
Statistical Framework for Uncertainty Quantification in
Computational Molecular Modeling

Muhibur Rasheed
Computer Science Dept.

University of Texas at Austin
Austin, TX 78712, USA.

muhibur@utexas.edu

Nathan Clement
Computer Science Dept.

University of Texas at Austin
Austin, TX 78712, USA.

nclement@utexas.edu

Abhishek Bhowmick
Computer Science Dept.

University of Texas at Austin
Austin, TX 78712, USA.

ab.abhishek.bhowmick@gmail.com

Chandrajit Bajaj
Computer Science Dept.

University of Texas at Austin
Austin, TX 78712, USA.
bajaj@cs.utexas.edu

ABSTRACT

Computational molecular modeling often involves noisy data
including uncertainties in model parameters, computational
approximations etc., all of which propagates to uncertain-
ties in all computed quantities of interest (QOI). This is a
fundamental problem that is often left ignored or treated
without sufficient rigor. In this article, we introduce a sta-
tistical framework for modeling such uncertainties and pro-
viding certificates of accuracy for several QOI. Our frame-
work treats sources of uncertainty as random variables with
known distributions, and provides both a theoretical and
an empirical technique for propagating those uncertainties
to the QOI, also modeled as a random variable. Moreover,
the framework also enables one to model uncertainties in a
multi-step pipeline, where the outcome of one step cascades
into the next. While there are many sources of uncertainty,
in this article we have applied our framework to only posi-
tional uncertainties of atoms in high resolution models, and
in the form of B-factors and their effect in computed molec-
ular properties. The empirical approach requires sufficiently
sampling over the joint space of the random variables. We
show that using novel pseudo-random number generation
techniques, it is possible to achieve the required coverage us-
ing very few samples. We have also developed intuitive visu-
alization models to analyze uncertainties at different stages
of molecular modeling. We strongly believe this framework
would be immensely valuable in evaluating predicted compu-
tational models, and provide statistical guarantees on their
accuracy.
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1. INTRODUCTION
Computational models of any biological substance are, by

nature, prone to error. The source of this error can range
anywhere from discrete representations of continuous data,
to inadequate sampling of the parameter/search space, com-
putational approximations, or even failures to include all
relevant aspects of the biological system. In some cases,
these errors are slight or insignificant, but when the errors
combine—as they frequently do for computations that in-
volve geometry and complicated (linear or non-linear) nu-
merical systems—they can create a result that is unreliable.
Modeling of protein structures and their interactions is a
field of research that is especially susceptible to cascading
errors, for various computed quantities of interest (QOIs).
These computations include multi-step methods for protein
sequence alignment and homology modeling, implicit sol-
vation interfaces (i.e. molecular surfaces) generation [16, 6,
20, 35, 9, 8], configuration-dependent binding affinity calcu-
lations [15, 7], molecular docking and structure refinement
via molecular substructure replacement and fitting [39, 5,
22, 36], etc. For each of these computations, the confidence
in the reported results could necessarily be bolstered if each
estimation of a QOI in the computational pipeline also in-
cluded rigorous evaluation of their uncertainty. Such uncer-
tainty bounds, along with quantitative visualization, would



be invaluable in rational design and analysis in molecular
modeling tasks.

Unfortunately, the majority of current computational struc-
ture modeling and prediction protocols do not rigorously
consider the effect of such uncertainties and/or report the
confidence on the final model, quantity or prediction they
compute. For instance, structure prediction protocols in-
cluding fitting, docking, homology modeling, etc., addresses
uncertainties in an indirect way by reporting several struc-
tures ranked under some metric with the hope that at least
one of the predicted structural models is close to the truth.
However, it is not clear how to ascertain the quality or confi-
dence on individual models in the ranked list. Furthermore,
there is no statistical guarantee that a near-accurate struc-
ture model is present in the entire ranked list. Similarly,
protocols for computing specific properties of molecules like
surface area, binding free energy, solvation, etc., sometimes
provide theoretical guarantees on the computational approx-
imation errors due to numerical approximations, discretiza-
tion, etc., but do not address the inherent uncertainty of the
input itself. While some work does attempt to bound the un-
certainty on individual input models (see, for example, [32]
for X-ray crystallography or [40, 24] for NMR structure pre-
diction using probabilitistic analysis), determining how this
uncertainty propagates to future stages in a pipeline is left
unaddressed. An exception is recent work [31] that addresses
the influence of conformational uncertainty on biomolecu-
lar solvation under elastic network dynamics on an input
structural model, where the individual residue positions are
independent and identically distributed Gaussian random
variables. In this paper, we present a mathematical and an
empirical framework, both of which take into account uncer-
tainties present in the input to any computational step and
provides an upper bound on the uncertainty of the outcome.

We define statistical uncertainty quantification as a tail
bound Pr[|f − E[f ]| > t] < ǫ. In other words, a proba-
bilistic certificate as a function of a parameter t that the
computed value, f(X), of a QOI, expressed as some com-
plicated function or optimization functional involving noisy
data X, is not more than t away from the true value (with
high probability). In this article, treating each component
of X as random variables (RVs), we adopt a method of
bounded differences, which is a modification of Markov and
Chebyshev inequalities, used for independent RVs to derive
Chernoff-like bounds of the form mentioned above. How-
ever, for most biophysical properties the uncertainties in the
input need not necessarily be independent. We show that
for such cases, a variation of the Chernoff-Hoeffding bound,
namely the Azuma inequality [1], may be applied. Here a
stochastic processes is formulated as a Doob martingale and
the Azuma inequality applied to such a martingale becomes
what is known as the McDiarmid’s inequality [33]. In the
methods section, we describe this framework in greater de-
tail and also show how it can be readily applied to compute
such certificates for functions with decaying kernels. Exam-
ples of such functions include the van der Waals interaction
energy, atom-atom contact potentials based on distance cut-
offs, integrals over point neighborhoods, etc.

