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Many-cores can execute multiple multithreaded tasks in parallel. A task performs most efficiently when it
is executed over a spatially connected and compact subset of cores so that performance loss due to commu-
nication overhead imposed by the task’s threads spread across the allocated cores is minimal. Over a span
of time, unallocated cores can get scattered all over the many-core, creating fragments in the task mapping.
These fragments can prevent efficient contiguous mapping of incoming new tasks leading to loss of perfor-
mance. This problem can be alleviated by using a task defragmenter, which consolidates smaller fragments
into larger fragments wherein the incoming tasks can be efficiently executed. Optimal defragmentation of a
many-core is an NP-hard problem in the general case. Therefore, we simplify the original problem to a prob-
lem that can be solved optimally in polynomial time. In this work, we introduce a concept of exponentially
separable mapping (ESM), which defines a set of task mapping constraints on a many-core. We prove that
an ESM enforcing many-core can be defragmented optimally in polynomial time.
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1. INTRODUCTION

Many-cores are processors with dozens of processing cores, which will replace current
multicore processors that have only a few cores [Henkel et al. 2012]. A many-core
executes several multithreaded tasks in parallel to exploit its full parallel process-
ing potential. In addition, threads of the task can be allocated to one or more cores
and can be migrated among the cores at runtime, but the number of cores allocated
to the task remains constant—by definition, a moldable task [Dutot et al. 2004]. To
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Fig. 1. Abstract architectural diagram of a many-core with cores arranged in a 2D lattice connected together
by a mesh NoC.

Fig. 2. Observed slowdown in execution time of different multithreaded benchmarks in an isolated execution
(executing alone) when its four threads are pinned across four corner cores (cores with only two neighboring
cores) of a 64-core many-core in comparison to when they are compactly placed together.

reduce context-switching overhead, many-cores also operate with one thread per core
execution model [Pathania et al. 2016]. This also keeps the problem of tasks-to-cores
mapping on the many-core discrete.

The cores in a many-core are arranged in a 2D lattice connected by a 2D-mesh
network on chip (NoC) as shown in Figure 1. The cores have private L1 instruction
and data caches, and a larger L2 cache. The processing core along with its caches form
a tile. Each tile is connected through a router to the four adjacent tiles—one in each
direction. Tiles are kept coherent using cache directories distributed alongside L2 (the
last-level cache (LLC)). Multiple memory controllers attached to the perimeter cores
provide access to the off-chip dynamic random access memory (DRAM).

A multithreaded task on the many-core in general performs more efficiently when the
set of cores allocated to it are contiguous (spatially connected by an isolated NoC link)
and compact (the shape formed by the allocated cores has minimum perimeter). Under
such an allocation, the communication cost between the task’s threads spread over the
allocated cores is minimal. Figure 2 shows the slowdown in an isolated execution time
experienced by different multithread benchmarks on a 64-core many-core when their
four threads are pinned to the four corner cores of the many-core against when they
are placed together.1 Slowdowns observed in the benchmarks strongly correlate with
their originally characterized interthread communications [Bienia et al. 2008].

1Refer to Section 5 for complete details of our experimental setup.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 2, Publication date: March 2017.



Defragmentation of Tasks in Many-Core Architecture 2:3

Fig. 3. Example showing 10.16% reduction in an arriving task’s (Task 7) execution time if mapped after
defragmentation against when mapped without defragmentation. An increase of 3.92% in execution time of
the task migrated for defragmentation (Task 5) is also observed as an overhead.

The relative benefits from thread co-location would generally increase with the in-
crease in number of spawned threads of a benchmark because of an increase in in-
terthread synchronizations. Further, under a contiguous allocation, interthread NoC
traffic generated by one task remains isolated and does not interfere with another
task’s NoC traffic. This isolation reduces NoC congestion, enhancing the many-core’s
multiprogram performance.

Many-cores are now being deployed in embedded servers [Guan and Gu 2010],
wherein tasks can arrive at any time and permanently leave the system once they
have finished execution—by definition, an open system [Feitelson and Rudolph 1998].
Depending on instruction lengths (input sizes) and compositions, the number of cores
allocated (threads spawned) and interthread communications execution time of differ-
ent tasks can differ widely. Therefore, neither the arrival nor the departure time of
the tasks are known in an open system. Over a span of time, this results in unallo-
cated cores getting scattered all over the many-core, generating fragments in the task
mapping. Formation of these fragments leads to the problem of fragmentation.

Fragmentation makes it difficult to perform efficient compact contiguous mapping
of new incoming tasks. Fragmentation can be reduced by using a defragmenter, which
consolidates smaller fragments into larger fragments. Defragmentation would lead to a
more responsive open system. A centralized defragmenter is sufficient for a multicore.
However, for a many-core, given the large optimization search space, it would not scale
up. Therefore, a distributed defragmenter that distributes its processing across all
cores in the many-core and allows multiple fragments to merge in parallel is required.

Defragmentation motivation. Figure 3 shows a simple illustration of how fragmen-
tation leads to inefficiency on a 64-core processor. Initially, the processor is executing a
total of six tasks as shown in Figure 3(a). Tasks 1 (blackscholes) and 6 (x264) finish and
leave the system, changing the many-core state to Figure 3(b). Task 7 (bodytrack) then
arrives with a requirement of 16 cores. Figure 3(c) shows the state and corresponding
execution time of Task 7 if it is mapped without defragmentation. Figure 3(d) shows
the state in an alternate timeline if defragmentation is performed first by migrating
Task 5 (streamcluster) in the middle of its execution before Task 7 is mapped. Fig-
ure 3(e) shows the state and corresponding execution time of Task 7 if it is mapped
after defragmentation. Experiments show that the execution time of Task 7 is reduced
by 30 ms (10.16%) in the state depicted by Figure 3(e) in comparison to the state in
Figure 3(c) because of the optimized interthread NoC communications. In contrast, the
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Fig. 4. Different distinct shapes of a tetromino; polyomino of size four.

performance penalty of migration on Task 5 for defragmentation is comparatively less
at 14ms (3.92%). Task 5 experiences an elongated execution because thread migrations
force its threads to wait until the caches on the newly assigned core are refilled from
DRAM. Nevertheless, we observe that the net gain in overall performance of the system
is positive.

