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The goal of this abstract is to report on some parallel and high perfor-

mance computations in combinatorics, each involving large datasets

generated recursively: we start by presenting a small framework im-

plemented in Sagemath [12] allowing performance of map/reduce

like computations on such recursively defined sets. In the second

part, we describe a methodology used to achieve large speedups

in several enumeration problems involving similar map/reduced

computations. We illustrate this methodology on the challenging

problem of counting the number of numerical semigroups [5], and

present briefly another problem about enumerating integer vectors

upto the action of a permutation group [2]. We believe that these

techniques are fairly general for those kinds of algorithms.

1 MAP-REDUCE IN COMBINATORICS
In this first part, we present a small framework implemented in

Sagemath [12] allowing performance map/reduce like computa-

tions on large recursively defined sets. Map-Reduce is a classical

programming model for distributed computations where one maps

a function on a large data set and uses a reduce function to summa-

rize all the produced information. It has a large range of intensive

applications in combinatorics:

● Compute the cardinality;
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● More generally, compute any kind of generating series;

● Test a conjecture: i.e. find an element of S satisfying a

specific property, or check that all of them do;

● Count/list the elements of S having this property.

Use cases in combinatorics often have two specificities: First of

all, due to combinatorial explosion, sets often don’t fit in the com-

puter’s memory or disks and are enumerated on the fly. Then, many

problems are flat, leading to embarassingly parallel computations

which are easy to parallelize. However, a second very common use

case is to have data sets that are described by recursion tree which

may be heavily unbalanced (see Section 2.2 for an example).

The framework [4] we developed works on the following input:

A recursively enumerated set given by:

● the roots of the recursion

● the children function computing

● the postprocessing function that can also filter interme-

diate nodes

Then, aMap/Reduce problem is given by:

● the mapped function

● the reduce_init function

● the reduce function

Here is an example where we count binary sequence of length 15:

sage: S = RecursivelyEnumeratedSet( [[]],
....: lambda l: [l+[0], l+[1]] if len(l) <= 15 else [],
....: post_process = lambda x : x if len(x) == 15 else None,
....: structure='forest', enumeration='depth')
sage: sage: S.map_reduce(
....: map_function = lambda x: 1,
....: reduce_function = lambda x,y: x+y,
....: reduce_init = 0 )
32768

This framework uses a multi-process implementation of a work-

stealing algorithm [1], and scales relatively well, as shown below

in a typical computation:

# processors 1 2 4 8

Time (s) 250 161 103 87

Though it doesn’t really qualify as HPC, it allowed to efficiently

parallelize a dozen of experiments ranging from Coxeter group and

representation theory of monoids to the combinatorial study of the

C3 linearization algorithm used to compute the method resolution

order (MRO) in scripting language such as Python and Perl [13].
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2 OPTIMIZING COMBINATORICS
In this second part, we describe a methodology used to achieve large

speedups in several enumeration problems. Indeed, in many com-

binatorial structures (permutations, partitions, monomials, young

tableaux), the data can be encoded as a small sequence of small

integers that can often be handled efficiently by a creative use of

vector instructions. Through the challenging example of numerical

monoids, I will then report on how Cilk++ allows for an extremely

fast parallelization of the enumeration. Indeed, we have been able to

enumerate sets withmore that 2.1015 elements on a single multicore

machine.

The methodology takes the following steps:

● Vectorization (MMX, SSE, AVX instructions sets) and care-

ful memory alignment;

● Shared memory multi-core computing using Cilk++ for

low level enumerating tree branching;

● Partially derecursived algorithm using a stack;

● Careful memory management: avoiding all dynamic allo-

cation during the computation, avoiding all unnecessary

copies (often needed to rewrite the containers);

2.1 Combinatorial structures and vector
instructions

In many combinatorial structures (permutations, partitions, mono-

mials, young tableaux), the data can be encoded as a small sequence

of small integers that can often efficiently be handled thanks to vec-

tor instructions. For example, on the current x86 machines, small

permutations (N ≤ 16) are very well handled. Indeed thanks to ma-

chine instructions such as PSHUFB (Packed Shuffle Bytes), applying

a permutation on a vector only takes a few cycles. Here are some

examples of operation with their typical speedups:

Operation Speedup

Inverting a permutation 1.28

Sorting a list of bytes 21.3

Number of cycles of a permutation 41.5

Number of inversions of a permutation 9.39

Cycle type of a permutation 8.94

As a more concrete example, here is how to sort an array of 16 bytes:

// Sorting network Knuth AoCP3 Fig. 51 p 229.
static const array<Perm16, 9> rounds =

{{ { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14},
{ 2, 3, 0, 1, 6, 7, 4, 5,10,11, 8, 9,14,15,12,13},
[...]