Theoretical tail bounds under the McDiarmid model of-
ten tend to be too conservative (capturing the worst possible
case). Also for some functions, deriving the bound analyt-
ically may be challenging. So, we have also developed an
alternative technique where Quasi Monte Carlo sampling of

the uncertainty space leads to an approximation of the dis-
tribution of the values for the QOI, whose expectation can
be used to estimate the tail bounds. Our empirical analysis
over a diverse set of proteins (from the Zlab benchmark [26])
showed that a fairly small number of samples often suffices
to generate a robust approximation of the distribution of the
QOI.

While there are many possible sources of uncertainty and
many possible QOI in the realm of computational molecular
modeling, and our framework could technically be applied
to model all of these at the same time, we have applied
it in a slightly limited scope in the experiments we report
in this article. We have chosen to understand the effect
of small positional uncertainties of atoms in high resolution
crystal structures on a few important QOIs. The QOIs we
considered are surface area (SA), volume, internal van der
Waals energy or Lennard-Jones potential (LJ), coulombic
energy (CE), and solvation energy under both generalized
Born (GBSA) and Possion-Boltman (PBSA) models for sin-
gle molecules; as well as interface area, and binding free
energy calculation for pairs of bound molecules (please see
[38] for details on the energy functions). We used B-factors
reported in PDB files as an implicit description of positional
uncertainty of an atom.

It should be noted that with the use of B-factors, we make
two simplifying assumptions. First, while there may be
many equally-good (and even possibly better) assignments
of positional uncertainty from electron scattering data, we
assume that those reported in the PDB are “correct.” (For
methods that improve the B-factor estimation see, among
others, [12, 44, 30, 28, 29]) Second, due to the way atomic
positions and uncertainties are resolved from raw data, there
may be correlations between reported values; we treat each
coordinate as independent random variables. Both of these
assumptions are allowable as B-factors are a well-known,
readily available statistic, and are included with all molecules
in the PDB. Furthermore, the same methodology could (and
should) be applied to additional models of uncertainty, and
we believe similar results would be attained.

Our empirical study on 57 x-ray structures of bound pro-
tein complexes showed that when these uncertainties are
accounted for, there is relatively low uncertanty for sim-
ple quantities such as exposed surface area (>2% error on
just over 5% of the sampled configurations), but a signifi-
cant probability (>10%) of having more than 5% error in
total energy (PBSA) calculation. These examples not only
show the uncertainty in commonly-reported statistics, but
also illustrate the propagation of uncertainty from one simple
QOI to another more complex one. This illustrates the great
need for proper quantification and reporting of uncertainty
in QOI.

Additionally, our QMC based protocol can also be used
to generate data for quantitative visualization of uncertain-
ties at different levels of granularity. In this article we have
provided several examples.

We developed tools which implement the mathematical
framework of sampling needed for statistical UQ, use ex-
isting tools to compute the QOIs [13, 15, 3, 21, 45], and
compute uncertainty bounds as well the visualization direc-
tives which can be directly loaded into existing molecular,
surface/volume visualization software [4, 42]. Our methods
enable the end user of these tools to achieve a more quanti-



tative and visual evaluation of various molecular models for
structural and property correctness—or the lack thereof.

2. METHODS
We define statistical uncertainty quantification on QOI’s

as a tail bound, namely, a probabilistic certificate as a func-
tion of a parameter t that the computed value f(X) of a
QOI, expressed as some complicated function or optimiza-
tion functional involving noisy data X, is not more that t
away from the true value (with high probability). Or alter-
natively the probability of the error being greater than or
equal to t is very small. Such a certificate is expressed as a
Chernoff-Hoeffding [14] like bound as follows:

Prob(f,X, t, ǫ) = Pr[|f(X)− E[f ]| > t] ≤ ǫ. (1)

In this article, we adopt a method of bounded differ-
ences, which is a modification of Markov and Chebyshev
inequalities, used for independent RVs to derive Chernoff-
like bounds. Here, we briefly introduce a loose uncertainty
bound based on Doob martingales as introduced by Azuma
[1] and Hoeffding [25] and later extended by McDiarmid [33].
The McDiarmid inequality is stated as follows:

Definition 2.1 (McDiarmid Bound). Let (Xi) be in-
dependent RVs with discrete space Ai. Let f :

∏

i Ai →
R, and |f(x1, . . . xk, . . . , xn) − f(x1, . . . , x

′
k, . . . , xn)| ≤ ck.

Then, for t > 0, Pr[|f(X)−E[f ]| > t] < 2 exp
(

−2t2/
∑

k c
2
k

)

.