Computation complexity. The problem of many-core defragmentation is identical to
the mathematical problem of mapping polyominoes. Polyominoes are complex geometric
shapes formed by a combination of simple unit square shapes. Figure 4 shows five
distinct shapes that can be formed by a tetromino (polyomino of size four) alongside
each shape’s average Manhattan distance (AMD). The AMD of a polyomino shape is
the average of all rectilinear distances between unit squares forming the shape in
2D space. Rectilinear distance is the shortest distance between two points on an XY
grid. A unit square is analogous to a thread to task mapping on a many-core. A task’s
performance, when allocated a contiguous set of cores, is negatively correlated to the
AMD of the polyomino shape formed by the allocated cores. This can be observed in
the execution time of the streamcluster benchmark when it is allocated cores in the
different tetromino shape as shown in Figure 4.

The number of distinct shapes that a polyomino of a given size can form grows
superexponentially due to its combinatorial nature and is given by OEIS sequence
A000105 [Sloane 2003]. Further, mapping a set of polyominoes onto a larger underlying
polyomino without overlapping is an NP-hard problem [Demaine and Demaine 2007].
The problem exactly manifests itself while defragmenting many-cores, making the
problem of many-core defragmentation NP-hard as well.

Our novel contributions. In this work, we present our idea of exponentially separable
mapping (ESM), which defines task mapping constraints on a many-core. We show that
this mapping exhibits properties that allow optimal many-core defragmentation to be
performed distributively. We also introduce a defragmenter, McD (short for many-core
defragmenter), that shows how ESM properties can be exploited for optimal defrag-
mentation of the many-core. McD disburses all of its processing overhead across all
unallocated cores in the many-core, allowing it to scale up as the number of cores in
the many-cores continue to increase in the future.

2. RELATED WORK

Singh et al. [2013] summarize the prior research that has been conducted on map-
ping incoming tasks on many-cores. This work focuses on many-cores in open systems
wherein both task arrivals and departures are unknown. Incoming tasks can be mapped
on a many-core either contiguously or noncontiguously. Contiguous mapping stipulates
that cores allocated to a task must always be spatially connected to each other, whereas
no such restriction is enforced in noncontiguous mapping.

Contiguous mapping ensures that NoC latency experienced by task threads when
communicating is minimal as they are spatially collocated. Further, it also ensures
isolation of interthread NoC communication traffic between tasks executing in parallel,
reducing NoC congestion. Note that even under contiguous mapping, there will be some
external NoC interference due to the OS, cache directories, and DRAM controllers on
the periphery. Thus, contiguous mapping improves system performance by optimizing
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NoC communications. SHiC, a contiguous mapping heuristic introduced in Fattah
et al. [2013], uses smart stochastic hill climbing in an attempt to map the incoming
tasks contiguously with minimal fragmentation.

Noncontiguous mapping, on the other hand, optimizes system utilization at the ex-
pense of communication. It occurs often in an open system with many-cores that there
are enough unallocated cores available to satisfy the requirements of incoming tasks,
but they are not spatially connected. Noncontiguous mapping does not wait for the re-
quired number of spatially connected cores to become available but instead maps them
immediately on whichever location the cores are available. This reduces the waiting
time for the task but affects its performance throughout execution due to increased
communication overhead. In multiprogram workload execution, noncontiguous alloca-
tion also degrades the performance of not just the new incoming task that is being
mapped but also previously mapped tasks due to NoC congestion. The CASqA noncon-
tiguous mapping heuristic introduced in Fattah et al. [2014] initially attempts to map
the incoming task contiguously, but if there are not enough contiguous unallocated
cores available, it uses nearby cores to map the remaining task noncontiguously.

Both SHiC and CASqA attempt to reduce fragmentation; however, their efficacy
is limited because they to do not perform any thread migrations. The task defrag-
menter [Ng et al. 2016] is an OS subroutine that combines multiple sets of noncontigu-
ous unallocated cores into a single contiguous set of unallocated cores by performing
thread migrations. The incoming task is then mapped efficiently into this newly created
contiguous unallocated core set. However, thread migrations involved in the process
of defragmentation introduce performance penalties on threads being migrated due to
cold cache misses on the newly assigned cores. Therefore, a defragmenter needs to be
careful to not perform too many thread migrations or risk being detrimental instead of
beneficial to the overall system performance.

Furthermore, a many-core defragmenter should also be scalable so that it continues
to operate efficiently as the number of cores in a many-core increases. For scalable
solutions, multiagent systems (MAS) [Ebi et al. 2009] are often employed, which are an
inherently distributed constructs. Faruque et al. [2008] presented ADAM, a heuristic
MAS defragmenter for many-cores in which cores are divided into clusters, with an
agent assigned to each cluster. Neighboring cluster agents exchange unallocated cores
to make space for an incoming task and perform task migrations when necessary. A
MAS that operates only locally is bound to get stuck in local minima, which may not
be optimal.

Past research tackles the many-core fragmentation problem by proposing suboptimal
defragmentation heuristics. However, we solve a constrained version of the many-
core fragmentation problem optimally in this work. Our evaluations show that our
constraint-optimal approach can result in substantial performance gains on a many-
core compared to the state-of-the-art heuristics when constraints are enforced.

In the future, we plan to extend our work to heterogeneous (asymmetric) many-
core architectures. A heterogeneous many-core couples together processing cores with
different power-performance characteristics alongside application-specific accelerators
on a single chip. Scheduling support for heterogeneous multicores is already well de-
veloped [Li et al. 2007]. Development of scalable power performance–oriented sched-
ulers for heterogeneous many-cores is a subject of active research [Winter et al. 2010].
However, to best of our knowledge, the problem of defragmentation on heterogeneous
many-cores is yet to be studied.

3. EXPONENTIALLY SEPARABLE MAPPING

We begin by introducing our novel idea of ESM that specifies a set of task mapping
constraints for many-cores. ESM puts constraints on the number of cores that can
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Fig. 5. Different size ES polyominoes.

Fig. 6. Different size separation of a 16-core processor.

be allocated to a task, the shape of polyominoes that these cores can form, and the
physical location of those polyominoes. ESM is akin to a projection of the binary buddy
system [Knowlton 1965] in a 2D space [Li and Cheng 1990] but with inherent support
for distributed optimization.

