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ABSTRACT
The Discrete Event System Specification (DEVS) framework
provides a formal approach for defining a conceptual model
that represents a source system. To use the model in analyz-
ing that system, it must be validated. Generally DEVS mod-
els are validated in terms of behavior and structure, utilizing
the experimental frame. Although there has been discussion
on approaches to build valid DEVS models, and techniques
for validating the model, we currently cannot quantify our
confidence in the model’s validity. We propose a technique
to quantify our confidence in the validity of DEVS models.
This metric can be utilized to discuss the level of validity of
a model and compare competing models. Our metric con-
tinues the DEVS trend of making modeling and simulation
more formal, and increasing standardization of the modeling
and simulation process.
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INTRODUCTION
The field of Modeling and Simulation (M&S) is growing
rapidly in usage and influence. Computational simulations
are created to study many fields by computer scientists, engi-
neers, and experts in the studied domain such as cancer biol-
ogy, ecology, or psychology. Regardless of the process that is
followed and the tools that are used to develop these models
and simulations, the models and simulations must be properly
verified and validated before their results can be trusted. Val-
idation in particular is a crucially important part of building
confidence in the results derived from a simulation model.

Verification and validation (V&V) are defined in a number
of ways in both the software engineering and modeling and
simulation communities. The definition we find to be most
accurate and most widely referenced is that verification de-
termines whether the model solves the problem correctly,
whereas validation determines whether the model solves the
correct problem. In essence, verification is testing how the
model was built, and validation is assessing what has been
modeled and whether the model can sufficiently reproduce
the behavior of the real system for its simulation purpose.
There are many steps within the modeling and simulation pro-
cess where each must be applied to achieve high confidence
in the model and simulation [1].
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This definition of V&V has also been commonly accepted
and applied to the special subclass of simulations defined us-
ing a formalism in the field known as DEVS (Discrete Event
System Specification) [28]. DEVS provides a mechanism by
which a model is explicitly defined separately from a simula-
tion, which is often lacking in simulation practice. As Tolk
recently showed, one of the issues plaguing the field of Mod-
eling and Simulation is a lack of explicit terminology, includ-
ing a definition of a conceptual model [20]. We argue that
the DEVS model is in essence the conceptual model of the
simulation, and should be treated as such for V&V.

Formalisms such as DEVS have increased the rigor in the
field and addressed issues with explicit model definitions.
However, DEVS has not been fully extended to incorpo-
rate verification and validation. In general, validation is per-
formed to increase one’s confidence in the model. In DEVS
as with other M&S approaches, there is no mechanism to
quantify confidence in the validity of a simulation model
based on the performed validation. Thus the users of the sim-
ulation model, who may not be the ones who developed it,
may find it difficult to decide which available model is the
best to use for their specific purpose. The DEVS commu-
nity has increased emphasis on standardization [25], and we
propose that standardization should extend to include a pro-
cess to quantify confidence in simulation models built using
the DEVS formalism. We argue that following such a stan-
dard process will clarify the level of validation performed and
corresponding confidence in the model for both the model’s
creator and any other party considering the model, which in
turn will help increase the reuse of models.

In this paper we present an approach to calculate an explicit
confidence level for a DEVS simulation model, based on val-
idation performed on that model. We focus on behavioral,
structural, and data validation of the simulation model. In
the next section we discuss related work in validation within
and outside of DEVS, then provide an overview of V&V in
DEVS, followed by a description of computing behavioral
confidence level, structural confidence level, and confidence
on the model data. We show how our proposed framework
combines these three confidence levels to produce an overall
quantified level of confidence of the whole model. We end
with an example of applying our approach on a simple DEVS
model and conclude with a discussion on the potential impact
and future direction of this research.

RELATED WORK
For DEVS models, it can be difficult to make a careful dis-
tinction between whether the DEVS model is coded cor-
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rectly (verification) and whether it represents the source sys-
tem closely enough for its purpose (validation). DEVS dis-
cusses validation through the use of an experimental frame,
which defines the purpose, behaviors, structure, and data of
the model [28]. Structural validation focuses on the static
parts of the model and ensures, through the application of
specific validation techniques, the structural consistency and
integrity. Behavioral validation focuses on the dynamic part
of a DEVS model. Both structural and behavioral validation
are focused around the model’s purpose.