In the next few subsections, we discuss the derivation of
the bound and extend it to include cases where the RVs are
not necessarily independent. We also show that for molec-
ular modeling tasks that involve summations over decaying
kernels (e.g. electrostatic interactions), one can analytically
derive such bounds. However, such theoretical upper bounds
often overestimate the error. So, we also explore an alter-
nate quasi Monte Carlo (QMC) approach [34, 27]. The QMC
is useful in approximating the distribution of values for the
QOI under a given statistical model of the input uncertainty,
and then empirically establishing the uncertainty of individ-
ual values of the QOI, as well as providing certificates like
Equation 1. Additionally, this can be applied to complex
functionals (like Poisson-Boltzman (MM-PBSA) energy cal-
culations) which are not amenable to analytical treatment.
We should mention that the quality of the QMC-based cer-
tificate itself depends on the quality and size of the samples,
but our experiments (see Results and Discussion) showed
that typically fewer than 500 samples under a low discrep-
ancy sampling technique provides sufficiently accurate ap-
proximations of the certificates.

2.1 Thoretical framework for statistical uncer-
tainty quantification

To prove theoretical uncertainty bounds, one often uses
Chernoff-Hoeffding style bounds. However, this is useful
only if the the underlying random variables are independent
and we are analyzing the sum of the random variables. In
practical situations the random variables have dependencies.
In such cases, we can still prove large deviation bounds using
the theory of martingales, specifically Doob martingales and
their extension.

2.1.1 Martingales and McDiarmid inequality

Definition 2.2. Let (Zi)
n
i=1 and (Xi)

n
i=1 be a sequence of

random variables on a space Ω. Suppose E[Xi|Z1, . . . , Zi−1] =
Xi−1. Then (Xi) forms a martingale with respect to (Zi).

Essentially, the expected value of the ith observable is the
same as the observed value of the (i − 1)th, irrespective of
the values of all the the others. A variation, the Doob mar-
tingale, can be constructed from any random variable in the
following universal way.

Claim 2.3. Let A and (Zi) be random variables on space
Ω. Then, Xi = E[A|Z1, . . . , Zi−1] is a martingale with re-
spect to Zi. This is called the Doob martingale of A with
respect to (Zi).

Now we present the Azuma inequality for martingales.

Claim 2.4 (Azuma inequality). Let (Xi) be martin-
gale with respect to (Zi). Suppose |Xi −Xi−1| ≤ ci. Then

Pr[|Xn −X0| > t] ≤ 2 exp(−t2/2
∑

i

c2i ).

The weak form of the McDiarmid inequality follows di-
rectly from the Azuma inequality. Please see [38] for detailed
proofs and derivations.

2.2 Analytical uncertainty bounds for biophys-
ical quantities

Consider the summations over decaying kernels of the
form shown below, when the variables are uncertain.

F (A,B) =
∑

x1∈A

∑

x2∈B

n
∑

k=1

ak

‖x1 − x2‖bk
(2)

where bk are non-negative constants, ak are constants, and
A and B are two sets of points.
This is a form that is seen in van der Waals energy calcu-

lations, computing contact properties (e.g. number of atom
contacts at a binding interface, binding interface area etc.),
and many similar biophysical quantity of interest. In such
applications the uncertain quantities will be the positions of
the atoms.

In the following, we introduce some notations and then
analytically express the uncertainties of successively more
complex functions.

2.2.1 Notation

A single decaying kernel in the above summation is rep-
resented as

fx1
(x2) =

n
∑

k=1

ak

‖x1 − x2‖bk
(3)

where the kernel is centered at x1 and evaluated at x2. The
following result is immediate:

Lemma 2.5. For a given set of ak and bk, fx1
(x2) =

f0(∆x) where ∆x = (x2 − x1).

When both x1 and x2 are uncertain such that every com-
ponent x1i of x1 is uniformly sampled from the interval
[l1i, u1i], and every component x2i of x2 is uniformly sam-
pled from the interval [l2i, u2i]- we can assume that every



component ∆xi of ∆x is uniformly sampled from the inter-
val [li, ui] computed based on [l2i, u2i] and [l1i, u1i]. The
error of fx1

(x2) due to the uncertainty of x1 and x2 can
hence be equivalently computed as the error of f0(∆x) due
to the uncertainty of ∆x. In our discussion, we shall often
drop the ∆ when the context does not require the distinc-
tion.

2.2.2 Uncertainty of a single kernel at a single point

We begin with the simplest case when the kernel is em-
bedded in 2D (the 1D case is trivial):

f1(x, y) =
a

(x2 + y2)b/2
(4)

Assuming that x and y are uniformly sampled from the
intervals [lx, ux] and [ly, uy] respectively where lx, ly, ux and
uy are non-negative, we can define the maximum deviation
due to the change of x as

D1x = maxy |f1(lx, y)− f1(ux, y)|
Note that g1(y) = f1(lx, y)−f1(ux, y) is positive for lx < ux,
and d

dy
g(y) < 0. Hence, g1(y) is maximized when y = ly.

So,

D1x = max
y

|f1(lx, ly)− f1(ux, ly)|

= |a|

(

1
(

l2x + l2y
)b/2

−
1

(

u2
x + l2y

)b/2

)

(5)

D1y can also be computed the same way. Using McDi-
armid’s theory of bounded differences, we have the following
result-

Lemma 2.6. For the decaying kernel f1 in Equation 4,

Pr[|f1 − E[f1]| > t] ≤ 2e
−2t2

D1
2
x+D1

2
y where D1x and D1y are

defined in Equation 5.