Number constraint. ESM requires that a task must always be allocated a number
of cores in an exponentiation series with base 2 (or power of two), for instance, 1, 2,
4, 8, . . . 2n, cores. If a task comes with a core requirement that is not a power of two,
its requirement is buffered up to the next highest (ceiling) power of two. Speedup in
a task execution time is generally monotonically nondecreasing with the number of
assigned cores [Pathania et al. 2016]. Thus, by spawning more threads, task would
experience an equal or lower response time than it would have if the buffered cores
were left idle, preventing system underutilization. However, this constraint also limits
the defragmentation benefits for nonscalable tasks, which are not allowed to or are
incapable of spawning additional threads on the buffered cores.

Shape constraint. ESM requires that cores allocated to the task form a contiguous
minimum perimeter rectangular polyomino. We define polyominoes that follow the
shape constraint along with the number constraint as exponentially separable (ES)
polyominoes. An ES polyomino of size 2n can be obtained by symmetrically reflecting
a 2n−1 ES polyomino along one of its edges. If n is odd, reflection happens along the x-
dimensional edge. If n is even, reflection happens along the y-dimensional edge. Figure 5
visualizes the ES polyominoes of different sizes. ESM also requires the underlying
many-core on which tasks are being mapped to also be an ES polyomino.

Location constraint. ESM requires that an ES polyomino of size 2n is physically
placed on a many-core at a location so that it does not get separated (dissected) in
nth separation of the many-core. A nth separation of the many-core divides the many-
core in nonoverlapping ES polyominoes of size 2n, individually referred to as an nth

slice. Figure 6 shows some different size separations for a 16-core processor. Note that
mapped ES polyominoes that do not get separated in the nth separation will also not
get separated in the (n + 1)th separation, as the latter produces slices that are larger
and subsume the slices produced by the former.

Figure 7 shows simple examples of mappings that are not ESM. Figure 7(a) has a task
with three cores allocated to it, which violates the number constraint. Figure 7(b) has a
task with four cores (i.e., 22 cores) allocated to it, but the polyomino that these cores form
is not an ES polyomino, violating the shape constraint. Figure 7(c) has a task mapped
to 22 cores, and the polyomino that these cores form is an ES polyomino. However, this
polyomino gets split in the 2nd separation, violating the location constraint.
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Fig. 7. Example of mappings that are not ESM.

Fig. 8. Split of a power-of-two number 2N into a smaller power of two numbers.

We now present the theoretical proofs for the properties that ESM possesses. McD
can exploit these properties to perform optimal and distributed defragmentation of a
many-core that enforces ESM.

LEMMA 3.1. A set of ES polyominoes with total polyomino size ≤ 2n can be split into
two sets of ES polyominoes with total polyomino size ≤ 2n−1.

PROOF. A singleton set of ES polyomino contains only one element and cannot be split
further. For a set of ES polyominoes with cardinality greater than one, the problem
is equivalent to proving that a power of two number 2n when expressed as a sum of
smaller positive power of two numbers can be split into two sets each having sum equal
to 2n−1. Figure 8 shows the binary tree representing all possible combinations in which
smaller exponential numbers can be combined together to form a larger exponential
number 2n. It can be seen that the root (i.e., 2n) can be reached only when the constituent
numbers form two separate sets, each with a total sum equal to 2n−1. The proof can be
extended to total sum ≤2n by removing the same numbers from both original sets and
the two derived separated sets, hence proved.

LEMMA 3.2. A set of ES polyominoes of total polyomino size ≤2n can always be mapped
without overlapping onto a many-core in the shape of an ES polyomino of size 2n.

PROOF. If the set of ES polyominoes to be mapped is a singleton, then it can be
mapped on the many-core, the latter being an ES polyomino of greater or equal size
in comparison to the former. If the set has a cardinality greater than one, then based
on Lemma 3.1 it can be separated into two sets of polyominoes of total polyomino size
≤ 2n−1 each. In parallel, the (n− 1)th separation of the many-core will divide it into two
equivalent many-cores (two (n − 1)th slices), each in the shape of an ES polyomino of
size 2n−1. Each part of the original many-core can be assigned to one of the separated
sets of ES polyominoes for mapping. The argument can be repeated recursively until all
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Fig. 9. Actions performed by an agent of size 2n to merge with another agent of the same size in a MAS
round.

polyominoes are mapped without overlapping on the many-core. The mapping obtained
is also ESM since none of the constraints is violated, hence proved.

LEMMA 3.3. If any of the nth slices obtained from the nth separation of an ESM
enforcing the many-core contains more than one ES polyomino mapped to it, then all
mapped ES polyominoes in that slice are of size ≤2n−1.

PROOF. Under location constraint imposed by ESM, a mapped ES polyomino of size 2n

cannot get separated in the nth separation of the underlying ESM enforcing many-core.
In other words, it would not share the nth slice on which it is mapped with any other
ES polyomino. Sharing can happen only in an (n+ 1)th or larger slice, hence proved.

4. DEFRAGMENTATION WITH McD

System overview. McD uses a MAS to perform defragmentation for an N-core many-core
that enforces ESM. Whenever a fragment in the shape of an ES polyomino is generated
on the many-core, an agent is assigned to it. The sole goal of the agent is to merge with
another ES polyomino of the same size. Note that only two ES polyominoes of the same
size can be combined to form the next larger size ES polyomino (∵ 2n+2n = 2n+1). After
the merging, the agent of one of the merged fragments terminates itself by transferring
the ownership of the entire fragment to the remaining agent. ESM properties allow
agents all over the system to merge in parallel, independent of other agents. This allows
for distributed defragmentation of the underlying many-core.

System model. Let there be A agents in the system indexed by x, one for each of the
fragments that need to be merged in the system. Let Sx be the size of the ES polyomino
in the number of cores, associated with an Agent x. Let S be the number of cores that
are unallocated, with N being the total number of cores in the underlying many-core.

S =
A∑

x=1

Sx ≤ N

Trivially, S = N when the system is empty. We assume a first-in, first-out (FIFO)
waiting queue in our open system. Let N′ ≤ N be the requirement of the task waiting
in front of the queue. Under ESM, N′ must be a number that is power of two. Based on
Lemma 3.2, we know that if N′ ≤ S, then the waiting task can always be mapped on the
ESM enforcing many-core provided it is optimally defragmented. In a nonpreemptive
system like ours, if N′ > S, then incoming tasks can never be mapped and need to wait
in the queue for one or more executing tasks to leave the system.

Objective. The objective of McD is to keep S ≤ N′ at all times. In other words, the
number of free cores in the system should always be less than the core requirement for
the task in front of the FIFO task queue.

