
Linear Time Fourier Transforms of Sn−k-invariant Functions on
the Symmetric Group Sn

Michael Clausen
Institute of Computer Science

University of Bonn, Germany

Fraunhofer FKIE, Germany

clausen@cs.uni-bonn.de

Paul Hühne
Institute of Computer Science

University of Bonn, Germany

phuehne@uni-bonn.de

ABSTRACT

This paper introduces new techniques for the e�cient computation of dis-

crete Fourier transforms (DFTs) of Sn−k -invariant functions on the sym-

metric group Sn . We uncover diamond- and leaf-rake-like structures in

Young’s seminormal and orthogonal representations. Combining this with

both a multiresolution scheme and an anticipation technique for saving

scalar multiplications leads to linear time partial FFTs. Following the in-

ductive version of Young’s branching rule we obtain a global FFT that com-

putes a DFT of Sn−k -invariant functions on Sn in at most ck · [Sn : Sn−k]
scalar multiplications and additions, where ck denotes a positive constant

depending only on k . This run-time, which is linear in [Sn : Sn−k], is or-
der optimal and improves Maslen’s algorithm. For example, it takes less

than one second on a standard notebook to run our FFT algorithm for an

Sn−2-invariant real-valued function on Sn , n = 5000.

CCS CONCEPTS

•Computingmethodologies→ Symbolic and algebraic algo-

rithms;

KEYWORDS

FFT; symmetric group; invariant functions;

1 INTRODUCTION

We consider the problem of e�ciently computing Fourier trans-

forms of functions on the symmetric group Sn that are constant

on left cosets of the subgroup Sn−k . This problem arises, e.g., in

spectral approaches to multi-target tracking scenarios in computer

vision and robotics [12], in the construction of permutation invari-

ant representations of graphs [13], in a kernel-based framework for

solving partial ranking problems [10], and in spectral approaches

to solve hard combinatorial optimization problems [9].

1.1 DFTs on �nite groups

The theoretical basis of the spectral approaches to the above men-

tioned applications is the ordinary representation theory of �nite

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’17, July 25-28, 2017, Kaiserslautern, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.

ACM ISBN 978-1-4503-5064-8/17/07. . . $15.00
http://dx.doi.org/10.1145/3087604.3087628

groups, in particular Wedderburn’s structure theorem. According

to this theorem, the vector space CG := {a | a : G → C} of all
complex-valued functions on the �nite groupG equipped with the

convolution of functions, a ∗ b := (G ∋ д 7→ ∑
xy=д a(x)b(y)),

becomes an associative algebra. This so-called group algebra (also

referred as the signal domain in applications) is isomorphic to an

algebra of block-diagonal matrices (the spectral domain)

D =

c⊕

j=1

D j : CG →
c⊕

j=1

C
dj×dj . (1)

Here, the number c of blocks equals the class number ofG and the

projections D1, . . . ,Dc form a complete set of pairwise inequiv-

alent irreducible representations of CG. Every such algebra iso-

morphism D is called a discrete Fourier transform (DFT) on G.

With respect to canonical bases in the signal and spectral domain,

each DFT on a group G of order N can be described by an N × N

matrix ∆ and the transformation of a function a : G → C into

the spectral domain boils down to a matrix-vector multiplication

∆ · (a(д))д∈G . For example, ifG is the cyclic group of order N , then

∆ = (ωab)0≤a,b<N , ω = exp(2π i/N), is the classical DFT-matrix

of size N . For an abelian group there is essentially only one DFT-

matrix, whereas for a non-abelian group there are in�nitely many

DFT-matrices, which might di�er regarding computational com-

plexity issues. The FFT-problem for a �nite groupG is to �nd a suit-

able DFT on G that allows a transformation of a signal a : G → C
into the spectral domain with a small number of arithmetic opera-

tions (additions and scalar multiplications). At least in a restricted

linear computational model, where only scalars of bounded abso-

lute value are at one’s disposal, Baum and Clausen [1] proved a

general lower complexity bound of order N logN for evaluating

an arbitrary DFT-matrix of a group G of order N .

1.2 Designing FFTs on �nite groups

In the last forty years, FFTs for non-abelian �nite groups have

been investigated by Baum, Beth, Clausen, Diaconis, Maslen, Rock-

more, and Willsky among others. For more information see, e.g.,

the survey article [15] or Chapter 13 in [2]. Almost all FFT algo-

rithms follow a divide-and-conquer technique and are based on

the same e�ciency principle: produce intermediate results which

can be re-used several times. This principle is realized by using

DFTs D =
⊕

j D j which are adapted to a suitable chain C =
(G = Gn > Gn−1 > . . . > G1) of subgroups of G, i.e., each

D j restricted to CGi is the direct sum of irreducible representa-

tions, D j ↓ CGi =
⊕

ℓ Di, j, ℓ , in addition, equivalent irreducible

constituents of D ↓ CGi are equal, i.e., Di, j, ℓ ∼ Di, j′, ℓ′ implies

Di, j, ℓ = Di, j′, ℓ′ (but not necessarily (j, ℓ) = (j ′, ℓ′)). C-adapted
DFTs always exist and, in addition, one can achieve that all D j and

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

101

https://doi.org/http://dx.doi.org/10.1145/3087604.3087628

all Di, j, ℓ are unitary representations. For the symmetric group Sn ,

Alfred Young described DFTs adapted to the chain Cn := (Sn >
Sn−1 > . . . > S1) about hundred years ago. Recall that a partition

α = (α1, . . . ,αr) of n, denoted α ⊢ n, is a non-increasing sequence

of positive integers summing to n. As the conjugacy classes of Sn
are parametrized via cycle types by the partitions of n, it is natural

to index the irreducible representations of CSn by those partitions

as well:

ρn =
⊕

α⊢n
ρα : CSn →

⊕

α⊢n
C
dα×dα . (2)

Cn-adaptedness of ρn culminates in Young’s branching rule

ρα ↓ CSn−1 =
⊕

β

ρβ , (3)

where the direct sum is over all β ⊢ n−1, β ⊂ α , in lexicographic or-

der. In fact, there are three closely related variants of ρn : Young’s

seminormal representation (YSR) σn =
⊕

α⊢n σ
α , its contragre-

dient variant (YKR) κn =
⊕

α⊢n κ
α , and Young’s orthogonal rep-

resentation (YOR) ωn =
⊕

α⊢n ω
α . See Section 2 for a detailed

review of YSR, YKR, and YOR. Clausen [3] proved that Cn-adapted
DFTs on Sn can be evaluated with O(N log3 N) arithmetic opera-

tions, where N := n! = |Sn |. Maslen [14] improved this bound to

O(N log2 N).