The M&S community in general considers the validation pro-
cess to include a) conceptual model validation, b) operational
validation of the simulation model, and c) data validation.
They primarily focus on operational validation, as the con-
ceptual model is not generally as well defined. They identify
validation techniques that can be applied to increase one’s
confidence in a model, such as extreme condition tests, re-
sults validation, and face validation [19, 8]. It is well accepted
that these techniques should be applied throughout the mod-
eling process, in addition to performing verification checks
[2]. However, less focus has been placed on quantifying the
validation effort on simulation models.

Labiche investigates the application of software engineering
testing techniques for performing V&V on DEVS models
[12]. The paper discusses selecting test cases based on some
criterion, but does not specify any mechanism for quantifying
the coverage achieved through that selection. Zengin exam-
ines the question of how much validation is enough by per-
forming a case study on a DEVS-Suite model by examining
available validation techniques and discussing the difficulties
of validating simulation models [29]. They find DEVS-Suite
to be a useful tool for validation, and suggest that a tool is
needed to aid in successful validation approaches.

Wang proposes a method of assessing V&V activities based
on detection, classification, and documentation of model de-
fects during the simulation model construction period [26].
The focus of Wang’s work is properly classifying the defects,
akin to IBM’s orthogonal defect classification (ODC) [4].
Wang also proposes a framework for cataloging V&V tech-
niques and selecting specific V&V techniques for an M&S
project based on applicability [27], which can be used in tan-
dem with the work described in this paper.

Hollmann attempts to formalize the verification and valida-
tion process of DEVS modeling [10]. They propose a method
to choose the most significant set of configurations for valida-
tion of a DEVS model to increase confidence in the model’s
results. This paper builds on Hollmann’s work as we focus
not on choosing parameters for running the simulation, but
instead on criteria for measuring confidence in the model af-
terward.

We note that DEVS is not the only formalism used for M&S.
SysML extends UML for systems engineering and is used
successfully in modeling and analyzing processes involving
software and other resources [11]. SDL is primarily used for
modeling communication networks and protocols [7]. Petri
nets and colored Petri nets (CPN) are often used to model dis-

tributed and parallel systems [9]. All of these modeling mech-
anisms are grounded in formal specification, have tool sup-
port to develop simulation models, and generally lend them-
selves well for verification. The DEVS formalism is the most
widely used formalism for developing discrete event simula-
tions due to its specific focus, flexibility, and composability
[30]. We therefore focus on the DEVS formalism for this
work.

Although validation is performed on most models, it is not
generally discussed sufficiently [6, 17]. There is an immi-
nent need to improve the documentation of validation activi-
ties performed on simulation models, which could be accom-
plished by standardizing and quantifying validation. Within
DEVS there have been numerous steps to standardize, such as
standardizing the simulation of DEVS models in tools [13],
or formalizing models and their context through experimental
frames to improve validation [21].

In our earlier work we developed approaches to quantify val-
idation coverage in agent-based models [14] and in discrete
event models [16]. In this paper we build on our earlier work
by overhauling the approach to focus on calculating a level of
confidence in the model through the validation of behavior,
structure, and data for DEVS, leading to an overall quanti-
fied level of confidence in the entire model. We propose that
in future work the validation confidence level derived from
DEVS could be extended for other modeling approaches and
languages (e.g.SysML, CPN) as well.

VALIDATION PROCESS
A formalism can improve the process of modeling and simu-
lation by making certain steps and processes more concrete.
DEVS was shown to provide a more suitable process for some
analyses than other modeling approaches (Figure 1) [15]. The
DEVS formalism provides a concrete conceptual model, and
thus conceptual model validation can be more rigorously per-
formed. The formalism is ideally built using data about the
real system that is being studied, known as the source sys-
tem or System Under Study. Generally an executable simula-
tion model is built to experiment with the conceptual model,
using one of the many frameworks available, such as CD++
[22], DEVS-C++ [5], or PowerDEVS [3]. These experiments
are run using an experimental frame, which is essentially a
mechanism for clarifying the data, parameters, and structure
of the simulation model. The experimental frame performs
two roles: providing data for the creation of the model, and
including all data and parameters necessary for running the
simulation. For the results of the simulation model to be
trusted, it must be verified against the conceptual model, as
well as operationally validated using the experimental frame.