The above results can be readily extended to d dimensions
for the function f2 defined below.

f2(x) =
ak

‖x‖bk
(6)

Let, f2i(x, y) represent f2(x) such that the value of the
ith component is fixed to y. So we define the maximum
deviation of f2 due to the change of one variable xi between
the range [li, ui] as:

D2i = max
x

g2i(x) = max
x

|f2i(x, li)− f2i(x, ui)| (7)

Again g2i(x) is positive and d
dxj

g2(x) < 0 for all compo-

nents xj of x. Hence, g2(x) is maximized when xj = lj for
all j where lj is the lowest possible value for xj .

D2i = |a|







1
(
∑

k l
2
k

)b/2
−

1
(

u2
i +

∑

k 6=i l
2
k

)b/2






(8)

Lemma 2.7. For the decaying kernel f2 defined in Equa-

tion 6, Pr[|f2 − E[f2]| > t] ≤ 2e
−2t2

∑

i D2
2
i such that D2i is

defined as in Equation 8.

Note that Lemmas 2.6 and 2.7 hold even when a < 0 (i.e.
negative).

2.2.3 Uncertainty of multiple kernels at a single point

Now we extend the scope to consider functions which are
expressed as a sum of n decaying kernels centered at the
origin.

f3(x) =
n
∑

k=1

ak

‖x‖bk
(9)

Let f3
k(x) = ak

‖x‖bk denote the kth decaying term in Equa-

tion 9. Now, the maximum deviation will be defined similar
to Equation 7.

D3i(x) = max
x

g3i(x)

= max
x

|f3i (x, li)− f3i(x, ui)|

= max
x

∣

∣

∣

∣

∣

∑

k

(

f3
k
i (x, li)− f3

k
i (x, ui)

)

∣

∣

∣

∣

∣

≤ max
x

∑

k

∣

∣

∣

(

f3
k
i (x, li)− f3

k
i (x, ui)

)∣

∣

∣

≤ n max
k

max
x

∣

∣

∣

(

f3
k
i (x, li)− f3

k
i (x, ui)

)∣

∣

∣

= n max
k

D2
k
i (10)

where D2
k
i is defined the same way as D2i in Equation 8 for

the kth kernel.

Lemma 2.8. For the sum of decaying kernel f3 given in
Equation 9,

Pr[|f3(x)− E[f3(x)]| > t] ≤ 2e
−2t2

∑

i D3
2
i
(x)

such that D3i(x) is defined as in Equation 10.

2.2.4 Uncertainty of a multiple kernels at multiple
points

Let us define a volumetric function in d dimensions as a
sum over multiple kernels defined at multiple points belong-
ing to the set A as follows.

f4(A,y) =
∑

x∈A

n
∑

k=1

ak

‖x− y‖bk
(11)

Now, f4 can be expressed as :

f4(A,y) =
∑

x∈A

f3x(y)

=
∑

x∈A

f30(y − x)

=
∑

x∈A

f30(∆x) (12)

Since, f4 is a simple summation over independent points,
the result in Lemma 2.9 follows immediately from Lemma
2.8.

Lemma 2.9. For the sum of decaying kernel f4(A,y) given
in Equation 11,

Pr[|f4(A,y)− E[f4(A,y)]| > t] ≤ 2e
−2t2

∑

x∈A
∑

i D3
2
i
(∆x)

such that D3i(∆x) is defined as in Equation 10.



2.2.5 Uncertainty of a integral over multiple kernels
at multiple points

Finally, we bound the uncertainties in the integral func-
tion we mentioned at the beginning of this section in Equa-
tion 2.

Lemma 2.10. For the sum of decaying kernel F (A,B) given
in Equation 11,

Pr[|F (A,B)−E[F (A,B)]| > t] ≤ 2e
−2t2

∑

x1∈A
∑

x2∈A
∑

i D3
2
i
(∆x)

such that D3i(∆x) is defined as in Equation 10 and ∆x =
(x2 − x1).

2.3 Empirical uncertainty quantification us-
ing quasi-Monte Carlo methods

Under the quasi-Monte Carlo method of uncertainty prop-
agation, it is assumed that xi are independent random vari-
ables and their probability distribution functions (PDFs)
are known. Now, a low discrepancy sampling of the product
space x1×x2×. . .×xn must be generated which would define
an approximate PDF for f(X) from which we could com-
pute all the necessary tail bounds. We explore several such
product spaces and use low discrepancy sampling strategies
to derive PDFs of functions f(X) with bounded error and
guaranteed convergence. Note that a simpler Quasi-Monte
Carlo (QMC) sampling can be applied to find the minimum
ck for each xk, and hence derive the loose McDiarmid bound.
Hence the most crucial component of UQ under this QMC
framework boils down to identification of the set of inde-
pendent random variables x, which affect the computation
of the QOI, along with their approximate PDFs and corre-
sponding sampling techniques.

2.3.1 Parameterizations and uncertainties of molec-
ular models

Molecular structural models are typically parameterized
using either a list of their XYZ coordinates, or using inter-
nal coordinates (which is a series of bond length, bond angle
and dihedral angle). In the first representation the degrees
of freedom or the space of configurational uncertainty is re-
lated to each coordinate value; in the latter representation,
typically the dihedral angles are the only degrees of freedom
since bond lengths and angles are considered constants.

