
ENUMERATION OF SOLID 2-TREES

MICHEL BOUSQUET AND CEDRIC LAMATHE

Abstract. The goal of this paper is to enumerate solid 2-trees according to the number of edges
(or triangles) and also according to the edge degree distribution. We �rst enumerate oriented
solid 2-trees using the general methods of the theory of species. In order to obtain non oriented
enumeration formulas we use quotient species which consists in a specialization of P�olya theory.

R�esum�e. Le but de cet article est d'obtenir l'�enum�eration des 2-arbres solides selon le nombre
d'arêtes (ou de triangles) ainsi que selon la distribution des degr�es des arêtes. Nous obtenons
d'abord le d�enombrement des 2-arbres solides orient�es en utilisant les m�ethodes de la th�eorie des
esp�eces. Pour obtenir le d�enombrement des 2-arbres solides non orient�es, nous utilisons la notion
d'esp�ece quotient qui provient d'une sp�ecialisation de la th�eorie de P�olya.

1. Introduction

De�nition 1. Let E be a non-empty �nite set of n elements called edges. A 2-tree is either a single
edge (if n = 1) or a non-empty subset T � P3(E) whose elements are called triangles, satisfying the
following conditions:

1. For every pair fa; bg = ffa1; a2; a3g; fb1; b2; b3gg of distinct elements of T , we have ja\ bj � 1,
which means that two distinct triangles share at most one edge.

2. For every ordered pair (a; b) = (fa1; a2; a3g; fb1; b2; b3g) of distinct elements of T , there is a
unique sequence (t0 = a; t1; t2; : : : ; tk = b) such that for i = 0; 1; : : : ; k � 1, we have ti 2 T
and jti \ ti+1j = 1, which means that each pair of consecutive triangles in this sequence share
exactly one edge.

An edge e and a triangle t are incident to each other if e 2 t. The degree of an edge is the number
of triangles which are incident to that edge. The edge degree distribution of a 2-tree is described by
a vector ~n = (n1; n2; : : : ), where ni is the number of edges of degree i. We denote by Supp(~n), the
support of ~n which is the set of indices i such that ni 6= 0. Figure 1 shows a 2-tree having 11 edges,
5 triangles and edge degree distribution given by ~n = (8; 2; 1).
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Figure 1. A 2-tree on E = fa; b; c; d; e; f; g; h; i; j; kg.

Several classes of 2-trees have been studied before. Beineke and Pippert enumerate some k-
dimensional trees in [1] labelled at vertices. In [7], Harary and Palmer count unlabelled 2-trees. For
the enumeration of plane 2-trees see [10], and for a classi�cation of plane and planar 2-trees see [8].
In [5, 6], Fowler et al. worked on general 2-trees and give asymptotical results. Here, we consider
a new class of 2-trees, that is, solid 2-trees, i.e. 2-trees in which there is a cycle structure on the
triangles around each edge.
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Lemma 1. Let m;n be two nonnegative integers, and ~n = (n1; n2; : : : ), an in�nite vector of non-
negative integers. Then

1. There exists a 2-tree having m triangles and n edges if and only if n = 2m + 1.
2. There exists a 2-tree having ~n as edge degree distribution if and only ifX

i

ni = n and
X
i

ini = 3m:(1)

1 231 2 34 4

Figure 2. Two distinct solid 2-trees but the same 2-tree.

Figure 3. A well oriented 2-tree.

A solid 2-tree can be viewed topologically as a 2-tree in which the faces of the triangles cannot
interpenetrate themselves. As a consequence, there is a cyclic con�guration of triangles around each
edge. Figure 2 shows an example of two di�erent solid 2-trees which are in fact the same 2-tree. As
we can see, in the case of a solid 2-tree, one has to take into account the cyclic order of the triangles
around each edge. A well oriented solid 2-tree is obtained from a solid 2-tree in the following way:
�rst, pick any triangle and give a cyclic orientation on its edges. Then each triangle adjacent to
the �rst triangle inherits a cyclic orientation (see Figure 3). This process is repeated until all edges
receive an orientation. By the arborescent nature of the structure, there will be no conict (the
orientation of each edge will always be well de�ned). Figure 3 shows an example of a well oriented
2-tree. The species of non-oriented and well oriented solid 2-trees will be denoted respectively by A
and Ao. In order to analyze these two species, the following auxiliary species will be used:

� The species of triangles X: a single triangle will be denoted by X.
� The species of edges Y : a single edge will be denoted by Y .
� The species L of lists or linear orders.
� The species C and C3, respectively denoting the species of oriented cycles and of oriented
cycles of length 3.

