
3-Ranks for strongly regular graphs

Andrew Novocin
University of Delaware

Newark, DE, USA
andynovo@udel.edu

David Saunders
University of Delaware

Newark, DE, USA
saunders@udel.edu

Alexander Stachnik
University of Delaware

Newark, DE, USA
stachnik@udel.edu

Bryan Youse
University of Delaware

Newark, DE, USA
bryouse@udel.edu

ABSTRACT
In the study of strongly regular graphs, ranks of adjacency
matrices (Laplacians actually) are extensively used to demon-
strate inequivalence of graphs. Constructions have been
given for several families of graphs. Formulas for the ranks
in these families are an important tool for understanding
their properties.

The first and computational challenge is to compute rank
modulo 3 of some very large matrices. To our advantage is
that the ranks are expected to be relatively small. Typically
in these families, the matrix dimension is 3k while the rank
modulo 3 is in the vicinity of 2k.

Here we discuss a high performance parallel solution to
the problem. It involves parallelism at three levels: word-
level vectorization of field elements, shared-memory multi-
core, and a multi-node distributed memory and file-system
modulated level. The implementation has been applied to
the case k = 16, wherein the matrix contains approximately
1.85 peta-entries.

The second challenge is to discern a formula for the se-
quence of ranks in a given graph family.. Our computations
provide further evidence for an existing conjecture concern-
ing the Dickson family of strongly regular graphs and pro-
vide a starting point towards finding a formula for the Ding-
Yuan and Cohen-Ganley families of graphs.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms; D.1.3 [Programming Tech-
niques]: Concurrent Programming—distributed programming,
parallel programming ; G.2.2 [Discrete Mathematics]: Graph
Theory—Graph Algorithms

Keywords
strongly regular graph, 3-rank, Paley-type difference set,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PASCO ’15, July 10 - 12, 2015, Bath, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3599-7/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2790282.2790295

skew Hadamard difference set

1. INTRODUCTION
The goal of this work is to compute the ranks in sequences

of adjacency matrices of strongly regular graphs that are
defined by skew Hadamard or Paley type difference sets,
specifically the graphs produced by a construction based on
Dickson semifields the construction of Cohen and Ganley,
and the construction of Ding and Yuan [8]. A summary of
these and other constructions is to be found in Xiang et al
[20]. In these families, strongly regular graphs are defined
for each odd prime p and exponent e, the graph having pe

vertices. The graphs are defined in terms of difference sets,
either pseudo-Paley or Hadamard. In this paper we concen-
trate on the case p = 3.

The Dickson family is defined for each even exponent e, in
terms of a Paley-type difference set over a semifield, and the
Ding-Yuan family for each odd e, skew Hadamard difference
set over GF(3e). Previously ranks have been computed for
the Dickson sequence for even e up to e = 14 [20, 14, 17],
and for Ding-Yuan’s sequence, odd e up to e = 11. Here
we extend the known Dickson ranks to e = 16, providing
further evidence for a conjectured recurrence relation in [17].
We also report rank computations on the Ding-Yuan family
up to e = 15 and discuss the prospects for computations
with larger cases.

These matrices are dense, with about half the entries non
zero. The method used is a multi-level parallel implementa-
tion of the algorithm of [14]. It has two phases, (1) a pro-
jection of the given n× n matrix to a much smaller m×m
block (M = XAY , where X is m× n and Y is n×m) and
(2) Gaussian elimination on the m ×m block to determine
the rank. Letting Ai,j denote the (i, j)-th m×m block of A
and blocking X,Y conformally, we have the formula

M =
∑

j

MjYj , where Mj =
∑

i

XiAi,j .

In our application, n = 3e, while the rank (and thus m)
is within a factor of 2 or 3 of 2e. The projection phase has
cost O(n2) as described in section 2, while the elimination
phase detailed in section 5 costs O(m3). Thus, when e is
increased by 1, the projection cost grows by a factor of 9 and
the elimination phase grows by a factor of approximately 8.
Projection cost is dominant and has received our greatest
implementation effort.

101

Algorithm 1 Small rank via projection

for j from 1 to n/m do
for i from 1 to n/m do . Phase 1a

Compute the contribution of Ai,j to Mj .
end for
Compute the contribution of Mj to M . Phase 1b

end for
. Phase 2

Using Gaussian elimination, compute rank(M).
Verify rank with probabilistic certificate.

The projection phase 1 uses all three levels of parallelism,
word-level vectorization (bit-slicing), shared memory multi-
processing (openMP), and multi-node distributed memory
computation (a custom design). The word level vectoriza-
tion is the “bit-sliced” scheme described in [4]. A brief ex-
ample of this is illustrated in figure 1. A vector of 64 GF(3)
elements are stored in a pair of 64 bit words, each element
occupying one bit of each word. Bit logic operations on the
words are used for the parallel execution of arithmetic on
these packed vectors of elements.), Due to the compression
inherent in bit-slicing, a single m × m block fits in main
memory of a compute node. Thus it has been sufficient for
each column block computation, phase 1a, and for the elim-
ination, phase 2, to use just the first two levels and compute
the rank on one shared memory multi-core node. In ad-
dition the activities in phases 1a and 1b must be suitably
coordinated so that an excess of large intermediate results,
the Mj , does not accumulate, exceeding memory and disk
resources.

low-order bits: · · · 0
GF(3) zero

· · · · · · · · · · · · 1
GF(3) one

· · · · · · · · · · · · 1
GF(3) two

· · ·
high-order bits: · · · 0 · · · · · · · · · · · · 0 · · · · · · · · · · · · 1 · · ·︸ ︷︷ ︸

word bit-length

Figure 1: Conceptual overview of bit-slicing GF(3)
values. Values occupy two bits, one in each of two
contiguous machine words. We call this pair of
words a sliced unit.

