
Is There a Mismatch between Real-World Feature Models and
Product-Line Research?

Alexander Knüppel
TU Braunschweig, Germany

a.knueppel@tu-bs.de

Thomas Thüm
TU Braunschweig, Germany

t.thuem@tu-bs.de

Stephan Mennicke
TU Braunschweig, Germany
mennicke@ips.cs.tu-bs.de

Jens Meinicke
University of Magdeburg, Germany
Carnegie Mellon University, USA

meinicke@ovgu.de

Ina Schaefer
TU Braunschweig, Germany

i.schaefer@tu-bs.de

ABSTRACT

Feature modeling has emerged as the de-facto standard to com-
pactly capture the variability of a software product line. Multiple
feature modeling languages have been proposed that evolved over
the last decades to manage industrial-size product lines. However,
less expressive languages, solely permitting require and exclude
constraints, are permanently and carelessly used in product-line re-
search. We address the problem whether those less expressive lan-
guages are sufficient for industrial product lines. We developed an
algorithm to eliminate complex cross-tree constraints in a feature
model, enabling the combination of tools and algorithms working
with different feature model dialects in a plug-and-play manner.
However, the scope of our algorithm is limited. Our evaluation on
large feature models, including the Linux kernel, gives evidence
that require and exclude constraints are not sufficient to express
real-world feature models. Hence, we promote that research on fea-
ture models needs to consider arbitrary propositional formulas as
cross-tree constraints prospectively.

CCS CONCEPTS

• Software and its engineering → Feature interaction; Soft-
ware product lines;

KEYWORDS

Software product lines, feature modeling, cross-tree constraints,
model transformation, expressiveness, require constraints, exclude
constraints

ACM Reference Format:

Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke,
and Ina Schaefer. 2017. Is There a Mismatch between Real-World Feature
Models and Product-Line Research?. In Proceedings of ESEC/FSE’17, Pader-
born, Germany, September 04-08, 2017, 12 pages.
https://doi.org/10.1145/3106237.3106252

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106252

1 INTRODUCTION

Software product-line engineering is a paradigm enabling mass cus-
tomization of software [30]. Instead of developing a monolithic soft-
ware product, the goal is to develop reusable software artifacts for
a specific domain in a process called domain engineering. Multiple
software artifacts composed together eventually result in a software
product. A software product line is a family of similar software prod-
ucts sharing common artifacts. We distinguish between common
and varying characteristics of products in terms of features. Fea-
tures are user-visible aspects or characteristics of a software [22],
being of interest for some stakeholders. Later, in a process called
application engineering, a set of features is selected based on the
requirements of stakeholders and a software product is derived.

The standard technique in research and industry to manage vari-
ability of a product line is feature modeling [12, 22]. Feature mod-
els offer an easy-to-understand formalism and unambiguously de-
scribe dependencies among features. In the context of product-line
engineering, feature modeling is a valuable asset in several areas
such as domain scoping [12, 22], feature-oriented software devel-
opment [22, 24, 42], product-line analysis [39], and configuration
management [48]. Our ten year experience with developing the
open-source tool FeatureIDE [24] and integrating product-line
tools is that a typical obstacle is the expressive power of different
feature modeling dialects. Varying expressiveness in feature mod-
eling languages prevents tool reuse and, thus, hinders efficient ap-
plication of existing algorithms and concepts.

Over the last decades, several feature modeling languages, ex-
tending the initially proposed language by Kang et al. [22], have
been suggested, either graphical [6, 12, 16, 18, 20, 23, 24, 31] or tex-
tual [2, 4, 5, 8, 10, 24, 28, 32, 44]. Ideally, given a set of features, a fea-
ture modeling language should be able to represent exactly the set
of all valid feature combinations with respect to the requirements
aquired during the domain engineering phase. A considerable por-
tion of such languages, however, is not expressively complete (i.e., in
theory, certain product lines cannot be represented). Although the
restricted expressiveness was mentioned elsewhere [14, 17, 33, 37],
an in-depth analysis of the problem for real-world feature models
and a practical solution to overcome this limitation are still missing.

In particular, we identified several proposed methods dealing
with feature models that are still based on expressively incomplete
languages due to their simplicity and dominance in the product-
line community. To name a few, the affected reasearch areas in-
clude automated analysis of feature models [34], synthesis of feature

291

https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3106237.3106252

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,
Jens Meinicke, and Ina Schaefer

models [3, 21, 26, 27, 37], product-line testing and analysis [15, 38],
generation of artificial feature models for experiments and evalua-
tions [19, 35], and optimal feature selection [6, 19, 47, 48]. More sur-
prisingly, the number of anually proposed methods that are based
on expressively incomplete feature modeling languages does not
seem to decrease over time, as we still identified several publica-
tions in the years 2015 – 2017 (e.g., [11, 27, 36, 45, 46]).

Typically, expressively incomplete languages used in product-
line research facilitate only two kinds of cross-tree constraints,
here called simple constraints: either the activation of a feature f1
implies the activation of a feature f2 (i.e., f1 requires f2) or the two
features are mutually exclusive and cannot be activated together
(i.e., f1 excludes f2) [22]. We refer to feature models facilitating only
simple constraints as basic feature models.

In contrast to simple constraints, complex constraints are arbi-
trary propositional formulas over the set of features written as
textual constraints [5]. Complex constraints are already part of
many feature modeling languages used in practice, such as Fea-
tureIDE[24], Familiar[2], or Clafer[4]. Other variability lan-
guages, such as KConfig and CDL, where feature model approxima-
tions exist [9], also rely on flavors of propositional logic to document
dependencies between features across the feature model hierarchy.

To overcome the problem of different languages required at dif-
ferent stages in the engineering process, a feature model transfor-
mation is necessary. However, feature models with complex con-
straints cannot generally be transformed into ones with only simple
constraints, as their languages differ in expressive power. Neverthe-
less, to answer the question whether there is a mismatch between
real-world feature models and product-line research, we need to
bridge the gap between those different languages.

We propose relaxed feature models, an expressively complete lan-
guage based on simple constraints. In theory, this language can re-
place basic feature models for various methods in product-line re-
search. However, relaxed feature models may increase significantly
in the number of features and constraints. We analyze the useful-
ness of this transformation on real-word feature models. In particu-
lar, the contributions of this paper are as follows.

• Weprovide examples of product-line research solely focusing
on basic feature models.

• We present a product-preserving transformation from lan-
guages using complex constraints to relaxed feature models,
and formally prove its correctness.

• Wequantitatively assess the limited expressiveness of feature
models with only simple constraints.

• We give evidence that real-world feature models rely on
complex constraints.

• We evaluate our transformation on large real-world feature
models and discuss consequences for product-line research.

2 EXPRESSIVENESS OF FEATURE MODELS IN

PRODUCT-LINE RESEARCH

In this section, we introduce basic feature models, a language pre-
dominantly used in product-line research. Thereupon, we inves-
tigate its expressive power. A basic feature model is a hierarchi-
cally organized tree structure that decomposes features into either
an or-group, an alternative-group, or sole mandatory and optional

Pizza

CheesyCrust Topping

Salami Ham Mozzarella

Size

Normal Big

Dough

Neapolitan Sicilian

CheesyCrust⇒ Big

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 1: Basic featuremodel representing a product line for

pizzas in FeatureIDE notation.

features. Furthermore, depending on the language, require and ex-
clude constraints can be specified [12, 22]. In Figure 1, we exem-
plify a basic feature model representing a product line for pizzas.

Features Topping, Size, and Dough are mandatory, thus are part of
all pizza products. As for toppings, we must at least select one of the
features Salami, Ham, or Mozzarella. Regarding the size, we may ei-
ther choose feature Normal or Big. We can also decide which dough
we would like to use, namely classic Neapolitan or Sicilian. Finally,
we can decide to get extra cheese inside our crust, offered by the op-
tional feature CheesyCrust. Nevertheless, by fulfilling the requires
constraint depicted below the diagram (i.e., CheesyCrust ⇒ Big), we
force the size of a pizza to be big, whenever we order a cheesy crust.

A feature model language can be described informally by a con-
crete syntax (i.e., as we did above), or formally by defining a for-
mal model. We are interested in describing our approach formally
to precisely and umambigiously reason about our aforementioned
contributions. For this purpose, Schobbens et al. [33] proposed a
generic formal semantics to catch a variety of older feature model-
ing dialects. To increase expressiveness, they used directed acyclic
graphs instead of trees. However, in our experience, the vast major-
ity of feature modeling languages build upon a tree structure. Thus,
we give a modified version of the semantics for basic feature mod-
els compared to the one Schobbens et al. proposed [33]. More pre-
cisely, we obtained the requirements for our basic feature modeling
language by conducting an expert survey of scientific publications
in product-line research. Table 1 lists 15 publications categorized
by their respective product-line discipline that go beyond the anal-
ysis of propositional logic, for which it is not obvious how they can
be used for feature models with complex constraints.

We identified three common characteristics of a basic feature
modeling language: (1) features are only decomposed into optional
features, mandatory features, or-groups, and alternative-groups,
(2) the hierarchy is built upon a tree instead of a directed acyclic
graph, and (3) only require and exclude constraints (i.e., simple
constraints) are allowed. Optional and mandatory features below
one parent are typically grouped together into an and-group.