Merging fragments. Merging fragments or defragmentation happens in a series of
MAS rounds. Figure 9 shows the actions performed by an individual agent in a round
using a flowchart. At the start of every round, an agent communicates with other
agents and pairs up with one of the same size. For example, let Agents a and b pair
up with each other such that Sa = Sb. Now they want to merge to form a fragment of
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Fig. 10. Execution flow for McD.

size Sa + Sb = 2Sa = 2Sb. Let ρa and ρb be the two slices in an ln(Sa) + 1 separation
containing Agents a and b, respectively. Agent a (or b) holds half of the ρa (or ρb) slice
as a fragment. Based on Lemma 3.3, all other tasks mapped in the ρa (or ρb) slice are
self-contained in the remaining filled half of the slice. Thus, Agent a (or b) can swap
the filled half of the ρa (or ρb) slice with the fragment in the ρb (or ρa) slice to merge
together with Agent b (or a) without violating ESM. Another pair of agents, c and d,
can do the swap in parallel as long as neither Agent c nor d is inside the ρa (or ρb) slice
that is being swapped by Agent a (or b). Otherwise, the merging of Agents c and d is
skipped in this round. Therefore, the pairing of smaller fragments is delayed in favor
of the pairing of larger fragments when overlapping. After all parallel swaps finish, the
next round begins. Rounds end when no more pairings occur.

THEOREM 4.1. McD performs optimal defragmentation of a many-core that enforces
ESM constraints.

PROOF. Let us assume that McD is suboptimal. After McD has finished defragmen-
tation, � ∃x such that Sx = N′ when S ≥ N′, where N′ is the cores requirement of the
task in front of FIFO queue. Based on Lemma 3.3, there can exist at most one agent
of size N′/2; otherwise, McD would have merged the two of them to create an agent of
size N′. Recursively, there can exist only at most one agent of size N′/2, N′/4 and so
on. Therefore, S ≤ N′/2 + N′/4 + · · · + 1 ≤ N′ − 1. Based on this argument, S < N′,
which is a contradiction to our original statement S ≥ N′, hence proved.

It is important to note that McD only claims optimality with respect to system
performance in the final stable state (defragmented) obtained. The problem of going
from one state (fragmented) to another state (defragmented) in a minimum number of
steps (an optimal number of task migrations) on a many-core is similar to optimally
solving a sliding-puzzle problem [Demaine and Hoffmann 2001], which is also an NP-
complete problem. The problem of defragmentation in a minimum number of task
movements is beyond the scope of this article.

Execution flow. Figure 10 shows a flowchart depicting the execution flow of McD.
Scheduling epoch defines the granularity at which scheduling in a system is per-
formed; in our experiments, it is set at 10ms, which is the same as in default Linux
schedulers [Pallipadi and Starikovskiy 2006]. At every scheduling epoch, McD can be
invoked to perform task mapping of incoming tasks, and defragmentation if required.
Initially, the system with McD is empty and there is only one agent controlling the
unified fragment of N cores. McD then checks whether the FIFO queue is not empty
(N′ �= 0). If it is empty, McD waits for the first task to arrive. If the queue is not empty,
then tasks are picked from the FIFO queue and are mapped on the many-core under
ESM constraints on a first-come, first-served (FCFS) basis until no more tasks can be
mapped. FCFS also ensures that there is no task starvation in the system.
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Fig. 11. Illustrative example of distributed defragmentation performed under McD on a 32-core processor.

Based on Lemma 3.2, if N′ ≤ S, then there is a scope for more tasks to be mapped on
the many-core. However, if there is no contiguous fragment of size ≥N′, fragmentation
prevents further new mappings. McD then invokes the MAS rounds to defragment
the system. Once the MAS rounds are completed, the mapping of incoming tasks is
invoked again. The process is iteratively repeated until the queue empties (N′ = 0) or
a task in front of the queue is too big to be mapped on the many-core (N′ ≥ S). Tasks
mapped on the many-core are now executed for a time defined by the scheduling epoch.
Tasks that are completed leave the system at the end of a scheduling epoch, creating
new fragments (and spawning agents). If the number of completed tasks reaches the
user-defined MaxTasks, the system simulation stops and the performance attained is
reported. Otherwise, a new scheduling epoch commences in the system.

Illustrative example. Figure 11 illustrates a defragmentation performed under McD
on a 32-core processor executing seven tasks. Incoming Task 8 requires 8 cores. Fig-
ure 11(a) shows that 8 unallocated cores are available on the processor in the initial
state but that these unallocated cores are fragmented all over the processor in the form
of four fragments of size two each. To map Task 8 contiguously on the processor, McD
is invoked for defragmentation. Each fragment is assigned a unique private agent (a
to d). MAS rounds now begin. In Round 1, Agent a pairs up with Agent b, and simulta-
neously Agents c and d pair up. Agent a takes control of Task 1 as they share the slice
in the second separation and swaps it with Agent b. In parallel, Agent c takes control
of Task 4 and swaps it with Agent d. Figure 11(b) shows the resultant many-core state
after the swaps are performed. Agents b and d terminate themselves in favor of Agents
a and c, respectively. In Round 2, the remaining Agents a and c pair up. Agent a takes
control of Tasks 1 and 2, and swaps it with Agent c. Agent c then terminates itself in
favor of Agent a. Figure 11(c) shows the resultant state. MAS rounds now stop because
there are no more fragments to merge. McD now maps Task 8 over Agent a as shown
in Figure 11(d), and all tasks resume execution.

Complexity. On an N-core many-core, there can be at most N fragments (or agents) to
merge. This merging will take O(ln N) rounds under McD. In every round, every agent
performs at worst O(N) calculations. Thus, in total, there is O(N2 · ln N) processing
overhead, with per-core processing overhead being O(N · ln N). Every round involves
broadcasting at most O(N) messages; hence, in a worst-case, total communication

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 2, Publication date: March 2017.



Defragmentation of Tasks in Many-Core Architecture 2:11

overhead is O(N · ln N). Since McD does not require any data structure to be maintained
or created, the space overhead is O(1).

5. EXPERIMENTAL EVALUATIONS

We evaluate McD using the Sniper interval simulator [Carlson et al. 2011]. In compar-
ison to a timewise infeasible cycle-accurate simulator like gem5 [Binkert et al. 2011],
Sniper allows for multiprogram simulations in a reasonable time. In comparison to a
trace-based simulator like Noxim [Catania et al. 2015], it allows for more accurate and
realistic multiprogram simulations.