1.3 FFTs of Sn−k -invariant functions on Sn
What is the state of the art for the computation of Cn-adapted
Fourier transforms of Sn−k -invariant functions on Sn? Let us start
with a trivial lower complexity bound. If T ⊂ Sn is a transversal

of the left cosets of Sn−k in Sn , then (n − k)! ·∑д∈T a(д) is among

the entities which have to be computed. Thus at least [Sn : Sn−k]
additions and scalar multiplications are needed. Maslen [14] de-

signed an algorithm that computes the Fourier transform of Sn−k -
invariant functions on Sn with at most

3
4 · k · (2n − k − 1) · [Sn : Sn−k]

arithmetic operations. Thus Maslen’s upper bound comes rather

close to the lower bound. For k = 1, Maslen’s algorithm yields the

quadratic upper bound 3
2 ·(n−1)·n. Clausen andKakarala [5] proved

for k = 1 the linear upper bound 3n − 4, which is order optimal. In

his PhD thesis [7], http://hss.ulb.uni-bonn.de/2016/4535/4535.htm,

Hühne designed order optimal algorithms for k = 2 and k = 3.

1.4 Structure and contributions of the paper

Based on the data structures and algorithms proposed in [4], we

design in the present paper for each �xed k and all n > 2k an

algorithm that computes a DFT of right Sn−k -invariant functions
on Sn with at most ck · [Sn : Sn−k] arithmetic operations. Thus this

new algorithm is order optimal.

In the remaining part of this subsection we describe our con-

tributions and techniques thereby sketching the structure of the

paper. In Section 2 we present a new description of Young’s Cn-
adapted DFTs which stresses the block structure of the represent-

ing matrices. This block structure will be of great importance for

the design of e�cient algorithms. Then we give an explicit descrip-

tion of the spectral image of the space

C[Sn/Sn−k] := {a ∈ CSn |a(дh) = a(д),∀д ∈ Sn ,h ∈ Sn−k }
of all right Sn−k -invariant functions on Sn with respect to a Cn-
adapted DFT on Sn . Finally we introduce family trees F n

k
as a data

structure re�ecting iterated applications of Young’s branching rule.

Our overall FFT-algorithm consists of linear time local FFTs and a

global FFT.

Section 3 uses the local FFTs (described later in Section 4) as

black boxes and describes the computations along the family tree

F n
k

to get the spectral image of right Sn−k -invariant functions on
Sn . An analysis of the global FFT shows that the arithmetic cost is

proportional to [Sn : Sn−k].
Our main contribution is in Section 4. Here we design the local

FFTs, which are based on diamond- and leaf-rake-like structures

closely related to the fact that for the irreducible character χ β of

Sn−1 induction (↑) and restriction (↓) nearly commute:

χ β ↑ Sn ↓ Sn−1 = χ β + (χ β ↓ Sn−2 ↑ Sn−1).
This equation, easily deduced from what we call β ’s 3-generation

house, is the source of a reduction technique. The corresponding

diamond and leaf-rake computations are described both informally

and formally in Section 4. To supersede the diamond computations,

we use weighted local FFTs. Combining these weighted local FFTs

with a multiresolution scheme results in linear time weighted local

FFTs.

2 YOUNG’S ADAPTED DFTS

We assume familiarity with basic concepts of algebraic complexity

theory and group representation theory. For detailed accounts, see,

e.g., [2, 17]. For a �nite group G let CG = {a | a : G → C}
denote its group algebra over C. As usual, we write a function a :

G → C as a formal sum (with the group element д standing also

for its indicator function) a =
∑
x ∈G a(x)x =: ∑x ∈G axx . Then

the multiplication (convolution) in CG reads as follows

a ∗ b = (
∑

x ∈G
axx) ∗ (

∑

y∈G
byy) =

∑

д∈G
(
∑

xy=д

axby)д.

We describe for all α ⊢ n the Cn-adapted irreducible representa-
tions ρα ∈ {σα ,κα ,ωα }. For more details see [8].

We identify α = (α1, . . . ,αr) ⊢ n with its corresponding Young

diagram
⋃r
i=1{(i, 1), . . . , (i,αi)}. A standard Young tableau (SYT)

of shape α is a bijection T : α → [1,n] such that the entries are

increasing from left to right in each row ofT and increasing down

each column. SYTα denotes the set of all SYTsT of shape |T | := α .

Iterating Young’s branching rule (3) for α ⊢ n, the α-last letter

sequence tree arises quite naturally. The leaves of this ordered tree,

consisting of all elements in SYTα in LLS-order, serve as row and

column indices of the representing matrices. Non-leaf nodes will

be called SYT tails. Figure 1 shows the α-LLS-tree for α = (3, 2) ⊢ 5
together with the LLS-orderings on the various levels.

In general, level ℓ of the α-LLS-tree, α ⊢ n, is a coding of the

irreducible constituents of ρα ↓ CSn−ℓ . In our example, we ob-

tain for ℓ = 2: ρ(3,2) ↓ CS3 = ρ(2,1) ⊕ ρ(2,1) ⊕ ρ(3). Level n
tells us that dα := degree(ρα) = |SYTα |. This number is given by

the celebrated Frame-Robinson-Thrall hook-length formula: dα =

n!/∏(i, j)∈α hαi, j , where the hook-length h
α
i, j is the number of cells

(a,b) ∈ α such that (a = i and b ≥ j) or (b = j and a ≥ i). Hook-

lengths equal to 1 indicate corner cells. Deleting from α one corner

cell yields a partition β of n−1 contained in α , which will be called
an α-child, denoted β ⊂· α or α ⊃· β . By α ↓ we denote the set of all

α-children. We order the α-children lexicographically. In turn, the

partitions α with α ⊃· β will be called the β-parents; β↑ denotes the

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

102

http://hss.ulb.uni-bonn.de/2016/4535/4535.htm

Level:

1

2

3

4

5

5
5<

5
4

4
5 4 5< <

3 5
4

5
3 4

3 4
5

4
3 5

3
4 5

3 5
2 4

2 5
3 4

3 4
2 5

2 4
3 5

2 3
4 5

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

< < < <

< < < <

< < < <

Figure 1: LLS-tree for α = (3, 2)

set of all β-parents. Similarly, deleting the cell with the entry n

from T ∈ SYTα yields a SYT S . S is called the child of T and T is

an S-parent (notation S ⊂· T orT ⊃· S). Note that in contrast to most

partitions, each SYT T has exactly one child but always several

parents.

For a partition α we denote by 0α the zero vector in Cα := Cdα .

For partitions λ and µ of n we denote by Cλ×µ the space of all

dλ × dµ matrices over C. Iα×α denotes the unit matrix and 0
α×α

the zero matrix in Cα×α .
Sn is generated by the transpositions t2, . . . , tn , where ti :=

(i − 1, i). Thanks to Young’s branching rule (3), we only need to

specify for all n and all α ⊢ n the matrices ρα (tn). (E.g., if α ⊢ n,

then ρα (tn−1) =
⊕

β ∈α ↓ ρβ (tn−1).) We will use the second level

of the α-LLS-tree to stress the block structure of the representing

matrices. Each SYT tail of that level has only two entries:n andn−1.
Deleting n and then n − 1 yields a chain (α ⊃· β ⊃· γ). We will iden-

tify each SYT tail with the corresponding chain of partitions. Sup-

pose the α-LLS-tree has exactly z elements in its second level. Let

i := (α ⊃· βi ⊃· γ i) denote the ith element of the second level. Then

1 < 2 < . . . < z and we can write the representation matrices in

block form: σα (tn) = (Σij), κα (tn) = (Kij), and ωα (tn) = (Ωij),
with suitable dγ i × dγ j matrices Σij, Kij, and Ωij.