� The species A� and A�
o , respectively denoting the species of non oriented and well oriented

solid 2-trees rooted at an edge.
� The species AM and AMo , respectively denoting the species of non oriented and well oriented
solid 2-trees rooted at a triangle.

� The species AM and A
M

o , respectively denoting the species of non oriented and well oriented
solid 2-trees rooted at a triangle having itself one of its edges distinguished.

� Finally, the species B of planted oriented solid 2-trees which consists of an oriented root
edge Y incident to a linear order (L-structure) of triangles X each of which having its two
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remaining sides being themselves B-structures. Therefore, the species B satis�es the following
combinatorial equation

B(X;Y ) = Y L(XB2(X;Y ));(2)

as illustrated by Figure 4.

... ...

L

BB BBB B
X X X

Y

Figure 4. A B-structure.

Note that B has been de�ned as a two-sort species where the sorts are X and Y . Since the
numbers of edges n and of triangles m are linked by the relation n = 2m + 1, equation (2) above
can either be expressed as a one sort species in X alone by setting Y := 1, or in Y alone, by setting
X := 1 respectively, giving the two following equations:

B(X; 1) = L(XB2(X; 1));(3)

B(1; Y ) = Y L(B2(1; Y )):(4)

Recall that setting X := 1 in a two sort species F (X;Y ) essentially means unlabelling the elements
of sort X. The second form in equation (4) is more suitable for the use of Lagrange inversion
formula. Therefore the species Y of edges will be used as the base singleton species to make our
computations and we will use the shorter form B(Y ) = Y L(B2(Y )) for (4). Hence, the structures
are labelled at edges. However, the results will be more elegant when expressed as a function of the
number m of triangles.

� Lagrange Inversion Formula

In this paper we make an extensive use of Lagrange inversion formula (see [2]). Let A and R be
formal series satisfying A(Y ) = Y R(A) and R(0) = 0. If F is another series, then

[yn]F (A(y)) =
1

n
[yn�1]F 0(t)Rn(t);(5)

where [yn]F (A(y)) denotes the coe�cient of yn in F (A(y)). Another main tool used in this paper
is the following dissymmetry theorem which has been proved in [5, 6]. Note that in their paper, the
authors made a proof for general 2-trees but obviously, the proof is also valid for both well oriented
and non oriented solid 2-trees.

Theorem 1. The species Ao and A, respectively of well oriented and (non oriented) solid 2-trees,
satisfy the following relations:

A�
o +AMo = Ao + AM

o ;(6)

and

A� + AM = A+ AM:(7)
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2. Well oriented solid 2-trees

We begin this section by expressing the species appearing in the dissymmetry theorem (oriented
case) in terms of the species B.

Theorem 2. The species A�
o , A

M

o and AM

o satisfy the following isomorphisms of species :

A�
o (Y ) = Y + Y C(B2(Y ));(8)

AMo (Y ) = C3(B(Y ));(9)

AM

o (Y ) = B(Y )3;(10)

where C and C3 are the species of oriented cycles and of oriented cycles of length 3.

2.1. Enumeration according to the number of edges.

� Labelled case

Let Ao[n] be the set of edge labelled solid 2-trees over n edges. We similarly de�ne A�
o [n], A

M

o [n]
and A

M

o [n]. Our �rst task is to determine jA�
o [n]j, the cardinality of the set A�

o [n]. By applying
Lagrange inversion with F (t) = C(t2) = � log(1� t2) and R(t) = L(t2) = (1 � t2)�1, we �nd

[yn]A�
o (y) = [yn�1]C(B2(y));

=
2

3(n� 1)

�
3(n� 1)=2

n� 1

�
:

Hence, we have

jA�
o [n]j = n![yn]A�

o (y) =
2

3
n(n� 2)!

