
On a Uniform Representation of Combinators,
Arithmetic, Lambda Terms and Types

Paul Tarau
Department of Computer Science and Engineering

University of North Texas
http://www.cse.unt.edu/~tarau

Abstract
A uniform representation, as binary trees with empty leaves, is
given to expressions built with Rosser’s X-combinator, natural
numbers, lambda terms and simple types. Type inference, nor-
malization of combinator expressions and lambda terms in de
Bruijn notation, ranking/unranking algorithms and tree-based nat-
ural numbers are described as a literate Prolog program.

With sound unification and compact expression of combinato-
rial generation algorithms, logic programming is shown to con-
veniently host a declarative playground where interesting proper-
ties and behaviors emerge from the interaction of heterogenous but
deeply connected computational objects.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—Data types
and structures

General Terms Algorithms, Languages, Theory

Keywords Rossser’s X-combinator, tree-based numbering sys-
tems, lambda calculus, normalization of de Bruijn terms, type in-
ference, bijective Gödel numberings, logic programming as meta-
language.

1. Introduction
Logic programming languages provide a convenient metalanguage
for building declarative playgrounds for specification and exper-
iments with data types and computations often taken from other
programming paradigms.

Properties of logic variables, unification with occurs check, and
exploration of solution spaces via backtracking facilitate compact
algorithms for inferring types or generate terms for various calculi.
This holds in particular for lambda terms [1] and their variable free
variants, combinators. Lambda terms provide a foundation to mod-
ern functional languages, type theory and proof assistants and have
been lately incorporated into mainstream programming languages
including Java 8, C# and Apple’s Swift. While possibly one of the
most heavily researched computational objects, lambda terms and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP’15, July 14 - 16, 2015, Siena, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3516-4/15/07. . . $15.00.
http://dx.doi.org/10.1145/2790449.2790526

combinators offer an endless stream of surprises to anyone digging
just deep enough below their intriguingly simple surface.

This paper tries to follow some of the consequences of a very
simple idea: what can happen if combinators, their types, their com-
putationally equivalent lambda terms would all share the same ba-
sic representation as the natural numbers that have been used as
encodings of formulas and proofs in such important fundamental
results as Gödel’s incompleteness theorems, as well as for mun-
dane purposes like doing arithmetic operations in a programming
language.

We have shown in the past [25, 27–29] that arithmetic opera-
tions and encodings of various data structures can be performed
with tree based numbering systems in average time and space com-
plexity that is comparable with the traditional binary numbers. One
of the properties that singles out such numbering systems is their
ability to favor objects with a regular structure on which represen-
tation size and complexity of operations can be significantly better
than with the usual bitstring representations.

At the same time, we have observed that Rosser’s X-combinator
expressions [7] (a 1-point basis for combinatory logic) can also
be hosted, together with function application nodes on top of our
ubiquitous binary tree representation. While the representation of
X-combinator expressions and their types collapses with that of
binary trees representing natural numbers, with a few additional
steps, we can also derive size proportionate ranking and unranking
algorithms for general lambda terms.

This results in a shared representation of combinators, simple
types, natural numbers and general lambda terms defining a com-
mon declarative playground for experiments connecting their com-
putational properties.

The paper is organized as follows. Section 2 introduces X-
combinator trees together with a generator and an evaluation algo-
rithm. Section 3 defines simple types for X-combinator expressions
via their equivalent lambda terms, describes type inference algo-
rithms on de Bruijn terms and X-combinator expressions. It also
explores consequences of expressions and types sharing the same
binary tree representation. Section 4 describes a normalization al-
gorithm for de Bruijn terms, derives from it one for X-combinator
trees and compares the two algorithms. Section 5 interprets X-
combinator trees as natural numbers on which it defines arithmetic
operations. Section 6 describes mappings from lambda terms to bi-
nary trees that lead to size-proportionate ranking and unranking al-
gorithms for lambda terms. Section 7 explores consequences that
emerge from interactions between such heterogeneous computa-
tional objects sharing the same binary tree representation. Section
8 discusses related work and section 9 concludes the paper.

The paper is structured as a literate Prolog program. The code,
tested with SWI-Prolog 6.6.6 and YAP 6.3.4. is also available at
http://www.cse.unt.edu/~tarau/research/2015/xco.pro.

244

2. X-Combinator Trees
Combinator expressions are lambda terms represented as binary
trees having applications as internal nodes and closed lambda terms
called combinators as leaves. A combinator basis is a set of combi-
nators in terms of which any other combinators can be expressed.

The most well known basis for combinator calculus consists of
K = λx0. λx1.x0 and S = λx0. λx1. λx2.((x0 x2) (x1 x2)).
SK-combinator expressions can be seen as binary trees with leaves
labeled with symbols S and K, having function applications as
internal nodes. Together with the primitive operation of application,
K and S can be used as a 2-point basis to define a Turing-complete
language.

It is shown in [9] that a countable number of (somewhat artifi-
cially constructed) 1-point bases exist for combinator calculi, but
we will focus here on Rosser’s X-combinator, one of the simplest
1-point bases that is naturally connected through mutual definitions
to the combinators K and S.

2.1 Rosser’s X-combinator
A derivation of Rosser’s X-combinator is described in [7].

Defined as X = λf.fKSK, this combinator has the nice
property of expressing both K and S in a symmetric way.

K = (XX)X (1)

S = X(XX) (2)
Moreover, as shown in [7] the following holds.

KK = XX = λx0. λx1. λx2.x1 (3)

As a result, X-combinator expressions are within a (small, see Prop.
1) constant factor of their equivalent SK-expressions.

Denoting “x” the empty leaf corresponding to the X-combinator
and “>” the (non-associative, infix) constructor for the binary tree’s
internal nodes, the predicates sT, kT and xxT define the Prolog ex-
pressions for the S, K and KK = XX combinators, respectively.

sT(x>(x>x)).
kT((x>x)>x).
xxT(x>x).

This symmetry is part of the motivation for choosing the X-
combinator basis, rather than any of the more well-known ones
(see [13]).

2.2 Generating the combinator trees
Prolog is an ideal language to define in a few lines generators for
various classes of combinatorial objects. The predicate genTree
generates X-combinator trees with a limited number of internal
nodes.

genTree(x)-->[].
genTree(X>Y)-->down,genTree(X),genTree(Y).

down(From,To):-From>0,To is From-1.

Note the use of Prolog’s definite clause grammars (DCGs) and the
predicate down/2 that counts downward the number of available
internal nodes. The predicate genTree/3 provides two interfaces:
genTree/2 that generates trees with exactly N internal nodes and
genTrees/2 that generates trees with N or less internal nodes.

genTree(N,X):-genTree(X,N,0).

genTrees(N,X):-genTree(X,N,_).

The predicate tsize defines the size of an X-combinator tree in
terms of the number of its internal nodes.

tsize(x,0).
tsize((X>Y),S):-tsize(X,A),tsize(Y,B),S is 1+A+B.

EXAMPLE 1. X-combinator trees with up to 3 internal nodes (and
up to 4 leaves).

?- genTrees(3,T).
T = x ;
T = (x>x) ;
T = (x> (x>x)) ;
T = (x> (x> (x>x))) ;
T = (x> ((x>x)>x)) ;
T = ((x>x)>x) ;
T = ((x>x)> (x>x)) ;
T = ((x> (x>x))>x) ;
T = (((x>x)>x)>x) .

2.3 An evaluator for the Turing-complete language of
X-combinator trees

We can derive an evaluator for X-combinator trees from a well-
known evaluator for SK-combinator trees.

eval((F>G),R):-!,eval(F,F1),eval(G,G1),app(F1,G1,R).
eval(X,X).

In the predicate app/3 handling the application of the first argu-
ment to the second, we describe in the first two clauses the actions
corresponding to K and S. The final clause returns the unevaluated
application as its third argument.

app((((x>x)>x)>X),_Y,R):-!,R=X. % K
app((((x>(x>x))>X)>Y),Z,R):-!, % S

app(X,Z,R1),
app(Y,Z,R2),
app(R1,R2,R).

%app((((x>x)>_X)>Y),_Z,R):-!,R=Y.
%app((x>x)>x,(x>x)>x,R):-!,app(x,x,R).
app(F,G,(F>G)).

Note also the commented out clauses, that can shortcut some eval-
uation steps, using the identity (3).

EXAMPLE 2. Evaluation of SKK and SKX, equivalent implemen-
tations of the identity combinator I = λx.x.

?- SKK=(((x>(x>x))>((x>x)>x))>((x>x)>x)),eval(SKK>x,R).
SKK = (((x>(x>x))>((x>x)>x))>((x>x)>x)),
R = x.

