4.15 (AVERAGE-CASE SUBJECTIVE PAR OF THE BOUNDED-BISECTION AUCTION).
The average-case subjective PAR of the BISECTION AUCTIONg(k) is

g(k) + 5
4

− 1
2 g (k)+2

+ g(k)
2k+2

with respect to the uniform distribution.

5. THE MILLIONAIRES PROBLEM AND PUBLIC GOODS: BOUNDS ON PARS

In this section, we prove upper and lower bounds on the privacy-approximation ratios
for two classic problems: Yao’s millionaires problem and the provision of a public good.

5.1. Problem Specifications

The millionaires problem. Two millionaires want to know which one is richer. Each
millionaire’s wealth is private information known only to him, and the millionaire
wishes to keep it that way. The goal is to discover the identity of the richer millionaire
while preserving the (subjective) privacy of both parties.

Definition 5.1 (The Millionaires Problemk).
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: the identity of the party with the higher value, that is, arg maxi∈{1,2} xi

(breaking ties lexicographically).
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Table II. Average-case PARs for THE MILLIONAIRES PROBLEMk and TRUTHFUL
PUBLIC GOODk,c

Protocol Average-Case Obj. PAR Average-Case Subj. PAR
THE MILLIONAIRES PROBLEMk

All ≥ 2k − 1
2 + 2−(k+1) —

Bisection Protocol 3
2 2k − 1

2
k
2 + 1

TRUTHFUL PUBLIC GOODk,c

All ≥ 1 + c3

22k+1 (1 − 1
c2 ) —

There cannot be a perfectly privacy-preserving communication protocol for THE

MILLIONAIRES PROBLEMk [Kushilevitz 1992]. (Considering any two distinct inputs (i, i)
and ( j, j), which produce a tie broken in favor of the first millionaire, the reasoning
is similar to that used with the example in Figure 3.) Hence, we are interested in the
PARs for this well-studied problem.

The public good problem. There are two agents, each with a private value in
{0, . . . , 2k − 1} that represents his benefit from the construction of a public project
(public good), for example, a bridge.2 The goal of the social planner is to build the
public project only if the sum of the agents’ values is at least its cost c, where, as in
Babaioff et al. [2008], the c is set to be 2k − 1.

Definition 5.2 (Public Goodk).
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: “Build” if x1 + x2 ≥ 2k − 1, “Do Not Build” otherwise.

It is easy to show (via Observation 2.13) that for PUBLIC GOODk, as for THE MILLIONAIRES

PROBLEMk, no perfectly privacy-preserving communication protocol exists. Therefore, we
are interested in the PARs for this problem.

In Section 5.4, we consider a truthful version of this problem. Our results for THE

MILLIONAIRES PROBLEMk and the truthful public good problem are shown in Table II; the
results for the standard public good problem are essentially those for THE MILLIONAIRES

PROBLEMk. Of particular note is the fact that the PAR for the truthful public good
problem is bounded for fixed c (as k grows); unlike most of the problems we consider
here, this problem allows good privacy bounds to be realized.

5.2. The Millionaires Problem

The following theorem shows that not only is perfect subjective privacy unattainable
for THE MILLIONAIRES PROBLEMk but also a stronger result holds:

THEOREM 5.3 (A WORST-CASE LOWER BOUND ON SUBJECTIVE PAR). No communication
protocol for THE MILLIONAIRES PROBLEMk has a worst-case subjective PAR less than 2

k
2 .

PROOF. Consider a communication protocol P for THE MILLIONAIRES PROBLEMk. Let R
represent the space of possible inputs of millionaire 1, and let C represent the space of
possible inputs of millionaire 2. In the beginning, R = C = {0, . . . , 2k − 1}. Consider the
first (meaningful) bit q transmitted in the course of P ’s execution. Let us assume that
this bit is transmitted by millionaire 1. This bit indicates whether 1’s value belongs
to one of two disjoint subsets of R, R1 and R2, whose union equals R. Because we are
interested in the worst case, we can choose adversarially to which of these subsets 1’s
input belongs. Without loss of generality, let 0 ∈ R1. We decide adversarially that 1’s
value is in R1 and set R = R1. Similarly, if q is transmitted by millionaire 2, then we

2This is a discretization of the classic public good problem, in which the private values are taken from an
interval of reals, as in Blumrosen et al. [2007] and Babaioff et al. [2008].
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Fig. 6. Left to right: The ideal partition (for k = 3) for THE MILLIONAIRES PROBLEMk; the 1-partition of the
ideal regions; the 1-induced tiling induced by the BISECTION PROTOCOL; the rearrangement used in the proof
of Theorem 5.4.

set C to be the subset of C containing 0 in the partition of 2’s inputs induced by q. We
continue this process recursively for each bit transmitted in P.

Observe that, as long as both R and C contain at least two values, P is incapable of
computing THE MILLIONAIRES PROBLEMk. This is because 0 belongs to both R and C, and
so P cannot eliminate, for either of the millionaires, the possibility that that millionaire
has a value of 0 and the other millionaire has a positive value. Hence, this process will
go on until P determines that the value of one of the millionaires is exactly 0, that is,
until either R = {0} or C = {0}. Let us examine these two cases:

—Case I: R = {0}. Consider the subcase in which x2 equals 0. Recall that 0 ∈ C, and so
this is possible. Observe that, in this case, P determines the exact value of x1, despite
the fact that, in the 2-ideal-monochromatic partition, all 2k possible values of x1 are
in the same monochromatic rectangle when x2 = 0 (because for all these values 1
wins). Hence, we get a lower bound of 2k on the subjective privacy-approximation
ratio.