We define the experimental frame as in [28], that it can be
utilized toward two related goals: defining the types of data
to be used, and interacting with the model to either measure
or observe results. We use the experimental frame for both
purposes, to define our data and as an oracle when an oracle
is possible.
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Figure 1. Overview of the DEVS modeling process, with a focus on veri-

fication and validation.

Although DEVS provides a useful formalism for defining a
conceptual model, it does not necessarily aid in operational
validation (how well does the model mimic the source sys-
tem’s behavior). To determine the extent of validation, and
to properly validate a simulation model, we must be able to
determine the aspects of the real-world system that are vali-
datable within the simulation model. The fact that DEVS is
the underlying modeling approach is irrelevant at this stage;
validation does not care about how the simulation model is
created, only what is being modeled and how it is being as-
sessed for operational accuracy. For a single DEVS model,
whether atomic or coupled, any aspect specific to the formal-
ism (input/output of an atomic model, links between coupled
models, etc) is a part of the simulation that needs to be ver-
ified for transformational accuracy between the conceptual
model and the simulation model. In the case of verification,
quantifying the success is similar to any software system; we
could use a coverage metric that counts whether each of the
formalism’s statements works as planned, for instance. How-
ever, that metric does not help us compare the simulation to
the broader real-world picture of the system being modeled.

We consider DEVS validation to encompass the experimental
frame’s three main properties: purpose, behavior, and struc-
ture [28]. The purpose guides us, defining why the model was
built and what type of questions may be asked of it. The be-
havior and structure of the model are based on that purpose.
Behaviors are essentially pairs of input and output; given a
certain state/input of the model, how should it act? When
validating behavior we are validating structure indirectly, but
to have full confidence in a model we also need to perform
explicit structural validation. To calculate the level of con-
fidence in the model, we must track the validation of both
behaviors and structure with regard to purpose, and validate
the data used in simulation model execution.

OVERVIEW OF CALCULATING MODEL CONFIDENCE
We have argued that to measure the confidence level on a
DEVS simulation model completely, the behavior, structure,
and data of the model need to be validated and the level of that
validation needs to be assessed. In this section, we provide a
high-level description of the proposed process, and in the fol-
lowing sections present techniques for calculating confidence
in the model’s validity.

The first step in behavioral validation is to identify all behav-
iors captured by the model that require validation. The second
step involves determining what validation techniques are ap-
plicable to each of the identified validatable behaviors. The
next step is to perform validation on the simulation model by
applying those validation techniques. When a particular vali-
dation technique is applied on a simulation model it may vali-
date more than one behavior, as many behaviors may be inter-
connected in such a way that they may not be validated sep-
arately. As validation is performed, the validation techniques
applied and their level of success needs to be recorded. The
final step is to calculate confidence in the model. This con-
fidence level quantifies the amount of validation performed
successfully versus the amount that could be performed on
the model behaviors.

From the perspective of the experimental frame, the struc-
tural aspect of a DEVS model incorporates elements of both
the conceptual model and the simulation model. Quantifying
structural validity requires fewer steps, however. There is a
set of techniques already identified to be applicable for per-
forming structural validation [8]. We propose applying these
techniques and using the percentage of these techniques that
have been successfully applied to determine our level of con-
fidence in the structural validity of the model. Similarly, we
propose calculating data validation based on the successful
application of a set of validation techniques on each set of in-
put data to ensure it properly matches the source system and
is free of outliers and other errors.

We present a mechanism for combining all three quantified
aspects into an overall confidence level for the validity of the
model. All levels of confidence are in the range of 0 to 100,
with 100 representing the maximum possible confidence in
the model but not that the simulation is 100% correct. How-
ever, it is often impossible to fully validate a simulation model
due to constraints such as budget, time, and the absence of
required data. A desired level of confidence should therefore
be determined at the requirements stage, to guide later valida-
tion efforts. Additionally, the confidence calculation can also
guide the choice of validation techniques to apply as the goal
should be to perform the validation that will increase model
confidence most efficiently.