?- SKX=(((x> (x>x))> ((x>x)>x))>x),eval(SKX>x,R).
SKX = (((x> (x>x))> ((x>x)>x))>x),
R = x.

2.4 De Bruijn equivalents of X-combinator expressions
De Bruijn indices [6] provide a name-free representation of lambda
terms. All terms that can be transformed by a renaming of vari-
ables (α-conversion) will share a unique representation. Variables
following lambda abstractions are omitted and their occurrences are
marked with positive integers counting the number of lambdas until
the one binding them is found on the way up to the root of the term.
We represent them using the constructor a/2 for application, l/1
for lambda abstractions (that we will call shortly binders) and v/1
for marking the integers corresponding to the de Bruijn indices. For
instance, λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))) becomes
l(a(l(a(v(1),a(v(0),v(0)))),l(a(v(1),a(v(0),v(0)))))), cor-
responding to the fact that v(1) is bound by the outermost lambda
(two steps away, counting from 0) and the occurrences of v(0) are
bound each by the closest lambda, represented by the constructor
l/1.

The predicates kB and sB define the K and S combinators in de
Bruijn form.

kB(l(l(v(1)))).

sB(l(l(l(a(a(v(2),v(0)),a(v(1),v(0))))))).

245

We obtain the X-combinator’s definition in terms of S and K, in
de Bruijn form, by using the equation Xf = fKSK derived from
its lambda expression λf.fKSK. The predicate xB implements it.

xB(X):-F=v(0),kB(K),sB(S),X=l(a(a(a(F,K),S),K)).

The predicate t2b transforms an X-combinator tree in its
lambda expression form, in de Bruijn notation, by replacing leaves
with the de Bruijn form of the X-combinator and replacing recur-
sively the constructor “>”/2 with the application nodes “a”/2.

t2b(x,X):-xB(X).
t2b((X>Y),a(A,B)):-t2b(X,A),t2b(Y,B).

EXAMPLE 3. Expansion of small X-combinator trees to de Bruijn
forms.

?- t2b(x,X).
X = l(a(a(a(v(0), l(l(v(1)))), l(l(l(a(a(v(2), v(0)),

a(v(1), v(0))))))), l(l(v(1))))).

?- t2b(x>x,XX).
XX=a(

l(a(a(a(v(0),l(l(v(1)))),l(l(l(a(a(v(2),v(0)),
a(v(1),v(0))))))),l(l(v(1))))),

l(a(a(a(v(0),l(l(v(1)))),l(l(l(a(a(v(2),v(0)),
a(v(1),v(0))))))),l(l(v(1)))))

).

Clearly their de Bruijn equivalents are significantly larger than the
corresponding combinator trees, but we will show that this is only
by a constant factor. We will also see that often normalization can
bring down significantly the size of such expressions, given that
nodes like x>x are equivalent to smaller lambda expressions like
λx0. λx1. λx2.x1.

Similarly to the case of X-combinator trees, one can define the
size of a lambda expression in de Bruijn form as the number of its
internal nodes.

bsize(v(_),0).
bsize(l(A),R):-bsize(A,RA),R is RA+1.
bsize(a(A,B),R):-bsize(A,RA),bsize(B,RB),R is 1+RA+RB.

PROPOSITION 1. The size of the lambda term equivalent to an X-
combinator tree with N internal nodes is 15N+14.

Proof Note that the an X-combinator tree with N internal nodes has
N+1 leaves. The de Bruijn tree built by the predicate t2b has also
N application nodes, and is obtained by having leaves replaced in
the X-combinator term, with terms bringing 14 internal nodes each,
corresponding to x. Therefore it has a total of N + 14(N + 1) =
15N + 14 internal nodes.

A lambda term is called closed if it contains no free variables.
The predicate isClosedB defines this property for de Bruijn terms.

isClosedB(T):-isClosed1(T,0).

isClosed1(v(N),D):-N<D.
isClosed1(l(A),D):-D1 is D+1,isClosed1(A,D1).
isClosed1(a(X,Y),D):-isClosed1(X,D),isClosed1(Y,D).

PROPOSITION 2. The lambda terms equivalent to X-combinators
computed by t2b are closed.

Proof As the lambda term equivalent of the X-combinator is
clearly a closed expression, the proposition follows from the defi-
nition of t2b, as it builds terms that apply closed terms to closed
terms.

Besides being closed, lambda terms interesting for functional
languages and proof assistants are also well-typed. While the K and
S combinators are known to be well-typed, we would like to see
how this property extends to X-combinator trees. In particular, we
would like to have an idea on the asymptotic density of well-typed
X-combinator tree expressions. We will take advantage of Prolog’s
sound unification algorithm to define a type inferrer directly on de
Bruijn terms.

3. Inferring simple types for X-combinator trees
A natural way to define types for combinator expressions is to
borrow them from their lambda calculus equivalents. This makes
sense, as they represent the same function i.e., they are extension-
ally the same.

We will start with an algorithm inferring types on the de Bruijn
equivalents of X-combinator trees.

3.1 A type inference algorithm for Bruijn terms
Simple types will be defined here as binary trees built with the con-
structor “>/2” with empty leaves, representing the unique primitive
type “x”. Clearly, this is exactly the same representation as our X-
combinator trees! Simple types can be seen as as a “binary tree ap-
proximation” of lambda terms, centered around ensuring their safe
and terminating evaluation (strong normalization), as the following
well known property states (e.g., [2]).

PROPOSITION 3. Lambda terms that have simple types are strongly
normalizing.

We will say a that a term is well-typed if we can infer a simple
type for it. While in a functional language inferring types requires
implementing unification with occur check, as shown for instance
in the appendix of [10], this is readily available in Prolog. We will
closely follow here the Prolog implementation given in [30] but
we will also give in subsection 3.3 an simpler equivalent algorithm
working directly on X-combinator trees.

The predicate btype/3 works by associating the same logic
variable, denoting its type, to each of its occurrences. As logic vari-
able bindings propagate between binders, this ensures that types are
consistently inferred. Note that unification with occurs check needs
to be used to avoid cycles in the inferred type formulas.

btype(v(I),V,Vs):-nth0(I,Vs,V0),
unify_with_occurs_check(V,V0).

btype(a(A,B),Y,Vs):-btype(A,X>Y,Vs),btype(B,X,Vs).
btype(l(A),X>Y,Vs):-btype(A,Y,[X|Vs]).

Note also the use of the built-in nth0(I,Vs,V0) that unifies V0
with the I-th element of the list Vs.

At this point, most general types are inferred by btype as fresh
variables, somewhat similar to polymorphic types in functional lan-
guages, if one interprets logic variables as universally quantified.

EXAMPLE 4. Type inferred for the S combinator λx0. λx1. λx2.
((x0 x2) (x1 x2)) in de Bruijn form.

?- btype(l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),T,[]),
numbervars(T,0,_).

T = ((A> (B>C))> ((A>B)> (A>C))).

However, as we are only interested in simple types with only
one basic type, we will bind uniformly the leaves of our type tree
to the constant “x” representing our only primitive type, by using
the predicate bindType/1.

btype(A,T):-btype(A,T,[]),bindType(T).

bindType(x):-!.
bindType((A>B)):-bindType(A),bindType(B).

246

EXAMPLE 5. Simple type inferred for the S combinator and failure
to assign a type to the Y combinator λx0.(λx1.(x0 (x1 x1))
λx2.(x0 (x2 x2))).

?- btype(l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),T).
T = ((x> (x>x))> ((x>x)> (x>x))).
?- btype(l(a(l(a(v(1), a(v(0), v(0)))),

l(a(v(1), a(v(0), v(0)))))),T).
false.

3.2 Type trees as combinator trees
We can define the type of a combinator expression as the type of its
lambda expression translation. The predicate xtype defines a func-
tion from binary trees to binary trees mapping an X-combinator ex-
pression to its type, as inferred on its equivalent lambda term in de
Bruijn notation.

xtype(X,T):-t2b(X,B),btype(B,T).

Observe that this only makes sense if the combinator basis is well-
typed. Fortunately this is the case of the X-combinator λx0.(((x0
λx1. λx2.x1) λx3. λx4. λx5.((x3 x5) (x4 x5))) λx6. λx7.x6).

EXAMPLE 6. The X-combinator is well-typed.

?- xtype(x,T).
T = (((x> (x>x))> (((x> (x>x))>

((x>x)> (x>x)))> ((x> (x>x))>x)))>x).

3.3 Inferring types of X-combinator trees directly
The predicate xt, that can be seen as a “partially evaluated” version
of xtype, infers the type of the combinators directly.

xt(X,T):-poly_xt(X,T),bindType(T).

xT(T):-t2b(x,B),btype(B,T,[]).

poly_xt(x,T):-xT(T).
poly_xt(A>B,Y):-poly_xt(A,T),poly_xt(B,X),

unify_with_occurs_check(T,(X>Y)).