Theorem 2.1. With this notation the following holds.

(1) Σij = Kij = Ωij is the zero matrix i� γ i , γ j .

(2) If γ i = γ j , then Σij, Kij, and Ωij are nonzero scalar multi-

ples of the unit matrix I := Iγ
i×γ i . More precisely:

(R) If i is an R-chain, i.e., n − 1 and n are in the same row

of i, then Σii = Kii = Ωii = I.

(C) If i is a C-chain, i.e.,n−1 andn are in the same column

of i, then Σii = Kii = Ωii = −I.
(A) If i < j and if i and j have n − 1 and n at positions in

{(a,b), (c,d)}, then (i, j) is called an axial pairing with
axial distance ξ := |a−c |+ |b−d |. Letqξ :=

√
ξ 2 − 1/ξ .

Then q2
ξ
= 1 − ξ−2 and

[
Σii Σij
Σji Σjj

]
=

[
Kii Kji
Kij Kjj

]
=

[
ξ −1 · I q2

ξ
· I

1 · I −ξ −1 · I

]

[
Ωii Ωij
Ωji Ωjj

]
=

[
ξ −1 · I qξ · I
qξ · I −ξ −1 · I

]
.

Proof. See [8]. Our claim concerning the block-structure fol-

lows from the observation that given an axial pairing (i, j) the
transposition tn = (n − 1,n) yields an LLS-order preserving bi-

jection between the leaves of the LLS-subtree corresponding to i

and the leaves corresponding to j. �

Note that α = (n) corresponds to the trivial representation of

CSn . The next result, see [13, 16], describes the ρn-image of the

left ideal C[Sn/Sn−k] = CSn ∗∑h∈Sn−k h.

Theorem 2.2. Let α ⊢ n and a ∈ C[Sn/Sn−k]. For T ∈ SYTα

let aT denote the T th column of ρα (a). Then aT = 0
α , unless

1, . . . ,n − k are in the �rst row of T .

For n ≥ 2k , the number a(k) of SYTs with n cells having the

letters 1, . . . ,n − k in the �rst row, is independent of n. It is well-

known that a(k) = ∑k
ℓ=0

(k
ℓ

) ∑
λ⊢ℓ dλ . For example, the values of

a(k), for k ∈ [0, 7], read as follows: (1, 2, 5, 14, 43, 142, 499, 1850).
For more information consult A005425 in [18].

A SYT T with n cells has Yamanouchi symbol 〈i1 . . . in〉 if the
letter ℓ is in the iℓth row of T . We identify T with its Yamanouchi

symbol. Theorem 2.2 suggests to construct F n
k

, the family tree

of 〈1n−k 〉 up to the k-th generation. This tree re�ects the iterated

branching rule ρ(n−k) ↑ CSn−k+1 ↑ CSn−k+2 ↑ . . . ↑ CSn . Figure 2
shows F n

3 . (We have suppressed the common pre�x 1n−3.)

〈ε〉
❞❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨ 0

〈1〉
rr
r ▲▲

▲ 〈2〉
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨ 1

〈11〉
rrr

〈12〉
rrr ▲▲▲

〈21〉
rrr ▲▲▲

〈22〉
rrr ▲▲▲

〈23〉
rrr ▲▲▲

2

〈111〉 〈112〉 〈121〉 〈122〉 〈123〉 〈211〉 〈212〉 〈213〉 〈221〉 〈222〉 〈223〉 〈231〉 〈232〉 〈234〉 3

Figure 2: Family tree Fn
3
with level indices

Our FFT-algorithm will be based on those family trees. The root

〈ε〉 ≡ 〈1n−k 〉 in F n
k

takes the input a ∈ C[Sn/Sn−k] and the com-

putation will proceed along F n
k
. The leaves of this tree are the

output nodes. If T = 〈i1 . . . in〉 ∈ SYTα is one of the leaves, then

the corresponding output is

aT = a 〈i1 ...in 〉 := T th column of ρα (a) .

3 FROM LOCAL TO GLOBAL FFTS

In this sectionwewill describe the computations along F n
k
. Leta ∈

C[Sn/Sn−k]. We decompose a at various levels. These decomposi-

tions are based on left coset decompositions Sn =
⊔n
j0=1

дj0,nSn−1
=

⊔n
j0=1

⊔n−1
j1=1

дj0,nдj1,n−1Sn−2 = . . ., where дj,m denotes the cy-

cle (j, j + 1, . . . ,m) and ⊔
means disjoint union. For p ≤ k and j =

(j0, . . . , jp−1) ∈ Jnp :=
∏p−1

i=0 [1,n − i] put дj := дj0,n . . .дjp−1,n−p+1.
(Note that |Jnp | = (n)p :=

∏
0≤i<p (n−i) is a falling factorial.) Then

Sn =
⊔

j∈J np

дjSn−p and a =
∑

j∈J np

дjaj ,

where aj =
∑
h∈Sn−p a(дjh)h ∈ C[Sn−p/Sn−k]. Note that for p = k ,

each aj is the constant function Sn−k ∋ h 7→ a(дj). These con-

stants a(дj), j ∈ Jn
k
, are the inputs. For p < k we obtain the recur-

rence

aj =

n−p∑

jp=1

дjp,n−paj, jp , (4)

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

103

with aj, jp ∈ C[Sn−p−1/Sn−k]. Let us consider the case p = 1 in

more detail. Here, a =
∑n
j=1 дj,naj with aj ∈ C[Sn−1/Sn−k]. IfT ∈

SYTα is one of the leaves in F n
k
, thenaT =

∑n
j=1 ρ

α (дj,n)aTj . Thus
aTj is the T th column in ρα (aj) =

⊕
β ∈α ↓ ρβ (aj). To describe

the additional structure of aTj , we need some preparations. If λ <

µ < . . . < ν are all the α-children in lexicographic order, then the

λ-block of x ∈ Cα is the vector in Cλ consisting of the �rst dλ
components, the µ-block consists of the next dµ components, and

�nally, the last dν components of x form the ν-block of x .

De�nition 3.1. Let β be a child of the partition α .

(1) If m ≥ dα , then the projection operator Pα : Cm → C
α

maps every x ∈ Cm to the vector of the �rst dα compo-

nents of x .

(2) The projection operator Pα
β
: Cα → C

β maps x ∈ Cα to

the β-block of x .

(3) The embedding operator Eα
β
: Cβ → Cα applied toy ∈ Cβ

replaces the β-block of the zero vector 0α by y, all other

blocks of 0α remain zero.

(4) Every chain of partitions β ⊇ γ ⊃· δ , β ⊢ n − 1, δ ⊢ m − 1

de�nes a cancellation operator Cβ×n ∋ X 7→ X
γ

δ
∈ Cδ×m

as follows. If X = (x1, . . . ,xn), then X
γ

δ
= (y1, . . . ,ym),

where y j := P
γ

δ
Pγ x j .