The conceptual block diagram of the many-core architecture used in this work is
shown in Figure 1. We use OS-level page allocation instead of traditional address
interleaved cache directories [Cho and Jin 2006] for managing distributed L2 caches.
This architecture consists of 8 × 8 tiles connected using a 2D mesh interconnection
network (NoC) implementing XY routing with latency of four cycles per hop and links
with bandwidth of 256 bits/cycle. We used 64 cores for evaluation, as multiprogram
executions on many-cores with larger numbers of cores were difficult to simulate due
to simulation time and memory constraints.

Each tile consists of an out-of-order Intel Gainestown core running at 1GHz imple-
menting x86-64 Instruction Set Architecture (ISA) with private four-way associative
16KB L1 instruction and data caches. An eight-way L2 cache (4MB) is distributed
across the chip with a 64KB slice of private L2 residing near each tile. The caches
are kept coherent using the directory-based Modified Shared Invalid (MSI) protocol.
External memory requests are provided by 1GB off-chip DRAM accessed using four
memory controllers along the four edges of the many-core. Hit latencies of L1 caches,
L2 caches, and main memory are set at 3, 8, and 80 cycles, respectively. McD is equally
applicable if the LLC was shared by all cores instead of being private. Conceptually,
it makes no difference for McD if cache coherency was replaced by message passing.
However, changes in topology, such as having more than one processing core per tile,
can potentially make the problem of many-core fragmentation NP-hard again even un-
der ESM constraints. Therefore, minor changes to the underlying system architecture
may or may not break McD’s optimality and needs to be studied individually on a case
by case basis.

In software, we use the PARSEC [Bienia et al. 2008] multithreaded benchmark suite
with sim-small input. We chose sim-small input because the next smaller input, sim-
dev, was not representative enough of real-world tasks, whereas the next larger input,
sim-medium, took too long to simulate. We also found that the instruction count of
sim-small inputs is sufficiently large enough to stress the caches on our simulated
system in a meaningful way. Among 13 available benchmarks in the PARSEC suite,
two benchmarks, freqmine and vips, were discarded due to unresolved PIN errors.
PIN [Reddi et al. 2004] is a closed-source binary instrumentation tool from Intel that
is used inside the Sniper simulator and prevents debugging of its error. Furthermore,
the benchmarks facesim and raytrace were discarded due to lack of sim-small input.
Table I summarizes the system configuration of the simulated many-core architecture
and the benchmarks used in our evaluation.

Implementation details. McD is integrated with the default Pinned scheduler of
Sniper. We implement McD as a multithreaded distributed system application written
in C with the master-slave thread model. The main McD thread is spawned when the
system starts and is then put to sleep. At the end of each scheduling epoch (10ms of
simulated system time), a time-trigger interrupt wakes the main McD thread in any
of the random free core. The main thread then checks the status of the many-core,
such as the number of free cores and FIFO task queue, and then determines if de-
fragmentation is required. If defragmentation is indeed needed, it then determines the
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Table I. System Configuration of Simulated Many-core Architecture

Cores 64 x86-64 out-of-order cores
L1 Cache Split I & D, 16 KB, 4-way, 64 B block, 3-cycle access latency
L2 Cache Private 64 KB, 8-way, 64 B block, 8-cycle access latency
Directory MSI coherence, distributed directory entries across tiles
Network 2D mesh, 4 cycles per hop latency, 256 bits/cycle bandwidth, XY routing
Memory 1GB, 80-cycle access latency, 4 memory controllers on 4 edges
Benchmarks blackscholes, bodytrack, canneal, dedup, ferret, fluidanimate,

streamcluster, swaptions, and x264
Task Model Multiprogram, multithreaded
System Model 1 thread per core using private LLC, FIFO task queue

required number of McD agents necessary to perform defragmentation and free cores
that each of those agents is responsible for merging. For each of the required agents, a
slave thread is spawned on a free core that falls within its responsibility. The master
thread itself also acts as an agent responsible for a few of the free cores. The threads
synchronize with each other using memory, and all coherency traffic is sent via NoC.
The thread migrations for PARSEC threads is performed by McD threads using custom
extensions to Sniper’s magic instructions. Suspension, resumption, and placement of
McD threads is done by the Sniper scheduler using default native instructions. When
all McD threads except the master have terminated, defragmentation is complete. The
master thread then maps new tasks from the FIFO queue onto the many-core and then
goes back to sleep. It is important to note that all McD threads mostly operate on free
cores, and minimal context switching with PARSEC threads is required. McD threads
operate by manipulating thread-to-core affinities of PARSEC threads, and the bulk of
the actual thread migration and context switching heavy lifting is left to the default
Sniper scheduler to be performed internally. This implementation is designed to work
specifically with the Sniper simulator and may not be the best design for a real-world
many-core.

For each reported result, multiple multiprogram workloads were evaluated and then
averaged. Each workload comprised 20 tasks, with each task projecting a random
core requirement. Simulation-time constraints prevented evaluation of a larger size or
number of workloads. The arrival time of tasks in a workload follows Poisson (random)
distribution. Due to the peculiar nature of the defragmentation problem, the system
will not require defragmentation if core requirements of tasks are too small in compari-
son to size of the many-core, as most tasks then would fit inside easily. Similarly, if core
requirements of tasks are too large, we will also not require defragmentation, as few
tasks will occupy the entire many-core. Thus, we also set a lower limit and an upper
limit of core allocation to a task to 4 and 16 cores, respectively. We empirically found
the limits to be reasonable given the number of cores in our simulated many-core (64).

Optimizations. We implement a couple of optimizations over the default Sniper code
base to improve the NoC traffic isolation in the shared-cache many-core architecture,
as shown in Figure 12. By default, Sniper uses address interleaving for mapping data
on distributed L2 caches and separating accesses from memory controllers to DRAM.
Hence, the cache directory responsible for cache blocks of a given application can be
present in any of the L2 banks. Additionally, they can access all DRAM controllers
for fetching data from main memory. This can result in executing tasks accessing all
L2 cache banks and DRAM controllers providing no isolation or clear benefits from
defragmentation. This can be seen in Figure 12(a), in which two tasks, A and B, are
placed on a 64-core many-core at its top left and bottom right corners, respectively.