In section 2 we discuss the formula for the projection and
the variants of it that we’ve had to adopt. Section 3 concerns
the use of shared memory and word level parallelism in the
projection phase 1a. In section 4 the primary distributed
algorithm is explained. It manages processes carrying out
instances of phase 1a and consuming and using their results
for phase 1b. The method is organized around the files read
and written by the processes. Section 5 concerns the use of
shared memory and word level parallelism in phase 2, the
rank computation via Gaussian elimination on the projected
block. Finally section 6 reports our analysis of these ranks,
i.e., the progress these computations have allowed us to make
toward producing formulas for the ranks by graph family.
We summarize in a concluding section 7.

2. PROJECTION
The projection scheme for rank computation is fully ex-

plained and analyzed in [14]. We review the basic features
here in order to have the framework for discussion of the

implementation strategy. Let A ∈ GF(3)n×n be the matrix
whose rank is to be computed. Let b be chosen with the
expectation that b > rank(A). Let c be chosen to set the
strength of the probabilistic validation of the rank. Prob-
ability of error is bounded by 3−c. Finally, let m = b + c.
The projection we use computes m×m matrix M = XAY,
where X and Y are m× n and n×m, respectively.

The construction was oversimplified in the introduction
for brevity. (There c = 0.) The additional c rows and
columns in the constructed block are random linear combi-
nations of the rows and columns of A, computed for the sake
of probabilistic validation of the rank. We choose c = 64,
not so much because we want the extreme assurance of suc-
cess as because it is no more expensive than a smaller value
in view of our sliced word vectorization discussed in section
3.

The decomposition is best understood in block form.

M =

n/b∑

j=0

n/b∑

i=0

XiAi,jYj ,

where M is m×m and Ai,j are blocks of a subdivision of A
into b× b blocks. The projectors X,Y are decomposed into
nearly square blocks, the Xi being b + c × b, and Yj being
b× b+ c.

Further, the projectors have the form

Xi =

(
Pi
Ui

)
and Yj =

(
Qj Vj

)
.

ThusM has leading b×b blockB =
∑
i∈0..n

b

∑
j∈0..n

b
PiAi,jQj .

Here Pi ∈ GF(3)b×b, Qj ∈ GF(3)b×b are (sparse or struc-

tured) preconditioners, while Ui ∈ GF(3)c×b, Vj ∈ GF(3)b×c

are random. The point of the preconditioners is to make
it likely that rank(B) = min(rank(A), b). The point of the
dense random Ui, Vj is to sample the row and column spaces
to provide certification of the rank. If the rank of the leading
submatrix B of M is the same as the full rank of M when
including these random samples, then the probability that
this fails to be the rank of A is bounded by 3−64.

For our largest rank computation to date, e = 16, we have
n = 316 = 43046721 and we used b = 217 + 214 = 147456,
which turns out to be slightly larger than the rank. Observe
that we do not have sufficient memory to store an n × n
matrix nor even an n×m matrix. There are 292 blocks per
row/column and 85264 blocks overall. It is crucial to work
finally with only a few m×m blocks (each is 5GB) on each
node at any given time.

To detect potential differences between the ranks of M
and its submatrix B, we compute the rank of M with Gaus-
sian elimination, checking if any row or column outside of B
contributes to the rank.

In general, to ensure success, the blocks of P,Q have to be
butterfly matrixes or similar preconditioners [14, 17]. How-
ever, in view of the random certification, we may heuris-
tically choose much simpler preconditioners. Most notably
we may choose Pi and Qj as b× b random permutations or
even the identity. We found that it sufficed for success on
the ranks reported in this paper to let Pi = Ib and have Qj
be a small amount of permutation of columns done at the
granularity of permuting sliced units (blocks of 64 columns).
The cost in the largest case e = 16 is about 3 seconds per
block permuted. For simplicity in the sequel we will ignore

102

the Pi and Qj and refer to the leading submatrix B as a
summation of the blocks Ai,j of A.

We organized the computation of the block accumulation
in two stages: first compute column accumulations using
the row projectors and then combine the results using the
column projectors.

Mj =

(
Bj
Rj

)
:=

∑

i∈0..n
b

(
Ib
Ui

)
Ai,j , (1)

so that

(
Bj =

∑
Ai,j

Rj =
∑
UiAi,j

)

and

M =

(
B S
R T

)
:=

∑

j∈0..n
b

Mj

(
Ib Vj

)
(2)

so that

(
B =

∑∑
Ai,j S =

∑∑
Ai,jVj

R =
∑∑

UiAi,j T =
∑∑

UiAi,jVj

)

This organization reduces the cost of applying the column
projectors. The choice of column accumulation first rather
than row accumulation is due to a greater efficiency of RiAi,j
over Ai,jSj computation in view of our word level row vec-
torization.