It proceeds by first borrowing the type of x from its de Bruijn equiv-
alent. Then, after calling poly xt to infer polymorphic types, it
binds them to our simple-type representation by calling bindType.

EXAMPLE 7. Simple type inferred directly on X-combinator trees.

?- skkT(X),xt(X,DirectT),xtype(X,BorrowedT).
X = (((x> (x>x))> ((x>x)>x))> ((x>x)>x)),
DirectT = BorrowedT, BorrowedT = (x>x).

3.4 Estimating the proportion of well-typed X-combinator
trees

An interesting question arises at this point: what proportion of X-
combinator trees of a given size are well-typed? While the analytic
study of the asymptotic density has been successfully performed
on several families of lambda terms [4, 10, 11], it is considered an
open problem for well-typed terms. We will limit ourselves here
to empirically estimate it, as it is done in [10] for general lambda
terms, where experiments indicate extreme sparsity for very large
terms.

We can use our generator genTree to enumerate X-combinator
trees among which we can then count the number of well-typed
ones.

EXAMPLE 8. Types inferred for terms with 2 internal nodes.

?- genTree(2,X),xtype(X,T).
X = (x> (x>x)),
T = ((x> (x>x))> ((x>x)> (x>x))) ;
X = ((x>x)>x),
T = (x> (x>x))

Term size Well-typed Total Ratio
0 1 1 1
1 1 1 1
2 2 2 1
3 5 5 1
4 12 14 0.8571
5 38 42 0.9047
6 113 132 0.8560
7 357 429 0.8321
8 1148 1430 0.8027
9 3794 4862 0.7803

10 12706 16796 0.7564
11 43074 58786 0.7327
12 147697 208012 0.7100

Figure 1. Proportion of well-typed X-combinator terms

Figure 1 shows the counts for well-typed X-combinator expres-
sions among the total binary trees of given size. Note that the total
column is given by the Catalan numbers (entry A000108 in [22]),
as binary trees are a member of the Catalan family of combina-
torial objects [23]. Somewhat surprisingly, a large proportion of
well-typed X-combinator terms is present among the binary trees
of a given size, indicating the possible existence of a lower bound
that might be easier to determine analytically than in the case of
general lambda terms.

3.5 Generating closed well-typed terms of a given size
One can derive, from the type inferrer btype, a generator for de
Bruijn terms with a given number of internal nodes, by controlling
their creation with the predicate down/2 in a way similar to the
binary tree generator genTree.

Like the predicate genTree, the predicate genTypedB/5 re-
lies on Prolog’s DCG notation to thread together the steps con-
trolled by the predicate down. Note also the nondeterministic use
of the built-in nth0 that enumerates values for both I and V rang-
ing over the list of available variables Vs, as well as the use of
unify with occurs check to ensure that unification of candidate
types does not create cycles.

genTypedB(v(I),V,Vs)--> {
nth0(I,Vs,V0),
unify_with_occurs_check(V,V0)

}.
genTypedB(a(A,B),Y,Vs)-->down,

genTypedB(A,X>Y,Vs),
genTypedB(B,X,Vs).

genTypedB(l(A),X>Y,Vs)-->down,
genTypedB(A,Y,[X|Vs]).

Like in the case of genTree, two interfaces are offered: genTypedB
that generates de Bruijn terms of with exactly L internal nodes and
genTypedBs that generates terms with L internal nodes or less.

genTypedB(L,B,T):-genTypedB(B,T,[],L,0),bindType(T).

genTypedBs(L,B,T):-genTypedB(B,T,[],L,_),bindType(T).

As expected, the number of solutions, 1, 2, 9, 40, 238, 1564, . . . for
sizes for sizes 1, 2, 3, . . . matches entry A220471 in [22].

EXAMPLE 9. Generation of well-typed closed de Bruijn terms of
size 3.

?- genTypedB(3,Term,Type).
Term = a(l(v(0)), l(v(0))),Type = (x>x) ;
Term = l(a(v(0), l(v(0)))),Type = (((x>x)>x)>x) ;

247

Term = l(a(l(v(0)), v(0))),Type = (x>x) ;
Term = l(a(l(v(1)), v(0))),Type = (x>x) ;
Term = l(l(a(v(0), v(1)))),Type = (x> ((x>x)>x)) ;
Term = l(l(a(v(1), v(0)))),Type = ((x>x)> (x>x)) ;
Term = l(l(l(v(0)))),Type = (x> (x> (x>x))) ;
Term = l(l(l(v(1)))),Type = (x> (x> (x>x))) ;
Term = l(l(l(v(2)))),Type = (x> (x> (x>x))) .

3.6 Querying the generator for specific types
Coming with Prolog’s unification and non-deterministic search,
is the ability to make more specific queries by providing a type
pattern, that selects only terms of a given type.

EXAMPLE 10. Terms of type x>x of size 4.

?- genTypedB(4,Term,(x>x)).
Term = a(l(l(v(0))), l(v(0))) ;
Term = l(a(l(v(1)), l(v(0)))) ;
Term = l(a(l(v(1)), l(v(1)))) .

?- genTypedBs(12,T,(x>x)>x).
false.

Note that the last query, taking about a minute, shows that no closed
terms of type (x>x)>x exist up to size 12.

We can make use of our generator’s efficient specialization to
a given type to explore empirical estimates for some interesting
function types.

Contrary to the total absence of type (x>x)>x among terms of
size up to 12, “binary operations” of type x>(x>x) turn out to be
quite frequent, giving, by increasing sizes, the sequence [0, 2, 0,
14, 12, 201, 445, 4632, 17789, 158271, 891635].

Transformers of type x>x, by increasing sizes, give the se-
quence [1, 0, 3, 3, 31, 78, 596, 2500, 18474, 110265, 888676].
While type (x>x)>x turns our to be absent up to size 12, the type
(x>x)>(x>x) describing transformers of transformers turns out
to be quite popular, as shown by the sequence [1,1, 4, 11, 55,
227, 1315, 7066, 46731, 309499, 2358951]. The same turns out
to be tree also for (x>x)>((x>x)>(x>x)), giving [0, 2, 1, 16, 29,
272, 940, 7594, 39075, 312797, 2115374] and ((x>x)>(x>x)) >
((x>x)>(x>x)) giving [1, 1, 5, 13, 73, 300, 1846, 10130, 69336,
469217, 3640134]. One might speculate that homotopy type the-
ory [31], that focuses on such transformations and transformations
of transformations etc. has a rich population of lambda terms from
which to chose interesting inhabitants of such types!

3.7 Generating terms with free variables
Another interface, generating closed simply-typed terms of given
size and with at most a given number of free de Bruijn indices is
given by the predicate genTypedWithSomeFree.

genTypedWithSomeFree(Size,NbFree,B,T):-
between(0,NbFree,NbVs),
length(FreeVs,NbVs),
genTypedB(B,T,FreeVs,Size,0),
bindType(T).

The first 9 numbers counting closed simply-typed terms with at
most one free variables (not yet in [22]), are [3, 10, 45, 256, 1688,
12671, 105743, 969032, 9639606].

Note that, as our generator integrates filtering out closed and
untypable terms early the generation process rather than as a post-
processing step, enumeration and counting of these terms happens
in a few seconds.

3.8 Generating closed typable lambda terms by types
In [19] generation of random terms is guided by their types, result-
ing in more realistic (while not uniformly random) terms, used suc-
cessfully in discovering some bugs in the Glasgow Haskell Com-
piler (GHC).

We can organize in a similar way the interface of our combined
generator and type inferrer. The predicate genByTypeB first gen-
erates types (seen simply as binary trees) with genTree and then
uses the unification-based querying mechanism to generate all the
de Bruijn terms terms with fewer internal nodes then their binary
tree type.

genByTypeB(L,B,T):-
genTree(L,T),
genTypedBs(L,B,T).

EXAMPLE 11. Enumeration of closed simply-typed de Bruijn
terms with types of size 3 and less then 3 internal nodes.

?- genByTypeB(3,B,T).
B = l(l(l(v(0)))),T = (x> (x> (x>x))) ;
B = l(l(l(v(1)))),T = (x> (x> (x>x))) ;
B = l(l(l(v(2)))),T = (x> (x> (x>x))) ;
B = l(l(v(1))),T = (x> ((x>x)>x)) ;
B = l(l(a(v(0), v(1)))),T = (x> ((x>x)>x)) ;
B = a(l(v(0)), l(v(0))),T = ((x>x)> (x>x)) ;
B = l(v(0)),T = ((x>x)> (x>x)) ;
B = l(a(l(v(0)), v(0))),T = ((x>x)> (x>x)) ;
B = l(a(l(v(1)), v(0))),T = ((x>x)> (x>x)) ;
B = l(l(v(0))),T = ((x>x)> (x>x)) ;
B = l(l(a(v(1), v(0)))),T = ((x>x)> (x>x)) ;
B = l(a(v(0), l(v(0)))),T = (((x>x)>x)>x).