Inspired by Cho and Jin [2006], we ensure that addresses accessed by a multi-
threaded application are always confined within L2 cache banks near cores on which
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Fig. 12. Optimizations for achieving NoC traffic isolation on a shared-cache many-core.

the threads are executing. Cho and Jin [2006] utilize interleaving at page granularity
for allocating pages to distributed L2 caches. Whenever a new page is requested by
an application/thread, the OS chooses free pages from physical memory that can be
mapped closer to the requesting core’s cache bank. Due to lack of an OS in the Sniper
simulator, we were forced to achieve the equivalent effect by modifying the address
lookup function in the Sniper code base. The advantages of using this mechanism can
be seen in Figure 12(b), but we still have traffic going to all DRAM controllers.

For preventing applications from accessing all DRAM controllers, we make the entire
address space accessible to all controllers. Parallel accesses to the same address are
synchronized using an off-chip priority queue as mentioned in Kim et al. [2012]. We
also ensure that NoC traffic on an L2 cache miss always goes to the closest DRAM
controller among all available controllers. The benefits can be seen in Figure 12(c),
where both mapped tasks achieve almost complete NoC isolation.

In this work, all simulations were performed in multiprogram mode with full model-
ing of cache contention, NoC contention, memory contention, and performance penal-
ties from task migrations. A single simulation of a 20-task workload took approximately
10 hours on average to complete on an Intel Core i7 processor.

Performance metric. Average response time is the standard metric to gauge perfor-
mance of an open system, and lowest response time is desired from the system [Feitelson
and Rudolph 1998]. The response time of a task is the difference between its arrival and
departure time. It is composed of two components: waiting and servicing time. Waiting
time is the time spent by a task in the FIFO queue before it gets mapped. Servicing
time is the time spent by a task to finish execution once it is mapped. Average response
time for a workload is the mean of the response times of all of its tasks.

Basic comparative baselines. To demonstrate the effectiveness of McD, we chose to
compare against two simple but predictable approaches, Contig and NonContig, rep-
resentative for contiguous and noncontiguous mapping without defragmentation (task
migration), respectively.

Contig exhaustively searches each core of the many-core for a contiguous compact
mapping for an incoming task. It thereafter maps the task to the first set of contiguous
cores that can satisfy the task’s requirement. Since Contig always maps the incoming
task in the best possible shape, it always results in the optimal servicing time for the
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executing task. However, since it waits passively for contiguous cores in an ideal shape
to become available, it results in a suboptimal waiting time.

NonContig, on the contrary, assigns the core to any of the unallocated core on the
many-core with no regard to contiguity. NonContig results in an optimal waiting time
for a task, as the task is mapped as soon as the required number of unallocated cores
is available on the many-core irrespective of spatiality. However, since the allocation is
neither compact nor contiguous, it results in a suboptimal servicing time.

Contig and NonContig represent two extreme points in the performance spectrum,
each guaranteeing optimality for one aspect of the performance myopically while dis-
regarding the other. In multiprogram execution, waiting and servicing time are not
completely independent. For example, a task that holds cores longer than necessary
under a suboptimal servicing time ends up adding additional delay to the waiting time
of all tasks in the wait queue. The McD defragmenter introduced in this work can
optimize both aspects of performance (waiting and servicing time) together, provided
that ESM constraints are enforced. Comparison of McD versus Contig and NonContig
results in greater insight than comparison with the previously proposed heuristic ap-
proaches for preventing fragmentation. Given the lack of guarantees on either waiting
time or servicing time in heuristics, it is difficult to say what part of the performance
spectrum they represent. Heuristics are also very sensitive to the input workloads and
can perform unexpectedly good or bad.

Heuristic baselines. For complete coverage, we also compare against heuristic
approaches designed to address fragmentation. We believe that SHiC [Fattah et al.
2013], CASqA [Fattah et al. 2014], and DeFrag [Ng et al. 2016] are the most
recent state-of-the-art heuristics for fragmentation-aware contiguous mapping,
fragmentation-aware noncontiguous mapping, and defragmentation, respectively. All
compared heuristics were designed originally to operate with profiled tasks whose task
graphs (thread-spawning and interthread communication patterns) were assumed
to be deterministic and predictable. Such task graphs are not readily available for
real-world representative PARSEC benchmarks. Further, in multiprogram execution,
it is also not trivial to predict when a particular thread will be spawned. We neither
assume nor have the complete profile information of all tasks to implement the
heuristics strictly in their original form. Hence, we were required to slightly adapt
the heuristics to still make them work on our infrastructure. Originally, all compared
heuristics were evaluated on Noxim, a trace-based simulator. We reimplement them
on the more real-world representative Sniper interval simulator used in this work.

SHiC [Fattah et al. 2013] uses a stochastic approach in an attempt to map the incom-
ing tasks contiguously with minimal fragmentation. It employs smart hill climbing for
finding a suitable candidate unallocated core to perform contiguous mapping around
in consideration with already mapped tasks to improve the overall contiguity. In each
iteration of hill climbing, a random unallocated core is selected and a “square factor”
around that core is calculated. The square factor is the number of unallocated cores in
the largest square of unallocated cores that can be made around the selected core plus
the number of unallocated cores in the next largest square of unallocated cores that
cannot be completed. If the square factor is equal to the incoming task’s requirement,
then the selected unallocated core is chosen as a possible candidate for mapping. Oth-
erwise, a random walk from the selected core is performed. Random walk is performed
toward one of the eight adjacent cores of the selected core that has a lower or higher
square factor depending on whether the selected core has a higher or lower square
factor than the number of cores required by the incoming task, respectively. Random
walk is terminated after N/2 steps if it fails to find a candidate. Hill climbing itself is
terminated after 2 + √

APPS iterations, where APPS is the number of task application
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(tasks) currently mapped on the many-core. If hill climbing finds multiple candidates
for mapping the incoming task, the one closest to the edge of the many-core is selected.
Once the candidate core is selected, a compact contiguous mapping is performed around
it. The authors of SHiC have shown it to be superior to several previously proposed
similar fragmentation-aware contiguous mapping heuristics.

CASqA [Fattah et al. 2014] is an extension of SHiC for noncontiguous mapping. It
allows the user to adjust contiguousness of a mapping using a threshold α, but in this
work we set the threshold to a value that allows for unbounded noncontiguousness (α =
1.0). CASqA uses the same stochastic hill-climbing algorithm as SHiC to find the first
candidate unallocated core to perform mapping around. It then starts exploring squares
with an incrementally increasing radius for unallocated cores and stops only when
enough cores are found to meet the requirements of a task.