X-ray crystallography experiments reconstruct a 3D elec-
tron density cloud from the diffraction pattern generated
from a crystal lattice of the molecule. For high resolution
reconstructed electron densities, expected locations of indi-
vidual atoms can be identified. Hence, it is common to re-
port such models using the XYZ coordinates of the atoms.
However, the expected location is not necessarily perfectly
determined. There is a degree of uncertainty which is of-
ten expressed as temperature factors or B-factors. Simply
stated, B-factors are a measure of the error in the match and
fit of specific atoms within the electron density cloud con-
strained by the protein’s primary, secondary and tertiary
structure and inter-atom biochemical/biophysical forces.

B-factors are derived from structure factors, which are
based on the Fourier transform of the average density of the

scattering matter. The structure factor, F (~h), for a given

reflection vector, ~h, is the sum of the optimized parameters
for each atom type j, and position ~xj and as defined by the
following equation:

F (~h) =
∑

j

fj exp

(

−
1

4
Bj

~h t~h

)

exp
(

2πi~h t ~xj

)

,

where fj is the scattering factor, Bj is the B-factor for atom
j, and ~xj is the 3-dimensional position of each atom [41].

If we assume that the static atomic electron densities
have spherical symmetry (or, more specifically defined by
a trivariate Gaussian, ~u), this can be converted into the

anisotropic temperature factor commonly used, T (~h) [46]:

T (~h) = exp
[

−2π2〈(~h · ~u)2〉
]

,

where the univariate Gaussian form (needing not the direc-

tion of ~h, but only its magnitude) is described by:

T (|~h|) = exp
[

−8π2〈u2〉(sin2 θ)/λ2] . (13)

Finally, the B-factor is defined as B = 8π2〈u2〉. Thus, a

B-factor of 20, 80, or 180Å2 corresponds to a mean positional
displacement error of 0.5, 1, and 1.5Å, respectively. (Other
metrics, such as R-factor [11] or diffraction-component pre-
cision index (DPI) [18] can be used to provide more insight
into these uncertainties. However, throughout this paper we
will just use the B-factors commonly available in the PDB
file.)

2.3.2 Defining and sampling the space of configura-
tions

The statistical framework described above, requires geo-
metric models of the molecules, parameterization of the de-
grees of freedom available to the molecule, a mapping which
allows one to update the model based on sampled degrees of
freedom, and an implementation of the QOI. In this section,
we describe how we derive the relevant degrees of freedom
and set up the joint probability distribution which will be
sampled by the QMC protocol.

Given the x-ray structure M containing n atoms of a
protein or a complex of two proteins in the PDB file for-
mat, we extract the anisotropic B-factors Bx

i , B
y
i and Bz

i for
each atom ai ∈ M . The distribution of the position of the
atom in each direction is modeled as a Gaussian distribution

whose PDF is defined as p(xi) = 1

σx
i

√
2π

exp
[

−
(xi−µx

i )2

2σ2

]

where σx
i is the standard deviation derived as

√

Bx
i

8π2 from

the B-factor, and the mean µx
i is the expected position of the

atom. Note that for some x-ray structures only an isotropic
B-factor Bi is reported. In that case we simply assume
Bx

i = By
i = Bz

i = Bi.

2.3.3 Sampling

The joint distribution, defined as the product space of the
3n independent Gaussian distributions, represents the space
of possible configurations for the molecule. Hence, to sample
the joint distribution, we first sample the space [0, 1]3n using
pseudorandom generator which guarantees low discrepancy
sampling in high dimensional product spaces [23] to pro-
duce a tuple 〈ux

1 , . . . , u
z
n〉. Each number uj

i from this tuple is

mapped to get a sample aj
i from a Normal distribution using

the Box-Muller method [10], and finally appropriate trans-
lation and scaling is performed to get a sample from the cor-
responding Gaussian distribution as follows sji = µj

i + σj
i a

j
i .



These samples 〈sx1 , . . . , s
z
n〉 are used to displace the atoms to

generate a new configuration.
An important point to note is that the above procedure,

while maintaining the constraints implied by the B-factors
and the mean positions and only making small perturba-
tions, does not necessarily guarantee that the new configu-
rations will be biophysically feasible. In particular they do
not preserve the bond angle and bond lengths. So, we use
the Amber force field [17] and energy minimization with im-
plicit solvents to relax the sampled structures. We rejected
any sample for which the relaxed structure still had high
van der Waals potential indicating that some atoms are too
close to each other. Accepted models were protonated and
assigned partial charges based on the Amber force field using
the PDB2PQR program [19].

One of the major drawbacks with QMC sampling is that
the curse of dimensionality prevents naive sampling with a
large number of dimensions. Assume that if one wants ǫ
discrepancy for each random variable, m samples in a single
dimension are required (assuming d r.v.’s from the 3n in-
dependent Gaussians). Then to maintain the same level of
discrepancy, the QMC protocol would require md samples.
For any reasonable measure of discrepancy (i.e. < 1%), this
quickly becomes intractable.

For this reason, it is absolutely crucial to use a sampling
method that requires a polynomial number of samples. The
low-discrepancy product-space sampler developed by Bajaj
et al. [2] reduces the number of samples significantly from

md to only
(

d
ǫ

)O(
√

log ( 1
ǫ )), where m =

(

d
ǫ

)3+o(1)
. Note that

this is polynomial in m and d.