—Case II: C = {0}. Let m denote the highest input in R. We consider two subcases. If
m ≤ 2

k
2 , then observe that the worst-case subjective privacy-approximation ratio is

at least 2
k
2 . In the 2-ideal-monochromatic partition, all 2k possible values of x1 are in

the same monochromatic rectangle if x2 = 0, and the fact that m ≤ 2
k
2 implies that

|R| ≤ 2
k
2 .

If, on the other hand, m > 2
k
2 , then consider the case in which x1 = m and x2 = 0.

Observe that, in the 1-ideal-monochromatic partition, all values of millionaire 2 in
{0, . . . , m− 1} are in the same monochromatic rectangle if x1 = m. However, P will
enable millionaire 1 to determine that millionaire 2’s value is exactly 0. This implies
a lower bound of m on the subjective privacy approximation. We now use the fact
that m > 2

k
2 to conclude the proof.

By contrast, we show that fairly good privacy guarantees can be obtained in the
average case. We define the BISECTION PROTOCOL for THE MILLIONAIRES PROBLEMk similarly
to the BISECTION AUCTION for 2ND-PRICE AUCTIONk: ask each millionaire whether his
value lies in [0, 2k−1) or in [2k−1, 2k); continue this binary search until the millionaires’
answers differ, at which point we know which millionaire has the higher value. If the
answers never differ, the tie is broken in favor of millionaire 1.

We may exactly compute the average-case subjective PAR with respect to the uniform
distribution for the BISECTION PROTOCOL applied to THE MILLIONAIRES PROBLEMk. Figure 6
illustrates the approach. The far left of the figure shows the ideal partition (for k = 3) of
the value space for THE MILLIONAIRES PROBLEMk; these regions are indicated with heavy
lines in all parts of the figure. The center-left shows the 1-partition of the regions
in the ideal partition; the center-right shows the 1-induced tiling that is induced by
the BISECTION PROTOCOL. The far right illustrates how we may rearrange the tiles that
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partition the bottom-left region in the ideal partition (by reflecting them across the
dashed line) to obtain a tiling of the value space that is the same as the tiling induced
by applying the BISECTION AUCTION to 2ND-PRICE AUCTIONk.

THEOREM 5.4 (THE AVERAGE-CASE SUBJECTIVE PAR OF THE BISECTION PROTOCOL). The
average-case subjective PAR with respect to the uniform distribution for the BISECTION

PROTOCOL applied to THE MILLIONAIRES PROBLEMk is k
2 + 1.

PROOF. Given a value of i, consider the i-induced tiling obtained by running the
BISECTION PROTOCOL for THE MILLIONAIRES PROBLEMk (as in the center-right of Figure 6
for i = 1). Rearrange the rectangles in which player i wins by reflecting them across
the line running from the bottom-left corner to the top-right corner (the dashed line in
the far right of Figure 6). This produces a tiling of the value space in which the region
in which player 1 wins is tiled by tiles of width 1, and the region in which player 2
wins is tiled by tiles of height 1; in computing the average-case approximate privacy
with respect to i, the tile-size ratios that we use are the heights (widths) of the tiles
to the height (width) of the tile containing all values in that column (row) for which
player 1 (2) wins. This tiling and the tile-size ratios in question are exactly as in the
computation of the average-case objective privacy for 2ND-PRICE AUCTIONk; the argument
used in Theorem 4.9 (for g(k) = k) completes the proof.

As with the 2nd-price Vickrey auction, we conjecture that the good PAR that can be
achieved with respect to the uniform distribution can be achieved with respect to any
distribution. In light of Proposition 5.6, the analogous result for objective PAR does not
hold.

CONJECTURE 5.5. For any probability distribution D over the k-bit input space, the
average-case subjective PAR of THE MILLIONAIRES PROBLEMk is linear in k.

Consider the case in which a third party is observing the interaction of the two
millionaires. How much can this observer learn about the private information of the
two millionaires? We show that, unlike the case of subjective privacy, good PARs are
unattainable even in the average case.

Because the values (i, i) (in which case player 1 wins) and the values (i, i + 1) (in
which player 2 wins) must all appear in different tiles in any tiling that refines the
ideal partition of the value space for THE MILLIONAIRES PROBLEMk, any such tiling must
include at least 2k tiles in which player 1 wins and 2k − 1 tiles in which player 2 wins.
The total contribution of a tile in which player 1 wins is the number of values in that
tile times the ratio of the ideal region containing the tile to the size of the tile, divided
by the total number (22k) of values in the space. Each tile in which player 1 wins thus
contributes (1+2k)2k

22k+1 to the average-case PAR under the uniform distribution; similarly,
each tile in which player 2 wins contributes 2k(2k−1)

22k+1 to this quantity. This leads directly
to the following result.

PROPOSITION 5.6 (A LOWER BOUND ON AVERAGE-CASE OBJECTIVE PAR). The average-case
objective PAR for THE MILLIONAIRES PROBLEMk with respect to the uniform distribution is
at least 2k − 1

2 + 2−(k+1).

There are numerous different tilings of the value space that achieve this ratio and
that can be realized by communication protocols. For the BISECTION PROTOCOL, we obtain
the same exponential (in k) growth rate but with a larger constant factor.
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Fig. 7. Ideal partition of the value space for TRUTHFUL PUBLIC GOODk,c with k = 3 and c = 4.

PROPOSITION 5.7 (THE AVERAGE-CASE OBJECTIVE PAR OF THE BISECTION PROTOCOL). The
BISECTION PROTOCOL for THE MILLIONAIRES PROBLEMk obtains an average-case objective
PAR of 3 · 2k−1 − 1

2 with respect to the uniform distribution.

PROOF. The bisection mechanism induces a tiling that refines the ideal partition and
that has 2k+1 − 1 tiles in which the player 1 wins and 2k − 1 tiles in which the player 2
wins. The contributions of each of these tiles is as noted earlier, from which the result
follows.