BEHAVIORAL VALIDATION
To calculate our confidence in the validity of a model, we
first determine the behaviors of the model that need to be val-
idated. We consider behaviors to encompass a single high-
level input/output pair in the DEVS model, related to a de-
finable expectation in the source system. Multiple behaviors
will generally be necessary to define a specific module. For
instance, in a hospital emergency department (ED) simula-
tion, a behavior could be the process by which a patient is
placed inside the ED upon arrival in a simple case, or a sub-
process of that process flow (e.g., registration) in a more com-
plex model. Similarly, while simulating the operations of an
ATM machine, a behavior could be the process of withdraw-
ing money or a sub-process such as checking whether the en-
tered PIN is correct.
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Maximum
Technique Confidence
Animation 3

Degenerate Tests 4
Internal Validity 5

Comparison to other model 6
Turing Tests 7

Face validation (expert) 8
Results validation (historic data) 10

Trace data 10
Table 1. Ranking of the most common validation techniques with the

maximum level of confidence they can provide for a given behavior.

To aid in determining the behaviors of the model, we sug-
gest utilizing the previously published categories presented
as aspects and oeis (observable emerging information) of a
discrete event simulation [16]. Although the coverage metric
proposed in that work is different from our confidence level in
this paper, the simulation behaviors discussed here are iden-
tical to that concept of oeis.

Once we have identified all behaviors that must be validated,
we must determine the applicable validation techniques for
each of them. A single technique may apply to many differ-
ent behaviors, and each behavior will often be validated with
more than one applicable technique.

In our proposed framework we take into account that not all
validation techniques will contribute equally toward building
confidence in the simulation model. By applying any vali-
dation technique successfully, we increase our confidence in
the validity of the model. However, which validation tech-
nique(s) should be applied for each behavior? We propose
utilizing rankings such as those in Table 1. Each commonly
accepted technique is listed with a suggested relative level of
possible confidence increase.

The proposed ranking is based on a survey of the most com-
monly used validation techniques [17], a discussion of their
uses [19], and the authors’ experience. We rate animation the
lowest as it can be misleading and hide underlying issues, but
rank results validation and trace data the highest as they can
be powerful techniques when the required data exists. We rate
expert validation slightly below the validation involving data
due to the potential for human error, and model comparison
slightly less due to difficulty in knowing the validity of the
other model without a standard confidence calculation. We
rank Turing tests between these two as they are rarely dis-
cussed in published papers, and are a subset of face valida-
tion. Additional techniques exist and can be ranked as neces-
sary given the purpose of the model, as well as to encompass
additions to DEVS such as Cell-DEVS [23]. This ranking is
subjective and used only for the purpose of illustration. More
research and case studies from the community will be needed
to establish a more generally accepted ranking of validation
techniques.

Given a simulation model to validate, techniques are chosen
based on their usefulness in creating the highest possible con-
fidence in the model. There may be more validation tech-

b0 b1

b2

b3

b4

t0

t1
t3

t4

v0

v1 v2

v3

v4

t2b5

Figure 2. A visualization of each element of a vi. Each ti is a validation

technique, each bj is a behavior, each dotted circle around a set of bj is

a di, and each full shape is a vi. Note that each bj can be in multiple vi.
The size of the shape represents ci.

niques that are applicable than are necessary to achieve a rea-
sonable level of high confidence in the model. For the highest
model confidence, however, we must apply every applicable
validation technique successfully. If it is not possible to ap-
ply all applicable techniques for any reason, we can determine
our level of confidence as described in the next section.

Confidence Calculation
Given a simulation model’s list of behaviors, the list of appli-
cable validation techniques by behavior, and the list of suc-
cessfully applied validation techniques, we can quantify our
confidence in the model’s behaviors. For some DEVS sim-
ulation model M , let B = {b0, b1, . . . , bn} be the set of be-
haviors to be validated, and T = {t0, t1, . . . , tm} be the list
of available validation techniques for operational validation
such as those in Table 1. Each of these elements has an asso-
ciated confidence weighting w(ti), defined as in Table 1. For
bi, the weight w(bi) is determined based on the impact of this
behavior for model validation, and 0 < w(bi). For instance, a
behavior may have a very strong affect on overall validation,
or may be almost trivial. In the simplest case all behavior
weights are equal.