�3(n�1)
2

n� 1

�
:(11)

Note that when a solid 2-tree over n edges is labelled, we have n di�erent choices for the root
edge. Therefore

njAo[n]j = jA�
o [n]j;

and the next proposition follows.

Proposition 1. The number jAo[n]j of well oriented edge-labelled solid 2-trees over n edges is given
by

jAo[n]j =
2

3
(n � 2)!

�3(n�1)
2

n� 1

�
; n > 1:(12)

Note that if we express equation (12) as a function of m, the number of triangles, we obtain

jAo;t[m]j =
m!

3

1

2m+ 3

�
3m + 3

m+ 1

�
; m � 1;(13)

where the index t in jAo;t[m]j means that the strucures are labelled at triangles instead of edges.

� Unlabelled case

We �rst need to compute the generating series eA�
o (y) of unlabelled A

�
o -structures. In order to

accomplish this, we use the following property: let F and G be two species, then we have

(F (G))�(x) = ZF ( eG(x); eG(x2); eG(x3); : : : );(14)

where the cycle index series ZF of a species is de�ned by

ZF (x1; x2; : : :) =
X
k�0

1

k!

X
�2Sk

�xF [�]x�11 x�22 x�33 � � � ;(15)
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where Sk is the symmetric group of order k, �i, the number of cycles of length i in � and �xF [�],
the number of F -structures left �xed under the relabelling induced by �. For example, if F = C,
the species of oriented cycles, we have

ZC(x1; x2; : : : ) =
X
k�1

�(k)

k
ln

�
1

1� xk

�
;(16)

where � is the Euler function. Now, applying this to the species A�
o � Y = Y C(B2), we geteA�

o (y) = yZC ( eB2(y); eB2(y2); eB2(y3); : : : );
= y

X
k�1

�(k)

k
ln

 
1

1� eB2(yk)
!
:

We note that since B is asymmetric (there are exactly n! labelled structures for each unlabelled

structures), we have eB(y) = B(y), hence

j eA�
o [n]j = [yn] eA�

o (y);

= [yn�1]
X
k�1

�(k)

k
ln

�
1

1� B2(yk)

�
:

But

[yn�1] ln

�
1

1� B2(yk)

�
=

2k

n� 1
[t

n�1

k
�2](1� t2)�

n�1

k
�1;

=
2k

3(n� 1)

�
3(n� 1)=2k

(n � 1)=k

�
:

Obviously, k must divide n� 1 and (n� 1)=k must be even. Letting d = (n� 1)=k, we �nally get

j eA�
o [n]j =

2

3(n� 1)

X
d

�((n� 1)=d)

�
3d=2

d

�
;(17)

the sum being taken over all even divisors d of n� 1. To compute j eA4
o [n]j, we use equation (9) and

the fact that

ZC3
(y1; y2; : : : ) =

1

3
(y31 + 2y3):

We have

[yn]B3(y) =
1

n

�
3(n� 1)=2

n� 1

�
;

and

[yn]B(y3) = [yn=3]B(y) =
3

n

�
(n � 3)=2

n=3� 1

�
;

so that

j eAMo [n]j = 1

3n

�3(n�1)
2

n� 1

�
+

2

n
�(3jn)

� (n�3)
2

n
3 � 1

�
;(18)

where �(3jn) = 1 if 3 divides n and 0 otherwise. It can be easily shown, by a very similar way that

j eAM

o [n]j =
1

n

�3(n�1)
2

n� 1

�
:(19)

And we get the following result:

Proposition 2. The number of unlabelled well oriented solid 2-trees over n edges is given by

j eAo[n]j =
2

3(n� 1)

X
d

�

�
n� 1

d

��
3d=2

d

�
+ �(3jn)

2

n

� n�3
2

n
3 � 1

�
�

2

3n

�3(n�1)
2

n� 1

�
;(20)

the �rst sum being taken over all even divisors d of n� 1.
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We can also write j eAo;t[m]j, in function of the number m of triangles, as follows

j eAo;t[m]j =
1

3m

X
djm

�
�m
d

��3d
d

�
+ �(3j2m+ 1)

2

2m + 1

�
m � 1
2m�2
3

�
�

2

3(2m+ 1)

�
3m

m

�
:

Note that this expression is also the number of unlabelled 3-gonal cacti on m triangles (see [3]).
There is an obvious bijection between these objects and solid 2-trees. The sequence of these numbers
is known as sequence A054423 in the on-line encyclopedia of integers sequences ([11]).