5.3. The Public Good Problem

The government is considering the construction of a bridge (a public good) at cost c.
Each taxpayer has a k-bit private value that is the utility he or she would gain from
the bridge if it were built. The government wants to build the bridge if and only if the
sum of the taxpayers’ private values is at least c. In the case that c = 2k −1, we observe
that x̂2 = c − x2 is again a k-bit value and that x1 + x2 ≥ c if and only if x1 ≥ x̂2; from the
perspective of PAR, this problem is equivalent to solving THE MILLIONAIRES PROBLEMk on
inputs x1 and x̂2. We may apply our results for THE MILLIONAIRES PROBLEMk to see that
the public good problem with c = 2k − 1 has exponential average-case objective PAR
with respect to the uniform distribution. Section 5.4 discusses average-case objective
PAR for a truthful version of the public good problem.

5.4. Truthful Public Good Problem

5.4.1. Problem. As in Section 5.3, the government is considering the construction of a
bridge at cost c. Each taxpayer has a private value that is the utility he or she would gain
from the bridge if it were built, and the government wants to build the bridge if and only
if the sum of the taxpayers’ private values is at least c. Now, in addition to determining
whether to build the bridge, the government incentivizes truthful disclosure of the
private values by requiring taxpayer i to pay c − ∑

j �=i xj if
∑

j �=i xj < c but
∑

i xi ≥ c
(see, e.g., Nisan [2007] for a discussion of this type of approach). The government should
thus learn whether or not to build the bridge and how much, if anything, each taxpayer
should pay. The formal description of the function is as follows; the corresponding ideal
partition of the value space is shown in Figure 7, in which regions for which the output
is “Build” are just labeled with the appropriate value of (t1, t2).

Definition 5.8 (TRUTHFUL PUBLIC GOODk,c).
Input: c, x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
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Output: “Do Not Build” if x1+x2 < c; “Build” and (t1, t2) if x1+x2 ≥ c, where ti = c−x3−i
if x3−i < c and x1 + x2 ≥ c, and ti = 0 otherwise.

5.4.2. Results.
PROPOSITION 5.9 (AVERAGE-CASE OBJECTIVE PAR OF TRUTHFUL PUBLIC GOODk,c). The

average-case objective PAR of TRUTHFUL PUBLIC GOODk,c with respect to the uniform
distribution is

1 + c3

22k+1

(
1 − 1

c2

)
.

PROOF. We may rewrite Eq. 2 as (adding subscripts for the values of k and c in this
problem):

PARk,c = 1
22k

⎡
⎣∑

RDNB

|RI(RDNB)| +
∑
RB

|RI(RB)|
⎤
⎦ ,

where the first sum is taken over rectangles RDNB for which the output is “Do Not
Build” and the second sum is taken over rectangles RB for which the output is “Build”
together with some (t1, t2). Using the same argument as for THE MILLIONAIRES PROBLEMk,
the first sum must be taken over at least c rectangles; the ideal region containing these
rectangles has size

∑c
i=1 i = c(c + 1)/2. Considering the second sum, each of the ideal

regions containing a protocol-induced rectangle is in fact a rectangle. If the protocol
did not further partition these rectangles (and it is easy to see that such protocols
exist), then the total contribution of the second sum is just the total number of inputs
for which the output is “Do Not Build” together with some pair (t1, t2); that is, this
contribution is 4k − c(c + 1)/2. We may thus rewrite PARk,c as

PARk,c = 1
22k

[
c

c(c + 1)
2

+ 4k − c(c + 1)
2

]
= 1 + c3

22k+1

(
1 − 1

c2

)
.

Unsurprisingly, if we take c = 2k − 1 (as in PUBLIC GOODk in Section 5.3), we obtain
PARk,2k−1 = 2k−1 − 1

2 + 1
2k , which is essentially half of the average-case PAR for THE

MILLIONAIRES PROBLEMk.

6. OVERVIEW OF PROTOCOLS AND RESULTS FOR SET PROBLEMS

We now provide an overview of our PAR results for the set-theoretic problems that we
study and discuss their significance. We start with technical definitions of the problems
and protocols that we consider here.

6.1. Problems

We define the DISJOINTNESSk problem as follows:
Problem: DISJOINTNESSk
Input: Sets S1, S2 ⊆ {1, . . . , k} encoded by x1 and x2.
Output: 1 if S1 ∩ S2 = ∅, 0 if S1 ∩ S2 �= ∅.
Figure 8 illustrates the ideal monochromatic partition of the 3-bit value space; inputs

for which S1 and S2 are disjoint are white, and inputs for which these sets are not
disjoint are black.

We define the INTERSECTIONk problem as follows:
Problem: INTERSECTIONk
Input: Sets S1, S2 ⊆ {1, . . . , k}.
Output: The set S1 ∩ S2.
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Fig. 8. Ideal monochromatic partition for DISJOINTNESSk with k = 3.

Fig. 9. Ideal monochromatic partition for INTERSECTIONk problem with k = 3.

Figure 9 shows the ideal monochromatic partition of the 3-bit value space for
INTERSECTIONk. The key at the right indicates the output set. (Here, as throughout
this article, we encode S ⊆ {1, . . . , k} as bitstring of length k in which the most signif-
icant bit is 1 if k ∈ S, and so forth, so that 1011 encodes {1, 2, 4} ⊂ {1, 2, 3, 4}; we will
abuse notation and identify x ∈ {0, 1}k with the subset of {1, . . . , k} that it encodes.)