Given that various constraints are naturally interleaved by our gen-
erator we obtain in a few seconds the sequence counting these
terms having types up to size 8, [1, 2, 12, 72, 702, 7970, 111573,
1867256]. It indicates that the number of terms sharing the same
type grows very fast, despite of the experimentally observed (see
[10]) quickly decreasing density among the set of all (closed)
lambda terms.

3.9 Iterated types
EXAMPLE 12. As an interesting coincidence, one might note that
the binary tree representation of the type of the K combinator is
nothing but the S combinator itself.

?- kT(K),xtype(K,T),sT(S).
K = ((x>x)>x),
T = S, S = (x> (x>x)).

Given that X-combinator expressions and their inferred simple
types are both represented as binary trees of often comparable sizes,
one might be curious about what happens if we iterate this process.

By interpreting a type as its identically represented X-combinator
expression, one can ask the question: is the type expression itself
well-typed? If so, is the set of distinct iterated types starting from
an X-combinator finite?

The predicate iterType applies the type inference operation at
most K-times, until an untypable term or a fixpoint is reached.

iterType(K,X, Ts, Steps):-
iterType(K,FinalK,X,[],Rs),
reverse(Rs,Ts),
Steps is K-FinalK.

iterType(K,FinalK,X,Xs,Ys):-K>0,K1 is K-1,
xtype(X,T),
\+(member(T,Xs)),
!,
iterType(K1,FinalK,T,[T|Xs],Ys).

iterType(FinalK,FinalK,_,Xs,Xs).

EXAMPLE 13. Iterated types for K and S and I=SKK combinators.

?- kT(K),iterType(100,K,Ts,Steps).
K = ((x>x)>x),

248

Initial term size Average steps Average size
0 1 7
1 4 3
2 3 3.25
3 2.4 7.2799
4 2.5714 4.9476
5 2.8333 5.5087
6 2.5075 6.1571
7 2.4405 6.6171
8 2.3832 7.0235
9 2.3290 7.4627

10 2.2547 7.9913
11 2.1831 8.5392
12 2.1174 9.1143

Figure 2. Average steps and term sizes of iterated types

Ts = [x> (x>x), (x> (x>x))> ((x>x)> (x>x)), (x>x)> (x>x)],
Steps = 3.

?- sT(S),iterType(100,S,Ts,Steps).
S = (x>(x>x)),
Ts = [(x> (x>x))>((x>x)> (x>x)),(x>x)>(x>x),x> (x>x)],
Steps = 3.

?- skkT(XX),iterType(100,XX,Ts,Steps).
XX = (((x> (x>x))> ((x>x)>x))> ((x>x)>x)),
Ts = [x>x, x> (x> (x>x)), x> (x>x),

(x> (x>x))> ((x>x)> (x>x)), (x>x)> (x>x)],
Steps = 5.

Figure 2 shows the average number of steps until a non-typable
term is found or a fixpoint is reached as well as the average size of
the terms in the sequence of iterated types.

This matches the intuition that types are (smaller) approxima-
tions of programs and suggests that the following holds.

Conjecture. The set of iterated types is finite for any X-combinator
tree.

4. Evaluation via de Bruijn terms
While, as shown in subsection 2.3, X-combinator trees can be eval-
uated directly, it makes sense to investigate if more compact equiv-
alent normal forms can be obtained for them via their mapping to
lambda terms.

4.1 Normalization of de Bruijn terms
Evaluation of lambda terms involves β-reduction, a transformation
of a term like a(l(X,A),B) by replacing every occurrence of
X in A by B, (with possible variable renamings to avoid variable
capture) and η-conversion, the transformation of an application
term l(X,a(A,X)) into A, under the assumption that X does not
occur in A. For terms in de Bruijn form, this occurs check is not
needed as variables are indirectly represented as offsets indicating
where their binders are.

The first tool we need to implement normalization of lambda
terms is a safe substitution operation. While logic variables offer a
fast and easy way to perform substitutions, they do not offer any
elegant mechanism to ensure that substitutions are capture-free.
Moreover, no HOAS-like mechanism exists in Prolog for borrow-
ing anything close to normal order reduction from the underlying
system, as Prolog would provide, through meta-programming, only
a call-by-value model.

Normalization algorithms for of lambda terms are well known
(e.g., [21]). To be able to compare it with direct evaluation of com-
binator trees, we will describe here, following [30], a Prolog im-
plementation of an interpreter for lambda terms supporting normal
order β-reduction using de Bruijn terms. This also ensures that
terms are unique up to α-equivalence. As usual, we will omit η-
conversion, known to interfere with things like type inference, as
the redundant argument(s) that it removes might carry useful type
information.

The predicate beta/3 implements the β-conversion operation
corresponding to the binder l(A). It calls subst/4 that replaces in
A occurrences corresponding the the binder l/1.

beta(l(A),B,R):-subst(A,0,B,R).

The predicate subst/4 counts, starting from 0, the lambda binders
down to an occurrence v(N). Replacement occurs at at level I when
I=N.

subst(a(A1,A2),I,B,a(R1,R2)):-I>=0,
subst(A1,I,B,R1),
subst(A2,I,B,R2).

subst(l(A),I,B,l(R)):-I>=0,I1 is I+1,
subst(A,I1,B,R).

subst(v(N),I,_B,v(N1)):-I>=0,N>I,N1 is N-1.
subst(v(N),I,_B,v(N)):-I>=0,N<I.
subst(v(N),I,B,R):-I>=0,N=:=I,

shift_var(I,0,B,R).

When the right occurrence v(N) is reached, the term substituted
for it is shifted such that its variables are marked with the new,
incremented distance to their binders. The predicate shift var/4
implements this operation.

shift_var(I,K,a(A,B),a(RA,RB)):-K>=0,I>=0,
shift_var(I,K,A,RA),
shift_var(I,K,B,RB).

shift_var(I,K,l(A),l(R)):-K>=0,I>=0,K1 is K+1,
shift_var(I,K1,A,R).

shift_var(I,K,v(N),v(M)):-K>=0,I>=0,N>=K,M is N+I.
shift_var(I,K,v(N),v(N)):-K>=0,I>=0,N<K.

We first compute the weak head normal form using wh nf/2.

wh_nf(v(X),v(X)).
wh_nf(l(E),l(E)).
wh_nf(a(X,Y),Z):-wh_nf(X,X1),wh_nf1(X1,Y,Z).

The predicate wh nf1/3 does the case analysis of application
terms a/2. The key step is the β-reduction in its second clause,
when it detects an “eliminator” lambda expression as its left argu-
ment, in which case it performs the substitution of its binder, with
its right argument.

wh_nf1(v(X),Y,a(v(X),Y)).
wh_nf1(l(E),Y,Z):-beta(l(E),Y,NewE),wh_nf(NewE,Z).
wh_nf1(a(X1,X2),Y,a(a(X1,X2),Y)).

The predicate evalB implements normal order reduction. Normal
order reduction of a lambda term, if it terminates, leads to a unique
normal form, as a consequence of the Church-Rosser theorem, ele-
gantly proven in [6] using de Bruijn terms. Termination holds, for
instance, in the case of simply-typed lambda terms. The predicate
evalB follows the same skeleton as wh nf, which is called in the
third clause to perform reduction to weak head normal form, start-
ing from the outermost lambda binder. Note also that, unlike in
wh nf, in the second clause, lambdas are traversed and their sub-
terms evaluated.

evalB(v(X),v(X)).
evalB(l(E),l(NE)):-evalB(E,NE).
evalB(a(E1,E2),R):-wh_nf(E1,NE),applyB(NE,E2,R).

249

Case analysis of application terms for possible β-reduction is per-
formed by applyB/3, where the second clause calls beta/3 and
recurses on its result.

applyB(v(E1),E2,a(v(E1),NE2)):-evalB(E2,NE2).
applyB(l(E),E2,R):-beta(l(E),E2,NewE),evalB(NewE,R).
applyB(a(A,B),E2,a(NE1,NE2)):-

evalB(a(A,B),NE1),
evalB(E2,NE2).

The predicate evalB provides a lambda calculus interpreter work-
ing on de Bruijn terms. It is guaranteed to compute a normal form,
if it exists.