2.2. Enumeration according to edge degree distribution.

Let r = (r0; r1; r2; : : : ) be an in�nite set of formal variables. Recall that A[n] is the set of solid
2-trees over n edges. In order to keep track of the edge degree distribution, we introduce, for a given
number n, the following weight function:

w : A[n] �! Q[r1; r2; : : : ]
s 7�! w(s)

(21)

where Q[r1; r2; : : : ] is the ring of polynomials over the �eld of rational numbers Q in the variables
r1; r2; : : : and where the weight of a given A-structure s is de�ned by w(s) = rn11 rn22 � � � , where ni
is the number of edges of degree i in s. Equations (2), (8), (9) and (10) have the following weighted
versions:

Br = Y Lr0 (B
2
r );(22)

and

A�
o;w(Y ) = r1Y + Y Cr(B

2
r );(23)

AMo;w(Y ) = C3(Br);(24)

AM

o;w(Y ) = B3r ;(25)

where Cr is the weighted species of cycles such that a cycle of length i has the weight ri, and its
derivative Lr0 which is the species of lists where a list of length i has the weight ri+1. These species
have the following generating series:

Cr(y) = r1y +
r2
2
y2 +

r3
3
y3 + � � � ;

and

Lr0 (y) = (Cr(y))
0 = r1 + r2y + r3y

2 + � � � :

Let ~n = (n1; n2; n3; : : : ) be a vector of nonnegative integers. Recall that there exists a 2-tree having
a total of n edges and ni edges of degree i if and only if the following relations are satis�ed:X

i

ni = n and
X
i

ini = 3

�
n� 1

2

�
:(26)

� Labelled case

Let ~n be a vector satisfying (26). Then the number jA�
o [~n]j of well oriented edge labelled solid

2-trees pointed at an edge, and having ~n as edge degree distribution, is given by

jA�
o [~n]j = n![rn11 rn22 � � � ][yn]A�

o;w(y):(27)

We have

[yn]A�
o;w(y) =

1

n� 1
[tn�2]

d

dt
(Cr(t

2)) � Ln�1
r0 (t2);

=
2

n� 1
[tn�3](r1 + r2t

2 + r3t
4 + � � � )n;

=
2

n� 1
[tn�3]

X
`1+`2+���=n

�
n

`1; `2; : : :

�
r`11 r

`2
2 � � � t2`2+4`3+6`4+���:
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Finally, we obtain

[yn]A�
o (r; y) =

X
`1;`2;:::

�
n

`1; `2; : : :

�
r`11 r

`2
2 � � � ;

the sum being taken over all vectors (`1; `2; : : : ) satisfyingX
i

`i = n and
X
i

2(i� 1)`i = n� 3:

We note that this condition is the same as in (26). Hence using (27) we have

jA�
o [~n]j = 2n(n� 2)!

�
n

n1; n2; : : :

�
:(28)

As in the unweighted case, we have

jA�
o [~n]j = njAo[~n]j;

and therefore,

jAo[~n]j = 2(n� 2)!