6.2. Protocols

For each problem, we identify three possible protocols for computing the output of the
problem. We describe these protocols here; in Section 7, we discuss the structure of
the tilings that these protocols induce for INTERSECTIONk and illustrate these tilings for
k = 1, 2, 3.

Trivial protocol. In the trivial protocol, player 1 (w.l.o.g.) sends his input to player 2,
who computes the output and sends this back to player 1. This requires the transmis-
sion of k + 1 bits for DISJOINTNESSk and 2k bits for INTERSECTIONk.

1-First protocol. In the 1-first protocol, player 1 announces a bit, and player 2 replies
with his corresponding bit if its value might affect the output (i.e., if player 1’s value
for this bit is 1); this continues until the output is determined. In detail, player 1
announces the most significant (first) bit of x1. After player 1 announces his jth bit, if
this bit is 0 and j < k, then player 1 announces his ( j + 1)st bit. If this bit is 0 and
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Table III. Summary of Average-Case Results for Uniform Distribution. Asymptotic Results
are for k → ∞.

Problem Protocol Objective PAR Subjective PAR Ratio of
Subj. PARs

DISJOINTNESSk All ≥
(

3
2

)k
— —

Trivial ∼ 2k ∼ 2k ∼ 2k

1 First ∼ 2k ∼
(

3
2

)k ∼ 2
k

(
3
2

)k

Alternating ∼ 2k ∼ 3+2
√

2
2

(
1+√

2
2

)k ∼ √
2

INTERSECTIONk All ≥
(

7
4

)k
— —

Trivial/1 First
(

7
4

)k (
3
2

)k (
3
2

)k

Alternating
(

7
4

)k
6
5

(
5
4

)k
3
2

j = k, then the protocol terminates (with, if computing DISJOINTNESSk, output 1). If this
bit is 1, then player 2 announces the value of his jth bit. If player 2’s jth bit is also 1,
then for DISJOINTNESSk, the protocol terminates with output 0, and for INTERSECTIONk,
the protocol continues (with k + 1 − j in the output set); if player 2’s bit is 0 and j < k,
then player 1 announces his ( j + 1)st bit, while if j = k, then the protocol terminates.

Alternating protocol. In the alternating protocol, the role of being the first player to
announce the value of a particular bit alternates between the players whenever the
first player to announce the value of his jth bit announces “0” (in which case the other
player does not announce the value of his corresponding bit). This continues until the
output is determined. In detail, player 1 starts by announcing the most significant
(first) bit of x1. After player i announces the value of his jth bit, if this bit is 0 and j < k,
then the other player announces his j + 1st bit; if i’s jth bit is 0 and j = k, the protocol
terminates (with output 1 if computing DISJOINTNESSk).

If i’s jth bit is 1 and the other player had previously announced his jth bit (which
would necessarily be 1, or else player i would not be announcing his jth bit), then the
protocol terminates with output 0 if computing DISJOINTNESSk, or it continues with the
other player announcing his ( j +1)st bit (and with k+1− j being part of the output set).
If i’s jth bit is 1 and the other player had not previously announced his jth bit, then
the other player announces his jth bit; if that bit is 0, then player i proceeds as noted
earlier. If that bit is 1 and DISJOINTNESSk is being computed, the protocol terminates with
output 0; if the bit is 1 and INTERSECTIONk is being computed, then player i proceeds as
noted earlier (and k + 1 − j will be in the output set).

6.3. Results

Table III summarizes our PAR results for the DISJOINTNESSk and INTERSECTIONk problems.
The rows labeled with “All” describe bounds for all protocols for that problem (as
reflected by the inequalities). Asymptotic results are for k → ∞; entries of “—” for
bounds on subjective PARs indicate that we do not have results beyond those implied
by the PARs for specific protocols. For INTERSECTIONk, the results for the trivial and 1-
first protocols are shown together; as shown in Lemma 7.1, these protocols induce the
same tiling, so the PAR results are the same. All of these results are for average-case
objective PARs with respect to the uniform distribution. These include objective and
subjective PARs and the ratio of the subjective PARs.

6.3.1. Discussion of Results for DISJOINTNESSk. All three protocols have the lowest possible
average-case objective PAR for DISJOINTNESSk. They also have average-case subjective
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PARs that are exponential in k, although the bases differ. When considering these
protocols, however, our intuition is that players are much less likely to participate in
the trivial and 1-first protocols (if they do so as player 1) than they are to participate
in the alternating protocol. This is captured by the comparison of the average-case
subjective PAR with respect to the two players in each protocol: In the trivial and 1-
first protocols, the subjective PAR with respect to player 2 is exponentially worse than
the subjective PAR with respect to player 1; by contrast, in the alternating protocol,
the subjective PARs differ (asymptotically) by a constant factor. We do not have any
absolute lower bound for the average-case subjective PAR for DISJOINTNESSk. However,
we conjecture that this grows exponentially.

CONJECTURE 6.1. The average-case subjective PAR for DISJOINTNESSk with respect to
the uniform distribution grows exponentially in k.

We omit the details of obtaining the results for DISJOINTNESSk as these use techniques
similar to (although requiring greater length) those used for INTERSECTIONk.

6.4. Discussion of Results for INTERSECTIONk

From a high-level perspective, the PAR results for INTERSECTIONk are very similar to
those for DISJOINTNESSk. As for their DISJOINTNESSk variants, all three protocols have
exponentially large average-case objective PARs for INTERSECTIONk; we show that
the average-case objective PAR for INTERSECTIONk is also exponential in k, and we
conjecture that this bound can be tightened to match the 2k asymptotic growth of the
average-case objective PAR for all three of these protocols.

CONJECTURE 6.2. The average-case objective PAR for INTERSECTIONk is asymptotic to
2k.