Table 1: Summary of reviewed publications using basic fea-

ture models for five application domains.

Research Area Proposal
Analysis of feature models [11, 34, 46]
Feature model synthesis [3, 21, 26, 27, 37]
Generating artificial feature models [19, 35]
Product-line testing [15, 38]
Optimal feature selection [6, 19, 47, 48]

292

Is There a Mismatch between Real-World Feature Models and
Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

We denote by F the universe of features. Given a set of features
N ⊆ F , we distinguish between concrete features that are mapped
to software artifacts (i.e., P ⊆ N) and abstract features [41] (i.e.,
N \ P) that are either used for grouping and decomposition or that
are planned to be connected with software artifacts later during
software evolution. Abstract features have the advantage that each
decomposition belongs to exactly one feature and groups can be
explicitly labeled (cf. Figure 1 where features Pizza, Topping, Size,
and Dough are abstract for grouping their sub-features). In other
concrete syntaxes without abstract features, it is possible to decom-
pose a feature into multiple groups (e.g., or- and alternative-groups)
without intermediate features [12]. Both approaches can be used
interchangebly with respect to the set of valid products [41]. In-
spired by the formal semantics of Schobbens et al. [33], we define
the syntactic domain of basic feature models as follows.

Definition 2.1. A basic feature model is defined as a 7-tuple
(N , P , r ,ω, λ,Π,Ψ) where

• N ⊆ F is a finite set of features and P ⊆ N a subset of
concrete features.

• r ∈ N is the root feature.
• ω : N → {0, 1} is a function labeling a feature as either
optional (0) or mandatory (1) with ω(r) = 1.

• λ : N → N × N is a function representing the relationship
of a parent feature and its sub-features. The lower bound is
the minimal number of features that must be selected, and
the upper bound is the maximal number of features that can
be selected. We use ⟨1..1⟩ for alternative-groups, ⟨1..n⟩ for
or-groups with n sub-features, ⟨n..n⟩ for and-groups with n
sub-features, and ⟨0..0⟩ for leaf features.

• Π ⊆ N ×N is a decomposition relation. We denote (f ,д) ∈ Π
as f ≺ д, meaning that д is sub-feature of f .

• Ψ ⊆ { f ⇒ д, f ⇒ ¬д | f ,д ∈ P} is a set of simple con-
straints in propositional logic.

A basic feature model has an acyclic tree structure (i.e., except
for root feature r , every feature has exactly one parent) and leaf
features must be concrete (i.e., ∀f ∈ N , if λ(f) = ⟨0..0⟩ then f ∈ P).
Moreover, only features of an and-group can be mandatory (i.e., for
f ,д ∈ N , if д ≺ f and ω(f) = 1, then λ(д) = ⟨n..n⟩ with n being
the number of sub-features of д). The set of all basic feature models
is denoted by LB .

Example 2.2. Consider a feature model (N , P , r ,ω, λ,Π,Ψ) ∈ LB
as depicted in Figure 2. The representation in LB is illustrated in
the following, where names of features are abbreviated by their
first identifying letters.

P = {Sa,H ,M,N ,B}
N = {Pi,T , Si} ∪ P
r = Pi

ω(f) =
{

0 if f ∈ {Sa,H ,M,N ,B}
1 if f ∈ {Pi,T , Si}

λ(f) =

⟨0..0⟩ if f ∈ {Sa,H ,M,N ,B}
⟨2..2⟩ if f = Pi
⟨1..1⟩ if f ∈ {Si}
⟨1..3⟩ if f = T

Π = {(Pi,T), (Pi, Si), (T , Sa), (T ,H),
(T ,M), (Si,N), (Si,B)}

Ψ = {B ⇒ M}

Pizza

Topping

Salami Ham Mozzarella

Size

Normal Big

Biд ⇒ Mozzarella

Figure 2: Reduced feature model for the pizza product line.

The distinction between concrete and abstract features allows
us to define the semantics of basic feature models only consider-
ing features that influence the final product. For instance, in Exam-
ple 2.2, features Pizza, Topping, Size, and Dough are abstract such
that their integration into any valid program variant has no direct
effect. Nevertheless, they are used in basic feature models for group-
ing and enabling the selection of sub-features. This is particularly
important when comparing two or more feature models, as they
may syntactically differ, but still represent the same software prod-
uct line [40, 41].

Therefore, it is important to distinguish features in configurations
(i.e., a feature selection possibly including abstract features) and
features in program variants (i.e., the list of concrete features as an
abstraction from implementation details). To retrieve an abstraction
of a program variant from a given configuration, wemust remove all
abstract features. Therefore, we define the set of valid configurations
as follows.

Definition 2.3. Let m = (N , P , r ,ω, λ,Π,Ψ) be a basic feature
model. Configuration c ∈ 2N is valid form, denoted by c |=C m, if
and only if

• it contains the root feature: r ∈ c .
• it satisfies the decomposition type: ∀f ∈ c , λ(f) = {⟨0..0⟩
⟨1..1⟩ ⟨1..n⟩ ⟨n..n⟩}, where n is the number of sub-features
of f , andmand(f) ⊆ c must hold, where mand(f) = {д ∈
N |ω(д) = 1 ∧ f ≺ д } is the set of mandatory sub-features
of f .

• its parent-child-relationships hold:
∀f ∈ c : f ′ ≺ f implies f ′ ∈ c , and

• it satisfies each cross-tree constraint:
∀ψ ∈ Ψ :

∧
f ∈c

f ∧ ∧
f ′∈N \c

¬f ′ |= ψ

We denote the set of all valid configurations ofm by Cm .

Based on Definition 2.3, the semantic function maps a feature
model in LB to its product line. The semantic domain D (i.e., the
set of all existing product lines) is defined as D = 22

P
with P ⊆ F

being the set of concrete features. For basic feature models, we
denote by DB ⊆ D the semantic domain of LB .

Definition 2.4. The semantics of a basic feature modelm is its
set of valid program variants, defined by JmKB := {c ∩ P | c ∈ Cm }.

Example 2.5. Consider the feature modelm ∈ LB in Figure 2
inspired by the pizza product line. The semantic function based on

293

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,
Jens Meinicke, and Ina Schaefer

Definition 2.4 results in the following product line, comprising 11
program variants in total.

JmKB = {{N , Sa}, {N ,H }, {N ,M}, {N , Sa,H },
{N , Sa,M}, {N ,H ,M}, {N , Sa,H ,M},
{B,M}, {B, Sa,M}, {B,H ,M}, {B, Sa,H ,M}}

Conversely to Example 2.5, an interesting problem is whether a
representing feature model for a given product line exists. For this
purpose, we define a language as expressively complete, if the domain
of the language equals D and expressively incomplete otherwise.
Whether a basic feature modeling language is sufficient to express
all theoretical product lines is answered by the following theorem.
For convenience, the product line of interest is visualized in Figure 3
by the left feature model with two complex constraints.

Theorem 2.6. The language of basic feature models LB is expres-
sively incomplete (i.e., DB , D).

Proof. It is sufficient to only show one product line π for which
no basic feature model exists. We choose π = {{A,B}, {A,C}, {B},
{B,C}, {A,B,C}}. Based on Definition 2.1, features ofm can have
optional and mandatory features, or-groups, or alternative-groups
below them. Furthermore, simple constraints can be specified. We
make the following observations.

• Parent-child-relationships and constraints: No feature is oc-
curring with any other feature in every product. Hence,
there are neither parent-child-relationships nor require con-
straints between features A, B, and C . Product {A,B,C} fur-
ther reveals that there are no exclude constraints between
these three features.

• Alternative-groups: Similar to above, product {A,B,C} re-
veals that there are no alternative-groups.

• Mandatory features: There is no single feature occurring in
every product. Therefore, neither feature A, B, nor C are
mandatory sub-features of r .

• Optional features: Features A, B, andC cannot all be optional
sub-features of r , because the empty product is missing.

• Or-groups and abstract features: Assume f1, f2 ∈ {A,B,C}
with f1 , f2 are in the same or-group. Since there are
no cross-tree constraints, no parent-child-relationships, no
alternative-groups, and no mandatory features, {{ f1}, { f2}}
⊂ π must hold. This, however, is contradicting to the prod-
uct line π . Abstract features do not improve the situation,
since they can only be placed above the or-group or be part
of the or-group with the remaining third feature below. No
options left are enough to represent the product line.

�

The other two feature models in Figure 3 are further examples of fea-
ture models where no pendant inLB exist. Theorem 2.6 proves that,
in theory, methods and tools in product-line research limit their
applicability if they only consider basic feature models. However,
it is unclear whether real-world feature models are affected by this
limitation. Hence, we formally investigate expressively complete
languages used for real-world feature models in the next section.

r

A B C

A ∨ B
B ∨ C

r

A B C

A ∧ B ⇒ C

r

A B C

A⇒ B ∨ C

Figure 3: Three small feature models using complex con-

straints that cannot be expressedwith the basic featuremod-

eling language LB .

3 EXPRESSING REAL-WORLD FEATURE

MODELS

This section introduces (1) feature models with complex constraints,
and (2) relaxed feature models, whereas the latter may serve as a
substitution for basic feature models in product-line research.