When performing validation it is possible that a single valida-
tion technique is applied successfully and validates multiple
behaviors simultaneously. Therefore, a validation technique
must be paired with some set D ⊆ P (B), where |D| ≥ 1
and P (B) denotes the power set of B. A validation tech-
nique ti may be used multiple times when validating a single
simulation, each time used to validate a different set of be-
haviors by focusing on a different aspect of the simulation
model and/or using different sets of available data or experts.
We must consider a single validation approach vi ∈ V as a
triplet vi =< ti, di, ci >, where ti ∈ T , di ∈ D is a set
of bjs, and ci is the confidence gain from applying ti to di.
There can only be one ti ∈ vi, as each validation technique is
considered independently, although it may validate more than
one bi with one application. Each bj and ti may be duplicated
as many times as necessary in V . Figure 2 demonstrates the
relationship between v, t, and b.

The ci ∈ vi represents the confidence gain from ti’s success-
ful application. It is based on the weight of each behavior
in di represented as w(bj), and the weight of the validation
technique w(ti) as seen in Equation 1. Therefore, higher im-
portance behaviors contribute more to our confidence in the
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system. Additionally, more powerful validation techniques
contribute more to our confidence than less powerful tech-
niques.

ci = w(ti) ∗
|di|∑
j=0

w(bj),where bj ∈ di (1)

Recall that confidence is based on what validation techniques
are applied successfully. Each validation technique success-
fully applied raises our confidence in the validity of the
model. To quantify this level we must define the highest
possible confidence. We base the maximum confidence on
the potential validation approaches P = {v0, v1, . . . , vp},
where P ⊆ V ; and which validation approaches succeeded,
A = {v0, v1, . . . , va}, where A ⊆ P . We assume that any
validation approach vi that succeeded, did so for all bj ∈ di.
Finally, we may calculate our confidence in the behaviors
across the entire simulation model bc as in Equation 2.

bc = 100 ∗
∑

ci|ci ∈ vi ∧ vi ∈ A∑
ci|ci ∈ vi ∧ vi ∈ P

(2)

Our level of confidence in the behavioral aspect of the simu-
lation model is therefore a real number, 0 ≤ bc ≤ 100, where
100 represents the highest possible confidence. Note that con-
fidence does not equal correctness, and this value does not im-
ply that the simulation model is 100% correct. A confidence
level of 100 implies that the simulation model has been vali-
dated to the fullest extent possible by currently known tech-
niques.

STRUCTURAL VALIDATION
The structure of a model is indirectly validated through be-
havioral validation, but for the highest possible confidence in
a model it should be directly validated as well. Forrester and
Senge [8] recommend the tests listed in Table 2 for validating
structure.

Each technique plays an important role in structural valida-
tion. Although many have the word “verification” in the
name, they are validation tests as they compare the model
to the real system. The structure verification test verifies that
any structure found in the model is also found in the source
system; it is the easiest test to pass. The parameter verifica-
tion test evaluates whether the parameters adequately match
the real system, which is only true if the correct structure un-
derlies the model. Extreme condition tests are necessary to
determine that the model will function in abnormal condi-
tions; if it does not, then more structure is needed, but if it
does then the correct structure was chosen. The boundary
adequacy test essentially determines if the correct level of ab-
straction has been chosen, which correlates to structure. The
dimensional consistency test can reveal incorrect structure as-
sumptions when run with the parameter verification test, and
is another simple way to increase model confidence.

To have full confidence in a simulation model, all structural
validation tests should be successfully administered. How-
ever, there may be constraints that prevent a test from being
applied. In that case, the confidence in the model is calculated
as discussed in the next section.

Potential
Technique (st) Confidence (c(st))

Structure verification test 10
Boundary adequacy test 15

Parameter verification test 20
Dimensional consistency test 20

Extreme condition test 35
Table 2. Ranking of the most common structure validation techniques

with their maximum possible level of confidence.

Confidence Calculation
As with behavioral validation, each structural validation tech-
nique may be applied at different levels of success. In this
case we propose that each structural validation technique sti
has the confidence level c(sti) attainable via successful ap-
plication, as shown in Table 2. This confidence level is based
on [8, 29].

Each structural validation test may validate a specific percent-
age of the model. For instance, our model may pass 90% of
the tested extreme conditions. We have thus gained confi-
dence in our model, but not full confidence as we are aware
of extreme condition test failures that must be fixed before
trusting the model’s results in all cases. We therefore propose
that overall confidence in the structure of the model may be
quantified as in Equation 3, where p(sti) is the level of suc-
cessful application of sti (0.9 for extreme condition testing in
our example).

sc =

∑
i c(sti) ∗ p(sti)∑

i c(sti)
(3)

If all tests are applied successfully we gain the highest possi-
ble confidence in the model’s structure (100%). If all are suc-
cessful except extreme condition tests had a 90% successful
rate, our confidence in the model’s structure is 94%. Recall
that this confidence value is in the correctness of the structure
matching the source system, not the percentage of the system
we know to be correct.