All three protocols also have average-case subjective PARs that are exponential in
k, although the bases differ. Our intuition that the alternating protocol is significantly
better is not captured by the average-case objective and subjective PARs, but we again
see it when we consider the ratio of the subjective PARs: in the trivial and 1-first
protocols, the subjective PAR for player 1 is exponentially worse than the subjective
PAR for player 2; by contrast, in the alternating protocol, the subjective PARs differ
by a constant factor of 3

2 . In a preliminary version of this article, we conjectured that
the lower bound for the average-case subjective PAR for INTERSECTIONk with respect to
the uniform distribution grows exponentially in the number of bits in the input space
[Feigenbaum et al. 2010b, Conjecture 3.3]. This has since been proved by Ada et al.:

THEOREM 6.3 (THEOREM 3 OF ADA ET AL. [2012]). The average-case subjective PAR of
INTERSECTIONk with respect to the uniform distribution is exponential in k.

7. PARS FOR INTERSECTIONk

7.1. Structure of Protocol-Induced Tilings

First, we observe that for INTERSECTIONk, the trivial and 1-first protocols induce the
same tiling.

LEMMA 7.1. The tilings induced by the trivial and 1-first protocols for INTERSECTIONk
are identical.

PROOF. Given two input pairs (S1, S2) and (T1, T2), each of these protocols cannot
distinguish between the pairs if and only if (1) S1 = T1 and (2) S2 and T2 differ only on
elements that are not in S1 = T1.
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Fig. 10. Partition of the value space for k = 1 (top left), 2 (bottom left), and 3 (right) induced by the trivial
and 1-first protocols for INTERSECTIONk; each rectangle is labeled with the transcript output by the protocol
when run on inputs in the rectangle.

Fig. 11. Partition of the value space for k = 1 (top left), 2 (bottom left), and 3 (right) induced by the
alternating protocol for INTERSECTIONk; each rectangle is labeled with the transcript output by the protocol
when run on inputs in the rectangle.

Figure 10 depicts the tilings of the 1-, 2-, and 3-bit value spaces induced by the trivial
and 1-first protocols for INTERSECTIONk. If we denote by Tk the 1-first-protocol-induced
tiling of the k-bit input space, then when we depict Tk+1 as in Figure 10, the bottom-left
quadrant is 10Tk (i.e., the k-bit tiling with 10 prepended to each transcript), each of the
top quadrants is 0Tk, and the bottom-right quadrant is 11Tk.

Figure 11 depicts the tilings of the 1-, 2-, and 3-bit value spaces induced by the
alternating protocol for INTERSECTIONk. If we denote by Tk the alternating-protocol-
induced tiling of the k-bit value space and depict Tk+1 as in Figure 11, the bottom-left
quadrant is 10Tk (i.e., the k-bit tiling with 10 prepended to each transcript), each of
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the top quadrants is 0T T
k (i.e., the k-bit tiling reflected across the top-left–bottom-right

diagonal), and the bottom-right quadrant is 11Tk.

7.2. Objective PAR

7.2.1. Lower bound. We obtain the following result for the average-case objective PAR
of the INTERSECTIONk problem.

THEOREM 7.2. The average-case objective PAR of the INTERSECTIONk problem with
respect to the uniform distribution is ( 7

4 )k.

PROOF. We show that PARk+1 = 7
4 PARk and that PAR1 = 7

4 .
Using Eq. 1, we may write PARk+1 as

PARk+1 = 1
22(k+1)

⎛
⎝ ∑

R= f −1(0...)

|RI(R)| +
∑

R= f −1(1...)

|RI(R)|
⎞
⎠ , (4)

where the first sum is over induced rectangles R in which the intersection set does
not contain k + 1 (i.e., the encoding of the set starts with 0) and the second sum is
over induced rectangles R in which the intersection set does contain this element.
Observe that the ideal monochromatic partition of the region corresponding to inputs
in which k + 1 ∈ S1 ∩ S2 (the bottom-right quadrant when depicted as in Figure 9)
has the same structure as the ideal monochromatic partition of the entire space when
only k elements are used. Similarly, the three regions corresponding to k + 1 /∈ S1 ∪ S2
(top-left quadrant), k+ 1 ∈ S1 \ S2 (bottom-left quadrant), and k+ 1 ∈ S2 \ S1 (top-right
quadrant) all have this same structure, although each input in these regions belongs to
the same monochromatic region as the corresponding inputs in the other two quadrants.

The first observation allows us to rewrite Eq. 4 as

PARk+1 = 1
4

⎛
⎝ 1

22k

∑
R= f −1(0...)

|RI(R)|
⎞
⎠ + 1

4
PARk. (5)

We now turn to rewriting the term in parentheses.
Consider an input (0x1, 0x2) ∈ f −1(0x) (i.e., x, xi ∈ {0, 1}k and x1 ∩ x2 = x) in the

top-left quadrant of the (k + 1)-bit input space (when depicted as in Figure 9). In any
monochromatic tiling of this space, (0x1, 0x2) may be in the same tile as at most one
of the inputs (0x1, 1x2) (top-right quadrant) and (1x1, 0x2) (bottom-left quadrant)—if
both (0x1, 1x2) and (1x1, 0x2) were in the same tile, then (1x1, 1x2) ∈ f −1(1x) would also
be in this tile, violating monochromaticity. If ax is the minimum number of monochro-
matic tiles needed to tile the region f −1(x) in the k-bit input space, then at least 2ax
monochromatic tiles are needed to tile the region f −1(0x) in the (k+ 1)-bit input space.
For any x ∈ {0, 1}k, the size of the ideal monochromatic region f −1(0x) is three times
the size of the monochromatic region f −1(x) in the ideal partition of the input space for
k-element sets. Thus, the contribution to the sum (for PARk+1) in Eq. 4 of the rectangles
R in f −1(0x) is six times the contributions of the contribution to the sum (for PARk) of
the rectangles R in f −1(x). This allows us to rewrite Eq. 5 as

PARk+1 = 6
4

PARk + 1
4

PARk.