�
n

n1; n2; : : :

�
:(29)

� Unlabelled case

Let ~n = (n1; n2; : : : ) be a coherent edge degree distribution. In order to compute the number

j eA�
o [~n]j of unlabelled A

�
o -structures having ~n as edge degree distribution, we use the fact that given

two weighted species Fw and Gv, the generating series eH(y) of unlabelled H-structures, where
H = Fw(Gv), is given by eH(y) = ZFw ( eGv(y); eGv2(y

2); eGv3(y
3); : : : ):(30)

In the present case, we have A�
o;w = r1Y + Y Cr(B2r ), and since the species B is asymmetric,eBr(y) = Br(y), hence

j eA�
o [~n]j = [rn11 rn22 � � � ][yn�1]ZCr

(B2r (y);B
2
r2 (y

2);B2r3(y
3); : : : ):(31)

But ZCr
(y1; y2; : : : ) can be expressed as the following sum:

ZCr
(y1; y2; : : :) =

X
k�1

rk
k

X
djk

�(d)y
k=d
d :(32)

Combinatorially speaking, the integer k represents the degree of the root edge. Hence, k may only
belong to Supp(~n), the support of ~n which is the set of integers i such that ni 6= 0. So, we have

j eA�
o [~n]j = [rn11 rn22 � � � ][yn�1]

X
k2Supp(~n)

rk
k

X
djk

�(d)B2k=d
rd

(yd):(33)

First, we compute

[yn�1]B2k=d
rd

(yd) = [y(n�1)=d]B2k=d
rd

(y):

From Lagrange inversion, we have

[ym]B`rd (y) =
1

m
[tm�1]

d

dt

�
t`
�
Lm
r0d(t

2);

=
`

m

X
`1;`2;:::

�
m

`1; `2; : : :

�
rd`11 rd`22 � � � ;(34)

where the `i's satisfy
P

i `i = m and
P

i 2(i � 1)`i = m � `. Now, letting m = (n � 1)=d and
` = 2k=d, we �nd

j eA�
o [~n]j = [rn11 rn22 � � � ]

2

n� 1

X
k2Supp(~n)

X
djk

�(d)
X

`1;`2;:::

�
(n� 1)=d

`1; `2; : : :

�
rd`11 rd`22 � � � rd`k+1k � � � :(35)

Finally, we have
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Proposition 3. Let ~n be a coherent edge degree distribution, then the number j eA�
o [~n]j of unlabelled

oriented solid 2-trees pointed at an edge and having ~n as edge degree distribution is given by

j eA�
o [~n]j =

2

n� 1

X
k2Supp(~n)

X
djfk;~n��kg

�(d)

� n�1
d

~n��k
d

�
;(36)

where ~n��k
d = (n1d ;

n2
d ; : : : ;

nk�1
d ; : : : ), for d � 1 and� n�1
d

~n��k
d

�
=

� n�1
d

n1=d; n2=d; : : : ; (nk � 1)=d; : : :

�
:

Let j eAMo [~n]j and j eAM

o [~n]j be the numbers of unlabelled oriented solid 2-trees pointed respectively at
a triangle and at a triangle pointed itself at one of its edge and having ~n as edge degree distribution.
We have

Proposition 4. Let ~n be a coherent edge degree distribution, then the numbers j eA4
o [~n]j and j eAM

o [~n]j
are given by

j eAMo [~n]j =
1

n

�
n

n1; n2; : : :

�
+
�(3j~n)

n

�
n=3

n1=3; n2=3; : : :

�
;(37)

j eA M

o [~n]j =
3

n

�
n

n1; n2; : : :

�
;(38)

where

�(3j~n) =

�
1; if all components of ~n are multiples of 3;
0; otherwise.

Proof. Let us start with j eAMo [~n]j. We have

j eAMo [~n]j = [rn11 rn22 � � � ][yn] eAMo;w(y);
= [rn11 rn22 � � � ][yn]ZC3

( eBr(y); eBr2 (y2); : : : );
= [rn11 rn22 � � � ][yn]ZC3

(Br(y);Br2 (y
2); : : : ):

Since ZC3
(y1; y2; : : : ) = (y31 + 2y3)=3,

j eAMo [~n]j = 1

3
[rn11 rn22 � � � ][yn]

�
B3r (y) + 2Br3(y

3)
�
:(39)

From equation (34) letting m = n, ` = 3 and d = 1, we get

[yn]B3r(y) =
3

n

X
`1;`2;:::

�
n

`1; `2; : : :