DATA VALIDATION
A primary aspect of validation is to ensure the validity of the
data used for model creation and model execution. Sargent
describes three necessary processes for data validity: “(1) col-
lecting and maintaining data, (2) testing the collected data us-
ing techniques such as internal consistency checks, and (3)
screening the data for outliers and determining if the outliers
are correct” [19].

We can also validate our input data specifically to ensure that
it is consistent with the source system. In DEVS, this input
data is part of the experimental frame, and used for running
behavioral validation. A key differentiation here is that there
are two types of data: the data used to build the model, and
the data used to run the model. Here data validity refers to
the validation of data used to run the model, as the data used
to build the model is validated through structural validity as
discussed in the prior section.
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We propose that Goodness of Fit and Face Validity are the
minimum validation techniques necessary for data validation
[18]. Either technique could be applied multiple times, as
for instance the goodness of fit test should be used to validate
each distribution within the model. Additional techniques can
also be added as appropriate.

Confidence Calculation
All applicable validation tests need to be run on all input data
to achieve maximum confidence that we are using the correct
data for our simulation. To calculate confidence in the data,
we need to enumerate the list of data I = {i0, i1, . . . , ir}.
This list is part of the model’s experimental frame, and we
assume that the modelers will collect it as part of their mod-
eling and validation work.

Let DP = {dp0, dp1, . . . , dpp} denote the set of applica-
ble data validation techniques. For each dataset ij we have
the set of successfully applied data validation techniques
ADPj ⊆ DP . If we assume that all data validation tech-
niques are equally important, then c(ij), the confidence in
each dataset ij , can be computed by Equation 4. By dataset
we refer to any set of data used to run or build the model, such
as a distribution or set of input/output pairs.

c(ij) = 100 ∗ |ADPj |
|DP | (4)

A simulation modeler may decide that some input data are
more important to validate than others. In that case, we pro-
pose incorporating the relative importance of the input data
by attaching weights to each ij denoted as w(ij). The overall
confidence in data validity is then defined as in Equation 5.

dc =

∑
c(ij) ∗ w(ij)∑

w(ij)
(5)

OVERALL CONFIDENCE
Once we have confidence in the behavior, structure, and in-
put data of the simulation model, we can define confidence in
the model as a whole. We propose that behavioral and struc-
tural validation are equally important. However, as behav-
ioral validation indirectly validates some aspects of structure,
their validation confidence levels should not equally influence
our overall confidence in the simulation model. Additionally,
data validation is crucial for correct behavioral validation, but
very hard to perform completely across all data for the sys-
tem. In reality, assumptions of data validity based on data
source and collection are more common. We therefore pro-
pose the following calculation for overall model confidence
mc:

mc = 0.5bc+ 0.3sc+ 0.2dc, (6)

where bc, sc, and dc are as defined previously. Thus, our
confidence in model validity is slightly more affected by be-
havioral validation than structural or data validation.

EXAMPLE
To demonstrate the confidence calculation we use a model
of an Automated Teller Machine (ATM) as an example, such
as the publicly available one in the CD++ Sample Models

[24]. Our only modification is to allow PIN and Amount to
be input instead of assumed rates. The purpose of this model
is to represent a cash machine.

Behavioral Validation
To validate the behaviors, we first determine what ATM be-
haviors should be validated to match the source system. Let’s
assume that the behaviors are as follows:

1. b0 =An incorrect PIN number causes card return and no
additional screen options, w(b0) = 3

2. b1 =Requested money is given if account has sufficient
fund, otherwise not, w(b1) = 4

3. b2 =The user interface question order follows the correct
workflow, w(b2) = 2

4. b3 =The card is always returned after completed use,
w(b3) = 2

Note that most behaviors do not have an obvious correlation
to a single atomic model within the DEVS conceptual model.
One confusion in this model is that many of the behaviors to
be validated are also aspects of the model that must be verified
as well. In a more complex model that would not be the case,
as behaviors would be further removed from the atomic and
coupled models. However, verification would involve looking
at finer-grained detail about individual aspects of the model
and how they work to accomplish the goals.