Example 3.2. If α = (3, 2, 1), then (2, 2, 1) < (3, 1, 1) < (3, 2) are
all α-children in lexicographic order. Let x ∈ C(3,2,1), y ∈ C(3,1,1),
and X = (X i, j) ∈ C(3,2)×6. Then X

(3,1)
(2,1) = (X i, j)i ∈[1,2], j ∈[1,4] and

x =

P
(3,2,1)
(2,2,1)x

P
(3,2,1)
(3,1,1)x

P
(3,2,1)
(3,2) x

, E
(3,2,1)
(3,1,1)y =

0
(2,2,1)

y

0
(3,2)

.

The usefulness of the embedding operator is shown by the fol-

lowing. (We keep the above notation and continue with the case

p = 1.)

Lemma 3.3. If S ∈ SYTβ is the child of T ∈ SYTα , then

aTj = Eα
β
aSj and aT =

∑n
j=1ρ

α (дj,n)Eαβa
S
j .

Proof. Each level of the α-LLS tree corresponds to a partition-

ing of the set [1,dα] of row and column indices of ρα (a) into subin-
tervals. Removing in the α-LLS tree its root and in all SYT tails the

cell containing n, results in an ordered forest describing the block

and index structure of the equation ρα ↓ CSn−1 =
⊕

β ∈α ↓ ρβ : the

forest’s roots describe the block structure and the forest’s leaves

correspond to the row and column indices at the Sn−1-level. In par-
ticular, by removing n, T is replaced by its child S . �

More generally, if L ∈ SYTλ is a non-leaf node of the family tree

F n
k

andM ∈ SYTµ , µ ⊢m = n −p, is a parent of L, i.e., L ⊂· M , then

for all j ∈ Jnp

aMj =

m∑

jp=1

ρµ (дjp,m)Eµ
λ
aLj, jp . (5)

The crucial point is that all the aL
j, jp

on the right hand side remain,

if we replaceM by any other parent of L. We will view the aL
j, jp

as

common inputs. This observation gives rise to the following fun-

damental de�nition.

De�nition 3.4. Let β ⊢ n− 1 and x1, . . . ,xn ∈ Cβ . For all α ∈ β↑

de�ne sα
β
(x1, . . . ,xn) :=

∑n
j=1 ρ

α (дj,n)Eαβx j .

With this terminology, Equation (5) reads as follows:

aMj = s
µ

λ
(aLj,1, . . . ,a

L
j,m) . (6)

In Section 4 a family of local FFT-algorithms FFTβ , β ⊢ n − 1,

will be designed. FFTβ expects n input vectors x1, . . . ,xn ∈ Cβ

and outputs sα
β
(x1, . . . ,xn) for every α ∈ β↑. In Section 4 we will

prove the following.

Theorem 3.5. Let β = (n−k, µ) ⊢ n−1, µ ⊢ k−1, and n−k ≥ µ1.

Then the arithmetic cost of running FFTβ is of order [Sn : Sn−k] =
(n)k .

With the help of these local FFT-algorithms we will now show

how to compute the ρn-image of a ∈ C[Sn/Sn−k].

The global FFT along Fn
k

1. Input: a ∈ C[Sn/Sn−k]
2. Initialization:

3. for j ∈ Jn
k
compute a

〈1n−k 〉
j

= (n − k)! · a(дj)
4. Recursion:
5. for ℓ = 0 to k − 1 do
6. for L ∈ SYTλ at level ℓ of F n

k
do

7. for j ∈ Jn
k−ℓ−1 do

8. FFTλ (aLj,1, . . . ,a
L
j,n−k+ℓ+1)

9. end for
10. Local outputs:
11. aM

j
, for allM ⊃· L, j ∈ Jn

k−ℓ−1
12. end for
13. end for
14. Outputs:
15. aT , for all T at level k of F n

k

Theorem 3.6. Let k ≥ 1. There is a positive constant ck such

that every Cn-adapted Fourier transform of Sn−k -invariant func-
tions on Sn can be computed with at most ck · [Sn : Sn−k] arith-
metic operations.

Proof. cost(Line 3) = (n)k . Line 8: As λ1 ≥ n − k , we see by

Theorem 3.5 that cost(FFTλ) = O((n − k + ℓ + 1)ℓ+1). Moreover,

by Line 7, FFTλ has to be called (n)k−ℓ−1 times. As (n − k + ℓ +

1)ℓ+1 · (n)k−ℓ−1 = (n)k , we see that this rough upper bound is

independent of the shape of L. ThusO((n)k · (1+∑k−1
ℓ=0

a(ℓ))) is an
upper bound for the overall cost, where a(ℓ) is the ℓth number in

A005425. �

4 ON THE DESIGN OF LOCAL FFTS

In this section we design for each β ⊢ n − 1 an algorithm, FFTβ ,

which on input X = (x1, . . . ,xn) ∈ Cβ×n computes sα
β
(X), for all

β-parents α . Before going into technical details, we would like to

illustrate the rationale behind this linear time procedure. (To be as

concrete as possible, we use from now on κn instead of ρn .)

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

104

4.1 Diamond and leaf-rake computations

Our fast algorithm is based on diamond- and leaf-rake-like struc-

tures closely related to the fact that for the irreducible character

χ β of Sn−1 induction (↑) and restriction (↓) nearly commute:

χ β ↑ Sn ↓ Sn−1 = χ β + (χ β ↓ Sn−2 ↑ Sn−1). (7)

The validity of (7) as well as the diamond-like structures are easily

seen by considering β ’s 3-generation house, consisting of β↑ (top

level), β↓ (ground level), and β↑↓ :=
⋃
α ∈β↑ α ↓ !

= β↓↑ :=
⋃
δ ∈β↓ δ ↑

(mid level), see Figure 3.

� �✠✠
✠✠
✠✠
✠✠
✠✠

��✽
✽✽

✽✽
✽✽

✽✽

ee

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑

��✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝ \\

��✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾
BB

��✆✆
✆✆
✆✆
✆✆
✆✆

��

88

xxrrr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
r

��
��❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂
β↑

d d

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏ \\

✾✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾

]]

✿✿
✿✿

✿✿
✿✿

✿✿
✿

AA

��☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎

OO

��

]]

��✿
✿✿

✿✿
✿✿

✿✿
✿✿

✿ OO 88

qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq

77

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

β↑↓
= β↓↑

β↓

Figure 3: The 3-generation house of β = (3, 2, 1)

Every γ ∈ β↑↓, di�erent from β , de�nes a diamond, which con-

sists of α = β ∪ γ ⊢ n in the top level, δ = β ∩ γ ⊢ n − 2 in the

ground level, and β and γ in the mid level, see also [14]. If γ is lexi-

cographically smaller than β , then these four partitions form a left

diamond, otherwise a right diamond (w.r.t. β). Figure 3 shows a left

diamond (red & blue), and a right diamond (red & green). Every

diamond has a weight depending on ρn . For ρn = κn we obtain

the following. Left diamonds have always the weight 1, whereas

the right diamond de�ned by β < γ has the weight 1− ξ−2, where
ξ denotes the axial distance of β and γ , which is the diameter of

the symmetric di�erence of β and γ in the 1-norm. Figure 4 shows

a left and a right diamond with labeled directed edges (recall De�-

nition 3.1). On inputX ∈ Cβ×n , the path over the hill, β → α → γ ,

will be interpreted as the question: How does the γ -block of sα
β
(X)

looks like? The path across the valley, β → δ → γ , will give

the answer: project the �rst n − 1 inputs via P
β

δ
, then evaluate s

γ

δ

at X
β

δ
= (Pβ

δ
x1, . . . ,P

β

δ
xn−1) and, �nally, multiply with the dia-

mond’s weight.