Finally, the ideal partition for the INTERSECTIONk problem with k = 1 requires at least
two tiles for the region (of size 3) corresponding to an empty intersection and a single
tile for the region (of size 1) corresponding to a nonempty intersection. This immediately
gives the initial condition PAR1 = 7

4 .
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7.2.2. Objective PAR for the Trivial and 1-First Protocols.

PROPOSITION 7.3. The average-case objective PAR for the trivial and 1-first protocols
for the INTERSECTIONk problem equals ( 7

4 )k.

PROOF. Consider the tiling Tk+1 of the (k + 1)-bit value space induced by these
protocols. Any tile S in Tk has three corresponding tiles in Tk+1: the tile whose transcript
(in the 1-first protocol) is 10S, in the bottom-left quadrant; the tile whose transcript is
0S, which spans the top two quadrants; and the tile whose transcript is 11S, which is
in the bottom-right quadrant. The ideal monochromatic region that contains 0S and
10S (the same region contains both) in the (k+1)-bit value space is three times the size
of the ideal monochromatic region that contains S in the k-bit value space; the ideal
monochromatic region that contains 11S is the same size as the ideal monochromatic
region that contains S. Thus, we have that PARk+1 = 7

4 PARk. By inspection, PAR1 = 7
4 ,

finishing the proof.

7.2.3. Objective PAR for the Alternating Protocol. Although the recursive tiling structure
induced by the alternating protocol is slightly different than that induced by the trivial
and 1-first protocols, the argument from the proof of Proposition 7.3 applies essentially
unchanged. In particular, even though the structure is different, the tiles in Tk+1
corresponding to a tile S in Tk are as follows: one tile in the bottom-left quadrant;
one tile that spans the top two quadrants; and one tile in the bottom-right quadrant.
Thus, we again have PARk+1 = 7

4 PARk. Again, we also have PAR1 = 7
4 , giving us the

following proposition.

PROPOSITION 7.4. The average-case objective PAR for the alternating protocol for the
INTERSECTIONk problem equals ( 7

4 )k.

7.3. Subjective PAR

7.3.1. Subjective PAR for the Trivial and 1-First Protocols.

PROPOSITION 7.5. The average-case PAR with respect to player 1 of the trivial and
1-first protocols for INTERSECTIONk is 1. The average-case PAR with respect to player 2 of
the trivial and 1-first protocols for INTERSECTIONkis ( 3

2 )k.

PROOF. The 1-partition induced by the trivial protocol is exactly the ideal 1-partition,
from which the first claim follows.

For the second claim, we let vk be the value of the sum in Eq. 1. Let S be a tile in
the induced 2-tiling of the k-bit input space; we will also use S to denote the 1-first-
protocol transcript that labels S. We now consider the tiles corresponding to S in the
induced 2-tiling of the (k+ 1)-bit input space. The tile 10S in the bottom-left quadrant
is contained in an ideal region that is twice as big as the one that contains S—this
ideal region contains points in both the bottom-left and top-left quadrants; the same
is true of the tile 0S in the top-left quadrant. The tile 0S in the top-right quadrant
(which is a different 2-induced tile than the one in the top-left quadrant) is contained
in an ideal region that is the same size as the ideal region containing S—this ideal
region does not contain any points in the bottom-right quadrant. Finally, the tile 11S
in the bottom-right quadrant is contained in an ideal region that is the same size as
the ideal region containing S. Thus, we have that vk+1 = 6vk; by inspection, v1 = 6, so
vk = 6k. Note that the average-case PAR with respect to 2 equals vk/4k, completing the
proof. �
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COROLLARY 7.6. The average-case subjective PAR of the trivial and 1-first protocols
for INTERSECTIONk with respect to the uniform distribution is ( 3

2 )k.

COROLLARY 7.7. If PARtrivial
i denotes the average-case PAR w.r.t. i of the trivial protocol

for INTERSECTIONk w.r.t. the uniform distribution, and if PAR1−first
i denotes the average-

case PAR w.r.t. i of the 1-first protocol for INTERSECTIONk w.r.t. the uniform distribution,
then

PARtrivial
2

PARtrivial
1

= PAR1−first
2

PAR1−first
1

=
(

3
2

)k

.

7.3.2. Subjective PAR for the Alternating Protocol.

PROPOSITION 7.8. The average-case PAR with respect to player 1 of the alternating
protocol for INTERSECTIONk is 4

5 ( 5
4 )k. The average-case PAR with respect to player 1 of the

alternating protocol for INTERSECTIONk is 6
5 ( 5

4 )k.

PROOF. We let

hk =
∑

S

∣∣RI
1(S)

∣∣,
where the sum is taken over all induced 1-rectangles (“horizontal rectangles”) in the
k-bit value space, and we let

vk =
∑

S

∣∣RI
2(S)

∣∣,
where the sum is taken over all induced 2-rectangles (“vertical rectangles”) in the k-bit
value space.

Making use of the structure of the tiling, we have that

vk+1 = 2vk + 2hk + hk + vk = 3(vk + hk),

where the summands correspond to the contributions from each quadrant (clockwise
from the bottom-left quadrant). We also have

hk+1 = hk + 2vk + hk = 2(vk + hk),

where the summands correspond to the contributions from the bottom-left, top-two,
and bottom-right quadrants, respectively. By inspection, we have h1 = 4 and v1 = 6;
this gives hk = 4 · 5k−1 and vk = 6 · 5k−1.