In the implementation presented here, the column blocks
are computed using the vectorization and openMP paral-
lelizations only, while their accumulation into a final block
exploits multi-node distributed computation.

An earlier version of the implementation was motivated
by a desire to saturate network connections for testing pur-
poses. In that case we worked at a finer granularity. Pro-
ducers on a collection of machines in one building computed
XiAi,jYj and consumers in another building combined these
blocks to produce M . The coordination between producers
and consumers exploits the file system for the consumers,
which proved to be quite a strain with this large number
of producers. However, the coarser granularity of produc-
ing and consuming only column blocks at the distributed
memory level is more efficient especially of file system re-
sources, while providing sufficiently many tasks for the avail-
able nodes in the cluster we used.

3. PHASE 1A: COLUMN BLOCK PROJEC-
TION

The row projection of column blocks benefits from two
forms of parallelism, the word-level vectorization and shared
memory multi-threading.

For our word-level vectorization of arithmetic over GF(3)
we use bit-slicing [4, 22], A row vector of 64 elements of
GF(3) is stored in two 64 bit words, using one bit from each
word per element. We call this pair of words a sliced-unit.
Arithmetic is performed using bit operations, five of which
are required for addition of 64 element vectors, while scalar
multiplication is particularly easy, using a single xor for the
case of multiplication by -1 modulo 3. We refer the reader
to [4, 22] for details.

Our test machine is the Chimera cluster at the Univer-
sity of Delaware. The compute nodes of this energy-efficient
machine contain 4 AMD Opteron 6164HE 12-core 1.7GHz
CPUs, for a total of 48 cores per node. Chimera has 65
nodes, of which we used at most 18 at any one time. Users

are allocated resources at the node level (we have exclusive
use of our nodes). Out of the 18 nodes, eight were devoted
to generating the Mj (phase 1a). Each of these nodes would
check a queue of work for the first unbuilt Mj , and claim
responsibility for projecting the jth column of blocks to con-
struct that Mj .

On this machine we found our arithmetic operations in
matrices and vectors over GF(3) to be about 15 times faster
using bit-slicing than using one field element per word with
delayed modular reduction (the LinBox standard represen-
tation).

The rest of the algorithm is organized to make convenient
use of the sliced units. Thus in the projection we use a
block size which is a multiple of 64, and in the rank compu-
tation we emphasize row operations so that vector axpy is
exploiting the sliced unit operations. Also a 64 column wide
random block is used in the column projection (the Mi) so
that it is one sliced unit wide. Incidentally this also provides
a very good probability of correct rank, namely 1 − 1/364

[14].
To take advantage of thread level parallelism in the com-

putation of a column block, we have made straightforward
use of openMP for blocking the the computation Bj = Bj +
Ai,j . Here Bj is the leading b rows of Mj . We did not take
the trouble to parallelize the production of the last 64 rows,
XiAi,j , The primary cost here is the generation of entries of
the block Ai,j and the secondary, much smaller, cost is the
addition of the block to Mj . and the XiAi,j computation.
The generation is with respect to a stored difference set, rep-
resented by an array D, such that D[i− j] indicates the i, j
entry of A. This array is determined by an underlying semi-
field, whose definition defines the family of matrices. Once
the semifield is determined, we have D[k] = 1 if the k-th
element of the semifield (of order 3e) is a quadratic residue,
while D[k] = 0 if not. Zero is a special case, D[0] = 2. The
process is complicated by the fact that the difference indi-
cated is semifield subtraction. To be correct we should say
that the i, j entry of A is Ai,j = D[φ−1(φ(i)− φ(j))], where
φ() is a bijection between the semifield and the index range
[0, . . . , 3e−1] for semifield of cardinality 3e. For a given Ai,j
entry, i and j must be mapped to the corresponding semi-
field element, the two elements subtracted, and the resulting
element mapped back to the index used to access D. The
mappings φ and φ−1 are of nontrivial cost to compute. By
contrast adding a block into the sum is being done multi-
ple elements per clock cycle in view of the word level sliced
unit parallelism. For example, in the Dickson matrix of di-
mension 316, with b = 217 + 214, each thread spends 6.85s
generating a b × b block, Ai,j , and .25s adding it into the
sum Bj . Parallel efficiency is very high as shown in Figure 3.

4. PHASE 1B: COARSEST GRAIN: ACCU-
MULATION OF COLUMN BLOCKS

As mentioned, an earlier parallel decomposition involved
writing each Ai,j block to an intermediate file upon comput-
ing it. The considerable computational problem involved
the number of blocks, and thus the number of 5GB files
that were needed using this decomposition. Imagine a grid
formed by logically laying these b× b blocks out on a plane.
Such a grid must of course, provide full coverage over A.
Therefore the number of blocks in each dimension of this
grid is d316/(217 + 214)e = 292. A is composed of around

103

Figure 2: Phase 1a multi-threaded parallel scal-
ability for building a column block, buildColBlock.
Speedup relative to the single-threaded application
is charted with the linear speedup line for compar-
ison. The multi-core scalability of this algorithm is
quite favorable, further illustrating the embarrass-
ingly parallel, CPU-bound nature of generating ma-
trix entries.