EXAMPLE 14. Evaluation of the lambda term SKK =
((λx0. λx1. λx2.((x0 x2) (x1 x2)) λx3. λx4.x3) λx5. λx6.x5)
in de Bruijn form, resulting in the definition of the identity combi-
nator I = λx0.x0.

?- evalB(a(a(l(l(l(a(a(v(2), v(0)),
a(v(1), v(0)))))), l(l(v(1)))), l(l(v(1)))),R).

R = l(v(0)) .

4.2 Comparing the two evaluators
One can now compare the evaluation performed on X-combinator
trees to that performed on their corresponding lambda expressions.
The predicate evalAsT first evaluates and then converts while the
predicate evalAsB first converts to a de Bruijn terms and then
evaluates it, with opportunities for additional reductions.

evalAsT --> eval,t2b.
evalAsB --> t2b,evalB.

We express these two predicates as a composition of functions (first
argument in, second out) using Prolog’s DCG notation.

EXAMPLE 15. Additional reductions obtained from a term of size
29 to a term of size 3 on the de Bruijn terms associated to an X-
combinator expression.

?- evalAsT(x>x,R),bsize(R,Size),write(Size),nl,fail.
29

?- evalAsB(x>x,R),bsize(R,Size).
R = l(l(l(v(1)))),
Size = 3 .

Note however, as predicted by the Church-Rosser theorem [1, 6],
applying normalization via evalB to the result of evalAsT reaches
the same final normal form. This property is called confluence.

EXAMPLE 16. Confluence of evaluation as X-combinator tree and
as lambda term.

?- evalAsT(x>x,R),evalB(R,FinalR).
R = a(l(a(a(a(v(0),...,l(l(v(1)))))),
FinalR = l(l(l(v(1)))) .

5. X-combinator trees as natural numbers
Gödel numberings seen as injective mappings from formulas and
proofs to natural numbers have been used for important theoreti-
cal results in the past [12] among which Gödel’s incompleteness
theorems are the most significant [8].

In the form of ranking and unranking functions, bijections from
families of combinatorial objects to natural numbers have been
devised with often practical uses in mind, like generation of random
inputs for software testing.

Ensuring that such bijections are also size-proportionate, adds
an additional challenge to the problem, as the fast growth of the
number of combinatorial objects of a given size makes it difficult
to impossible to associate to all of them comparably small unique
natural numbers. As another challenge, computation of the unrank-
ing function often involves some form of binary or multiway tree

search to locate the object corresponding to a given natural number
[10, 25], which precludes their use on very large objects. Our solu-
tion described here consists in two steps, the second one involving
an arguably surprising twist.

First, we define a bijection between natural numbers and trees.
Next we define arithmetic operations directly on trees and ensure
that they mimic exactly their natural number equivalents. This turns
our trees into natural numbers (they become yet another model or
Peano’s axioms), hence we can make them the target of ranking
algorithms and the source of unranking ones.

As we are now dealing with bijections between trees and tree-
like data structures, making them size proportionate becomes sur-
prisingly easy. We will define such a bijection to general lambda
terms in section 6.

5.1 A bijection from binary trees to natural numbers
The (big-endian) binary representation of a natural number can be
written as a concatenation of binary digits of the form

n = bk0
0 bk1

1 . . . bki
i . . . bkm

m (4)

with bi ∈ {0, 1} and the highest digit bm = 1. The following hold.

PROPOSITION 4. An even number of the form 0ij corresponds to
the operation 2ij and an odd number of the form 1ij corresponds
to the operation 2i(j + 1)− 1.

Proof It is clearly the case that 0ij corresponds to multiplication
by a power of 2. If f(i) = 2i+1, then it can be shown by induction
that the i-th iterate of f , f i is computed as in the equation (5)

f i(j) = 2i(j + 1)− 1 (5)

Observe that each block 1i in n, represented as 1ij in equation (4),
corresponds to the iterated application of f , i times, n = f i(j).

PROPOSITION 5. A number n is even if and only if it contains an
even number of blocks of the form bki

i in equation (4). A number n
is odd if and only if it contains an odd number of blocks of the form
bki
i in equation (4).

Proof It follows from the fact that the highest digit (and therefore
the last block in big-endian representation) is 1 and the parity of
the blocks alternate.

This suggests defining a cons operation on natural numbers as
follows.

cons(i, j) =

{
2i+1j if j is odd,
2i+1(j + 1)− 1 if j is even.

(6)

Note that the exponents are i + 1 instead of i as we start counting
at 0. Note also that cons(i, j) will be even when j is odd and odd
when j is even.

PROPOSITION 6. The equation (6) defines a bijection c : N×N→
N+ = N− {0}.

Therefore cons has an inverse decons, that we will constructively
define together with it.

cons(I,J,C) :- I>=0,J>=0,
D is mod(J+1,2),
C is 2^(I+1)*(J+D)-D.

The definition of the inverse decons relies on the dyadic valuation
of a number n, ν2(n), defined as the largest exponent of 2 dividing
n, implemented as the helper predicate dyadicVal, which com-
putes the least significant bit of its first argument with help from
the built-in lsb.

250

decons(K,I1,J1):-K>0,B is mod(K,2),KB is K+B,
dyadicVal(KB,I,J),
I1 is max(0,I-1),J1 is J-B.

dyadicVal(KB,I,J):-I is lsb(KB),J is KB // (2^I).

EXAMPLE 17. The inverse cons and decons operations.

?- decons(2016,A,B),cons(A,B,N).
A = 4,
B = 63,
N = 2016.

We can compute a natural number from an X-combinator tree
by mapping recursively the “>” constructor to cons.

n(x,0).
n((A>B),K):-n(A,I),n(B,J),cons(I,J,K).

Similarly, we can build an X-combinator tree from a natural num-
ber by recursing over decons.

t(0,x).
t(K,(A>B)):-K>0,decons(K,I,J),t(I,A),t(J,B).

Note the small codes corresponding to some interesting combina-
tors.

EXAMPLE 18. Encodings of combinators X, S, K and XX=KK.

?- n(x,N).
N = 0.
?- n(x>x,N).
N = 1.
?- sT(X),n(X,N).
X = (x> (x>x)), N = 2.
?- kT(X),n(X,N).
X = ((x>x)>x), N = 3.

PROPOSITION 7. The predicates n and t define inverse functions
between natural numbers and X-combinator trees.

Proof It follows from the fact that cons and decons implement
inverse functions.

EXAMPLE 19. The work of t and n on the first 8 natural numbers.

?- maplist(t,[0,1,2,3,4,5,6,7],Ts),maplist(n,Ts,Ns).
Ts = [x,x>x,x> (x>x), (x>x)>x, (x>x)> (x>x),

x> (x> (x>x)),x> ((x>x)>x), (x> (x>x))>x],
Ns = [0, 1, 2, 3, 4, 5, 6, 7].

5.2 Binary tree arithmetic
As we know for sure that natural numbers support arithmetic oper-
ations, we will try to mimic their behavior with binary trees built
with the constructor “>” and empty leaves x that we have inter-
preted so far as X-combinator expressions and simple types.

The operations even and odd implement the observation fol-
lowing from of Prop. 5 that parity (staring with 1 at the highest
block) alternates with each block of distinct 0 or 1 digits.

parity(x,0).
parity(_>x,1).
parity(_>(X>Xs),P1):-parity(X>Xs,P0),P1 is 1-P0.

even_(_>Xs):-parity(Xs,1).
odd_(_>Xs):-parity(Xs,0).

We will now specify successor and predecessor through two
mutually recursive predicates, s and p.

They first decompose their arguments as if using decons. Then,
after transforming them as a result of adding 1, they place back the
results as if using the cons operation, both emulated by the use of
the constructor “>”. Note that the two functions work on trees with

steps corresponding to a block of 0 or 1 digits at a time. They are
based on arithmetic observations about the behavior of these blocks
when incrementing or decrementing a binary number by 1.

s(x,x>x).
s(X>x,X>(x>x)):-!.
s(X>Xs,Z):-parity(X>Xs,P),s1(P,X,Xs,Z).

After computing parity, the successor predicate s delegates the
transformation of the blocks of 0 and 1 digits to predicate s1
handling both the even and odd cases.

s1(0,x,X>Xs,SX>Xs):-s(X,SX).
s1(0,X>Ys,Xs,x>(PX>Xs)):-p(X>Ys,PX).
s1(1,X,x>(Y>Xs),X>(SY>Xs)):-s(Y,SY).
s1(1,X,Y>Xs,X>(x>(PY>Xs))):-p(Y,PY).

The predecessor function p inverts the work of s

p(x>x,x).
p(X>(x>x),X>x):-!.
p(X>Xs,Z):-parity(X>Xs,P),p1(P,X,Xs,Z).