α
Pαγ

����
��
��
��

__
sα
β

❄❄
❄❄

❄❄
❄❄

α??
sα
β

⑧⑧
⑧⑧
⑧⑧
⑧⑧ Pαγ

��❃
❃❃

❃❃
❃❃

❃

γ
^^

s
γ

δ
❂❂

❂❂
❂❂

❂❂
< β

P
β

δ����
��
��
��

β

P
β

δ ��❃
❃❃

❃❃
❃❃

❃
< γ

@@

s
γ

δ✁✁
✁✁
✁✁
✁✁

δ δ

Figure 4: Left & right diamond computations

But how does the β-block of sα
β
(X) looks like? It turns out that

this block is obtained as follows: for all β-children δ evaluate s
β

δ

at X
β

δ
, then form an α-speci�c weighted sum of all these items

and �nally add xn . This is illustrated by the following leaf-rake-

like structure (we suppose that λ < . . . < µ < . . . < ν are all

β-children):

αOO

sα
β

β

��

Pα
β

P
β

λww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

P
β
µ

��

P
β
ν

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

λ

s
β

λ

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
. . . µ

s
β
µ

OO

. . . ν
s
β
ν

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

Figure 5: Leaf-rake computations

The leaf-rakes corresponding to the various β-parents have all

the prongs s
β

δ
(X β

δ
), δ ∈ β↓, in common, only their weights vary

with the sticks Pα
β
sα
β
(X), α ∈ β↑. The above discussion also shows

that (up to diamond and leaf-rake computations) calling FFTβ re-

duces to calling all FFTδ , δ ∈ β↓. Now we come to the more tech-

nical part.

Lemma 4.1. Let α ⊢ n and let β ,γ be two di�erent α-children.

(1) Pα
β
Eα
β
is the identity on Cβ , whereas Pα

β
Eαγ : Cγ → Cβ is

the zero operator.

(2) Let x ∈ Cα . Then x =
∑
β ∈α ↓ EαβP

α
β
x .

(3) Let B =
⊕

β ∈α ↓ Bβ ∈
⊕

β ∈α ↓ C
β×β be a block diagonal

matrix, whose blocks are ordered lexicographically. Then

B =
∑
β ∈α ↓ EαβBβP

α
β
.

Proof. (1), (2): obvious. (3): For x ∈ Cα , BβPαβx is the β-block

of Bx . By (2), Bx =
∑
β ∈α ↓ EαβBβP

α
β
x . As this is true for all x ∈ Cα ,

our claim follows. �

We come back to Theorem 2.1 and its notation. Suppose β is a

child of α ⊢ n and x ∈ Cβ . Put x̃ := Eα
β
x . We subdivide x̃ with

respect to the second level of the α-LLS tree: x̃1, . . . , x̃z, where i =

(α ⊃· βi ⊃· γ i). Let p = 1 +
∑
γ ∈α ↓:γ <β |γ ↓ | and q = ∑

γ ∈α ↓:γ ≤β |γ ↓ |.
Then βp−1 < β = βp = . . . = βq < βq+1. Moreover,γp < . . . < γq .

Thus x̃ j = 0, for all indices j < [p,q]. In addition, if (i, j) is an
axial pairing, then at most one of the indices i, j can belong to the

interval [p,q]. Thus if i ∈ [p,q], then j > q, which forces x̃ j = 0.

On the other hand, if j ∈ [p,q], then i < p, hence x̃ i = 0.

Corollary 4.2. Let α ⊢ n, β ∈ α ↓. Letx ∈ Cβ and put x̃ := Eα
β
x .

Let K = (Kij) := κα (tn), ỹ = (ỹi) = K · x̃ .
(1) If γ i is not contained in β , then ỹi = 0γ

i
.

(2) If i is an R-chain and βi = β , then ỹi = x̃ i.

(3) If i is a C-chain and βi = β , then ỹi = −x̃ i.
(4) Let (i, j) be an axial pairing with axial distance ξ . If i ∈

[p,q] then ỹi = ξ−1 · x̃ i and ỹj = (1− ξ−2) · x̃ i. If j ∈ [p,q],
then ỹi = x̃ j and ỹj = −ξ−1 · x̃ j.

We reformulate Corollary 4.2. Note that ỹi = P
β i

γ i
Pα
β i
ỹ.

Corollary 4.3. Let β ,γ denote two di�erent α-children with

corresponding axial distance ξβ,γ and δ := β ∩ γ . Let x ∈ Cβ and

K := κα (tn). Then the level-2-blocks of y := KEα
β
x satisfy:

(1) Pκε P
α
κy = 0

ε , if α ⊃· κ ⊃· ε and ε is not contained in β .

(2) P
γ

δ
Pαγ y = P

β

δ
x , if γ < β .

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

105

(3) P
γ

δ
Pαγ y = (1 − ξ−2

β,γ
) · Pβ

δ
x , if γ > β .

(4) P
β
ε P

α
β
y = ∧|

α
β,ε

P
β
ε x , where

∧|
α
β,ε
=

+1 if α ⊃· β ⊃· ε is an R-chain

−1 if α ⊃· β ⊃· ε is a C-chain
ξ−1
β,γ

if ε = δ and γ > β

−ξ−1
β,γ

if ε = δ and γ < β .

Now we will discuss the diamond and leaf-rake computations.

Theorem 4.4. Let β ⊢ n − 1, X = (x1, . . . ,xn) ∈ Cβ×n .
(1) If γ ∈ β↓↑ is di�erent from β , ξβ,γ the corresponding axial

distance, α := β ∪ γ , and δ := β ∩ γ , then the γ -block of

sα
β
(X) satis�es

Pαγ s
α
β
(X) = ♦β,γ · sγ

δ
(X β

δ
) ,

♦β,γ := 1, if γ < β , ♦β,γ := 1 − (ξβ,γ)−2, if γ > β .

(2) The β-block of sα
β
(X) satis�es

Pα
β
sα
β
(X) =

∑

ε ∈β↓
∧|
α
β,ε

s
β
ε (X

β
ε) + xn ,

where ∧|
α
β,ε

are the weights from Corollary 4.3(4).

Proof. For j < n put y j := κ
α (tn)Eαβx j .