3.1 Feature Models with Complex Constraints

Complex constraints are arbitrary propositional formulas over
the set of features. In Definition 2.1, we already encoded simple
constraints in LB using propositional logic. Hence, complex con-
straints can be seen as a generalization, since we now allow any
logical connection between an arbitrary number of features. Conse-
quently, semantic function J.KB (cf. Definition 2.4) carries over to
both languages. For convenience, we simply use J.K in the follow-
ing. We define the syntactic domain LM based on complex con-
straints as follows.

Definition 3.1. A feature model in LM is a 7-tuple
(N , P , r ,ω, λ,Π,Ψ) where

• N , P , r ,ω, λ,Π follow Definition 2.1 and
• cross-tree constraints are arbitrary propositional formulas
over the set of features N , i.e., Ψ ⊆ B(N).

Theorem 3.2. The language LM is expressively complete.

Proof. Let π ∈ D be a product line. We construct feature model
m = (P ∪ {r }, P , r ,ω, λ,Π,Ψ) such thatm ∈ LM with P =

⋃
p∈π

p

and each feature f ∈ P holds the following conditions.
• is sub-feature of root r : r ≺ f .
• is optional: ω(f) = 0.
• is a leaf feature: λ(f) = ⟨0..0⟩.

Root r is decomposed into optional features (i.e., λ(r) = ⟨|P |..|P |⟩).
Moreover, we add only one complex constraint representing the
product line in disjunctive normal form such that JmK = π :

Ψ = { ∨
p∈π

(∧
f ∈p

f ∧ ∧
f ∈P\p

¬f)}.

Hence, LM is expressively complete. �

Complex constraints offer a strong and concise mechanism for
documenting feature dependencies in a feature model. However, it
is unclear how existing approaches in product-line research should
be extended to integrate them. For example, in our survey (cf. Ta-
ble 1) we looked at algorithms for optimal feature selection. Some
of these approaches are based on genetic algorithms [6, 19]. There
exists thus a catalog on how decomposition groups and cross-tree
constraints are encoded into chromosomes of individuals. This is

294

Is There a Mismatch between Real-World Feature Models and
Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

less challenging for simple constraints, since there are only four
dependencies between two features: either one feature requires an-
other feature (and vice versa), both are mutually exclusive, or there
is no dependency. For arbitrary propositional formulas, however,
it may be a considerable amount of extra work to modify these al-
gorithms, and it may also be questionable whether a modification
leads to an acceptable performance.

Another relevant aspect with an impact on existing product-line
research is the interoperability of tools and tool reuse in general.
Research could profit from a plug-and-play manner to combine
existing and new concepts and tools. For this vision of incorporating
different product-line tools, it is necessary that their feature model
languages are translatable into each other, which gives rise to a
product-preserving feature model transformation.

3.2 Relaxed Feature Models

In this section, we consider an alternative feature modeling lan-
guage that is (1) syntactically very close to the language of basic fea-
ture models, (2) uses only simple constraints, and (3) is expressively
complete. This language serves as a bridge between basic feature
models and feature models using complex constraints. The differ-
ence to basic feature models is that relaxed feature models allow ab-
stract features to be leaf features and to be part of simple constraints.

Definition 3.3. A relaxed feature model is defined as a 7-tuple
(N , P , r ,ω, λ,Π,Ψ) where

• N , P , r ,ω,Π follow Definition 2.1,
• leaf features may also be abstract, and
• abstract features in simple constraints are allowed:
Ψ ⊂ { f ⇒ д, f ⇒ ¬д | f ,д ∈ N }.

The set of all relaxed feature models is denoted by LR .

Our semantics also applies to LR . With the following theorem,
we show that those subtle changes already guarantee LR to be
expressively complete.

Theorem 3.4. Language LR is expressively complete.

Proof. Let π = {p1, ...,pn } be a product line with π ∈ D. We
construct a feature modelm = (N , P , r ,ω, λ,Π,Ψ) in LR such that
the following conditions hold.

P =
n⋃
i=1

pi

N = {r ,G,д1, ...,дn } ·∪ P

ω(f) =
{

0 if f < {r ,G}
1 if f ∈ {r ,G}

λ(f) =

⟨|P | + 1..|P | + 1⟩ if f = r
⟨1..1⟩ if f = G
⟨0..0⟩ otherwise

Π = {(r , f) | f ∈ P ∪ {G}} ∪ {(G, f) | f ∈ {д1, ...,дn }}
Ψ =

n⋃
i=1

{дi ⇒ f | f ∈ pi } ∪ {дi ⇒ ¬f | f ∈ P \ pi }

Feature G is a mandatory abstract feature decomposed into an
alternative-group with parent r and abstract sub-features д1, ...,дn .
All concrete features in P are optional sub-features of r . Each sub-
feature of G corresponds to one and only one product in π . For
each feature in product pi , we create a single requires constraint
(i.e., ∀f ∈ pi : (дi ⇒ f) ∈ Ψ). For every other feature, we create
a single excludes constraint (i.e., ∀f ∈ P \ pi : (дi ⇒ ¬f) ∈ Ψ).
Each abstract leaf feature in the alternative-group now denotes a

product in the product line π , such that JmK = π holds. Hence, LR
is expressively complete. �

In summary, feature models with complex constraints are ex-
pressively complete, but simplified assumptions in product-line re-
search limit applicability of such feature models. Since LM and
LR are equally expressive, a transformation from one language to
another exists. Even more, semantic function J.K may map syntacti-
cally different feature models in LR to the same product line (e.g.,
if an abstract leaf feature is added). Hence, there may even exist
more than one transformation.

Nevertheless, an acceptable transformation for us must comply
with certain criteria. In particular, our goal is to find a transfor-
mation that does not degenerate the initial feature model hierar-
chy, since a different hierarchy without conserving present domain
knowledge may cause confusion or might even be unusable as soon
as the user starts manually working with the feature model to in-
spect analysis results. The construction proof of Theorem 3.4 in-
validates this requirement. For this reason, we must think of a dif-
ferent transformation from LM to LR .

4 ELIMINATING COMPLEX CONSTRAINTS

In this section, we present a transformation from feature models in
LM to relaxed feature models in LR . Our assumption is that re-
laxed feature models can be used in numerous application domains
as a replacement for basic feature models. Hence, this translation
is a potential compromise for feature models with complex con-
straints to be applicable for tools and approaches in product-line
research only dealing with simple constraints.

First, we explain our algorithm for translating complex con-
straints into additional abstract features and simple constraints,
while preserving the product line. Second, we give instructions on
how further concepts (e.g., mutex-groups) can be resolved for our
transformation algorithm to become generally applicable.

4.1 Translation to a Relaxed Feature Model

Not all complex constraints are of the same kind. Some complex
constraints can be translated to an equivalent conjunction of sim-
ple constraints. For example, the complex constraint f1 ∨ f2 ⇒ f3
is equivalent to the conjunction of the simple constraints f1 ⇒ f3
and f2 ⇒ f3. To this end, we classify complex constraints further
into two disjoint categories: pseudo-complex and strict-complex con-
straints. Pseudo-complex constraints are convertible to a set of sim-
ple constraints, whereas strict-complex constraints are not. More
formally, a pseudo-complex constraint is a complex constraintψ such
that its conjunctive normal form has the formψ cnf =

∧
ci where

ci ≡ (¬f1 ∨ f2) or ci ≡ (¬f1 ∨¬f2) for arbitrary features f1, f2 ∈ F .
Otherwise, we say that ψ is strict-complex. In the remainder, we
assume that pseudo-complex constraints are already resolved and
use the terms complex and strict-complex interchangeably.

The idea for transforming a feature model from LM to LR is
to translate complex constraints to additional abstract features and
simple constraints without adding or removing program variants
from the respective product line. Moreover, the original feature
model hierarchy is still embedded into the new one. Before giving
an algorithm, let us first introduce a construct that we refer to as
abstract tree.

295

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,
Jens Meinicke, and Ina Schaefer

Definition 4.1. Letm = (N , P , r ,ω, λ,Π,Ψ) be a feature model in
LM . An abstract tree form is a pair (m̃, Φ), where m̃ = (Ñ , ∅, r̃ , λ̃, ω̃,
Π̃, ∅) is a feature model in LR such that N ∩ Ñ = ∅ and Φ is a set
of simple constraints in propositional logic over N ∪ Ñ .

We use abstract trees to eliminate complex constraints from fea-
ture models. The initial assumption is that we can transform any
cross-tree constraint to an abstract tree such that the complex con-
straint is semantically equivalent to the abstract tree in a given
feature model (i.e., they both restrict the same combinations of fea-
tures that cannot be activated together). We then exploit them to
substitute each complex constraint in a feature model from LM
with a corresponding abstract tree. All abstract trees and original
feature model without complex constraints are then composed to-
gether into an equivalent feature model in LR . The join operation
introduces a new root feature r , decomposing into the respective
root features of the components. Since our algorithm works in-
crementally (i.e., eliminating complex constraints one by one), we
must extend LM to a language LM′ in which abstract features
can be leaf features and also occur in cross-tree constraints.