2922, or eighty-five thousand such blocks. Continuing to
speak approximately, even with bit-sliced compression we
are still occupying 425 terabytes. This amount of data is ob-
viously impractical to work with concurrently, as was done
for the smaller matrices in the sequence. At the current
time, this is too much data for any of our systems to store
simultaneously, even out-of core.

Since we cannot use or store all of A simultaneously, it is
clear that the solution is to work individually with blocks
of A. The vital step from a storage perspective is in dis-
carding the blocks after accepting their contribution to M .
Because A is defined by a formula, the Ai,j blocks of A
can be conveniently created by independent processes run-
ning concurrently. This course-grained, “outer” parallelism
would be characterized by Dijkstra as “loosely connected
processes” [7]. That is to say processes that, while related to
one another, can each operate entirely autonomously with
no restrictions on the relative speeds the processes. This
flow of work lends itself to a producer/consumer relation-
ship between groups of processes. These processes can, and
in this case do, individually employ a second tier of paral-
lelism: a fine-grained multi-threading to get the most out of
multi-threading on each node, a shared memory multi-core.
The producers perform the phase 1a computation discussed
in the previous section. The consumers handle the output
from the producers in phase 1b.

The phase 1b consumption stage performs the summation
and column space random sampling on the column blocks
produced by phase 1a processes. This amounts to combining
the column blocks, Mj , into our final block M . Just as the
phase 1a process can delete the block Aij after adding into
Bj and contributing to Rj , so too can these consumers delete
each Mj after it has been been incorporated into M . In this
case it is a matter of removing a file created by a phase 1a
column block producer. The Mj , if all stored, would occupy
over 1.4 TB. While we could handle this particular amount

of data, the code is robust enough to handle deleting the Mj

in a timely way. This would be vital in computing, say, the
order 318 Dickson rank.

Phase 1a and phase 1b are coordinated by a set of Python
scripts. These scripts use remote procedure calls for commu-
nication, which is conveniently abstracted to shared objects
using the Python Remote Objects (PyRO) module. These
objects manage two work queues, one indicating which Mj

need to be built, and another indicating which Mj have been
consumed. This approach allows for a modular design re-
garding producers and consumers, allowing heterogeneous
parallelism. Any machine can contribute to either produc-
tion or consumption by requesting work from the queues.
Computing resources can be added or removed at any time
during the course of the algorithm. The script structure,
along with the standalone programs that perform the ma-
trix generation and arithmetic, are packaged together in a
publicly available repository [21].

In order to discuss a few details, we next give the code for
a step of column block accumulation into a final block.

void addColBlock (int b , int c , int j){
int m = b + c ;

// The f i n a l b lock
Matrix M;
M. i n i t (m,m) ;

// M: get current s t a t e
M. readBinaryFi l e () ;

// M j : j−th column b lock computed
Matrix M j ;
M j . i n i t (m, b) ;
M j . r eadBinaryFi l e (j) ;

// V j : to make co lspace sample
Matrix V j ;
V j . i n i t (b , c) ;
random(V j) ;

// Incorporation of M j , in two parts
Matrix M Sum k , M CertCols ;
// M Sum i s (B | R)
M Sum. submatrix (M, 0 , 0 , m, b) ;
// M CertCols i s (S | T)
M CertCols . submatrix (M, 0 , b , m, c) ;
addin (M Sum, M j) ;
axpyin (M CertCols , M j , V j) ;

// M: save new s t a t e
M. wr i t eB ina ryF i l e () ;

}

As in phase 1a, addition of a block involves an addition
of large blocks and a multiplication (axpyin) which in this
case adds several random linear combinations of the given
(group j) columns to the column space sample.

One difference from phase 1a is that m×b blocks are being
combined into an m×m block, whereas in the earlier phase
it was b× b blocks to form the m× b inputs here. This is a
small difference, since m = b + c, and c can be very small.
The c is chosen for random verification and the probability
of error decreases exponentially with c [14]. We use c = 64
which fits well with our row vector slicing.

However, a key difference from phase 1a is that our call to
axpyin() in this stage takes longer than in the previous phase.
The essence of axpyin is matrix multiplication. The gain in
multiplication cost due to row bit-slicing is proportional to
the the number of columns in the right multiplicand. Here a
m×b is multiplied by a b×c. In phase 1a a c×b is multiplied

104

by a b × b. As before, both multiplicands are compressed
with bit-slicing. The number of word-vector operations is
approximately the same, b2 in phase 1a and mb in phase 1b.
However, in this case the left multiplicand, whose entries
are extracted one by one, is considerably larger. Thus we
have greater overhead due to the cost of extracting bit-sliced
entries. Fortunately, this kernel need only be performed
once per column block (n

b
times in total). The IO calls in

the subroutine readBinaryFile() and writeBinaryFile() account
for roughly one-sixth of the running time.