3. RESULTS AND DISCUSSION
In this section, we detail the results of applying our QMC

based UQ framework to generate Chernoff-like bounds (see
Methods) for a set of 57 protein complexes. Additionally,
we provide a protocol to determine the number of samples
required to guarantee the accuracy of the empirical certifi-
cates for specific proteins. The results clearly establish the
necessity of rigorous quantification of uncertainties, and also
shows that such an endeavor need not be prohibitively time
consuming.

Finally, we describe some visualization protocols which
provide interactive and intuitive representations of the com-
puted uncertainty measures.

3.1 Uncertainty quantified computation of molec-
ular properties

3.1.1 Benchmark and experiment setup

We applied the QMC approach for empirical UQ of com-
putationally evaluated QOIs to 57 crystal structures with
2 bound chains each. We took the ‘Rigid-body’ cases of
antibody-antigen, antibody-bound and enzyme complexes
from the Zlab benchmark 4 [26]. We used this docking
benchmark as we were interested in demonstrating how un-
certainty in QOI reported on a single proteins is magnified
when combined with another protein, such as is often done
with computing protein binding affinity.

For each of the complexes, we applied the sampling to the
receptor and the ligand (the two chains in the structure)
separately, and evaluated the uncertainty measures for the
calculation of surface area, volume, and components of free
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Figure 1: Histogram of sampled QOIs for 1OPH:A.
The red vertical line is the value of F computed
using the original coordinates reported in the PDB.

energy including Lennard-Jones, Coulombic, dispersion, GB
and PB. We also computed the uncertainties in the binding
interface area, and change of free energy. In the following
subsections we explore different aspects of this analysis.

3.1.2 Uncertainty of unperturbed models

Figure 1 shows the distribution of values computed for the
sampled models for PDB structure 1OPH-chainA. The red
lines in the figures marks the value computed on the orig-
inal coordinates, and emphasizes the fact that the original
coordinates do not always provide the best estimate of the
expected value of a QOI. The z-scores for these structures,
with respect to the expected values and standard deviations
derived from the empirical distribution, are 0.33, -0.82, 1.37,
and 0.25 respectively for area, volume, GB, and PB. This
emphasizes the importance of applying some form of em-
pirical sampling to find the best representative model (one
which minimizes the z-score, for instance).

3.1.3 Certificates for computational models

We also determined the likelihood of producing a large
error in the calculation of QOI, due to the presence of un-
certainty in the input, in terms of Chernoff-like bounds.
For each model in the dataset, we generated the distribu-
tion of samples, and then computed the probability, ǫ, of
a randomly sampled model having more than 0.1%, 0.5%,
1%, 2%, 5% and 10% error (t), where error is defined as
|x′ − E[x]|/E[x] such that x′ is the value computed for a
random model and E[x] is the expected value.
Table 1 lists Chernoff bounds as described above for the

two chains of 1OPH, and Table 2 shows corresponding data
for the full dataset. The rows named ∆area(A) represent the
quantity |area(A+B)−area(A)−area(B)| computed while
keeping B fixed and sampling the distribution of A; rows
named ∆area(B) report the same quantity while keeping A
fixed and sampling the distribution of B.
The takeaway from this table is that for most of the QOIs,

the probability of incurring more than 5% error is negligi-
ble. We also note that the probability of error is higher for
∆ QOIs simply because the errors of individual quantities
are being propagated and amplified. Uncertainties are also
higher in more complex functionals. See Table 1 in [38] for
average uncertainties across the entire dataset (instead of
just a single protein).

3.2 Number of samples sufficient to provide
statistically accurate certificates



Table 1: Chernoff-like bounds for the 1OPH protein.
For each value of t, the corresponding values of ǫ are
calculated from the 1000 random samples.

t 0.001 0.005 0.010 0.020 0.050 0.100
area(A) 0.911 0.613 0.326 0.050 0.000 0.000
area(B) 0.911 0.582 0.306 0.052 0.000 0.000

∆area(A) 0.964 0.823 0.650 0.358 0.031 0.000
∆area(B) 0.973 0.889 0.771 0.560 0.155 0.005

vol(A) 0.727 0.088 0.003 0.000 0.000 0.000
vol(B) 0.765 0.174 0.005 0.000 0.000 0.000

∆vol(A) 0.877 0.485 0.169 0.009 0.000 0.000
∆vol(B) 0.895 0.495 0.176 0.006 0.000 0.000
PB(A) 0.970 0.864 0.727 0.508 0.114 0.014
PB(B) 0.966 0.838 0.672 0.403 0.047 0.004

∆PB(A) 0.990 0.942 0.863 0.719 0.378 0.106
∆PB(B) 0.984 0.940 0.870 0.748 0.463 0.164

Table 2: Chernoff bounds for all proteins and both
chains, averaged.

t 0.001 0.005 0.010 0.020 0.050 0.100
area 0.910 0.575 0.282 0.059 0.004 0.000

∆area 0.910 0.578 0.288 0.066 0.009 0.003
vol 0.767 0.191 0.038 0.006 0.001 0.000

∆vol 0.768 0.193 0.038 0.006 0.001 0.000
PB 0.969 0.846 0.708 0.472 0.125 0.023

∆PB 0.969 0.847 0.710 0.476 0.132 0.030

The results reported in the previous two subsections high-
light the importance of UQ and also shows that the mean
coordinates do not always correlate well with the QOI com-
puted from the original molecules, so statistical bounds across
a set of samples is needed. While the number of samples
needed using a pseudo-random number generator is drasti-
cally lower than a naive exponential sampling method, it is
still prohibitive in practice. (See [38] for the number of sam-
ple requirements for different number of atoms.) We believe
this theoretical bound overestimates the requirement, and
for most practical situations, much fewer samples is suffi-
cient. Now, we seek to determine the number of pseudo-
random samples needed to achieve robust certificates, or as
the minimal number of samples before the gain achieved
through more samples is negligible.