Definition 4.2. Letm = (N , P , r ,ω, λ,Π,Ψ) ∈ LM′ and (m̃, Φ) an
abstract tree with m̃ = (Ñ , ∅, r̃ , λ̃, ω̃, Π̃, ∅) such that r < N ∪ Ñ . The
join ofm and (m̃,Φ) is defined by

m • (m̃,Φ) = (N ∪ Ñ ∪ {r }, P , r , λ,ω,Π,Ψ ∪ Φ),
where λ = {(r , ⟨2..2⟩)} ∪ λ ∪ λ̃, ω = {(r , 1)} ∪ ω ∪ ω̃, and Π =
{(r , r), (r , r̃)} ∪ Π ∪ Π̃.

Transformation to Abstract Trees. Letm ∈ LM′ and ϕ be a
(not necessarily complex) constraint ofm.Without loss of generality,
we assume that ϕ is in conjunctive normal form (CNF),

ϕ = (l11 ∨ . . . ∨ l1k) ∧C2 ∧ . . . ∧Cn ,

with clauses C1,C2, . . . ,Cn and literal l ij is the j-th literal of the i-
th clause, denoted by l ij ∈ Ci . |Ci | denotes the number of literals
occurring in clause Ci , e.g., |C1 | = k . A literal is called negative
literal if it has the form ¬f where f is a feature ofm. Otherwise, it
is a positive literal. In both cases, the literal is referencing feature f .

The abstract tree for ϕ with respect tom is denoted by T(m,ϕ) =
(m̃ϕ ,Φϕ). We first exploit the syntactic structure of the formula,
yielding m̃ϕ as follows. Root feature r̃ is added to m̃ϕ . For each
clause Ci , we add an abstract feature Ci to m̃ϕ , such that Ci is a
mandatory sub-feature of r̃ , i.e., r ≺ Ci and ω̃(Ci) = 1. For each
literal l ij , we add an optional feature l ij to m̃ϕ as sub-feature of
Ci , e.g., C1 ≺ l11 . Each clause Ci decomposes into an or-group, i.e.,
λ̃(Ci) = ⟨1..|Ci |⟩. Every configuration of m̃ϕ contains at least the
root feature r̃ , features C1, . . . ,Cn , and for each clause Ci at least
one literal contained in Ci .

As a last step, we integrate the type of the literals, positive or
negative, into the constraint set Φϕ , such that the abstract tree
T(m,ϕ) may substitute the constraint ϕ inm. Therefore, consider
a positive literal l ij , being a reference to some feature f in m. A
configuration ofm respecting constraint ϕ such that l ij is evaluated
to true, contains feature f . Whenever the abstract feature l ij is part
of a configuration, f is part of the configuration. Hence, for every
positive literal l ij with reference to some feature f , we add a requires

(a)
ϕ = (A ∨ B) ∧ (A ∨C) ∧ (¬D ∨ ¬E)

¬D ∨ ¬E

¬E¬D

A ∨C

CA

A ∨ B

BA

(b) ASϕ

c1

A′ B′

c2

A′′ C ′

c3

D ′ E ′

A′ ⇒ A
B′ ⇒ B
A′′ ⇒ A
C ′ ⇒ C
D ′ ⇒ ¬D
E ′ ⇒ ¬E

Figure 4: (a) a complex constraint in conjunctive normal

form. (b) the corresponding abstract tree.

constraint (i.e., l ij ⇒ f ∈ Φϕ). Conversely, for every negative literal
l ij with reference to some feature f , we add an excludes constraint
(i.e., l ij ⇒ ¬f ∈ Φϕ). We illustrate the described procedure for
a complex constraint and its respective abstract tree in Figure 4.
Literals in the conjunctive normal form become primed features
(i.e., for unique identification) and simple constraints in the abstract
tree. The decomposition of the top feature is an and group and
clauses become or-groups.

An abstract tree T(m,ϕ) is capable of replacing the constraint
ϕ inm without changing the semantics of the feature model. We
denote bym \ ϕ the feature modelm without constraint ϕ.

Lemma 4.3. Let m = (N , P , r ,ω, λ,Π,Ψ) be a feature model in
LM′ and ϕ ∈ Ψ. Then JmK = J(m \ ϕ) • T (m,ϕ)K.

Proof. Let T(m,ϕ) = (m̃ϕ ,Φϕ) with root feature r .
JmK ⊆ J(m \ ϕ) • (m̃ϕ ,Φϕ)K: Let p ∈ JmK. Then there is a con-

figuration c ∈ Cm such that c ∩ P = p and c |= ϕ. We construct a
configuration c̃ ∈ C(m\ϕ)•(m̃ϕ,Φϕ) such that c̃ ∩ P = p. First, config-
uration c , root feature r , and all abstract clause features C1, . . . ,Cn
of ϕ are part of c̃ . For each feature f ∈ c , if there is a positive literal
l ij in ϕ referencing f , add l ij to c̃ . For each feature f < c , if there is
a negative literal l ij in ϕ referencing f , add l ij to c̃ . Since c and c̃ at
most differ in abstract features, c̃ ∩ P = p.

It remains to be shown that c̃ ∈ C(m\ϕ)•(m̃ϕ,Φϕ). Towards a
contradiction, assume c̃ < C(m\ϕ)•(m̃ϕ,Φϕ). Since c ∈ Cm and c ⊆
c̃ , the contradiction arises from (m̃ϕ ,Φϕ) (i.e., (1) m̃ϕ or (2) Φϕ).
Suppose in case (1), there is a clause Ci with literals l i1, . . . , l

i
k < c̃ .

By construction, for each positive literal, the respective feature f
is not part of c̃ thus f < c . For each negative literal, the respective
feature f ∈ c ∩ c̃ . But this contradicts the assumption that c ∈ Cm
since c ̸ |= ϕ, as clauseCi cannot be satisfied by c . In case (2), similar
arguments apply.

J(m \ ϕ) • (m̃ϕ ,Φϕ)K ⊆ JmK: Let p ∈ J(m \ ϕ) • (m̃ϕ ,Φϕ)K, i.e.,
there is a configuration c̃ with c̃ ∩ P = p. By c = c̃ ∩ N we obtain a
candidate configuration with c ∩ P = p. Proving c ∈ Cm amounts
to the reverse line of argumentation as above. �

Example 4.4. In Figure 5, we illustrate the elimination approach
on the pizza product line extended by two complex constraints.
All pseudo-complex constraints are translated to a set of simple
constraints 1 . All strict-complex constraints are translated into

296

Is There a Mismatch between Real-World Feature Models and
Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

root

Pizza

CheesyCrust Topping

Salami Ham Mozzarella

Size

Normal Big

Dough

Neapolitan Sicilian

Sicilian CheesyCrust Big

Neapolitan ¬ Salami
Neapolitan ¬ Ham

CheesyCrust ¬CheesyCrust
Sicilian ¬Sicilian

Big Big

root

Pizza

CheesyCrust Topping

Salami Ham Mozzarella

Size

Normal Big

Dough

Neapolitan Sicilian

Sicilian CheesyCrust Big

Neapolitan ¬ Salami
Neapolitan ¬ Ham

CheesyCrust ¬CheesyCrust
Sicilian ¬Sicilian

Big Big

Neapolitan ¬Salami ¬Ham

CheesyCrust Sicilian Big

Or

Complex
Constraints

Synthetic
Root

Abstract
Tree

1

2

3

Figure 5: Example of eliminating complex constraints of the

pizza product line.

abstract trees 2 . Original feature model without complex con-
straints and abstract trees are composed together 3 to obtain
a product-preserving feature model in LR . The resulting feature
model in Figure 5 now comprises five simple constraints and in-
creased by five additional abstract features.

Total Correctness. Lemma 4.3 provides the desired elimination
process. If the chosen constraint ϕ is a complex constraint inm,
the resulting feature model (m \ ϕ) • (m̃ϕ ,Φϕ) has one complex
constraint less thanm. This is because the complex constraint ϕ is
removed fromm and only simple constraints fromΦϕ are added. Let
|m |c denote the number of complex constraints inm. Furthermore
observe that by Lemma 4.3, the tree structure ofm is maintained
during the elimination process, i.e., them is structurally included in
m′, since only constraints are removed or added, and abstract trees
are added tom. The following theorem shows how to incorporate
Lemma 4.3 in an iterative elimination process, eventually obtaining
a relaxed feature model from any feature modelm ∈ LM .

Theorem 4.5. Letm ∈ LM be a feature model. Then there exists
a feature model m′ ∈ LR such that (1) the tree structure of m is
embedded in that ofm′ (i.e., Πm ⊆ Πm′) and (2) JmK = Jm′K.

Proof. Letm ∈ LM be a feature model with set of constraints
Ψ. Setm0 =m with Ψ0 = Ψ. Computemi+1 frommi as follows.

(1) Select complex constraint ϕ ∈ Ψi and
(2) setmi+1 = (mi \ c) • T (mi ,ϕ).