In this computational layout the consumer is written to
take advantage of multiple workers, each of which could be
consuming a column block simultaneously. Consuming a col-
umn block means writing to the block sum. Without taking
care, workers could overwrite each other’s partial work, leav-
ing the master block in an unknown (but almost certainly
meaningless) state. To solve this problem in practice, each
worker creates its own master block to write to. This dis-
tinction involves the call to addColBlock taking as input the
worker identification number. Upon the consumpion stage’s
end, the final block M can be created by a simple summing
of these intermediary column-block sums produced by the
workers. This summing is a quite fast operation with bit-
sliced matrices, and has negligible effect on overall running
time.

5. PHASE 2: GAUSSIAN ELIMINATION FOR
RANK

For the elimination phase, we perform an echelon form
computation on the final projected block, taking advantage
of only the word level and shared memory multi-core par-
allelism of the row operations. Each time a pivot is found,
elimination (by way of row vector axpy — exploiting the
word level vectorization) must be performed on all sub-
sequent rows. This step can be performed entirely inde-
pendently on each row, yet another embarrassingly parallel
routine. Therefore these rows can be evenly pooled into t
groups, where t is the number of OpenMP threads avail-
able. Each thread then eliminates the rows for which it is
responsible. The resulting speedup was sufficient to make
the elimination phase not a computational bottleneck. For
example, with the Dickson matrix at size 314 the runtime
was 0.13 hours, a tenth of the cost of the block projection,
1.3 hours. This elimination time is also 10 times faster than
a 2009 [17] echelon form computation on this block. These
times are not directly comparable. The 2009 non-parallel
computation used a faster processor but less efficient word
level vectorization (packing rather than slicing).

Although we haven’t precisely quantified it, clearly the
parallel efficiency is not so high in the elimination phase as
in the projection phase.

We did not (yet) pursue further tuning for performance on
this segment. However, for attempting still larger instances
of the problem (as we intend to do) it will be necessary
to tune the elimination phase. As an indication of this we
note that for our largest computation to date, n = 316, the
elimination phase took 8.7 hours, as shown in table 1. The
elimination cost ratio, 8.7/0.13 ≈ 67, is very close to the
expected factor of 64 slowdown as you go from n = 314 to
n = 316 The additional factor of 64 to compute at n = 318

would bring us to about 560 hours (more than 3 weeks).
Faster elimination algorithms will help as will introduction

Table 1: Running time for computing the ranks of
Dickson adjacency matrices: fully parallelized im-
plementation (2015) versus sequential implementa-
tion (2009). The algorithm running time is broken
into two components: the ’b’ columns denote time to
project the matrix into a rank-sized block, and the
’r’ columns denote the time taken to perform elim-
ination, thus computing rank. The parallel build
step used 8 compute nodes acting as producers and
10 consumers. The time units are ’s’ for seconds and
’h’ for hours.

Dickson SRG
e dimension Rank 2009b 2009r 2015b 2015r
6 531,441 7283 1.2h 80s .05h 21s
7 4,782,969 32064 96.4h 1.2h 1.3h .13h
8 43,046,721 141168 - - 27.9h 8.71h

of multi-node computation.
Regarding faster elimination, note that block decompo-

sition is not done (thus far). It would be beneficial to do
so, using for example the Strassen-Winograd algorithm [19]
and/or the 4 Russians method [2]. M4RI [1] is an effective
implementation of this approach over GF(2). Preliminary
work of Lambert [11] suggests good gains from this for our
setting (over GF(3)).

Regarding use of the third level of parallelism, observe
that the time of the projection for n = 316 was 28 hours,
a factor of only 28/1.3 ≈ 22 over the n = 314 case. The
arithmetic cost here actually increases by a factor of 81.
The smaller increase in time is explained by the introduction
of the distributed memory third level of parallelism to this
phase. In contemplating the 318 we must address an 80-
fold increase in work along with a 4-fold increase in memory
needed for each block. Handling several 20GB blocks at a
time will strain memory resources on harware we are likely to
use. However, it is straightforward further block decompose
our blocks as they flow through the computation. In the
end we need work with only one m × m block, our final
projected block. Such decomposition, together with speedup
of the Gaussian elimination and enough time and processors
should make the n = 318 rank computation feasible.

6. RANK SEQUENCE RECURRENCES
In the situation we are exploring, we calculate ranks of

families of matrices. The dimensions and rank computa-
tion costs increase exponentially in each family. Given that
computing larger and larger terms is ultimately infeasible
we would like to find patterns in the computed ranks which
might be provable mathematically.

So how does one hunt for patterns in sequences of integers?
We have reason to suspect a linear recurrence for cases

such as the Cohen-Ganley and Ding-Yuan families. In a
number of other cases of families based on difference sets, the
3-ranks were each given by linear recurrences. For example,
Paley by x− 4 (proven) [5], Pseudo-Paley by x4 − 10x2 + 9
(proven) [20], and Dickson by x3−4x2−2x+1 (conjectured)
[14].