After computing parity, the predecessor predicate p delegates the
transformation of the blocks of 0 and 1 digits to p1 handling
separately the even and odd cases.

p1(0,X,x>(Y>Xs),X>(SY>Xs)):-s(Y,SY).
p1(0,X,(Y>Ys)>Xs,X>(x>(PY>Xs))):-p(Y>Ys,PY).
p1(1,x,X>Xs,SX>Xs):-s(X,SX).
p1(1,X>Ys,Xs, x>(PX>Xs)):-p(X>Ys,PX).

PROPOSITION 8. Assuming parity information is kept explicitly,
the operations s and p work on a binary tree of size N in time
constant on average and and O(log∗(N)) in the worst case

Proof See [26].

PROPOSITION 9. The operations s and p implement successor and
predecessor operations such that their results correspond to the
same operations on natural numbers,i.e., the following hold.

t(A,X), s(X,Y), B is A+ 1, n(Y,C)→ B = C (7)

t(A,X), p(X,Y), B is A− 1, n(Y,C)→ B = C (8)

Proof See [26].

EXAMPLE 20. s and p implement arithmetic correctly.

?- A=10,t(A,X),s(X,Y),B is A+1,n(Y,C).
A = 10,X = (x> (x> (x> (x>x)))),Y = ((x>x)> (x> (x>x))),
B = C, C = 11 .

Our binary trees can be seen as a model of Peano Arithmetic, in
the same sense as unary or binary arithmetic. Note also, that while
any enumeration would provide unary arithmetic, our representa-
tion implements the equivalent (or better) of binary arithmetic. We
refer to [27] and [29] for the description of algorithms covering
all the usual arithmetic operations with equivalent representations
working on other members of the Catalan family and to [26] for
a generic implementation using Haskell type classes. Hence our
X-combinator trees can provide an implementation of arithmetic
operations (including extension to integers and rational numbers).
Moreover, they can also become the target of ranking and unrank-
ing functions that associate unique natural number codes to various
combinatorial objects. In section 6 they will play this role for gen-
eral lambda terms.

We refer to [26] for the development of a complete arithmetic
system for the Catalan family of combinatorial objects, of which
binary trees are the most well known instance.

251

6. A size-proportionate Gödel numbering
bijection for lambda terms

We are finally ready to define our simple, linear time, size-
proportionate bijection between tree-represented natural numbers
and general lambda terms in de Bruijn notation.

6.1 Ranking and unranking de Bruijn terms to binary-tree
represented natural numbers

The predicate rank defines a bijection from lambda expressions
in de Bruijn notation to binary trees, seen here as implementing
natural numbers. Variables v/1 are represented as trees with the
left x as their left branch, lambdas l/1 as trees with x as their
right branch. To avoid ambiguity, ranks for application nodes will
be incremented by one using the successor predicate s/2.

rank(v(0),x).
rank(l(A),x>T):-rank(A,T).
rank(v(K),T>x):-K>0,t(K,T).
rank(a(A,B),X1>Y1):-rank(A,X),s(X,X1),rank(B,Y),s(Y,Y1).

The predicate unrank defines the inverse bijection from binary
trees, seen as natural numbers, to lambda expressions in de Bruijn
notation. It works by case analysis on trees with branches marked
with x and decrements branches using predicate p/2 to ensure it
inverts the action of rank on application nodes. Note also that both
predicates use the bijections t and respective n to convert between
tree-based naturals and their standard natural number equivalents.

unrank(x,v(0)).
unrank(x>T,l(A)):-!,unrank(T,A).
unrank(T>x,v(N)):-!,n(T,N).
unrank(X>Y,a(A,B)):-

p(X,X1),unrank(X1,A),
p(Y,Y1),unrank(Y1,B).

PROPOSITION 10. Assuming variable indices are small (word-
size) integers, rank and unrank define a size-proportionate bi-
jection between lambda terms in de Bruijn form and X-combinator
trees. Their runtime is proportional to the size of their input.

Proof If variable indices are fixed sized small integers, one can
assume that t and n work in constant time. Then, observe that each
step of both predicates works in time proportional to s or p for a
total proportional to the number of internal nodes.

As an interesting variation, for very large terms, one could actually
use binary tree-based natural numbers for the indices of v/1 in
de Bruijn terms, and completely bypass the use of t and n, and
thus lifting the assumption about variable indices being fixed size
integers.

EXAMPLE 21. Ranking and unranking of K and S combinators in
de Bruijn form.

?- kB(K),rank(K,B),unrank(B,K1).
K = K1, K1 = l(l(v(1))),
B = (x> (x> ((x>x)>x))) .

?- sB(S),rank(S,B),unrank(B,S1).
S = S1, S1 = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),
B = (x> (x> (x> ((x> (((x> (x>x))>x)>

(x>x)))> (x> (((x>x)>x)> (x>x))))))) .

7. Playing with the playground
The following quote from Donald Knuth, in answering a question
of Frank Ruskey about the short term economics behind research
(http://www.informit.com/articles/article.aspx?p=2213858)
and prominently displayed at Mayer Goldberg’s home page at

http://www.little-lisper.org/website/, summarizes our
motivation behind building this declarative playground:

Everybody seems to understand that astronomers do astron-
omy because astronomy is interesting. Why don’t they un-
derstand that I do computer science because computer sci-
ence is interesting?

This being said, we will sketch here a few use cases, some of
possible practical significance.

7.1 Self-typed terms
As X-combinator trees and their types share the same representa-
tion, it makes sense to generate and count terms that are equal to
their types. The predicate genSelfTypedT generates such “self-
typed” terms.

genSelfTypedT(L,T):-genTree(L,T),xtype(T,T).

EXAMPLE 22. Self-typed X-combinator trees of size 6.

?- genSelfTypedT(6,T).
T = (x> ((x>x)> ((x>x)> (x>x)))) ;
T = (x> (((x> (x>x))> (x>x))>x)) ;
T = ((x>x)> ((x> (x>x))> (x>x))) ;
T = ((x>x)> (((x>x)>x)> (x>x))).

The sequence [0, 0, 0, 1, 2, 4, 14, 34, 101, 315, 1017, 3325, 11042]
counts the number of self-typed terms by increasing sizes, up to
size 13.

7.2 Two size-inflating injective functions from terms to terms
By composing transformations of X-combinator trees to their
equivalent lambda expressions two interesting (but injective only)
mappings can be defined from X-combinator trees to a subset of
them (t2t) and from lambda terms to a subset of them (b2b).

b2b --> rank,t2b.
t2t --> t2b,rank.

EXAMPLE 23. The injective mappings t2t and b2b can be used
to generate significantly larger X-combinator trees and lambda
expressions.

?- between(0,3,N),t(N,T),t2t(T,NewT),tsize(T,S1),
tsize(NewT,S2),write(S1<S2),write(’ ’),fail;nl.

0<27 1<57 2<86 2<86

?- skkB(B),bsize(B,S1),b2b(B,BB),bsize(BB,S2),
write(S1<S2),nl,fail.

12<374

It is interesting at this point to see what happens to our building
block – the X-combinator – when going through some of these
transformations.

EXAMPLE 24. Transformations of the X-combinator via b2b,
evalB, btype and n.

?- xB(X),b2b(X,XX),evalB(XX,R),btype(R,T),n(T,N).
X = l(a(a(a(...(l(v(1))))),
XX = a(l(a(a(a....l(l(v(1))))))))),
R = l(l(l(l(a(a(a(v(3), v(2)), v(0)), a(v(1), v(0))))))),
T = ((x> (x> (x>x)))> (x> ((x>x)> (x>x)))) .
N = 576

While b2b significantly inflates the de Bruijn term corresponding
to the X-combinator, normalization reduces it to a small, well-
typed term. This suggests the use of our shared representation
for experiments with dynamic systems or genetic programming
where applications of arithmetic, type inference and normalization
operations are likely to create interesting trajectories of evolution.

252

7.3 Evolution of a multi-operation dynamic system
Normalization, as the lambda calculus is is Turing-complete, is sub-
ject to non-termination. However, simply-typed terms are strongly
normalizing so it makes sense to play with combinations of arith-
metic operations, type inference operations and normalization in-
volving X-term combinator trees as well as their lambda term
equivalents.

For instance, the predicate evalOrNextB ensures that evalua-
tion only proceeds on lambda terms for which we are sure it ter-
minates with a new term and applies the successor predicate “s”
otherwise, borrowed via the rank and unrank operations.

evalOrNextB(B,EvB):-btype(B,_),evalB(B,EvB),EvB\==B,!.
evalOrNextB(B,NextB):-

rank(B,T),
s(T,NextT),
unrank(NextT,NextB).