Observe that for each i ≥ 1, if |Ψi−1 |c > 0, then |Ψi |c = |Ψi−1 |c − 1.
Since Ψ is finite, say |Ψ| = k , there is an n ≤ k such that Ψn con-
sists only of simple constraints. Since only complex constraints
are removed frommi and abstract trees are added in order to ob-
tainmi+1, the tree structure ofmi is included in that ofmi+1. By
Lemma 4.3, the aforementioned observations, and transitivity of
set equality (=), we getm′ =mn ∈ LR with (1) the tree structure
ofm included and (2) JmK = Jm′K. �

Given a constructive proof on the correctness of our algorithm, we
are now able to overcome the limitations of basic feature models
used in product-line research. However, our algorithm is based on
the assumption that we already have a feature model in LM , which
is too restricting, since LM is not the only used language for real-
world feature models. In the next section, we show how to make

our algorithm applicable to four other common characteristics of
feature modeling languages.

4.2 Translating Feature Model Dialects

Some feature modeling languages use additional concepts and de-
composition groups in their concrete syntax to the ones we defined
before. Thus, we propose a two-step algorithm that, first, trans-
forms an arbitrary feature model to a feature model in LM , and,
second, transforms the resulting feature model to a relaxed feature
model in LR . The following described transformations are visual-
ized in Figure 6.

Multiple Decomposition Types (Tλ). The language used by
Czarnecki and Eisenecker [12] allows a feature to have multiple
decompositions (e.g., an alternative- and an or-group below the
same feature. To eliminate multiple groups д1, ...,дn below a fea-
ture f , we set the features decomposition type to an and-group
(i.e., λ(f) = ⟨n..n⟩), and substitute each group дi by a mandatory
abstract feature auxi such that f ≺ auxi and auxi ≺ дi for all
i = 1, ...,n. Mandatory and optional features below f remain as-is.

Directed Acyclic Graphs (TDAG). Some feature modeling lan-
guages, such as FORM [23] and FeatuRSEB [18], use directed
acyclic graphs opposed to trees. If a feature д has multiple parents
f1, ..., fn , we keep the relationship f1 ≺ д and add an abstract fea-
ture auxi−1 for each f2, ..., fn such that fi ≺ auxi−1. Finally, we
add constraints д ⇔ auxi−1 for all i = 2, ...,n.

Group Cardinalities (Tcard). There exist languages with cus-
tom group cardinalities [13]. If a feature д has a decomposition type
different from the defined ones (e.g., λ(д) = ⟨a..b⟩), we set the de-
composition type to an and-group (i.e., λ(д) = ⟨n..n⟩ with n being
the number of sub-features of д) and add the following complex
constraint:

д ⇒
∨

M ∈Pa,b
(
∧
f ∈M

f ∧
∧

f ∈{f ′ | д≺f ′ }\M
¬f)

with Pa,b = {A ∈ 2{f
′ | д≺f ′ } | a ≤ |A| ≤ b} being the set of all

feature combinations of sub-features of д where each combination
has at least a and at most b elements.

Mutex-Groups (Tmutex). Mutex-groups (i.e., groups where at
most one feature can be selected) are another kind of prominent
decomposition relations (e.g., in KConfig and CDL). If a feature f
is a mutex-group decomposed into features f1, ..., fn , we change
f ’s decomposition type to an and-group with one optional abstract
sub-feature f ′. Feature f ′ becomes an alternative-group with sub-
features f1, ..., fn .

The presented transformations show that our approach is appli-
cable to many other feature modeling languages. We can always
develop a cascade of model transformations to eventually obtain a
feature model in LR . Correctness of transformations is omitted as
it is much simpler compared to Section 4.1 and would require many
further formalisms. Regarding the bigger picture, we are now in
a position to investigate whether a mismatch between real-world
feature models and product-line research exists by evaluating the
usefulness of the transformed feature models.

297

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,
Jens Meinicke, and Ina Schaefer

(a) f

f1 O1 O2
Tλ−→

f

f1 aux1

O1 O2

(b) f

f1 f2

д

TDAG−→

f

f1

д

f2

aux1

д ⇔ aux1

(c) f

f1 f2 f3
Tcard−→

⟨2..3⟩

f

f1 f2 f3

f ⇒ f1 ∧ f2 ∧ ¬f3
∨f1 ∧ ¬f2 ∧ f3
∨¬f1 ∧ f2 ∧ f3
∨f1 ∧ f2 ∧ f3

(d) f

f1 f2 Tmutex−→

⟨0..1⟩

f

f ′

f1 f2

Figure 6: Graphical representation of a translation between concrete and abstract syntax: (a) adding an abstract feature to

eliminate multiple decomposition types, (b) transforming a directed acyclic graph into a tree structure, (c) elimination of a

custom group cardinality, and (d) elimination of a mutex-group.

5 EVALUATION AND DISCUSSIONS

We implemented a prototype in the open-source framework Fea-
tureIDE and conducted experiments to evaluate the following re-
search questions. Information on how to replicate the evaluation
and where to find all data sets is given in the appendix.
RQ1 What is the percentage of product lines representable by basic

feature models?
RQ2 To what extent are simple and complex constraints used in real-

world feature models?
RQ3 To what extent do feature models increase by transforming them

to relaxed feature models?

5.1 Open-Source Implementation

We implemented a prototype of our algorithm in FeatureIDE 3.1.0.
The prototype allows to eliminate complex constraints of a feature
model in FeatureIDE’s own file format, resulting in an equivalent
relaxed feature model.

Our elimination algorithm formulated in Section 4.1 relies on the
conjunctive normal form of a constraint. The implementation also
works with the negation normal form as-is, but the resulting abstract
trees may constitute a different structure. Within the prototype,
a user has the choice to either use the negation normal form, the
conjunctive normal form, or the best for each constraint.

There is also the option to preserve the number of configura-
tions. Our algorithm introduces new abstract features which do
not increase the number of program variants, but may increase the
number of configurations. If we add a bi-implication instead of a
sole requires constraints (i.e., f1 ⇔ f2), we force a bijection be-
tween old and new configurations, which preserves the number
of configurations. This is useful for applications that do not distin-
guish between configurations and program variants, but depend on
their number (e.g., automated analyses or product-based sampling).

As an additional application scenario, our prototype forms the
basis for general exporters to formats that only permit simple con-
straints (e.g., the FaMa file format [8]). Thereupon, we implemented
an exporter to the basic FaMa file format [8], which is required as
an input format for the BeTTy framework [34].

We use the prototypical implementation to answer research ques-
tion RQ3. For our evaluation, we always use the combined approach
to compute the best abstract tree for each complex constraint (i.e.,
resulting in the minimum amount of additional features and con-
straints). Moreover, we do not preserve the number of configura-
tions, as it would only double the number of newly introduced re-
quire constraints.

5.2 Setup and Evaluated Feature Models

In our experiments, we are interested in large, industrial feature
models and their cross-tree constraints. However, only few large
feature models are publicly available, and online repositories, such
as S.P.L.O.T. [28], mainly offer small toy examples that hardly re-
flect the complexity of real-world feature models. Hence, for our
evaluation, we use four monthly snapshots of the automotive prod-
uct line from our industrial partner with up to 18,616 features and
1,369 cross-tree constraints. Moreover, we evaluate our algorithm
on variability models associated with two other variability model-
ing languages used in real software projects, namely KConfig and
the component definition language (CDL).

KConfig was designed for the configuration management of the
Linux kernel, but is also used in other software projects, such as
axTLS or CoreBoot. CDL is specifically designed for the embedded
system eCos. Each CDLmodel represents the configuration options
for the eCos kernel for a specific hardware platform [9].

Since reference feature models are missing, we extended the
CDLTools and LVAT developed by Berger et al. [9] to map the
semantics of both languages to the FeatureIDE file format. As the
semantics of all three languages are different, we had to make
reasonable compromises. For all KConfig models, we neglected its
tristate logic and assumed that features are either integrated in a
program variant or not. In the mapping from KConfig and CDL to
a feature model, we disregarded attributes (e.g., integer or strings)
and removed cross-tree constraints that were either redundant (i.e.,
already covered by the hierarchy), unsatisfiable, or were referencing
non-existent features. Overall, we analyzed four feature models
from the automotive sector, 116 exported from CDL, and seven
exported from KConfig.

5.3 Results and Discussion

RQ1:What is the percentage of product lines representable

by basic feature models? So far, we proved that basic feature
models are expressively incomplete (cf. Theorem 2.6). However, the
percentage of inexpressible feature models is still not identified. To
this end, we decided to quantify the expressiveness of basic feature
models (according to Definition 2.1) by implementing an algorithm
that, given a number of concrete features, computes all valid basic
feature models. We then calculated the number of distinct product
lines covered by these feature models compared to the total num-
ber of possible product lines.1

1Given a subset P ⊆ F of concrete features, the total number of distinct product lines is

calc(P) = ∑|P |
k=0

(|P |
k
)
(−1)k 22|P |−k . See https://oeis.org/A000371 for further information.

298

https://oeis.org/A000371

Is There a Mismatch between Real-World Feature Models and
Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

1 2 3 4 5
0

50

100

Number of Concrete Features

Pe
rc
en
ta
ge

of
Pr
od

uc
tL

in
es

Expressible Not expressible

Figure 7: Percentage of product lines representable by basic

feature models.

Figure 7 depicts the results for a maximum of five concrete fea-
tures. Approximately 60% of all product lines covering three con-
crete features can be expressed with basic feature models. Three
feature models covering inexpressible product lines are already ex-
emplified in Figure 3. Less than 0.0005% of all available product lines
can be expressed with basic feature models containing five concrete
features. In theory, the likelihood that a desired product line is not
exactly covered by a basic feature model is thus surprisingly high.