�
r`11 r

`2
2 � � � ;(40)

where the `i's satisfy
P

i `i = n and
P

i 2(i � 1)`i = n� 3. Now letting m = n=3, ` = 1 and d = 3,
we get

[yn]Br3 (y
3) = [yn=3]Br3 (y) =

3

n

X
`1;`2;:::

�
n=3

`1; `2; : : :

�
r3`11 r3`22 � � � ;(41)

where the `i's satisfy
P

i `i = n and
P

i 2(i�1)`i = n�1. Now letting `i = ni in (40) and `i = ni=3
in (41), we get equation (37). We obtain (38) in a very similar way. �

Finally, using the dissymmetry theorem, we obtain the �nal result of this section:

Proposition 5. Let ~n be a coherent edge degree distribution, then the number j eAo[~n]j of unlabelled
oriented solid 2-trees having ~n as edge degree distribution is given by

j eAo[~n]j =
2

n � 1

X
k2Supp(~n)

X
djfk;~n��kg

�(d)

� n�1
d

~n��k
d

�
+
�(3j~n)

n

�
n
3

n1
3 ;

n2
3 ; : : :

�
�

2

3n

�
n

n1; n2; : : :

�
;(42)
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where

�(3j~n) =

�
1; if all components of ~n are multiples of 3,
0; otherwise,

~n� �k
d

=

�
n1
d
;
n2
d
; : : : ;

nk � 1

d
; : : :

�
for d � 1;

and � n�1
d

~n��k
d

�
=

� n�1
d

n1=d; n2=d; : : : ; (nk � 1)=d; : : :

�
:

3. Non-oriented solid 2-trees

In order to compute the numbers of labelled and unlabelled solid 2-trees, we use Burnside's
Lemma with the group Z2 = fId; �g, where the action of � is to reverse the orientation of the
structures.

3.1. Enumeration according to the number of edges.

� Labelled case

The labelled case is particularly simple since every labelled oriented 2-tree has exactly two possible
orientations except the structure consisting of a single oriented edge. Hence, we have

Proposition 6. The number jA[n]j of edge labelled solid 2-trees over n edges is given by

jA[n]j =

�
1
2 jAo[n]j if n > 1;
1 if n = 1:

(43)

Of course, the same argument will remain valid for all other pointed structures discussed in the
previous section.

� Unlabelled case

In the unlabelled case, the action of � is not so trivial. Figure 5 shows a structure which is left
�xed under the action of � . Let A� be the species of (unoriented) solid 2-trees rooted at an edge.
This species can be expressed as the following quotient species (see [4, 5, 6]):

A� =
A�
o

Z2
=

Y + Y C(B2(Y ))

Z2
;(44)

where Z2 = fId; �g is the two element group consisting of the identity and � , whose action is to
reverse the orientation of the edges. Hence, an unlabelled A�-structure is an orbit fa; � � ag under
the action ofZ2, where a is any (oriented) unlabelled A�

o -structure.

τ

Figure 5. An unlabelled 2-tree invariant under the action of � .

Let us introduce the auxiliary species BSym of � -symmetric B-structures, i.e the species of B-

structures left �xed under the edge orientation inversion. Denote by eBSym(y) its ordinary generating
series. Recall the functional equation veri�ed by the species B:

B = Y L(B2):
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In order to compute eBSym(y), we have to distinguish two cases according to the parity of k, the
length of the list of B2-structures attached to the rooted edge. First consider the case where k is
odd (Figure 6 shows an example where k = 5). A � -symmetric B-structure must have a reective
symmetry plane. This plane contains the middle triangle of the list. When an inversion of the
orientation of the rooted edge is applied, the two B-structures glued on the two (non root) sides
of the middle triangle (structures B5 and B50 in Figure 6) are isomorphically exchange. The k � 1
remaining triangles are exchanged pairwise carrying with them each of their attached B-structures
as shown in Figure 6. This gives a factor of Bk(y2). We then have to sum the previous expression
over all odd values of k. The case where k is even, is very similar except that the symmetry plane
must passes between two triangles as shown in Figure 7 and we get the same expression summed
over all even values of k. Therefore, we haveeBSym(y) = y

X
k�0

Bk(y2) =
y

1� B(y2)
:(45)

B2B1 B3 B4 B5 B5’ B B B B4’ 3’ 2’ 1’

Figure 6. A BSym-structure, k odd.