As corollaries, we obtain the subjective PAR results for this protocol that are shown
in Table III.

8. DISCUSSION AND FUTURE DIRECTIONS

8.1. Other Notions of Approximate Privacy

By our definitions, the worst-case/average-case PARs of a protocol are determined by
the worst-case/expected value of the expression |RI (x)|

|RP (x)| , where RP(x) is the monochro-
matic rectangle induced by P for input x, and RI(x) is the monochromatic region
containing A( f )x in the ideal monochromatic partition of A( f ). That is, informally, we
are interested in the ratio of the size of the ideal monochromatic region for a specific
pair of inputs to the size of the monochromatic rectangle induced by the protocol for
that pair. More generally, we can define worst-case/average-case PARs with respect to a
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Fig. 12. Maximal monochromatic regions (left) and protocol-induced rectangles (right) for an example show-
ing the deficiencies of PAR definitions based on probability mass.

function g by considering the ratio g(RI (x),x)
g(RP (x),x) . Our definitions of PARs set g(R, x) to be the

cardinality of R. This captures the intuitive notion of the indistinguishability of inputs
that is natural to consider in the context of privacy preservation. Other definitions of
PARs may be appropriate in analyzing other notions of privacy. We suggest a few here;
further investigation of these and other definitions provides many interesting avenues
for future work.

Probability mass. Given a probability distribution D over the parties’ inputs, a
seemingly natural choice of g is the probability mass. That is, for any region R, g(R) =
PrD(R), the probability according to D that the input corresponds to an entry in R.
However, a simple example illustrates that this intuitive choice of g is problematic:
consider a problem for which {0, . . . , n} × {i} is a maximal monochromatic region for
0 ≤ i ≤ n − 1 as illustrated in the left part of Figure 12. Let P be the communication
protocol consisting of a single round in which party 1 reveals whether or not his value is
0; this induces the monochromatic tiling with tiles {(0, i)} and {(1, i), . . . , (n, i)} for each i
as illustrated in the right part of Figure 12. Now, for some small ε > 0, let D1 and D2 be
the probability distributions over the inputs x = (x1, x2) such that, for 0 ≤ i ≤ n−1 and
1 ≤ j ≤ n, PrD1 [(x1, x2) = (0, i)] = ε

n, PrD1 [(x1, x2) = ( j, i)] = 1−ε

n2 , PrD2 [(x1, x2) = (0, i)] =
1−ε

n , and PrD2 [(x1, x2) = ( j, i)] = ε

n2 . Intuitively, any reasonable definition of PAR should
imply that, for D2, P provides “bad” privacy guarantees (because with high probability
it reveals the value of x1), and, for D1, P provides “good” privacy (because with high
probability it reveals little about x1). In sharp contrast, choosing g to be the probability
mass results in the same average-case PAR in both cases.

One might rightly argue that when the probability distribution is D2 (i.e., when the x1
is very likely 0), asking party 1 whether x1 = 0 leaks very little additional information
beyond what is already implied by D2. However, information leakage and privacy are
two different (though not unrelated) things. A protocol that, with high probability, asks
the party for its exact value when that value is not even needed for the computation
can hardly be viewed as a protocol with a good PAR, in the same sense that, even if a
large fraction of the population has some disease, a protocol that asks someone whether
he or she has the disease to compute an unrelated objective will not be viewed as a
protocol with good privacy guarantees.

Information-theoretic approaches. Information-theoretic approaches using con-
ditional entropy are also natural to consider when studying privacy, and these have
been used in various settings; such approaches might facilitate the comparison of pri-
vacy between different problems. Most relevantly, Bar-Yehuda et al. [2006] defined (in
Section VII of Bar-Yehuda et al. [2006]) multiple measures based on the conditional
mutual information about one player’s value (viewed as a random variable) revealed
by the protocol trace and knowledge of the other player’s value.
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Fig. 13. Induced partitions of the 4-bit value space by the function (left) and the protocols P1 (center) and
P2 (right).

A natural objective (i.e., from the perspective of an outside observer) analog of the
Bar-Yehuda et al. approach would use the mutual information I(X; F) between the
distribution X on the underlying space and the output of the function F (or I(X; P)
for the output of a protocol P). If we want to capture the effect of a protocol, a natural
quantity to consider is I(X; P)− I(X; F), that is, how much more information the protocol
gives about the underlying distribution than is given by the function; recalling that
I(A; B) = H(A) − H(A|B), we see that this is H(X|F) − H(X|P) (which has the natural
direct interpretation as the decrease in entropy caused by using P). As with the PAR,
a larger value of this quantity means that the protocol is less private in some sense.

We now consider two examples that together demonstrate that our definition of PAR
is very different than the effect of a function that is captured by H(X|F) − H(X|P). In
particular, the average-case objective PAR (w.r.t. the uniform distribution) of the first
protocol is bounded, while this quantity for the second protocol grows linearly in k as
k → ∞. By contrast, H(X|F) − H(X|P) is slightly larger (for k ≥ 2) for the first protocol
than it is for the second and it approaches similar finite limits for both protocols as
k → ∞. Thus, not only do these two approaches seem to disagree on whether the effect
of the protocols is asymptotically similar, but also they disagree about which protocol
has more of a negative effect on the participants’ privacy.

The protocols we consider compute the function f (x1, x2) = x2, whose induced par-
tition of the 4-bit input space is shown in the left of Figure 13. In protocol P1, whose
induced partition of the 4-bit input space is illustrated in the center of Figure 13, each
player reveals the most significant bit of his input; if both revealed bits are 0, then
each player reveals the second most significant bit of his input. This process is iterated
until either one of the revealed bits is 1—at which point player 1 reveals his second bit
(if he hasn’t already done so) and player 2 reveals the remaining bits of his input—or
both players have revealed all of their bits. In protocol P2, whose induced partition of
the 4-bit input space is illustrated in the right of Figure 13, player 1 reveals his input
one bit at a time (starting with the most significant bit) until he either reveals a 1 or
has revealed his entire input. Player 2 then reveals his entire input.