We can observe the orbits of these dynamic systems [15] starting
from a given lambda term in de Bruijn notation, for a given number
of steps with the predicate playWithB.

playWithB(Term,Steps,Orbit):-
playWithB(Term,Steps,Orbit,[]).

playWithB(Term,Steps,[NewTerm|Ts1],Ts2):-Steps>0,!,
Steps1 is Steps-1,
evalOrNextB(Term,NewTerm),
playWithB(NewTerm,Steps1,Ts1,Ts2).

playWithB(Term,_,[Term|Ts],Ts).

Note that ranking these terms to usual bitstring-represented integers
would be intractable given their super-exponential growth with
depth. On the other hand, all the underlying operations are linear
time with ranking and unranking to natural numbers represented
as binary trees. These terms are rather large, but by computing the
sizes of the terms one can have a good guess on their evolution.

Figure 3 illustrates the evolution of this dynamic system starting
from the X-combinator’s lambda equivalent by plotting the tree
sizes of the terms in its orbit. The plot indicates that it is very likely
that a repetitive pattern has developed.

Figure 3. Term sizes in the orbit starting from the X-combinator

Figure 4 illustrates the evolution of this dynamic system starting
from the term ω = SII(SII) by plotting the tree sizes of the terms
in its orbit. The plot indicates that it is very unlikely that a repetitive
pattern will develop.

Besides theoretical curiosity, one might use such operations for
implementing genetic programming algorithms.

7.4 Memory savings through shared representations
Given that the ranking and unranking operations work in time
proportional to the size of our lambda terms, we will explore
some of the memory management consequences of a shareable

Figure 4. Term sizes in the orbit starting from the term ω

representation of combinators, simple types, natural numbers and
lambda expressions.

We will look first at a well-known isomorphism that brings us a
significantly more compact memory representation.

7.4.1 A succinct representation of binary trees
Binary trees are in a well-known bijection with the language of of
balanced parentheses, both being a member of the Catalan fam-
ily of combinatorial objects [23]. The reversible predicate t2p/2
transforms between binary trees and lists of balanced parentheses.

t2p(T,Ps):-t2p(T,0,1,Ps,[]).

t2p(X,L,R) --> [L],t2ps(X,L,R).

t2ps(x,_,R) --> [R].
t2ps((X>Xs),L,R) --> t2p(X,L,R),t2ps(Xs,L,R).

EXAMPLE 25. The work of the reversible predicate t2p/2.

?- skkT(X),t2p(X,Ps),t2p(NewX,Ps).
X = NewX, NewX = (((x> (x>x))> ((x>x)>x))> ((x>x)>x)),
Ps = [0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,1].

?- kB(B),rank(B,T),t2p(T,Ps).
B = l(l(v(1))),
T = (x> (x> ((x>x)>x))),
Ps = [0,0,1,0,1,0,0,1,1,1] .

Seen as a bitstring, the mapping to a list of balanced parentheses is
a succinct representation for our binary trees, if one wants to trade
time complexity for space complexity. It is also a self-delimiting
prefix-free representation, uniquely decodable when read from left
to right. As one might notice, it is actually is a bifix code, i.e., it is
also prefix-free when read from right to left.

7.4.2 A practical shared memory representation
In a practical implementation, given the high frequency of small
objects of any of our kinds – numbers, lambda expressions, types
and combinators, one might consider a hybrid representation where
small trees are represented within a machine word as balanced 0,1-
parentheses sequences and larger ones as cons-cells. 2-bit-tagged
pointers could be used to disambiguate interpretation as numbers,
combinators types or lambda expressions but their targets could
be shared if structurally identical. Besides sharing static data or
code objects, a shared representation is likely to also facilitate
memory management by recycling fragments of computations like
β-reductions or arithmetic operations.

Graph-based representation of lambda terms has been used as
early as [18] to avoid redundant evaluation of redexes. In a similar
way, one could fold our tree-based representations into DAGs,
providing uniform savings for combinators, types and tree-based
natural numbers.

253

8. Related work
The classic reference for lambda calculus is [1]. Various instances
of typed lambda calculi are overviewed in [2]. One-point combi-
nator bases, together with a derivation of the X-combinator are de-
scribed in [7]. In [9] the existence of a countable number of 1-point
bases is proven. While esoteric programming languages exist based
on similar 1-point bases [24], we have not seen any such develop-
ment centered around Rosser’s X-combinator, or type inference and
normalization algorithms designed specifically for it, as described
in this paper.

Originally introduced in [6], the de Bruijn notation makes terms
equivalent up to α-conversion and facilitates their normalization
[14]. Their use in this paper is motivated by their comparative sim-
plicity rather than by efficiency considerations, for which several
abstract machines, used in the implementation of functional lan-
guages, have been designed [20].

Combinatorics of lambda terms, including enumeration, ran-
dom generation and asymptotic behavior has seen an increased in-
terest recently (see for instance [4, 5, 10, 11]), partly motivated
by applications to software testing, given the widespread use of
lambda terms as an intermediate language in compilers for func-
tional languages and proof assistants. In [19], types are used to
generate random terms for software testing. The same naturally
goal-oriented effect is obtained in the generator/type inferrer for
de Bruijn terms in subsection 3.6, by taking advantage simply of
Prolog’s ability to backtrack over possible terms while filtering
against unification with a specific pattern. In fact one can see the
the “query-by-type” algorithm in subsection 3.6 as similar in pur-
pose, via the Curry-Howard correspondence, to algorithms for find-
ing inhabitants of intuitionistic propositional tautologies like [3].

Of particular interest are the results of [10] where recurrence re-
lations and asymptotic behavior are studied for several families of
lambda terms. Empirical evaluation of the density of closed simply-
typed general lambda terms described in [10] indicates extreme
sparsity for large sizes. However, the problem of their exact asymp-
totic behavior is still open. This has motivated our interest in the
empirical evaluation of the density of simply-typed X-combinator
trees, where we observed significantly higher initial densities and
where there’s a chance that the also open problem of their asymp-
totic behavior might be easier to tackle.

Ranking and unranking algorithms for several classes of lambda
terms are also described in [10],together with a type inference algo-
rithm for de Bruijn terms. Ranking and unranking of lambda terms
can be seen as a building block for bijective serialization of practi-
cal data types [33] as well as for Gödel numbering schemes [12] of
theoretical relevance. In fact, ranking functions for sequences can
be traced back to Gödel numberings [8] associated to formulas.

Injective Gödel numbering schemes for lambda terms in de
Bruijn notation have been described in the context of binary lambda
calculus [32] and as a mechanism to encode datatypes in [17, 33].
Both these use prefix-free codes, ensuring unique decoding. A
bijective Gödel numbering scheme is associated to the esoteric
programming language Jot [24], where every bitstring is considered
a valid executable expression. This is similar to ours in the sense
that every binary tree representing an X-combinator expression
is executable. However, the use of a binary tree based model of
Peano’s axioms, playing the role of the set of natural numbers, and
the corresponding ranking and unranking algorithms as described
in this paper are novel.

The binary-tree based numbering system defined here is isomor-
phic to the ones in [27, 29], where a similar treatment of arithmetic
operations is specialized to the language of balanced parentheses
and multiway trees. In fact, such an encoding can be used as a
prefix-free succinct representation for our binary trees, if one wants
to trade space complexity for time complexity. Any enumeration of

combinatorial objects (e.g., [16, 23]) can be seen as providing unary
Peano arithmetic operations implicitly. By contrast, the tree-based
arithmetic operations used in this paper have efficiency comparable
to the usual binary numbers, as shown in [26]. Note also that while
[27, 29] focus exclusively on arithmetic operations with members
of the Catalan family of combinatorial objects, of which our binary
trees are an instance, their use in this paper, as a target for rank-
ing/unranking of lambda expressions, relies exclusively on the suc-
cessor and predecessor operations, adapted here to work on binary
trees.

Univalent foundations of type theory [31] have recently em-
phasized isomorphism paths between objects as a means to unify
equality and equivalence between heterogenous data types sharing
essential properties and behaviors under transformations. While in-
formal, our executable equivalences between combinators, lambda
terms, types and numbers might be useful as practical illustrations
of these concepts.

Some of the algorithms used in the paper, like type inference
and normalization of combinators and lambda terms, are common
knowledge [1, 14, 21], although we are not aware, for instance,
of Prolog implementations of type inference working directly on
de Bruijn terms or X-combinator trees. In [30] a type inference
algorithm for standard terms using Prolog’s logic variables is given.
To make the paper self-contained, we have closely followed the
normalization algorithm of [30] using a de Bruijn representation
of lambda terms. We refer to [30] for a compressed de Bruijn
representation and several Prolog algorithms that complement our
playground with generators for closed, linear, linear affine, binary
lambda terms as well as lambda terms of bounded binary height.