B2B1 B3 B4 B B B B4’ 3’ 2’ 1’

Figure 7. A BSym-structure, k even.

From expression (45) and another use of Lagrange inversion, we easily obtain the following result.

Proposition 7. The number j eBsym[m]j of � -symmetric unlabelled oriented B-structures is given by

j eBsym[m]j =

8>>>><>>>>:
1

m + 1

�
3m=2

m

�
if m is even;

1

m

�
(3m � 1)=2

m + 1

�
+

1

3m

�
3(m + 1)=2

m+ 1

�
if m is odd;

(46)

where m = (n� 1)=2 is the number of triangles and n, the number of edges.



ENUMERATION OF SOLID 2-TREES 11

We now give an expression for the generating function of unlabelled quotient structures, which
will allow us to enumerate various kind of unlabelled solid 2-trees (see [4], proposition 2.2.4).

Proposition 8. Let F be any (weighted) species and G, a group acting on F . Then the ordinary
generating series of the quotient species F=G is given by

(F=G)�(y) =
1

jGj

X
g2G

X
n�0

jFix
eFn
(g)jwy

n;(47)

where Fix
eFn
(g) denotes the set of unlabelled F -structures left �xed under the action of g 2 G and

jFix
eFn
(g)jw represents the total weight of this set.

Using an unweighted version of Proposition 8 with F = A�
o and G =Z2, we obtain

eA�(y) =
1

2

X
n�0

jFix
eA�

o;n
(Id)jyn +

1

2

X
n�0

jFix
eA�

o;n
(� )jyn;(48)

=
1

2
eA�
o (y) +

1

2
eBsym(y);(49)

since the oriented A�-structures left �xed under the action of � have the same generating series as
the BSym-structures. Then, it becomes easy to extract the coe�cient of yn in relation (49), and we
get the number jA�[n]j of edge pointed solid 2-trees over n edges

jA�[n]j =
1

2
j eA�

o [n]j+
1

2
j eBSym[n]j:(50)

We now consider the species AM of triangle rooted solid 2-trees. Since AM = AMo =Z2, by virtue of
Proposition 8, we have eAM(y) = 1

2

X
n�0

jFix
eAMo;n

(Id)jyn +
1

2

X
n�0

jFix
eAMo;n

(� )jyn;(51)

where jFix
eAMo;n

(� )j, the number of � -symmetric AM-structures over n edges has to be determined.

As shown in Figure 8, such a structure must have an axis of symmetry which coincides with one of
the root triangle's medians. Since the structure is already considered up to rotation around the root
triangle, the choice among the three possible axes is arbitrary. The base side of the triangle must
be a BSym-structure while the two other sides must be isomorphic copies of the same B-structure.
Therefore, eAM(y) = 1

2
eAMo (y) + 1

2
eBSym(y)B(y2 ):(52)

B B’

B sym

Figure 8. A � -symmetric AMo -structure.

In a very similar way, since AM= A
M

o=Z2, we obtaineAM(y) =
1

2
eAM

o (y) +
1

2
eBSym(y)B(y2):(53)

Finally, using equations (49), (52), (53) and the dissymmetry theorem, we get



12 MICHEL BOUSQUET AND CEDRIC LAMATHE

Proposition 9. The ordinary generating function of unlabelled solid 2-trees is given by

eA(y) = 1

2
( eAo(y) + eBSym(y));(54)

where eBSym(y) is the ordinary generating series of � -symmetric oriented B-structures. Consequently,

the number j eAt[m]j of unoriented solid 2-trees over m triangles is given by

j eAt[m]j =
1

2
(j eAo;t[m]j+ j eBsym[m]j);(55)

where

j eAo;t[m]j =
1

3m

X
djm

�
�m
d

��3d
d

�
+ �(3j2m+ 1)

2

2m + 1

�
m � 1
2m�2
3

�
�

2

3(2m+ 1)

�
3m

m

�
:

and

j eBsym[m]j =

8>>>><>>>>:
1

m + 1

�
3m=2

m

�
if m is even;

1

m

�
(3m � 1)=2

m + 1

�
+

1

3m

�
3(m + 1)=2

m+ 1

�
if m is odd:

(56)

To express j eAt[m]j in terms of n the number of edges, we only have to set n := 2m+ 1.