RQ2: To what extent are simple and complex constraints

used in real-world feature models? We investigate whether
complex constraints are used in practice. We therefore analyzed
the aforementioned real-world feature models for occurrences of
pseudo- and strict-complex constraints. In Table 2, we summarize
the results for our evaluated feature models. Since all 116 CDLmod-
els represent the eCos kernel targeted to different hardware plat-
forms (i.e., slightly adapted), we only depict the minimum, maxi-
mum, and mean values. Based on the results, we can confidently
conclude that complex constraints are heavily used in real-world
feature models.

RQ3: To what extent do feature models increase by trans-

forming them to relaxed feature models? In Table 2, we de-
pict the increase of features and constraints for all analyzed feature
models after applying our transformation. In our automotive fea-
ture models, the maximum increase of features was measured with
2.58%, whereas the maximum increase of constraints was measured
with 43.9%. The number of features of the Linux kernel increased
by 582% and the number of constraints by 713%. Other KConfig
models (e.g., EmbToolkit) also increased considerably in the num-
ber of new features and constraints. On average, the number of fea-
tures for all 116 CDLmodels increased by 58%, whereas the number
of constraints increased by 74%.

The increase in size depends on the complexity (i.e., the number
of literals) of the complex constraints. We decided to also evaluate
the number of literals per unprocessed strict-complex constraint
and feature model. In Figure 8, we illustrate the results using box
plots. Highlighting the complexity of some cross-tree constraints,
we identified a constraint in the Linux kernel containing over 230
literals. On average, a complex constraint in the CDL models con-
tains approximately five literals and a complex constraint in the
automotive models contains approximately three literals.

The increase in size for all models ranges from below 1% to 1,403%
in features and 7% to 4,648% in cross-tree constraints. Depending

●●

●●

●●●

●

●

●

●●●

●●

●

●

●●

●●●

●

●

●

●

●●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●

●

●
●
●
●
●

●

●
●

●

●

●●

●●●●

●

●

●

●●

●●●●

●

●

●

●

●
●

●

●●

●

●●

●●
●
●
●●●●●●●●●
●

●

●

●●●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●●

●
●
●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●●●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●

●

●●●●●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●
●●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●
●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●●●●
●
●

●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●●●●●●●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●
●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●

●

●●●●●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●●●●●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

1
2

5
1
0

5
0

2
0
0

N
u
m

b
e
r

o
f
L
it
e
ra

ls

Automotive 2.1

Automotive 2.2

Automotive 2.3

Automotive 2.4
axTLS

busybox 1.18.0

EmbToolkit

Linux 2.6.33.3
uClibc

uClinux−base

uClinux−distr.

All C
DL models

Figure 8: Number of literals of unprocessed complex con-

straints per evaluated feature model in logarithmic scale.

on the application, some models from CDL and KConfig could
be particularly inefficient to process after the transformation to
relaxed feature models is applied.

5.4 Threats to Validity

Internal Validity. We exported feature models from CDL and
KConfig to the FeatureIDE file format. Both variability languages
slightly differ in their semantics compared to the semantics of fea-
ture models (e.g., feature attributes). However, we exported the
models according to the mapping concepts between CDL, KConfig,
and feature modeling [9]. Moreover, other analysis projects, such
as TypeChef [25], also translate KConfig to propositional logic,
indicating that propositional logic is a common base. We also pos-
sibly removed cross-tree constraints (e.g., constraints referencing
non-existent features), such that the resulting feature models may
be even less complex than the original variability models.

Another threat is that our transformation does not minimize
the number of additional features and constraints in general, as
no logical minimization is performed. For instance, we may falsely
classify a pseudo-complex constraint as strict-complex, leading
to additional abstract trees. However, a manual inspection of our
models revealed that these cases are rare.

External Validity. We evaluated 127 feature models in total,
from which 116 models are based on CDL. That is, all these mod-
els are representing the eCos kernel adapted to different hardware
platforms. We are aware that our results do not automatically trans-
fer to other real-world feature models. Nevertheless, we used three
different feature modeling languages and some of the largest pub-
licly available product lines, which reflects that complex real-world
feature models heavily rely on complex constraints.

6 DISCUSSIONS ON RELATEDWORK

Formal Semantics of Feature Models. The idea of defining a
general formal semantics to catch a variety of feature modeling di-
alects, and, thus, enhancing applicability of algorithms and research
in general, is not new. Czarnecki et al. [13] proposed a cardinality-
based notation to support their introduced concept of staged config-
urations. They proposed a similar formal semantics to the one we
defined in this paper. Schobbens et al. [33] surveyed 12 feature mod-
eling languages and based upon them proposed a general formal
semantics called Free Feature Model [33]. They discussed proper-
ties such as expressive power, embeddability, and succinctness. All

299

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,
Jens Meinicke, and Ina Schaefer

Table 2: Overview of evaluated feature models including number of features and constraints before and after applying our

constraint elimination approach.

Au
tom

oti
ve
2.1
1

Au
tom

oti
ve
2.2
1

Au
tom

oti
ve
2.3
1

Au
tom

oti
ve
2.4
1

ax
TL
S2

Bu
syB

ox
1.1
82

Em
bT
oo
lki
t2

uC
lib
c2

uC
lin
ux
-ba
se
2

uC
lin
ux
-di
st
2

Lin
ux
2.6
.33
.3
2

Al
l C
DL

Mo
de
ls
3

Size
Features 14,010 17,742 18,434 18,616 96 854 1,179 313 380 1,580 6,467 1,178≤1,259≤1,408

Constraints 666 914 1,300 1369 14 123 323 56 3,455 197 3545 816≤877≤956

Complex
Constraints

Strict 2.55% 3.93% 3.84% 5.62% 71.4% 73.9% 68.1% 64.2% 0.95% 21.3% 60.7% 9.00%≤10.3%≤12.0%
Pseudo 14.8% 12.3% 15.2% 13.8% 21.4% 13.0% 10.5% 10.7% 0.00% 26.3% 32.3% 10.0%≤11.2%≤13.0%

Sum 17.3% 16.2% 19.0% 19.4% 92.8% 86.9% 78.6% 74.9% 0.95% 47.6% 93.0% 19.0%≤21.5%≤25.0%

Increase
Features 0.62% 0.84% 1.29% 2.58% 115% 125% 1,403% 237% 85.5% 32.9% 582% 44.0%≤58.0%≤80.0%

Constraints 25.0% 22.4% 37.3% 43.9% 621% 578% 4,648% 841% 7.46% 190% 713% 65.0%≤74.0%≤88.0%
1 FeatureIDE model; 2 KConfig; 3 Min ≤ Mean ≤ Max for all 116 CDL Models.

surveyed languages contain only simple constraints and the role of
complex constraints is not discussed. Our work extends their prior
theory and highlights the differences in expressive power with real
numbers between basic feature models and feature models with
complex constraints.

Eliminating Cross-Tree Constraints. Only little emphasis in
the product-line community was put on the elimination of cross-
tree constraints. Broek and Galvao [43] discussed the elimination of
simple constraints by translating a feature model to a generalized
feature tree, a structure allowing features to occur multiple times in
different places including a potential negation. Our approach uses
abstract features and simple constraints. Therefore, it is applicable
for most tools requiring basic feature models as input. Gil et al. [17]
aim to prove that all cross-tree constraints can be eliminated for
the price of introducing a new set of features. Their approach is,
however, only addressed from a theoretical perspective. Both ap-
proaches are beyond the goals we intend to accomplish, since some
sort of constraints are typically supported in product-line research.

Consequences for Product-Line Research. Table 2 highlights
the importance of complex constraints, since there was not a single
evaluated feature model with only simple constraints. In the follow-
ing, we also discuss consequences for some application domains.

The automated analysis deals with the computer-aided extraction
of information from feature models (e.g., whether a feature is dead
or how many products a feature model represents) [7]. To this end,
common means include SAT solvers and BDD solvers, which use a
propositional formula as input and check whether it is satisfiable.
However, there exist also approaches based on description logic [29]
or constraint satisfaction problems [49], for which it is unclear
how complex constraints can be transformed. In such cases, our
transformation can be applied, but analyses may take longer.

Some approaches for feature-model synthesis seem to be simpler
to adapt. She et al. [37] use a propositional formula as input to au-
tomatically derive a basic feature model. They additionally carry a
propositional rest in case the feature model is not equivalent to the
input formula. Acher et al. [1] use product descriptions for synthe-
sizing a basic feature model. They intentionally over-approximate
the configurations, which can be prevented by additional complex
constraints. In both cases, our algorithm can be used to eliminate
the remaining constraints by converting them to simple constraints.

The problem of generating artificial feature models with complex
constraints for evaluating the quality of analysis algorithms was

proposed by Thüm et al. [40]. There exist also ETHOM as part
of BeTTy [34], an algorithm for generating computationally hard
feature models. Nevertheless, ETHOM is based on an evolutionary
algorithm and generates only basic feature models. Our workmakes
aware that these are likely to be unrepresentative and generating
computationally hard complex constraints is non-trivial.