DeFrag [Ng et al. 2016] decides whether to perform defragmentation after a task
leaves based on a fragmentation metric. The fragmentation metric is defined as the
difference between the expected number of unallocated cores required by an incom-
ing task and the size of the largest contiguous set of unallocated cores available. To
avoid excessive task migration overhead involved in defragmentation, DeFrag invokes
defragmentation only when the fragmentation metric is positive. If and when the de-
fragmentation is invoked, all unallocated cores calculate the distance from all other
unallocated cores. The unallocated core with a minimum total distance is selected as
the center core. A convex contiguous region of size equal to the total number of unallo-
cated cores is found around the selected central core. The unallocated cores then travel
hop by hop to a closest position in the convex contiguous region, performing thread
migrations on busy cores in their paths. The authors’ originally proposed algorithm to
determine the “Minimal-Cost Migration Path” requires complete task profiles, which
we neither assume nor possess. We instead choose the shortest path algorithm to find
the migration path of an unallocated core to the convex contiguous region. Finally, the
incoming task is mapped compactly in the convex contiguous region provided that it is
large enough.

Performance under the power of two constraint. We begin by evaluating performance
when tasks in workloads are only allowed to project the requirement of 2n cores as
stipulated under ESM. We execute workloads with different arrival rates under various
approaches on an open 64-core many-core. For an open system, an increase in arrival
rate translates to increased system load as more tasks start arriving in the system
together for execution.

Figure 13(a) through (c) record the observed average waiting, servicing, and re-
sponse time under different arrival rates, respectively. Recorded results also implicitly
incorporate processing and communication overhead of the deployed defragmenter.
It is important to note that McD always outperforms the comparative baselines in
both waiting and servicing time. Hence, McD always results in a superior response
time. Initially at lower arrival rates when the system is underloaded, executing tasks
are sparsely distributed over the many-cores and most of the incoming tasks can be
mapped efficiently without waiting by all approaches. The importance of defragmenta-
tion increases as the system load increases. We observe in Figure 13 that McD provides
greater performance gains when the system is substantially loaded. The performance
gains from McD saturate when the system is overloaded at very high arrival rates. The
improved performance under McD comes from its ability to create a compact contiguous
space for every incoming task as soon as possible, resulting in the minimum possible
waiting time. It also ensures that all tasks are always executed efficiently with the
least possible communication overheads, resulting in a minimal servicing time. Fig-
ure 13 shows that McD can result in up to 8.81% and 19.53% additional performance
compared to Contig and NonContig, respectively.
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Fig. 13. Performance comparison between McD with Contig and NonContig under different arrival rates
when workloads are enforcing a power of two ESM constraint.

In Figure 14(a), we explain the observed performance gain under McD using insights
from a relevant performance counter for a randomly selected workload. The observa-
tions under all approaches are normalized against observations made under McD so
that all of them can be shown concisely on the same graph. We observed that the NoC
packets transmitted remain nearly the same under all approaches. Still, we observed
that the packet delay due to NoC latency (Queue Delay) and delay due to NoC con-
gestion (Contention Delay) is several times higher for NonContig. This significantly
degrades the performance under NonContig. The number of instructions processed
by NonContig is significantly higher because of the additional processing done by the
tasks actively waiting longer for thread synchronizations to complete. This also results
in higher CPU utilization under NonContig, but this increased utilization in practice
is actually detrimental instead of beneficial for overall system performance. Reduced
performance under Contig is mainly due to lower CPU utilization, as it keeps the
tasks waiting longer in the queue. This results in lower congestion in NoC links, but
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Fig. 14. Observed values (normalized against McD) for relevant counters for a given workload when executed
under different approaches.

the reduced congestion still cannot compensate for the performance drop due to low
CPU utilization. The L1 data cache miss rate is higher for McD than other approaches
because of the involved defragmentation-related thread migrations.

Figure 14(b) and (c) show the selected workloads’ normalized power and energy
consumption, respectively. In comparison to baselines, McD pushes to execute more
load in parallel, and as a result we see that all system components have higher power
consumption. Still, executing more load in parallel allows it to also finish execution
faster, resulting in lower energy consumption for all system components. Overall, McD
results in a 2.06% increase in total power consumption while reducing the total energy
consumption by 4.85%.

Figure 15 shows a performance comparison between McD and adapted versions
of state-of-the-art heuristics designed to tackle fragmentation. SHiC-like, CASqA-
like, and DeFrag-like symbolically represent the reimplemented versions of SHiC,
CASqA, and DeFrag, respectively. We observe that McD can result in up to 12.54%,
8.35%, and 24.09% improved performance in comparison to SHiC-like, CASqA-like, and
DeFrag-like, respectively. SHiC-like and CASqA-like perform worse for the same
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Fig. 15. Performance comparison between McD with SHiC [Fattah et al. 2013], CASqA [Fattah et al. 2014],
and DeFrag [Ng et al. 2016] under different arrival rates when workloads are enforcing a power of two ESM
constraint.

reasons as Contig and NonContig—a combination of suboptimal servicing and waiting
time. Further, given their stochastic nature, their performance does not just vary with
input but also in every execution based on the seed used for randomization. We also
found that a hop by hop thread migration approach used by DeFrag-like is expensive,
as it leads to heavy displacement of existing tasks and also does not preserve their con-
tiguity, resulting in inferior performance. On the other hand, under ESM, McD always
guarantees optimality irrespective of input and execution is always deterministic.

Performance under no constraints with scalable tasks. McD is ideally designed to
perform optimally under the ESM constraint, which stipulates a core requirement of all
tasks in powers of two. When this requirement is not enforced, for continued operations
McD needs to buffer the number of cores allocated to a task to the next higher power
of two. For example, if a task comes with a fixed requirement of seven cores, it must be
allocated eight cores. This can lead to the problem of system underutilization due to
intratask fragmentation or “internal” fragmentation if the buffered cores are not put to
use by the tasks. McD is designed to minimize intertask fragmentation, as otherwise
“external” fragmentation is not able to compensate for this internal defragmentation.
The comparative baselines Contig and NonContig used in this work do not require any
such buffering since they stipulate no such constraints.