(1) As Pαγ E
α
λ
: Cλ → Cγ is the zero operator for γ , λ whereas

Pαγ E
α
γ is the identity on Cγ , we get by Lemma 4.1 Pαγ κ

α (дj,n−1)y j
= Pαγ

∑
λ∈α ↓ Eαλκ

λ (дj,n−1)Pαλy j . Thus

Pαγ κ
α (дj,n−1)y j = κγ (дj,n−1)Pαγ y j . (8)

Combining this with Pαγ E
α
β
xn = 0

γ yields

Pαγ s
α
β
(X) = Pαγ

n−1∑

j=1

κα (дj,n)Eαβx j =

n−1∑

j=1

Pαγ κ
α (дj,n−1)y j

(8)
=

n−1∑

j=1

κγ (дj,n−1)Pαγ y j

=

n−1∑

j=1

κγ (дj,n−1)
∑

λ∈γ ↓

E
γ

λ
P
γ

λ
Pαγ y j

by Cor. 4.3(1) =

n−1∑

j=1

κγ (дj,n−1)EγδP
γ

δ
Pαγ y j

by Cor. 4.3(2+3) = ♦β,γ
n−1∑

j=1

κγ (дj,n−1)EγδP
β

δ
x j

= ♦β,γ · sγ
δ
(X β

δ
).

This proves our �rst statement.

(2) Note that

Pα
β
y j =

∑

ε ∈β↓

E
β
ε P

β
ε P

α
β
y j . (9)

As Pα
β
Eα
β
xn = xn we get

Pα
β
sα
β
(X) =

n∑

j=1

Pα
β
κα (дj,n)Eαβx j = xn +

∑

j<n

Pα
β
κα (дj,n−1)y j

(8)
= xn +

∑

j<n

κβ (дj,n−1)Pαβy j

(9)
= xn +

∑

j<n

κβ (дj,n−1)
∑

ε ∈β↓

E
β
ε (P

β
ε P

α
β
y j)

(∗)
= xn +

∑

ε ∈β↓
∧|
α
β,ε

∑

j<n

κβ (дj,n−1)Eβε P
β
ε x j

= xn +
∑

ε ∈β↓
∧|
α
β,ε

s
β
ε (X

β
ε),

where (∗) means by Cor. 4.3(4). This proves statement (2). �

4.2 Weighted local FFTs and multiresolution

To supersede the diamond computations we anticipate them by

integrating them into the output behavior. To this endwewill work

with weighted local FFTs FFTw
β
. More precisely, FFTw

β
expects as

inputs a matrix X ∈ Cβ×n and a weight functionwβ : β↑ → (0; 1]
:= {w ∈ R | 0 < w ≤ 1}. FFTw

β
[X ,wβ]α := wβ (α) · sαβ (X) is the

α-output, α ∈ β↑.
Inspired by Theorem 4.4 and [11], our weighted local FFT-al-

gorithm FFTw
β

will follow β ’s multiresolution tree, illustrated in

Figure 6 for β = (5, 2, 1). The rightmost tree in Figure 6 and the

matrix below indicate those parts of the original input matrixX =

(x1, . . . ,xn) = X 0,0 which will serve as inputs for smaller FFTs.

Put x ′
n−i := Pβi,0xn−i . (More details will follow after the example.)

(5, 2, 1)

�� %%❏❏
❏❏

❏❏

**❚❚❚
❚❚❚

❚❚❚
❚❚ β0,0

� � !!❉
❉❉

❉❉

((◗◗
◗◗◗

◗◗◗
◗◗ X0,0

�� ""❊
❊❊

❊❊

))❘❘
❘❘❘

❘❘❘
❘❘

(4, 2, 1)

�� $$❏❏
❏❏

❏❏

))❚❚❚
❚❚❚

❚❚❚
❚❚ (5, 12) (5, 2) β1,0

� � !!❈
❈❈

❈❈

((◗◗
◗◗◗

◗◗◗
◗◗ β1,1 β1,2 X1,0

�� ""❊
❊❊

❊❊

((❘❘
❘❘❘

❘❘❘
❘❘ X1,1 X1,2

(3, 2, 1)

�� $$❏❏
❏❏

❏❏

))❚❚❚
❚❚❚

❚❚❚
❚❚ (4, 12) (4, 2) ≡ β2,0

� � !!❈
❈❈

❈❈

((◗◗
◗◗◗

◗◗◗
◗◗ β2,1 β2,2 X2,0

�� ""❊
❊❊

❊❊

((❘❘
❘❘❘

❘❘❘
❘❘ X2,1 X2,2

(22, 1)

$$❏❏
❏❏

❏❏

))❚❚❚
❚❚❚

❚❚❚
❚❚❚
(3, 12) (3, 2) β3,0

! !❈
❈❈

❈❈

((◗◗
◗◗◗

◗◗◗
◗◗ β3,1 β3,2 X3,0

""❊
❊❊

❊❊

((❘❘
❘❘❘

❘❘❘
❘❘ X3,1 X3,2

(2, 12) (22) β4,1 β4,2 X4,1 X4,2

X = X 0,0 =

X 4,1 ∈ C(2,12)×5

X 4,2 ∈ C(22)×5 x ′6
X 3,1 ∈ C(3,12)×6 x ′7
X 3,2 ∈ C(3,2)×6 x ′8
X 2,1 ∈ C(4,12)×7 x ′9
X 2,2 ∈ C(4,2)×7

X 1,1 ∈ C(5,12)×8

X 1,2 ∈ C(5,2)×8

∈ C(5,2,1)×9 .

Figure 6: Multiresolution tree for β = (5, 2, 1) and corre-

sponding partition of original input matrix X

FFTw
β
works in a bottom-up manner. Figure 7 illustrates this for

β = (5, 2, 1), where FFTwi, j := FFTw
βi, j

.

After this illustrating example, we carry on with the more tech-

nical part.

4.3 Multiresolution trees

Let β = (n−k, µ), µ ⊢ k−1 and n−k ≥ µ1. Let µ
↑
= (λ1 < . . . < λs)

and µ↓ = (ν1 < . . . < νr) are all µ-parents and all µ-children. Put

f := n − k − µ1. Then β ’s multiresolution tree has f + 2 levels.

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

106

FFTw0,0[X0,0,w0,0]OO ii

❙❙❙
❙❙❙

❙❙❙
❙❙❙
ll

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨

FFTw1,0[X1,0,w1,0]OO ii

❙❙❙
❙❙❙

❙❙❙
❙❙❙
ll

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨
FFTw1,1[X1,1,w1,1] FFTw1,2[X1,2,w1,2]

FFTw2,0[X2,0,w2,0]OO ii

❙❙❙
❙❙❙

❙❙❙
❙❙❙
ll

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨
FFTw2,1[X2,1,w2,1] FFTw2,2[X2,2,w2,2]

FFTw3,0[X3,0,w3,0]ii

❙❙❙
❙❙❙

❙❙❙
❙❙❙
ll

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨
FFTw3,1[X3,1,w3,1] FFTw3,2[X3,2,w3,2]

FFTw4,1[X4,1,w4,1] FFTw4,2[X4,2,w4,2]

Figure 7: Sketch of FFTw
β
for β = (5, 2, 1)

The only partition of level 0 is β0,0 := β . For i ∈ [1, f], level i
consists of all βi−1,0-children: βi,0 < βi,1 < . . . < βi,r , where

βi,0 = (n − k − i, µ) and βi, j = (n − k − i + 1,ν j), j ∈ [1, r]. Finally,
level f + 1 consists of all βf +1, j = (µ1,ν j), j ∈ [1, r]. (As (µ1 − 1, µ)
is not a partition, βf +1,0 is absent in this level.)