The first step should be to run the Berlekamp-Massey

105

algorithm [13, 3] on an even number of terms. From 2n
terms of a sequence one will unequivocally find a unique
monic polynomial of degree n that generates those terms.
We may get a best guess polynomial or a generator that can
be ruled out due to rational coefficients, failure to generate
the 2n+ 1st term, or some other consideration.

The next step might be to search the OEIS [18] for known
sequences or nearby sequences. This is not a traditional
algorithm but when the next term is very expensive to com-
pute this trick has unlocked more than a few patterns. If
this still does not yield results there is a result [12] which
can compare your sequence with compositions of sequences
in the OEIS and Sloane database. In the Ding-Yuan and
Cohen-Ganley case none of these approaches yielded any
satisfactory results.

6.1 Lattice-based recurrence-finding recipe
Now we give our strategy for coping with linear recur-

rences when there are not enough terms to uniquely identify
a generator using Berlekamp-Massey alone. In our case there
are three simple observations which can help significantly:

1. Ranks are integers.

2. Matrix dimension bounds the rank.

3. Rank is non-negative.

Observation 1 has two impacts. One is that for each pos-
sible value of d, the degree of the generator, there will be
a lattice of integer-coefficient polynomial generators which
must contain a correct generator if one exists. The second
impact is that we need only consider monic generators.

Observation 3 allows us to rule out any possible generators
which ever produce a negative value.

Observation 2 along with the following proposition allows
us to rule out, as generators, any polynomials with roots too
large.

Proposition 6.1. If f ∈ Z[x] generates the rank sequence
(rk) of the matrix sequence of dimension nk = c32k for some
constant c, then |λ| ≤ 9, for any root λ of f .

Proof. The generating function of a homogeneous linear
recurrent sequence is rational with denominator the reverse
polynomial of the characteristic polynomial. Let R be the
maximum of |λ| for roots λ of the characteristic polynomial.
The Exponential Growth Formula [Theorem IV.7 [9]] gives

lim sup r
1/k
k = R. Since, by observation 2, rk ≤ c9k it

follows that |λ| ≤ R ≤ 9k.

In the case when one strongly suspects a linear recurrence
and additional terms are not readily obtained, we suggest
the following computer-aided approach exploiting the above
observations.

1. Find the lattice of possible generators for the degree
you wish to explore.

2. Use LLL to create a reduced basis of this lattice.

3. Determine if there is a finite list of polynomials with
small roots centered at the origin of this lattice.

4. Filter this list to be only those polynomials that extend
the sequence by generating non-negative terms.

6.1.1 Details of this approach
Let d be a candidate degree for the sequence generator

and suppose d + k sequence elements (a0, . . . , ad+k−1) are
known. In the cases under consideration, d + k is at most
8. Since the generator is known to be monic, the possible

generators must solve the linear equation M ~f = ~b where M

is a k × d Hankel matrix given by Mi,j = ai+j−2, ~b is given

by bi = ai+d−1 and ~f is the vector of generator coefficients
fi. Since the solution must be integer valued we have a
Diophantine linear system. For very efficient Diophantine
solvers see [15] for dense systems and [10] for sparse. For
our small systems we used the method of Chou and Collins
[6] which proceeds via a direct reduction to Smith form. This
gives us a diophantine solution and nullspace basis which we
may reduce with LLL. First compute the Smith normal form
of M as U−1DV −1 where U and V are unimodular square

matrices and D is diagonal. Then D~x = U~b can easily be

solved and ~f = V ~x. At least d− k components of ~x are free
to vary and these correspond to the degrees of freedom of the

linear system. Let R =
(
α~f0, Vk+1, . . . , Vd

)
be the matrix

formed by adjoining any particular solution ~f0 of this system
to the last columns of V which are in the nullspace of M .
We observe that this system has at least d − k degrees of
freedom.

The LLL algorithm can then be used to find a reduced
lattice of solutions. To do so, first form the matrix R′ =(
RT |α~e1

)
where ~e1 is the unit vector (1, 0, . . . , 0)T and α is

a large integer. By choosing a sufficiently large α, the LLL
algorithm will avoid adding the row containing the partic-
ular solution to the system to other rows. Thus after run-
ning LLL and resorting the rows, the matrix will be of the
form

(
ST | α~ei

)
where S is a reduced matrix with columns

~S0, ~S1, . . . , ~Sd−k. The possible generators of the sequence

are then ~S0 +
∑d−k
i=1 βi

~Si for integer constants βi. This lat-
tice fully describes the space of possible generators of degree
d for the given sequence elements.

To look for candidate solutions choose a small constant
c and explore the finite list of generators for each choice of
βi ∈ [−c, c]. Exclude any generator with a root of suffi-
ciently large magnitude or which produces a negative term
after some constant number of steps. This is a heuristic
based on the reasoning that a reduced basis implies that
large βi correspond to large coefficients in the polynomial
and large coefficients in the polynomial correspond to large
roots which, by proposition 6.1, cannot minimally generate
the sequence.

This method relies on lattice reduction which has a larger
complexity than Berlekamp-Massey but the dimension of the
lattices will be d − k. This can be accomplished in time
O(β1+ε(d− k)5 + β(d− k)4+ε) [16].