It is straightforward to compute that the average-case objective PAR (w.r.t. the uni-
form distribution) of P1 equals (for k ≥ 2) 9

2 − 2−(k−1); for P2, this quantity equals k+ 1.
To compare H(X|F) − H(X|P) quantity to PAR, we first observe that

H(X|F) − H(X|P) =
∑

x:μ(x)>0

μ(x) log2
μ(R(x))
μ(S(x))

, (6)

where R(x) and S(x) are the ideal region and protocol-induced rectangle, respectively,
that contain the input x. It is then straightforward to see that the quantity in Eq. 6
computed for P1 equals (for k ≥ 2) 25

12 − 1
3·4k−1 ; for P2, this information-theoretic quantity

equals 2 − 2−(k−1).
Other additive functions. In our definition of PAR and in the probability-mass

approach, each input x in a rectangle contributes to g(R, x) in a way that is independent
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of the other inputs in R. Below, we discuss some natural approaches that violate this
condition, but we start by noting that other functions that satisfy this condition may be
of interest. For example, taking g(R, x) = 1 + ∑

y∈R\x d(x, y), where d is some distance
defined on the input space, gives our original definition of PAR when d(x, y) = 1 − δx,y
and might capture other interesting definitions (in which indistinguishable inputs that
are farther away from x contribute more to the privacy for x). (The addition of 1 ensures
that the ratio g(RI, x)/g(RP, x) is defined, but that can be accomplished in other ways
if needed.) Importantly, here and later, the notion of distance that is used might not be
a Euclidean metric on the n-player input space [0, 2k − 1]n. It could instead (and likely
would) focus on the problem-specific interpretation of the input space. Of course, there
are may possible variations on this (e.g., also accounting for the probability mass).

Maximum distance. We might take the view that a protocol does not reveal much
about an input x if there is another input that is “very different” from x that the protocol
cannot distinguish from x (even if the total number of things that are indistinguishable
from x under the protocol is relatively small). For some distance d on the input space,
we might then take g to be something like 1 + maxy∈R\{x} d(y, x).

Plausible deniability. One drawback to the maximum-distance approach is that it
does not account for the probability associated with inputs that are far from x (according
to a distance d) and that are indistinguishable from x under the protocol. While there
might be an input y that is far away from x and indistinguishable from x, the probability
of y might be so small that the observer feels comfortable assuming that y does not
occur. A more realistic approach might be one of “plausible deniability.” This makes use
of a plausibility threshold—intuitively, the minimum probability that the “far away”
input(s) (which is/are indistinguishable from x) must be assigned in order to “distract”
the observer from the true input x. This threshold might correspond to, for example,
“reasonable doubt” or other levels of certainty. We then consider how far we can move
away from x while still having “enough” mass (i.e., more than the plausibility threshold)
associated with the elements indistinguishable from x that are still farther away. We
could then take g to be something like 1+max{d0|PrD({y ∈ R|d(y, x) ≥ d0})/PrD(R) ≥ t};
other variations might focus on mass that is concentrated in a particular direction
from x. (In quantifying privacy, we would expect to only consider those R with positive
probability, in which case dividing by PrD(R) would not be problematic.) Here we use
PrD(R) to normalize the weight that is far away from x before comparing it to the
threshold t; intuitively, an observer would know that the value is in the same region
as x, and so this seems to make the most sense.

Relative rectangle size. One observation is that a bidder likely has a very differ-
ent view of an auctioneer’s being able to tell (when some particular protocol is used)
whether his bid lies between 995 and 1, 005 than he does of the auctioneer’s being able
to tell whether his bid lies between 5 and 15. In each case, however, the bids in the
relevant range are indistinguishable under the protocol from 11 possible bids. In par-
ticular, the privacy gained from an input’s being distinguishable from a fixed number
of other inputs may (or may not) depend on the context of the problem and the intended
interpretation of the values in the input space. This might lead to a choice of g such
as diamd(R)/|x|, where diamd is the diameter of R with respect to some distance d and
|x| is some (problem-specific) measure of the size of x (e.g., bid value in an auction).
Numerous variations on this are natural and may be worth investigating.

8.2. Open Questions

There are many interesting directions for future research:

—As discussed in the previous subsection, the definition and exploration of other no-
tions of PARs are a challenging and intriguing direction for future work.
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—We have shown that, for both 2ND-PRICE AUCTIONk and THE MILLIONAIRES PROBLEMk,
reasonable average-case PARs with respect to the uniform distribution are achiev-
able. We conjecture that our upper bounds for these problems extend to all possible
distributions over inputs.

—An interesting open question is proving lower bounds on the average-case PARs for
2ND-PRICE AUCTIONk and THE MILLIONAIRES PROBLEMk.

—Lower bounds on the average-case subjective PARs for DISJOINTNESSk and
INTERSECTIONk would be interesting; as noted earlier, we conjecture that these are
exponential in k.

—It would be interesting to apply the PAR framework presented in this article to other
functions.

—The extension of our PAR framework to the n-party communication model is a chal-
lenging direction for future research.

—Starting from the same place that we did, namely, Chor and Kushilevitz [1991] and
Kushilevitz [1992], Bar-Yehuda et al. [2006] provided three definitions of approxi-
mate privacy. The one that seems most relevant to the study of privacy-approximation
ratios is their notion of h-privacy. It would be interesting to know exactly when and
how it is possible to express PARs in terms of h-privacy and vice versa.
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