3.2. Enumeration of solid 2-trees according to the edge degree distribution.

We consider again the weight function de�ned by

w : A[n] �! Q[r1; r2; : : : ]
s 7! w(s);

(57)

where r = (r0; r1; r2; : : : ) is an in�nite set of formal variables and n is any positive integer.

� Labelled case

Using the same argument as in the unweighted case, we have

jA[~n]j =

�
1
2 jAo[~n]j if n > 1;
1 if n = 1;

(58)

where ~n is a valid edge degree distribution, n is the number of edges and jA[~n]j = [rn11 rn22 � � � ][yn]Aw(y).

� Unlabelled case

Using the weighted versions of equations (49), (52) and (53), we get

eA�
w(y) =

1

2
eA�
o;w(y) +

1

2
eBsym;w(y);(59)

eAMw(y) =
1

2
eAMo;w(y) + 1

2
eBsym;w(y)Bw(y

2);(60)

eAM

w(y) =
1

2
eAM

o;w(y) +
1

2
eBsym;w(y)Bw(y

2):(61)

where eBsym;w(y) is the ordinary generating series of unlabelled weighted � -symmetric B-structures.
Now applying the dissymmetry theorem leads to

eA(y) = 1

2
eAo;w(y) +

1

2
eBsym;w(y):(62)

The only unknown term in the above equation is eBsym;w(y). We �rst establish an additional
condition on the vertex degree distribution for an edge rooted oriented solid 2-tree to be � -symmetric.
Since the root edge must remain �xed and all other edges are exchanged pairwise, the edge degree
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distribution vector ~n must have all its components even except one odd corresponding to the rooted
edge.

For an edge degree distribution ~n = (n1; n2; : : :) satisfying the previous condition, and using the

fact that eBsym;w(y) = yrkB
k(y2), we have

j eBsym;w[~n]j = 2k

n� 1

� n�1
2

~n��k
2

�
;(63)

where k is the root edge degree. We now present the �nal result of this paper.

Proposition 10. Let ~n be a vector satisfyingX
i

ni = n and
X
i

ini = 3m:

Then, the number j eA[~n]j of (non oriented) unlabelled solid 2-trees having ~n as edge degree distribu-
tion is given by

j eA[~n]j = 1

2
j eAo[~n]j+

1

2
j eBsym[~n]j;(64)

where

j eBsym[~n]j =
8<:

2k

n� 1

� n�1
2

~n��k
2

�
; if ~n has a unique odd component;

0; otherwise;

�k being the vector having 1 at the kth component and 0 everywhere else, and

j eAo[~n]j =
2

n� 1

X
k2Supp(~n)

X
djfk;~n��kg

�(d)

� n�1
d

~n��k
d

�
+

�(3j~n)

n

�
n=3

n1=3; n2=3; : : :

�
�

2

3n

�
n

n1; n2; : : :

�
:

Appendix.

To conclude this paper, we give here two tables showing the numbers of unlabelled solid 2-trees
oriented and unoriented as well as the number of unlabelled � -symmetric B-structures. The �rst
table gives these numbers according to the number n of edges, and the second, according to edge
degree distribution. We use the notation 1n12n2 � � � , where ini means ni edges of degree i.

n j eAo[n]j j eBsym[n]j j eA[n]j
1 1 1 1
3 1 1 1
5 1 1 1
7 2 2 2
9 7 3 5
11 19 7 13
13 86 12 49
15 372 30 201
17 1825 55 940
19 9143 143 4643
21 47801 273 24037
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~n j eAo;w[~n]j j eBsym;w[~n]j j eAw[~n]j

172131 2 0 1
182231 9 3 6

112213141 46 0 23
11051 3 1 2
1154151 2 0 1
1163251 17 5 11
1152271 34 0 17
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