For each QOI, we calculated the mean quantity for a cer-
tain number, r, of random samples then calculated ǫ on this
reduced dataset. We did the same for s random samples,
and computed the L2 distance between the two. Note that,
we computed 6 different ǫ (the probabilistic guarantee) for
each r, using 6 different values of t (the errors). The ex-
pected distance between any two random points in 6d space
is 0.9689 (analytic form for such distances has been derived
in [37], and the precomputed values for several dimensions
are available online [43]. Hence, we chose τ at 0.05, which
is much lower that 0.9689, as our measure for convergence.

We used both s = 1000 for correlation with the full dataset
and s = r+10 for an incremental comparison. If the distance
between the these was less than a given threshold, τ , then we
determined we had reached saturation. For our experiments,
we used values of r from 2 to 1000 (full dataset).

Figure 2 shows the number of samples needed before the
relative error (when computed on the full dataset) is neg-

Table 3: Number of samples necessary to converge
on the calculation for the Chernoff-like bound. Here
we assume the process to have converged if the dif-
ference between the predicted ǫ did not change sig-
nificantly. Detailed description of this calculation
can be found in the text. The pair of entries in each
cell of this table refer to the two different variants
of convergence we considered. First, incremental-
where each value is compared to the value gener-
ated when using 10 fewer samples. Second, where
the value is compared with the value we get with
1000 samples. The data presented here correspond
to PDBID:1OPH, chains A and B.

B A ∆B ∆A
area 230/134 233/153 215/146 351/197
vol 119/72 102/64 103/55 332/205
LJ 79/49 240/168 315/133 324/192
CP 79/43 114/62 93/71 355/213
GB 281/143 319/202 300/207 326/211
PB 287/174 365/209 357/206 348/196

Figure 2: Plot of total B-factor (a measure of
both size and uncertainty) against number of sam-
ples needed before the relative error is negligible
(τ = 0.05). For similar graphs on additional QOIs,
please see [38].

ligible, compared with the total B-factor of the protein (a
statistic that attempts to encorporate the entire molecular
uncertainty) and number of atoms. As can be seen in this
figure, neither total B-factor nor number of atoms is capable
of predicting the number of samples needed. Table 3 shows
the number of samples needed to reach saturation for a num-
ber of QOI, compared to the number of samples predicted
by our incremental method. This table shows our incremen-
tal sampling method was sufficient to predict the number
of samples necessary on the full dataset. For instance, the
Chernoff-bound calculated for on the incremental method
for PB energy with 1OPH chain A reached saturation after
287 samples; with only 174 samples, we were able to achieve
Chernoff-like bounds with at least 95% accuracy, when com-
pared to the full dataset. This trend was repeated over all
104 individual chains, suggesting that the incremental ap-
proach is a good method to use when a “full dataset” has
not already been computed. Figure 3 shows a plot of both
of these metrics as the number of samples increases.
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Figure 3: Plot showing the rate of convergence for
statistical certificates, computed for the calculation
of free energy (MM-PBSA). For each number of
samples, r, the Chernoff-like bounds were computed,
and then compared with either those computed on
the entire dataset (red line) or a partial dataset con-
taining r+10 samples (blue line). Noise in the plot-
ted lines are due to differences in samples selected;
reported values are the average over 50 trials. Plot
is for 1OPH chain A.

3.3 Visualizing Uncertainties in Molecular Prop-
erties

3.3.1 Visualizing uncertainties in computed QOIs

While there are many methods for visualizing uncertain-
ties in molecular structure (i.e. coloring by B-factor), these
methods highlight the inherent uncertainties in the molec-
ular structure and their parameterization, but do not di-
rectly highlight the effect of these uncertainties on computed
properties of the molecule. Specifically, we are interested
in bounding the propagated uncertainty in the calculated
property, and also localize the origins of uncertainty which
disproportionately affect the outcome. This is carried out
using the statistical QMC framework described above. Be-
low we discuss some techniques which allows one to visually
explore such uncertainties.

Pseudo-electron cloud.
One method for visualizing such uncertainty is a pseudo-

electron cloud, where samples are combined into a single
volumetric map whose voxels represent the likelihood (over
the set of samples) of an atom occupying the voxel. Figure
4(A) shows such a visualization for 1OPH chain A. Note
that this data is not simply useful for visualization, but can
be used as the representation of the shape of the molecule
for docking and fitting exercises to incorporate the input
uncertainties directly into the scoring functions.

Localized uncertainty in molecular surface calculations.

In many applications, instead of a volumetric map, one
uses a smooth surface model to compute QOIs like area,
volume, curvature, interface area etc. In such cases, a visu-
alization like Figure 4(B) can be very descriptive. It shows

Volume rendering showing the probability 
of a voxel intersecting an atom

Surface rendering shows atoms at mean positions.