The optimal selection of features with non-functional properties
attached to them is either solved exactly (e.g., linear programming
or constraint satisfaction solving) or heuristically (e.g., using evolu-
tionary algorithms). To this end, feature models are transformed
into other problems, for which algorithms and solutions exist. Usu-
ally, a catalog is presented on how to transform the parts of a fea-
ture model (i.e., decomposition relations and cross-tree constraints).
If this catalog only covers simple constraints, our algorithm can be
applied for feature models using complex constraints. However, as
concluded before, scalability depends on the input feature model.

7 CONCLUSION

Various feature modeling languages exist to describe valid combi-
nations of features in a software product line. We showed that nu-
merous utilized languages in product-line research only use simple
constraints, which we confirmed to be a too simplified assumption
for real-world feature models. We analyzed whether simple con-
straints are enough for feature modeling and proposed an algorithm
to eliminate complex constraints. Our conducted experiments show
that the algorithm leads to significantly increased feature models.

For large featuremodels, our algorithmmay render featuremodel
applications infeasible, but the elimination of complex constraints
is irrefutable for practical product-line engineering: researchers
and practitioners can more easily reuse tools and some research
gets easier applicable to real-world problems. Given our algorithm,
simple constraints are sufficient if (a) users do not need to inspect
the intermediate representation and (b) if scalability with more
features or constraints does not pose any problems.

Nevertheless, we advocate that product-line research should
consider complex constraints as default in the future. We further
think that a community effort is needed to evaluate which and
how approaches tailored to basic feature models can be applied
to complex constraints. In conclusion, complex constraints are
heavily used in real-world feature models. Research on product
lines should either include them or at least discuss consequences
of their elimination, if feasible at all.

300

Is There a Mismatch between Real-World Feature Models and
Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

A APPENDIX: REPLICATION PACKAGE

We provide access to 127 large real-world feature models with
thousands of features and cross-tree constraints in the FeatureIDE
file format that can be easily exported to other feature modeling
dialects (e.g., SXFM). These feature models can be used in future
research in different analysis contexts. Furthermore, we provide the
source code and software artifacts necessary to translate a feature
model with complex constraints to a relaxed feature model, and to
reproduce our experimental results. The package is self-contained
such that all empirical results can be reproduced automatically.

In total, our replication package contains 123 feature models
in the FeatureIDE file format translated from KConfig and CDL,
as well as 4 obfuscated feature models from our industry partner.
Furthermore, we provide two Java Eclipse projects and one Scala
project. The first Eclipse project is for calculating the expressive
power of non-equivalent feature models with only simple con-
straints. The second Eclipse project is for analyzing our constraint
elimination approach empirically and to generate all statistics. For
the statistics, we rely on our constraint elimination algorithm,
which we integrated into FeatureIDE 3.1.02 and later versions. The
Scala project is an extended version of the Linux Variability Analy-
sis Project,3 offering an exporter from KConfig to FeatureIDE.

The objective of the provided artifacts is to enable the analysis of
feature models with respect to their cross-tree constraints. We offer
possibilities to translate a feature model with complex constraints
to a relaxed feature model (i.e., a basic feature model with abstract
features). Furthermore, the data set can be used for future evalu-
ations by other researchers. Our complex-constraint elimination
algorithm is integrated into the widely-used and long-living tool
FeatureIDE, bridging the gap between expressively complete and
lesser expressive feature modeling languages. For instance, FaMa
is a basic feature modeling file format. The FaMa exporter of Fea-
tureIDE internally uses our algorithm to eliminate complex con-
straints if necessary.

Download and Setup. To ensure easy access for replication
of our experiments, we created a publicly available repository on
GitHub.4 Compulsory for executing the programs is a Java 7 com-
piler and possibly also a Scala compiler with a version higher than
2.11. The Java projects are initially prepared to be used with Eclipse.
Other than that, the repository is self-contained so that users can
readily download all artifacts and run the experiments. The repos-
itory inherits a detailed documentation explaining how to setup
and run the tools.

Source Code and Data. Our experimental results have been
successfully evaluated by the Artifact Evaluation Committee and
considered to be reusable. The repository consists of four major
parts.

(1) Analyzer for the Expressive Power of Basic Feature

Models. This tool is used in Section 5.3 to calculate the num-
ber of theoretically possible product lines that a basic feature
modeling languages can express. It takes a number of con-
crete features as input and computes all variations of a basic

2https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.1.0
3https://code.google.com/archive/p/linux-variability-analysis-tools/
4https://github.com/AlexanderKnueppel/is-there-a-mismatch

feature model. It then counts the number of non-equivalent
product lines that are represented by these feature models.

(2) Experimental Evaluation.All experimental results explained
in Section 5 can be calculated by this project. The user speci-
fies a list of feature models (or a folder containing feature
models) as input and the project generates all statistics (i.e.,
number of complex constraints, increase in size after trans-
lation, and complexity of all complex constraints).

(3) KConfigTranslator.TheKConfig translator is an extended
version of the Linux Variability Analysis Project developed
by Berger et al. [9]. A user specifies a model in the exconfig
file format (an extended KConfig file format) and receives
an approximation of the feature model in the FeatureIDE
file format.

(4) Large Real-World Feature Models. All 127 extracted and
evaluated feature models are provided in the FeatureIDE
file format, both in its complex and relaxed version.

FeatureIDE Integration. Our algorithm described in Section 4
is integrated into FeatureIDE and is already usable in practice
(e.g., exporting to basic feature modeling formats). The context
menu of the model.xml provides the option to translate that fea-
ture model into a product-equivalent feature model with only sim-
ple constraints. The appearing dialog provides options to (1) chose
a strategy for all abstract trees (conjunctive normal form, negation
normal form, or a combination of both), (2) preserve the number of
configurations leading to a doubling in the number of additional
require constraints, and (3) to additionally remove redundant con-
straints that may arise in the process.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions on the expressive
power of feature models with Arthur Hammer, Malte Lochau, Chris-
tian Kästner, Reimar Schröter, andGunter Saake.We thank Thorsten
Berger for his support in retrieving feature diagrams for real-world
feature models. Thanks to Niklas Lehnfeld for his help with devel-
oping the software artifacts. This work was supported by the Euro-
pean Union within project HyVar (grant agreement H2020-644298),
the DFG (German Research Foundation) under the Priority Pro-
gramme SPP1593, and NSF grant 1552944.

REFERENCES

[1] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles Van-
beneden, Philippe Collet, and Philippe Lahire. 2012. On Extracting Feature Mod-
els From Product Descriptions. In VaMoS. ACM, New York, NY, USA, 45–54. DOI:
http://dx.doi.org/10.1145/2110147.2110153

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. 2011.
Managing Feature Models With Familiar: a Demonstration of the Language and
its Tool Support. In Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems. ACM, 91–96.

[3] Ra’Fat Al-Msie ’deen, Marianne Huchard, Abdelhak-Djamel Seriai, Christelle Ur-
tado, and Sylvain Vauttier. 2014. Reverse Engineering Feature Models from Soft-
ware Configurations Using Formal Concept Analysis. In CLA 2014: Eleventh Inter-
national Conference on Concept Lattices and Their Applications (CEUR-Workshop),
Sebastian Rudolph Karell Bertet (Ed.), Vol. 1252. Ondrej Krídlo, Košice, Slovakia,
95–106. https://hal-auf.archives-ouvertes.fr/hal-01075524

[4] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wasowski. 2013. Clafer: Unifying Class and Feature Modeling. Software & Systems
Modeling (2013), 1–35.

[5] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Proc. Int’l Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg, 7–20.

301

https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.1.0
https://code.google.com/archive/p/linux-variability-analysis-tools/
https://github.com/AlexanderKnueppel/is-there-a-mismatch
http://dx.doi.org/10.1145/2110147.2110153
https://hal-auf.archives-ouvertes.fr/hal-01075524

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,
Jens Meinicke, and Ina Schaefer

[6] David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. 2005. Automated
Reasoning on Feature Models. In Proc. Int’l Conf. Advanced Information Systems
Engineering (CAiSE). 491–503.

[7] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–708.

[8] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2007.
FAMA: Tooling a Framework for the Automated Analysis of Feature Models. In
Proc. Int’l Workshop Variability Modelling of Software-Intensive Systems (VaMoS).
Technical Report 2007-01, Lero, Limerick, Ireland, 129–134.

[9] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611–
1640.

[10] Quentin Boucher, Andreas Classen, Paul Faber, and Patrick Heymans. 2010.
Introducing TVL, a Text-based Feature Modelling Language. In Proceedings of
the Fourth International Workshop on Variability Modelling of Software-intensive
Systems (VaMoSâĂŹ10), Linz, Austria, January. 27–29.

[11] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. 2016. Reasoning About Product-line Evolution Using Complex
Feature Model Differences. Automated Software Engineering 23, 4 (2016), 687–733.

[12] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley, New York, NY, USA.

[13] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
Cardinality-Based Feature Models and Their Specialization. Software Process:
Improvement and Practice 10 (2005), 7–29.

[14] Krzysztof Czarnecki and Andrzej Wąsowski. 2007. Feature Diagrams and Logics:
There and Back Again. In Proc. Int’l Software Product Line Conf. (SPLC). IEEE,
Washington, DC, USA, 23–34.