To prevent system underutilization, McD allows tasks to spawn threads even on the
buffered cores. This is permissible because our tasks made from PARSEC benchmarks
are moldable. The number of threads spawn by a PARSEC benchmark is fixed once
its main thread starts; however, before the execution begins, the maximum number
of threads that it can invoke can be passed as a parameter to its main thread. Most
PARSEC benchmarks support many different values of the maximum thread count
parameters, which McD can exploit to prevent system underutilization.

Since the execution time of tasks is generally monotonically nondecreasing with the
number of cores assigned (thread spawned) [Pathania et al. 2016], all tasks will execute
faster, resulting in a more responsive system. Our evaluations in Figure 16 show that
McD performs better than comparative baselines with scalable tasks even when the
power of two core requirement is not enforced. Note that the randomized workload used
in Figures 13 and 16 are different, and hence numbers are not directly comparable.

Performance under no constraints with nonscalable tasks. McD can be severely hand-
icapped if the tasks are not able (or not allowed) to spawn additional threads on the
buffered cores. Empty buffered cores can cause substantial system underutilization,
and even our basic comparative baselines are capable of outperforming McD. Figure 17
shows the limitations of McD wherein even our basic comparative baseline like Non-
Contig now outperforms McD by 4.35% because tasks (PARSEC benchmarks) are not
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Fig. 16. Performance comparison between McD with Contig and NonContig under different arrival rates
when workloads are not limited by any constraint and tasks are capable of spawning additional threads.

Fig. 17. Performance comparison between McD with Contig and NonContig under different arrival rates
when workloads are not limited by any constraint and tasks are not allowed to spawn additional threads.

allowed to spawn additional threads. The performance gap will widen even further
against the heuristic baselines. This brings forth the drawbacks of a constraint opti-
mal like McD in general, where the price of maintaining optimality may be too high.
Therefore, McD should not be used with tasks that are incapable of scaling up their
thread count.

Scalability. The simulation time for a many-core is directly proportional to the num-
ber of parallel instruction executions simulated. To the best of our knowledge, no sim-
ulator, other than trace-based simulators, can simulate a 1,000-core many-core under
heavy load in a reasonable amount of time. This makes it difficult to obtain overhead
numbers directly from a multiprogram simulation of PARSEC workloads on a realistic
simulator like Sniper to demonstrate scalability.

On the other hand, stand-alone execution of the McD algorithm for a large-size input
is still feasible timewise. Hence, we execute McD with varisized worst-case representa-
tive inputs as an isolated distributed application over the simulated many-cores with
64 cores or more in Sniper and report McD’s problem-solving time. This execution time
incorporates both the communication overhead of McD agent threads communicating
through memory via NoC as well as their processing overheads. We believe that this is
the closest we can get to obtaining real-world overhead of our approach on large-size
many-cores. This overhead is directly comparable to the processing time of PARSEC
workloads themselves.

Figure 18 shows the time it takes for McD to perform worse-case many-core de-
fragmentation for 64-core to 512-core many-cores. It takes McD 1.115ms to solve the
worst-case defragmentation problem on a 512-core many-core. For a scheduling epoch
of 10ms used in this work, this results into a worst-case overhead of 11.15% on a
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Fig. 18. Worst-case problem-solving time taken by McD on varisized many-cores.

512-core many-core. The worst-case defragmentation overhead on a 64-core many-core
stands at an acceptable 1.77%.

6. CONCLUSION

In this article, we address the problem of many-core defragmentation, which is known
to be NP-hard. To make the problem tractable, we simplify it to a problem that can
be solved optimally in polynomial time by introducing the concept of ESM for many-
cores. ESM puts constraints on tasks-to-cores mapping on a many-core, allowing for its
optimal distributed defragmentation in polynomial time. We also introduced a defrag-
menter called McD, which demonstrates how ESM can be exploited. Our experiments
show that defragmentation under McD increases performance and reduces energy
consumption of a many-core. Since McD is proven optimal, it provides the maximum
possible performance under ESM constraints, which cannot be surpassed by any other
algorithm.
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Grudnitsky, et al. 2012. Invasive manycore architectures. In Proceedings of the 2012 Asia and South
Pacific Design Automation Conference (ASP-DAC’12).

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. 2012. A case for exploiting
subarray-level parallelism (SALP) in DRAM. In Proceedings of the 2012 International Symposium on
Computer Architecture (ISCA’12). IEEE, Los Alamitos, CA.

Kenneth C. Knowlton. 1965. A fast storage allocator. Communications of the ACM 8, 10, 623–624.
Keqin Li and Kam Hoi Cheng. 1990. A two dimensional buddy system for dynamic resource allocation in a

partitionable mesh connected system. In Proceedings of the 1990 Annual Computer Science Conference
(CSC’90).

Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. 2007. Efficient operating system scheduling
for performance-asymmetric multi-core architectures. In Proceedings of the International Conference on
Supercomputing (SC’07).

Jim Ng, Xiaohang Wang, Amit Kumar Singh, and Terrence Mak. 2016. Defragmentation for efficient runtime
resource management in NoC-based many-core systems. Transactions on Very Large Scale Integration
(VLSI) Systems 24, 11, 3359–3372.

Venkatesh Pallipadi and Alexey Starikovskiy. 2006. The ondemand governor. In Proceedings of the 2006
Linux Symposium.

Anuj Pathania, Vanchinathan Venkataramani, Muhammad Shafique, Tulika Mitra, and Jörg Henkel. 2016.
Distributed scheduling for many-cores using cooperative game theory. In Proceedings of the 2016 Design
Automation Conference (DAC’16).

Vijay Janapa Reddi, Alex Settle, Daniel A. Connors, and Robert S. Cohn. 2004. PIN: A binary instrumen-
tation tool for computer architecture research and education. In Proceedings of the 2004 International
Symposium on Computer Architecture (ISCA’04).

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013. Mapping on multi/many-
core systems: Survey of current and emerging trends. In Proceedings of the 2013 Design Automation
Conference (DAC’13).

Neil J. A. Sloane. 2003. The On-Line Encyclopedia of Integer Sequences. Retrieved February 14, 2017, from
http://oeis.org.

Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker. 2010. Scalable thread scheduling
and global power management for heterogeneous many-core architectures. In Proceedings of the 2010
International Conference on Parallel Architectures and Compilation Techniques (PACT’10).

Received June 2016; revised October 2016; accepted November 2016

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 2, Publication date: March 2017.