If X ∈ Cβ×n is the input matrix, then X 0,0 := X and (recall

De�nition 3.1(4)) X i, j := X
βi−1,0
βi, j

.

4.4 Compatible propagation of weights

We describe the propagation of a weight functionwβ : β↑ → (0; 1]
to weight functions for all β-children. For all γ ∈ β↑↓, γ , β , and

all ε ∈ β↓ put

wβ∩γ (γ) := wβ (β ∪ γ) · ♦β,γ and wε (β) := 1 . (10)

In other words, every α ∈ β↑ broadcasts its weight wβ (α) to all

α-children γ , β . Moreover, β itself gets the weight 1. If α = β ∪γ ,

this corresponds to the factor wβ (β ∪ γ) in (10). In Figure 8 this

broadcasting is indicated by dotted downarrows. To get the �nal

weight ofwβ∩γ (γ) one has to multiplywβ (β∪γ)with the diamond

coe�cient ♦β,γ , which is equal to 1, if γ < β or equal to q2
ξ
=

1 − ξ−2, if β < γ and ξ is the axial distance between these two

partitions. As β↑↓ = {β} ⊔ ⊔
γ ∈β↓(γ ↑ \ {β}), (10) de�nes all the

weight functionsw1, j , j ∈ [0, r]. A slight modi�cation of (10) yields

the other weight functionswi, j : For a partitionγ = (γ1,γ2, . . .) and
i ≥ 1 we de�ne γ i := (γ1 − i,γ2, . . .), if γ1 − i ≥ γ2, otherwise γ

i is

unde�ned. Note that βi = βi,0. Let i ≥ 1. If for the partitions in (10)

βi ,γ i , εi are de�ned, thenwβ i∩γ i (γ i) := wβ i (βi ∪γ i) · ♦β i ,γ i and
wε i (βi) := 1 de�ne the remaining weight functions. Furthermore,

wβ i (βi ∪γ i) = wβ 1 (β1 ∪γ 1) and ♦β i ,γ i = ♦β,γ , if γ < β or (γ > β

and β1 = γ1). If β1 < γ1 and ξ denotes the axial distance of β and

γ , then ♦β,γ = q2
ξ
= 1 − ξ−2, whereas ♦β i ,γ i = q2

ξ−i . All this is

illustrated in Figure 8 for β = (5, 2, 1) and wβ = (A,B,C,D) .
To get, e.g., w1,2 and w2,1 , follow the uparrows starting at

52 and 411 : w1,2 = (521 7→ 1, 53 7→ C ·q23, 62 7→ D ·q27) and
w2,1 = (413 7→ A, 421 7→ 1, 512 7→ q24).

5212 7→ A

�� **

522 7→ B

��

531 7→ C

�� **

621 7→ D

((**
4212 7→ A

�� **

422 7→ B

��

431 7→ C

�� **

513 7→ A 521 7→ 1

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

gg◆◆◆◆◆◆◆◆◆◆◆◆◆◆

OO

53 7→ C · q23 612 7→ D · q25 62 7→ D · q27

3212 7→ A

��))

322 7→ B

��

321 7→ C

))

413 7→ A 421 7→ 1

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

ff◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

OO

43 7→ C · q23 512 7→ q24

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

hhPPPPPPPPPPPPPPPP

OO

52 7→ q26

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

OO

2212 7→ A

))

23 7→ B 313 7→ A 321 7→ 1

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

ff▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

OO

32 7→ C · q23 412 7→ q23

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

OO

42 7→ q25

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

hhPPPPPPPPPPPPPPPPPP

OO

213 7→ A 221 7→ 1

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

OO

312 7→ q22

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

OO

32 7→ q24

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

hhPPPPPPPPPPPPPPPPPP

OO

212

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

ggPPPPPPPPPPPPPPPPPPP

OO

22

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

OO

Figure 8: Structure of wi,0 , wi,1 , wi,2

The next result shows that the aboveweight propagation is com-

patible with our recursion scheme.

Theorem 4.5 (weighted form of Thm. 4.4). Let

γ ∈ β↑↓, γ , β , α := β ∪ γ , δ := β ∩ γ . Then

Pαγ FFT
w
β
[X ,wβ]α = FFTw

δ
[X β

δ
,wδ]γ , (11)

and with ∧|
α
β
:=

∑
ε ∈β↓ ∧|

α
β,ε

· FFTwε [X β
ε ,wε]β

Pα
β
FFTw

β
[X ,wβ]α =

(
∧|
α
β
+ xn

)
·wβ (α) . (12)

Proof. (11) follows from

Pαγ FFT
w
β
[X ,wβ]α = wβ (α) · Pαγ sαβ (X)

= wβ (α) · ♦β,γ · sγ
δ
(X β

δ
) (by Thm. 4.4)

= wδ (γ) · s
γ

δ
(X β

δ
) (by Def. (10))

= FFTw
δ
[X β

δ
,wδ]γ .

(12) is shown in a similar way. �

We describe the analogons of (11) and (12) when β = β0,0 is

replaced by βi,0. For i ∈ [1,n − k − µ1] let γ ∈ β
↑↓
i,0, γ , βi,0. Then

βi,0 ∩ γ = βi+1, j , for a unique j ∈ [0, r]. Let α := βi,0 ∪ γ . Then

Pαγ FFT
w
i,0[X i,0,wi,0]α=FFTwi+1, j [X i+1, j ,wi+1, j]γ . (13)

Let∧|
α
i :=

∑r
j=0 ∧|

α
βi,0,βi+1, j

·FFTwi+1, j [X i+1, j ,wi+1, j]βi,0 andx ′
n−i :=

Pβi,0xn−i . Then

Pα
βi,0

FFTwi,0[X i,0,wi,0]α =
(
∧|
α
i +x

′
n−i

)
·wi,0(α) . (14)

4.5 Weighted local FFTs

Now we can state our local FFT-algorithm at a meta-level. (The

unspeci�ed instructions in Line 5 and Line 9 will become clear in

a moment.)

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

107

FFTw
β

(β = (n − k, µ) ⊢ n − 1, µ ⊢ k − 1)

1. Input: X ∈ Cβ×n ,wβ : β↑ → (0; 1]
2. Preprocessing: Compute allwi, j

3. Initialization:
4. f := n − k − µ1
5. for j ∈ [1, r] compute FFTw

f +1, j
[X f +1, j ,w f +1, j]

6. Compute FFTw
f ,0

[X f ,0,w f ,0] blockwise via (13), (14), and
the outputs of Line 5

7. Recursion:
8. for i = f downto 1 do
9. Compute FFTwi, j [X i, j ,wi, j], for all j ∈ [1, r]
10. Compute FFTwi−1,0[X i−1,0,wi−1,0] blockwise

via (13), (14), FFTwi,0[X i,0,wi,0], and the

outputs of Line 9
11. end for
12. Output:
13. FFTw

β
[X ,wβ]α = FFTw0,0[X 0,0,w0,0]α , ∀α ∈ β↑

Theorem 4.6. For n > k the following statement holds.

ACn
k
: For all partitions β satisfying β = (n−k, µ), µ ⊢ k − 1,

the arithmetic cost of running FFTw
β
is of order [Sn : Sn−k].