[15] Faezeh Ensan, Ebrahim Bagheri, and Dragan Gašević. 2012. Evolutionary Search-
based Test Generation for Software Product Line Feature Models. In Advanced
Information Systems Engineering. Springer, 613–628.

[16] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. 2005. The PLUSS Approach: Do-
mainModeling with Features, Use Cases and Use Case Realizations. In Proceedings
of the 9th International Conference on Software Product Lines (SPLC’05). Springer-
Verlag, Berlin, Heidelberg, 33–44. DOI:http://dx.doi.org/10.1007/11554844_5

[17] Yossi Gil, Shiri Kremer-Davidson, and Itay Maman. 2010. Sans Constraints?
Feature Diagrams vs. Feature Models. In Proc. Int’l Software Product Line Conf.
(SPLC). Springer, Berlin, Heidelberg, 271–285.

[18] M. L. Griss, J. Favaro, and M. d’ Alessandro. 1998. Integrating Feature Modeling
with the RSEB. In Proceedings of the 5th International Conference on Software
Reuse (ICSR ’98). IEEE Computer Society, Washington, DC, USA, 76–. http:
//dl.acm.org/citation.cfm?id=551789.853486

[19] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A
Genetic Algorithm for Optimized Feature Selection with Resource Constraints
in Software Product Lines. J. Syst. Softw. 84, 12 (Dec. 2011), 2208–2221. DOI:
http://dx.doi.org/10.1016/j.jss.2011.06.026

[20] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the Notion of Vari-
ability in Software Product Lines. In Proceedings of the Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA ’01). IEEE Computer Society, Washington,
DC, USA, 45–. DOI:http://dx.doi.org/10.1109/WICSA.2001.948406

[21] Evelyn Nicole Haslinger, Roberto Erick Lopez-Herrejon, and Alexander Egyed.
2013. On Extracting Feature Models from Sets of Valid Feature Combinations.
In International Conference on Fundamental Approaches to Software Engineering.
Springer, 53–67.

[22] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[23] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun Kim, and
Euiseob Shin. 1998. FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software Engineering 5, 1 (Jan. 1998),
143–168.

[24] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas Leich,
FabianWielgorz, and Sven Apel. 2009. FeatureIDE: A Tool Framework for Feature-
Oriented Software Development. In Proc. Int’l Conf. Software Engineering (ICSE).
IEEE, Washington, DC, USA, 611–614. Formal demonstration paper.

[25] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. 2010. Type-
Chef: Toward Type Checking #Ifdef Variability in C. In Proc. Int’l Workshop
Feature-Oriented Software Development (FOSD). ACM, New York, NY, USA, 25–32.
DOI:http://dx.doi.org/10.1145/1868688.1868693

[26] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2014.
Feature Model Synthesis with Genetic Programming. In International Symposium
on Search Based Software Engineering. Springer, 153–167.

[27] Roberto E Lopez-Herrejon, Lukas Linsbauer, José A Galindo, José A Parejo, David
Benavides, Sergio Segura, and Alexander Egyed. 2015. An Assessment of Search-
based Techniques for Reverse Engineering Feature Models. Journal of Systems
and Software 103 (2015), 353–369.

[28] Marcílio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software
Product Lines Online Tools. In Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). ACM, New York, NY, USA, 761–762.

[29] Mahdi Noorian, Alireza Ensan, Ebrahim Bagheri, Harold Boley, and Yevgen
Biletskiy. 2011. Feature Model Debugging Based on Description Logic Reasoning..
In DMS, Vol. 11. Citeseer, 158–164.

[30] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer, Berlin, Heidel-
berg.

[31] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002. Ex-
tending Feature Diagrams with UML Multiplicities. In Proc. World Conf. Inte-
grated Design and Process Technology (IDPT).

[32] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. 2011.
Multi-Dimensional Variability Modeling. In VaMoS. ACM, NY, 11–22.

[33] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic Semantics of Feature Diagrams. Computer Networks 51,
2 (2007), 456–479.

[34] Sergio Segura, José A. Galindo, David Benavides, José A. Parejo, and Antonio Ruiz-
Cortés. 2012. BeTTy: Benchmarking and Testing on the Automated Analysis of
Feature Models. In Proc. Int’l Workshop Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, New York, NY, USA, 63–71. DOI:http://dx.doi.org/10.
1145/2110147.2110155

[35] Sergio Segura, José A Parejo, Robert M Hierons, David Benavides, and Antonio
Ruiz-Cortés. 2014. Automated Generation of Computationally Hard Feature
Models Using Evolutionary Algorithms. Expert Systems with Applications 41, 8
(2014), 3975–3992.

[36] Hazim Shatnawi and H Conrad Cunningham. 2017. Mapping SPL Feature Models
to a Relational Database. In Proceedings of the SouthEast Conference. ACM, 42–49.

[37] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In Proc. Int’l Conf. Software
Engineering (ICSE). ACM, New York, NY, USA, 461–470. DOI:http://dx.doi.org/
10.1145/1985793.1985856

[38] Jiangfan Shi, Myra B Cohen, and Matthew B Dwyer. 2012. Integration Testing of
Software Product Lines Using Compositional Symbolic Execution. In Fundamen-
tal Approaches to Software Engineering. Springer, 270–284.

[39] Gabriel Coutinho Sousa Ferreira, Felipe Nunes Gaia, Eduardo Figueiredo, and
Marcelo de Almeida Maia. 2014. On the Use of Feature-Oriented Programming
for Evolving Software Product Lines — A Comparative Study. Science of Computer
Programming (SCP) 93, A (2014), 65 – 85. DOI:http://dx.doi.org/10.1016/j.scico.
2013.10.010

[40] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning about Edits to
Feature Models. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, Washington,
DC, USA, 254–264.

[41] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract Features in Feature Modeling. In Proc. Int’l Software Product Line
Conf. (SPLC). IEEE, Washington, DC, USA, 191–200.

[42] C. Reid Turner, Alexander L. Wolf, Alfonso Fuggetta, and Luigi Lavazza. 1998.
Feature Engineering. In Proc. Int’l Workshop Software Specification and Design
(IWSSD). IEEE, Washington, DC, USA, 162–164.

[43] PM van den Broek and I Galvao Lourenco da Silva. 2009. Analysis of feature
models using generalised feature trees. (2009).

[44] Arie van Deursen and Paul Klint. 2002. Domain-Specific Language Design
Requires Feature Descriptions. Computing and Information Technology 10, 1
(2002), 1–17.

[45] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius Liaaen. 2017. Automated
Product Line Test Case Selection: Industrial Case Study and Controlled Experi-
ment. Software and Systems Modeling (SoSyM) 16, 2 (2017), 417–441.

[46] Markus Weckesser, Malte Lochau, Thomas Schnabel, Björn Richerzhagen, and
Andy Schürr. 2016. Mind the Gap! Automated Anomaly Detection for Potentially
Unbounded Cardinality-Based Feature Models. In International Conference on
Fundamental Approaches to Software Engineering. Springer, 158–175.

[47] Jules White, Brian Dougherty, and Douglas C Schmidt. 2009. Selecting Highly
Optimal Architectural Feature Sets with Filtered Cartesian Flattening. Journal of
Systems and Software 82, 8 (2009), 1268–1284.

[48] Jules White, José A Galindo, Tripti Saxena, Brian Dougherty, David Benavides,
and Douglas C. Schmidt. 2014. Evolving Feature Model Configurations in Soft-
ware Product Lines. J. Systems and Software (JSS) 87, 0 (2014), 119–136.

[49] Jules White, Douglas C. Schmidt, David Benavides, Pablo Trinidad, and Antonio
Ruiz-Cortés. 2008. Automated Diagnosis of Product-Line Configuration Errors
in Feature Models. In Proc. Int’l Software Product Line Conf. (SPLC). IEEE, Wash-
ington, DC, USA, 225–234.

302

http://dx.doi.org/10.1007/11554844_5
http://dl.acm.org/citation.cfm?id=551789.853486
http://dl.acm.org/citation.cfm?id=551789.853486
http://dx.doi.org/10.1016/j.jss.2011.06.026
http://dx.doi.org/10.1109/WICSA.2001.948406
http://dx.doi.org/10.1145/1868688.1868693
http://dx.doi.org/10.1145/2110147.2110155
http://dx.doi.org/10.1145/2110147.2110155
http://dx.doi.org/10.1145/1985793.1985856
http://dx.doi.org/10.1145/1985793.1985856
http://dx.doi.org/10.1016/j.scico.2013.10.010
http://dx.doi.org/10.1016/j.scico.2013.10.010

	Abstract
	1 Introduction
	2 Expressiveness of Feature Models in Product-Line Research
	3 Expressing Real-World Feature Models
	3.1 Feature Models with Complex Constraints
	3.2 Relaxed Feature Models

	4 Eliminating Complex Constraints
	4.1 Translation to a Relaxed Feature Model
	4.2 Translating Feature Model Dialects

	5 Evaluation and Discussions
	5.1 Open-Source Implementation
	5.2 Setup and Evaluated Feature Models
	5.3 Results and Discussion
	5.4 Threats to Validity

	6 Discussions on Related Work
	7 Conclusion
	A APPENDIX: Replication Package
	References