6.2 Example candidate recurrence generators
We report on the results obtained using the method just

described.

6.2.1 Ding-Yuan
Given the sequence S = [2, 8, 42, 226, 1232, 6646, 35362,

185868] (these are the 3-ranks of the Ding-Yuan family for
dimension 32k+1) we came up with the lattice f1+x·f2+y·f3
of possible degree 5 generators where f1 = x5−11x4+38x3−
38x2 − 14x + 13, f2 = x4 − 5x3 + 34x2 − 205x + 55, and

106

Table 2: The 8 possible degree 5 generators given
the first 8 ranks of the Ding-Yuan family, together
with predicted rank for the 9th rank (n = 317 case)

Predicted Polynomial

967082 x5 − 8x4 + 6x3 + 61x2 − 54x− 138
967650 x5 − 11x4 + 38x3 − 38x2 − 14x+ 13
968218 x5 − 14x4 + 70x3 − 137x2 + 26x+ 164
968786 x5 − 17x4 + 102x3 − 236x2 + 66x+ 315
972190 x5 − 7x4 + x3 + 95x2 − 259x− 83
972758 x5 − 10x4 + 33x3 − 4x2 − 219x+ 68
977298 x5 − 6x4 − 4x3 + 129x2 − 464x− 28
977866 x5 − 9x4 + 28x3 + 30x2 − 424x+ 123

f3 = −3x4 + 32x3 − 99x2 + 40x+ 151.
From there we could find a list of 85 (x, y)-pairs which

had roots bounded by 9. Out of those 85, only 8 remained
non-negative through the next 20000 terms. Thus with 8
ranks to work with, we have narrowed the field of degree
5 generators to a list of 8. These 8 reveal that the pre-
dicted next rank is between 967082 and 977866, and that
the largest root of a degree 5 generator would be between
5.05 and 6.16 in absolute value. It follows from the proof
of proposition 6.1 that these values bound the asymptotic
growth rate of the sequence assuming a degree 5 linear re-
currence. The predictions and possible generators are given
in table 2. When the ninth rank is computed, if it matches
one of the unique predictions of those 8 polynomials, then
it will be the only possible generator of degree 5. If the
ninth term does not match any of the predictions then no
degree 5 linear recurrence is possible (up to the discovery of
a small-rooted polynomial in the lattice with large x and y
values).

Note that a degree 6 generator may turn out to be the
case. We can currently create a large but finite list of can-
didate generators for degree 6.

6.2.2 Cohen-Ganley
In the Cohen-Ganley case we have computed 7 ranks.

Based on the first 6 we were able to narrow down the num-
ber of possible degree 4 generators to 55. With the 7th rank
we could determine that no degree 4 recurrence is possible.
With the same 7 terms there are more than 30000 possible
degree 5 generators, but a finite list is computable. Note
that the negative result for degree 4 generators is achieved
earlier than the 8 terms needed by Berlekamp-Massey to
produce a candidate minimal generator.

6.2.3 Dickson
In the Dickson case a degree 3 recurrence has been con-

jectured based on the first 7 terms (6 for Berlekamp/Massey
and one more to suggest validity) [14]. The proposed gen-
erator is x3 − 4x2 − 2x + 1. Our method here can prove
uniqueness given only 5 terms. There is at most one gener-
ator of degree 3 generating these terms. Thus the 6th, 7th,
(and now 8th) terms may be seen as further “evidence” for
the conjectured generator.

Further exploring the method on this example, even bas-
ing on only knowledge of the first 4 terms we were able to
narrow the field to 178 possible generators, with the conjec-

Table 3: Known and computed ranks for adjacency
matrices of certain strongly regular graph families.
Ranks in bold are first reported here so far as we
know.

Order Paley P∗ Dickson C-G D-Y

31 2
32 4 4 4 4
33 8
34 16 16 20 20
35 42
36 64 52 85 94
37 226
38 256 160 376 448
39 1232
310 1024 484 1654 2084
311 6646
312 4096 1456 7283 9652
313 35862
314 16384 4374 32064 44650
315 185868
316 65536 13120 141168 -

Formula: known known conjecture ? ?

tured generator appearing as the smallest vector produced
by the search.

7. CONCLUSIONS AND FUTURE WORK
Many families of strongly regular graphs have been de-

fined in terms of difference sets, either Paley type or skew
Hadamard type. For several of these families, formulas for
the adjacency matrix ranks have been found, the formula
being in each case a homogeneous linear recurrence.

We have contributed to the discovery of linear recurrences
for additional families in two ways, computing more terms of
the rank sequence, and expanding the analysis strategy for
making formula conjectures beyond the Berlekamp/Massey
algorithm.