Next we must determine the sets of potential validation ap-
proaches, P ⊆ V . Let’s assume that the validation techniques
from Table 1 are the only available validation techniques, and
that they are applicable as follows:

• p0 = {Animation, {b0, b1, b2, b3}, 33}
• p1 = {Face Validation, {b0, b1, b2, b3}, 88}
• p2 = {Results validation, {b1, b2}, 60}
• p3 = {Results validation, {b0, b3}, 50}
The next step is to perform the validation. If all tests were
run successfully, then our set of applied validation techniques
would be A = P , and our confidence in the model’s behavior
would trivially be 100.

Alternatively, if we were unable to run a validation approach
or it fails, such as p0, we have A = {p1, p2, p3} and our
confidence in the model behavior becomes

bc = 100 ∗ 88 + 60 + 50

33 + 88 + 60 + 50
= 85.7%. (7)

Structural Validation
Let’s assume that of the five available structure tests, we were
able to successfully perform all but the structure verification
test, due to time and budget constraints. Our confidence in
the model structure is therefore

sc = 20 + 35 + 15 + 20 = 90%. (8)

Data Validation
The input data necessary for this model are PIN inputs, with-
drawal amounts, and corresponding account balances. The
data that needs to be validated relates to the rates at which
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PINs are correctly entered, and the rates at which accounts
may be overdrawn. Since the model and data are simple, we
can assume that all data were validated with all techniques,
giving us dc = 100%.

Overall Confidence
Our overall confidence in this simulation model assuming that
the behavioral validation is given by Equation 7 and the struc-
tural validation is given by Equation 8, is

mc = 0.5 ∗ 85.7 + 0.3 ∗ 90 + 0.2 ∗ 100 = 89.85. (9)

This confidence level should be interpreted as high confi-
dence in the model, although it also makes it clear that we
are not yet completely confident. For a simple model such as
the ATM, 100% confidence may reasonably be expected be-
fore the model’s use. However, most models are significantly
more complicated, and thus a confidence level less than 100%
will often be sufficient for judging the model as adequate.
This confidence calculation supports the primary goal of pro-
viding a quantified value for use in comparison and to enable
discussion about validation levels of simulation models.

CONCLUSIONS
In this paper we present an approach for computing confi-
dence in DEVS model validity. Prior to this paper, we are
unaware of any attempt to quantify the level of validation
in a DEVS simulation model. In our approach, confidence
in a model increases with each successful application of a
validation technique, and decreases with each unsuccessful
application or unused applicable technique. Although Balci
has previously argued that confidence need only be discussed
qualitatively, we propose that a quantified level of confidence
can both guide our choice in model and aid us in convincing
those who did not build the model of its accuracy. Addition-
ally, a quantified model confidence can increase the standard-
ization of validation, which will in turn increase the scientific
strength of the field.

This approach builds on our previously proposed metric of
validation coverage for agent-based and discrete-event simu-
lation models, sharing the idea of quantifying validation by
focusing on behaviors. In addition to behaviors, we now cal-
culate model confidence in terms of structure and data as well,
and utilize the experimental frame in DEVS. Behavior vali-
dation should be utilized to replicate known system behav-
ior, and to test its ability to predict unknown behavior. Our
current confidence calculation does not differentiate between
these two needs, although we propose including it in our fu-
ture work along with additional conceptual model validation.

Many extensions to DEVS exist, such as Cell-DEVS. This
approach for quantifying confidence levels can be applied to
these DEVS extensions by only extending the types of ex-
pected behaviors to validate.

In large models it is generally understood that 100% valida-
tion is impossible due to time or budget constraints, or a lack
of required data. Our framework not only provides a mecha-
nism for calculating confidence in the model based on valida-
tion performed, but it also provides a mechanism for making

tough decisions about what validation will be most beneficial
on the model to maximize confidence given constraints.

In future work we will examine how to calculate confidence
such that not all applicable validation techniques must be ap-
plied to have full confidence in a particular behavior. We
will also perform further experimental validation of the confi-
dence calculation approach on larger simulation models, and
extend the framework to other modeling formalisms with a
corresponding simulation model.
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