0 1

Per vertex uncertainty (defined as
standard deviation) of molecular 

Surface construction

0 4.30.3
A

B

Figure 4: Visualization of molecular surface uncer-
tainties. (A) A volumetric map showing the likeli-
hood of the voxel being occupied by an atom, com-
puted using a sampling of the joint probability dis-
tribution of the atom positions. (B) Expected devi-
ation of each point on the surface of a single model,
w.r.t. all models sampled based on the joint distri-
bution of the locations of the atoms. Green colored
regions are expected to remain more or less stable
in any sample, red colored ones may vary a lot.

a single smooth surface model (based on the original/mean
coordinates), and the colors at each point on the surface
show the average distance of that point from all surfaces
generated by sampling the joint distribution. Unsurpris-
ingly, most parts of the surface in the figure has very low
deviation, and only the narrow and dangling parts have high
deviation. Comparing this with the rendering of B-factors
(in Figure 5(A)) shows that even though some parts of the
surface are in regions with high B-factors, the uncertain-
ties do not affect the surface computation as much. Hence,
higher temperature factors may not always result in a higher
uncertainty in computed property, and a sensitivity analysis
with low discrepancy sampling is warranted.

Surface colored by B-factor
Volume rendering of per voxel
uncertainty (σ) of PB potential

-0.018 0.02918.26 91.45 0.00 0.04

Volume rendering of Poisson-Boltman potential

Figure 5: Visualization of molecular energy uncer-
tainties. (A) Simple mapping of B-factors to the
surface of the protein. (B) Expected deviation of
potential energy of a given voxel, w.r.t. all mod-
els sampled based on the joint distribution of the
locations of the atoms. Green colored regions are
expected to remain more or less stable in any sam-
ple, red colored ones may vary a lot. (C) Display of
potential energy map averaged over all samples.

Uncertainty in energy calculations.
Now we focus on QOIs that are computed based on other

intermediate QOIs. For example, computation of MM-PBSA
energy first evaluates the PB potential on a volume which
encapsulates the molecule and the solvent. This potential
calculation itself requires a smooth surface representation of
the molecule as input, along with the positions and charges
of the atoms. In this case, as well as bounding the overall
uncertainty for the final value of the PB energy, we can also



bound the uncertainties of the intermediate PB potentials
calculated at each voxel. We do this by defining the PB po-
tential at a voxel as separate QOIs and apply the QMC sam-
pling to generate an ensemble of atomic models and smooth
surfaces, then evaluate the QOIs for each sample. Hence,
we derive a distribution for each voxel. The means of these
distributions are rendered in Figure 5(C), showing the nega-
tive and positive potential regions. The standard deviations
of the distributions are rendered in Figure 5(B). Comparing
the original uncertainties (B-factors in 5(A)) to these third
level propagated uncertainties shows that while in some re-
gions the uncertainties had a cancellation effect, in some
other regions they amplified.

4. CONCLUSIONS
In this article we have shown that even subtle uncertain-

ties present in high resolution X-ray structures can lead to
significant error in computational modeling. Such errors are
propagated and compounded when output from one stage of
modeling are used in the next. We considered the uncertain-
ties in atomic position reported through B-factors and eval-
uated how they create uncertainty in computed quantities
of interest (e.g. surface area, van der Waals energy, solvation
energy, etc.). While some existing computational protocols
attempt to bound the uncertainties/error due to algorith-
mic or numerical approximations, they do not account for
the uncertainties in the input. However, our empirical study
on 57 x-ray structures of bound protein complexes showed
that there significant probability (> 10%) of having more
than 5% error in total energy (PBSA) calculation purely
due to the input uncertainties. Hence, one must account for
and bound such uncertainties.

We have shown that input uncertainties can be modeled as
random variables and the uncertainty of the computed out-
come (a dependent random variable) can be bounded using
Chernoff-like bounds introduced by Azuma and McDiarmid.
We have also shown that such bounds are also applicable
when the input random variables are dependent, and show
how one can theoretically bound the probability of error for
Coulombic potential calculation (and any summation of dis-
tance dependent decaying kernels in general, see [38] for full
derivation). In the future, we aim to derive similar bounds
for other biophysically relevant functions.

We have also introduced an empirical quasi-Monte Carlo
approximation method based on sampling the joint distribu-
tion of the input random variables to produce an ensemble
of models. The ensemble is used to approximate a distribu-
tion of values for the quantity of interest. This distribution
in turn can be used to bound the uncertainty of the calcu-
lation in terms of statistical certificates. A very interesting
and promising outcome from application of this framework
to a large set of protein structures for a wide variety of cal-
culations showed that one typically needs fewer than 500
samples before the QMC procedure converges, hence it is
quite practical to perform and report such certificates in
modeling exercises. We are currently working on a graphi-
cal model of the input uncertainties, which should possibly
lead to even better convergence.

We have also shown that many of the current methods for
visualizing protein uncertainty is limited: displaying surface
uncertainty simply by B-factor is insufficient, as uncertainty
from X-ray crystallography does not necessarily track nat-
ural shifts in protein conformation. We have displayed sev-

eral different visualization techniques for displaying not only
atomic uncertainty, but also uncertainty in energy calcula-
tions. Displaying 3-dimensional uncertainty of quantities
such as the Poisson Boltzman potential can provide valu-
able information that a single potential map cannot.
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