9. Conclusion and future work
By sharing the representation of the Turing-complete language
of X-combinator expressions, natural numbers, lambda terms and
their types, interesting synergies become available.

While the main focus of the paper is the creation of a logic
programming based declarative playground for experiments with
various classes of lambda terms, under the assumption of a shared
representation, the paper introduces several new concepts among
which we mention:

• X-combinator trees playing the role of both natural numbers
and types in subsections 2.1, 3.2 and 5.1

• a bijection between natural numbers and binary trees (predi-
cates t/2 and n/2 in subsection 5.1) that is works consistently
with their isomorphic arithmetic operations

• a concept of “iterated types” in subsection 3.9
• two size-inflating injective functions from terms to terms in

subsection 7.2
• a multi-operation dynamic system combining normalization

and arithmetic operations in subsection 7.3

The paper also describes algorithms that, at our best knowledge,
are novel, at least in terms of their logic programming implemen-
tation:

• direct type inference for X-combinator trees in subsection 3.3
• integrated generation and type inference algorithm for closed

simply-typed de Bruijn terms in subsection 3.5
• successor and predecessor and arithmetic operations on binary

trees in subsection 5.2
• ranking and unranking de Bruijn terms to/from binary-tree rep-

resented natural numbers in subsection 6.1

254

Future work is planned along the following lines. Enumeration
or random generation of binary trees can be extended to general
lambda expressions and various data types expressed in terms of
them. Functional languages like Scheme and Lisp, based on cons
operations might be able to improve memory footprint of sym-
bolic and numerical data through shared representations of arith-
metic operations and list or tree data structures. Small steps in
the normalization of combinator expressions or lambda trees can
be mapped to possibly interesting number sequences. Open prob-
lems related to the asymptotic density of typable combinators and
lambda terms might benefit from empirical estimates computable
within our framework for very large terms.

In combination with unification with occurs-check, the back-
tracking mechanism in logic-based languages like Prolog auto-
mates combinatorial generation, by contrast to the need to write
wrapper code in a functional or procedural language. We hope that
the techniques described in this paper, taking advantage of this
unique combination of strengths, recommend logic programming
as a convenient meta-language for the manipulation of various fam-
ilies of lambda terms and the study of their combinatorial and com-
putational properties.

Acknowledgement
We thank the anonymous reviewers of PPDP’15 for their construc-
tive criticism and valuable suggestions that have helped improving
the paper. This research has been supported by NSF grant 1423324.

References
[1] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics,

volume 103. North Holland, revised edition, 1984.
[2] H. P. Barendregt. Lambda calculi with types. In Handbook of Logic

in Computer Science, volume 2. Oxford University Press, 1991.
[3] C.-B. Ben-Yelles. Type assignment in the lambda-calculus: Syntax

and semantics. PhD thesis, University College of Swansea, 1979.
[4] O. Bodini, D. Gardy, and B. Gittenberger. Lambda-terms of bounded

unary height. In ANALCO, pages 23–32. SIAM, 2011.
[5] R. David, C. Raffalli, G. Theyssier, K. Grygiel, J. Kozik, and

M. Zaionc. Some properties of random lambda terms. Logical Meth-
ods in Computer Science, 9(1), 2009.

[6] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser Theorem. Indagationes Mathematicae, 34:381–392,
1972.

[7] J. Fokker. The systematic construction of a one-combinator basis for
lambda-terms. Formal Aspects of Computing, 4:776–780, 1992.

[8] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme I. Monatshefte für Mathematik und
Physik, 38:173–198, 1931.

[9] M. Goldberg. A construction of one-point bases in extended lambda
calculi. Inf. Process. Lett., 89(6):281–286, 2004.

[10] K. Grygiel and P. Lescanne. Counting and generating lambda terms.
J. Funct. Program., 23(5):594–628, 2013.

[11] K. Grygiel, P. M. Idziak, and M. Zaionc. How big is BCI fragment of
BCK logic. J. Log. Comput., 23(3):673–691, 2013.

[12] J. Hartmanis and T. P. Baker. On Simple Goedel Numberings and
Translations. In J. Loeckx, editor, ICALP, volume 14 of Lecture
Notes in Computer Science, pages 301–316, Berlin Heidelberg, 1974.
Springer. ISBN 3-540-06841-4.

[13] J. R. Hindley and J. P. Seldin. Lambda-calculus and combinators:
an introduction, volume 13. Cambridge University Press Cambridge,
2008.

[14] F. Kamareddine. Reviewing the Classical and the de Bruijn Notation
for calculus and Pure Type Systems. Journal of Logic and Computa-
tion, 11(3):363–394, 2001.

[15] A. Katok and B. Hasselblatt. Introduction to the modern theory
of dynamical systems, volume 54 of Ency. of Math. and its App.
Cambridge Univ. Press, 1995.

[16] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle
4: Generating All Trees–History of Combinatorial Generation (Art of
Computer Programming). Addison-Wesley Professional, 2006. ISBN
0321335708.

[17] N. Kobayashi, K. Matsuda, and A. Shinohara. Functional Programs
as Compressed Data. ACM SIGPLAN 2012 Workshop on Partial
Evaluation and Program Manipulation, January 2012. ACM Press.

[18] J. Lamping. An Algorithm for Optimal Lambda Calculus Reduction.
In Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, San Francisco, California,
USA, January 1990, pages 16–30, 1990.

[19] M. H. Palka, K. Claessen, A. Russo, and J. Hughes. Testing an op-
timising compiler by generating random lambda terms. In Proceed-
ings of the 6th International Workshop on Automation of Software Test,
AST’11, pages 91–97, New York, NY, USA, 2011. ACM.

[20] S. L. Peyton Jones. The Implementation of Functional Programming
Languages (Prentice-Hall International Series in Computer Science).
Prentice-Hall, Inc., NJ, USA, 1987.

[21] P. Sestoft. Demonstrating lambda calculus reduction. In T. A. Mo-
gensen, D. A. Schmidt, and I. H. Sudborough, editors, The Essence of
Computation, pages 420–435. Springer-Verlag New York, Inc., New
York, NY, USA, 2002.

[22] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
2014. Published electronically at https://oeis.org/.

[23] R. P. Stanley. Enumerative Combinatorics. Wadsworth Publ. Co.,
Belmont, CA, USA, 1986. ISBN 0-534-06546-5.

[24] M. Stay. Very simple chaitin machines for concrete AIT. CoRR, ab-
s/cs/0508056, 2005. URL http://arxiv.org/abs/cs/0508056.

[25] P. Tarau. Compact Serialization of Prolog Terms (with Catalan Skele-
tons, Cantor Tupling and Gödel Numberings) . Theory and Practice
of Logic Programming, 13(4-5):847–861, 2013.

[26] P. Tarau. A Generic Numbering System based on Catalan Families of
Combinatorial Objects. CoRR, abs/1406.1796, 2014.

[27] P. Tarau. Computing with Catalan Families. In A.-H. Dediu,
C. Martin-Vide, J.-L. Sierra, and B. Truthe, editors, Proceedings of
Language and Automata Theory and Applications, 8th International
Conference, LATA 2014, pages 564–576, Madrid, Spain,, Mar. 2014.
Springer, LNCS.

[28] P. Tarau. Bijective Collection Encodings and Boolean Operations with
Hereditarily Binary Natural Numbers. In PPDP ’14: Proceedings of
the 16th international ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, New York, NY, USA, 2014.
ACM.

[29] P. Tarau. Arithmetic and boolean operations on recursively run-length
compressed natural numbers. Scientific Annals of Computer Science,
24(2):287–323, 2014. .

[30] P. Tarau. On Logic Programming Representations of Lambda Terms:
de Bruijn Indices, Compression, Type Inference, Combinatorial Gen-
eration, Normalization. In E. Pontelli and T. C. Son, editors, Proceed-
ings of the Seventeenth International Symposium on Practical Aspects
of Declarative Languages PADL’15, pages 115–131, Portland, Ore-
gon, USA, June 2015. Springer, LNCS 8131.

[31] The Univalent Foundations Program. Homotopy Type The-
ory. Institute of Advanced Studies, Princeton, 2013. http://
homotopytypetheory.org/2013/06/20/the-hott-book/.

[32] J. Tromp. Binary lambda calculus and combinatory logic, 2014. URL
https://tromp.github.io/cl/LC.pdf.

[33] D. Vytiniotis and A. Kennedy. Functional Pearl: Every Bit Counts.
ICFP 2010 : The 15th ACM SIGPLAN International Conference on
Functional Programming, September 2010. ACM Press.

255