The proof needs some preparations. For n ≥ 2 and I ⊆ [0,n − 1]
let (n)I :=

∏
i ∈I (n−i). Then (n)[0,n−1] = n! and (n)[0,k−1] = (n)k =

[Sn : Sn−k] is a falling factorial.

Lemma 4.7. Let n ≥ 2k and β = (n − k, µ), µ ⊢ k − 1. De�ne

I (µ) := [1,k − 1 + µ1] \
⋃
j≤µ1 {k − 1 + j − µ ′j }, µ

′ the conjugate

partition of µ. Then |I (µ)| = k − 1 and

dβ =
dµ

(k − 1)! · (n)I (µ) ≤
dµ

(k − 1)! · (n − 1)k−1.

Proof. The equality follows from the hook-length formula by a

straightforward computation. The inequality results from the fact

that I (µ) is a (k − 1)-subset of [1,k − 1 + µ1]. �

Furthermore, we need the identity (see, e.g., [6], (2.50))
n−1∑

m=0

(m)k−1 =
(n)k
k
. (15)

Proof. (of Theorem 4.6) We prove the ACn
k
-statement by in-

duction on k . Start: k = 1. This is true by [5].

Step: k − 1 → k . Note that FFTwi, j [X i, j ,wi, j] is an instance of

ACn−i
k−1

, if j ∈ [1, r], while for j = 0 it is an instance of ACn−i
k

.

(This explains the vagueness of Line 5 and Line 9: by induction

hypothesis we already know how to compute these local FFTs in

an order optimal way.) We will split the analysis of the arithmetic

cost into three parts: cost of preprocessing (Line 2), cost of run-

ning FFTwi, j for all relevant i ≥ 1 and all j ∈ [1, r], and cost of all

leaf-rake computations incurred when computing FFTwi,0. As we

use FFTw
β
, no diamond computations incur. Thus cost(FFTw

β
) ≤

cost(Line 2) + cost(FFTwi≥1, j≥1) + cost(∧|).
cost(Line 2) We assume that the input independent entities q2

ξ

are tabulated. Fig. 8 indicates that Line 2 a�ords ≤ |{γ ∈ β↑↓ |γ >
β}| scalar multiplications. Let |µ↓ | = r . Then r ≤ ⌊(

√
8k − 7−1)/2⌋,

see A003056 in [18]. Now the number of those γ is upper bounded

by r +
(r+1
2

)
, which is smaller than k +

√
2k .

cost(FFTwi≥1, j≥1) At level i we have r calls of instances of

ACn−i
k−1

. By the induction hypothesis, these subroutines cause cost

of order r
∑n−k−µ1+1
i=1 (n − i)k−1, which, by (15), is smaller than

r
k
· (n)k < (n)k .
cost(∧|) In level i ≥ 1, we have to perform |β↑i−1,0 | ≤ 1 + |µ↑ |

leaf-rake computations. By Equation (12), each such computation

is a linear combination of 1 + |β↓i−1,0 | ≤ 2 + |µ↓ | vectors in Cβi−1,0 .
As |µ↑ | = 1 + |µ↓ | we get the upper bound
cost(∧|) ≤ 2 · (2 + |µ↓ |)2∑n−k−µ1−1

i=0 dβi,0 ≤ 2·(2+ |µ↓ |)2 ·dµ
(k−1)! · (n)k ,

by Lemma 4.7. This proves Theorem 4.6. �

5 CONCLUDING REMARKS

In this paper we designed order-optimal FFTs for computing spec-

tral images of Sn−k -invariant functions on the symmetric group

Sn . In the context of his PhD, the second author has implemented

a variant of our algorithm for k ≤ 3. For implementation details

and run-time tables we refer to [7].

6 ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their

valuable comments and helpful suggestions.

REFERENCES
[1] U. Baum and M. Clausen. Some lower and upper complexity bounds for gen-

eralized Fourier transforms and their inverses. SIAM J. Comput., 20(3):451–459,
1991.

[2] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory,
volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.

[3] M. Clausen. Fast generalized Fourier transforms. Theor. Comput. Sci., 67(1):55–
63, 1989.

[4] M. Clausen and U. Baum. Fast Fourier transforms for symmetric groups: theory
and implementations. Math. Comp., 61(204):833–847, 1993.

[5] M. Clausen and R. Kakarala. Computing Fourier transforms and convolutions of
Sn−1-invariant signals on Sn in time linear inn. Appl. Math. Lett., 23(2):183–187,
2010.

[6] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-
tion for Computer Science, second edition. Addison-Wesley, 1994.

[7] P. C. Hühne. Beiträge zum Entwurf größenoptimaler schneller Fouriertransfor-
mationen auf gewissen homogenen Räumen symmetrischer Gruppen. PhD thesis,
Universität Bonn, 2016.

[8] G. James and A. Kerber. The Representation Theory of the Symmetric Group. En-
cyclopedia of Mathematics and its Applications, 16. Addison-Wesley, 1981.

[9] R. Kondor. A Fourier space algorithm for solving quadratic assignment prob-
lems. In SODA 2010, pages 1017–1028, 2010.

[10] R. Kondor and M. S. Barbosa. Ranking with kernels in Fourier space. In COLT
2010, pages 451–463, 2010.

[11] R. Kondor and W. Dempsey. Multiresolution analysis on the symmetric group.
In NIPS 2012, pages 1646–1654, 2012.

[12] R. Kondor, A. Howard, and T. Jebara. Multi-object tracking with representations
of the symmetric group. In AISTATS 2007, pages 211–218, 2007.

[13] R. Kondor, N. Shervashidze, and K. M. Borgwardt. The graphlet spectrum. In
ICML 2009, pages 529–536, 2009.

[14] D. K. Maslen. The e�cient computation of Fourier transforms on the symmetric
group. Math. Comput., 67(223):1121–1147, 1998.

[15] D. K. Maslen and D. N. Rockmore. Generalized FFT’s – A survey of some recent
results. In Groups and Computation, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, June 7-10, 1995, pages 183–238, 1995.

[16] D. Rockmore, P. Kostelec, W. Hordijk, and P. F. Stadler. Fast Fourier transforms
for �tness landscapes. Applied and Computational Harmonic Analysis, 11(1):57–
76, 2002.

[17] J.-P. Serre. Linear Representations of Finite Groups, volume 42 of Graduate Texts
in Mathematics. Springer, 1977.

[18] N. Sloane. The on-line encyclopedia of integer sequences. https://oeis.org.

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

108

https://oeis.org

	Abstract
	1 Introduction
	1.1 DFTs on finite groups
	1.2 Designing FFTs on finite groups
	1.3 FFTs of Sn-k-invariant functions on Sn
	1.4 Structure and contributions of the paper

	2 Young's adapted DFTs
	3 From local to global FFTs
	4 On the design of local FFTs
	4.1 Diamond and leaf-rake computations
	4.2 Weighted local FFTs and multiresolution
	4.3 Multiresolution trees
	4.4 Compatible propagation of weights
	4.5 Weighted local FFTs

	5 Concluding remarks
	6 Acknowledgments
	References