Several families with a known linear recurrence generator
have it proven in the literature. However for Dickson’s fam-
ily, the “known” minimal generator is only conjectured. We
have computed the 8th rank in this family, further strength-
ening the conjecture. To this end, we have developed, and
here discussed, a parallel implementation of a projection
technique for matrix rank computation suitable for cases
when the rank is much less than matrix order. The ap-
proach uses 3 levels of parallelism: (1) a word level row vec-
tor parallel storage scheme, slicing, specific to computation
over GF(3), (2) multi-threaded computation contributing to
both projection to a smaller matrix and Gaussian elimina-
tion on that smaller matrix, (3) distributed and file system
based parallelism to manage the large amount of data go-
ing into the coarsest grain of the projection. Levels (2) and
(3) are applicable over any field. The implementation has
successfully computed rank of a matrix of order 316 having
rank about 217.

For other sequences, specifically the Cohen-Ganley and
Ding-Yuan families, the algorithm had provided so far ranks
up to and including the 7th for C-G and the 8th for D-Y. We

107

have established that C-G has no recurrence of degree less
than 5. For D-Y our analysis shows that there is no recur-
rence of degree 4 or less and that a 9th term would establish
a unique candidate for degree 5 recurrence or eliminate the
possibility of degree 5. Future work is planned to compute
the 8th rank in the Cohen-Ganley sequence, which is a rel-
atively straighforward application of the parallel method of
this paper. The 9th rank in the Ding-Yuan family is also
within reach. The method of this paper may be used with
sub-blocking to control memory and disk space demand. Ad-
ditionally, for this skew Hadamard construction, rank may
be found by use of an alternative (and sparse) matrix con-
struction (not the adjacency matrix). We are exploring al-
gorithms for that situation as well.

8. REFERENCES
[1] M. Albrecht and G. Bard. The M4RI Library –

Version 20100817. The M4RI Team, 2010.

[2] M. Albrecht, G. Bard, and W. Hart. Efficient
multiplication of dense matrices over gf(2). CoRR,
abs/0811.1714, 2008.

[3] E. R. Berlekamp. Factoring polynomials over large
finite fields. Math. Comp., 24:713–735, 1970.

[4] T. J. Boothby and R. W. Bradshaw. Bitslicing and the
Method of Four Russians Over Larger Finite Fields.
ArXiv e-prints, Jan. 2009.

[5] A. Brouwer and C. Van Eijl. On the p-rank of the
adjacency matrices of strongly regular graphs. Journal
of Algebraic Combinatorics, 1(4):329–346, 1992.

[6] T.-W. J. Chou and G. E. Collins. Algorithms for the
solution of systems of linear diophantine equations.
SIAM Journal on Computing, 11(4):687–708, 1982.

[7] E. W. Dijkstra. Cooperating sequential processes. In
P. B. Hansen, editor, The origin of concurrent
programming, pages 65–138. Springer-Verlag New
York, Inc., New York, NY, USA, 2002.

[8] C. Ding and J. Yuan. A family of skew Hadamard
difference set. J. Comb. Theory, Ser. A,
113:1526–1535, 2006.

[9] P. Flajolet and R. Sedgewick. Analytic Combinatorics.
Cambridge University Press, New York, NY, USA,
2009.

[10] M. Giesbrecht. Efficient parallel solution of sparse
systems of linear diophantine equations. In
Proceedings of the Second International Symposium on
Parallel Symbolic Computation, PASCO ’97, pages
1–10, New York, NY, USA, 1997. ACM.

[11] M. Lambert. private communication, U. of Delaware
PhD Preliminary Research Project Report, 2015.

[12] G. Levy. Solutions Of Second Order Recurrence
Relations. PhD thesis, Florida State University,
Tallahassee, Florida, 2010.

[13] J. L. Massey. Shift-register synthesis and BCH
decoding. IEEE Trans. Inf. Theory, it-15:122–127,
1969.

[14] J. May, B. Saunders, and Z. Wan. Efficient matrix
rank computation with application to the study of
strongly regular graphs. In In Proc. of ISSAC 2007,
pages 277–284. ACM Press, 2007.

[15] T. Mulders and A. Storjohann. Diophantine linear
system solving. In Proceedings of the 1999
International Symposium on Symbolic and Algebraic

Computation, ISSAC ’99, pages 181–188, New York,
NY, USA, 1999. ACM.

[16] A. Novocin, D. Stehlé, and G. Villard. An lll-reduction
algorithm with quasi-linear time complexity: Extended
abstract. In Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC ’11,
pages 403–412, New York, NY, USA, 2011. ACM.

[17] B. D. Saunders and B. Youse. Large matrix, small
rank. In Proceedings of the 2009 international
symposium on Symbolic and algebraic computation, In
Proc. of ISSAC 2009, pages 317–324, New York, NY,
USA, 2009. ACM.

[18] N. Sloane. The on-line encyclopedia of integer
sequences. http://oeis.org.

[19] V. Strassen. Gaussian elimination is not optimal.
Numer. Mathematik, 13:354–356, 1969.

[20] G. Weng, W. Qiu, Z. Wang, and Q. Xiang.
Pseudo-paley graphs and skew hadamard difference
sets from presemifields. Designs, Codes and
Cryptography, 44(1-3):49–62, 2007.

[21] B. Youse. Finite field/rank code suite.
https://bitbucket.org/bryouse/finite-field-rank-suite.

[22] B. Youse. High Performance Exact Linear Algebra.
PhD thesis, University of Delaware, Newark, DE,
2015.

108