}};

Vect16 sort(Vect16 a) {
for (Perm16 round : rounds) {
Vect16 minab, maxab, blend, mask, b = a.permuted(round);
mask = _mm_cmplt_epi8(round, Perm16::one);
minab = _mm_min_epi8(a, b);
maxab = _mm_max_epi8(a, b);
a = _mm_blendv_epi8(minab, maxab, mask);

}
return a;

}

Unfortunately, this requires rethinking all the algorithms, and

there is nearly no support by the compiler.

2.2 Numerical semigroups
We present now an application which is particularly challenging.

The goal is to enumerate or test a conjecture on so-called numerical
semigroups. This part is joint work with Jean Fromentin [5].

Definition 1. A numerical semigroup S is a subset of N contain-
ing 0, closed under addition and of finite complement in N.

For example the set

SE = {0, 3, 6, 7, 9, 10} ∪ {x ∈ N,x ≥ 12} (1)

is a numerical semigroup. We need a little terminology:

Definition 2. Let S be a numerical semigroup. We define
● д(S) = card(N ∖ S), the genus of S ;
● f (S) = max(Z ∖ S), the Frobenius of S ;
● c(S) = f (S) + 1, the conductor of S .

For example the genus of SE is 6, the cardinality of {1, 2, 4, 5, 8, 11},
it is of Frobenius number 11 and of conductor 12.

For a given positive integer д, the number of numerical semi-

groups of genus д is finite and is denoted by nд . In J.A. Sloane’s

on-line encyclopedia of integer sequences [10] we find the values of

nд for д ≤ 52. These values were obtained by M. Bras-Amorós ([3]

for more details).

To enumerate the semigroups, we need to organize them as a

recursively enumerated set, that it to build a tree whose nodes at

depth д are exactly the semigroups of genus д. We now explain

the construction such a tree. Let S be a numerical semigroup. The

set S′ = S ∪ {f (S)} is also a numerical semigroup and its genus

is д(S) − 1. As each integer greater than f (S) is included in S′ we
have c(S′) ≤ f (S). Therefore every semigroup S of genus д can

be obtained from a semigroup S′ of genus д − 1 by removing an

element of S′ greater than or equal to c(S′).
Definition 3. A non-zero element x of a numerical semigroup

S is said to be irreducible if it cannot be expressed as a sum of two
non-zero elements of S . We denote by Irr(S) the set of all irreducible
elements of S .

Note that, the set Irr(S) is the minimal generating set of S rel-

ative to the inclusion ordering. Therefore to identify a numerical

semigroup S , we only need to know its set Irr(S). We write such

a semigroup by ∐︀Irr(S)̃︀. For example, returning to the semigroup

SE , we find that Irr(SE) = {3, 7}, we therefore write SE = ∐︀3, 7̃︀.
Proposition 1 (Proposition 7.28 of [9]). Let S be a numerical

semigroup and x an element of S . The set Sx ∶= S ∖{x} is a numerical
semigroup if and only if x is irreducible in S .

Proposition 1 implies that every semigroup S of genus д can be

obtained from a semigroup S′ by removing a generator x of S that

is greater than or equal to c(S).
We construct the tree of numerical semigroups, denoted by T

as follows: The root of the tree is the unique semigroup of genus

0, i.e. , ∐︀1̃︀ that is equal to N. If S is a semigroup in the tree, the

children of S are exactly the semigroups Sx where x belongs to
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∐︀1̃︀
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1

Figure 1: The first five layers of the tree T of numerical semigroups. A generator of a semigroup is it in gray if is not greater
than c(S). An edge between a semigroup S and its son S′ is labelled by x if S′ is obtained from S by removing x .

Irr(S) ∩ (︀c(S),+∞⌋︀. By convention, when depicting the tree, the

numerical semigroup Sx is in the left of Sy if x is smaller than y.
With this construction, a semigroup S has depth д in T if and only

if its genus is д, see Figure 1.

In [5] we describe a data structure for storing a numerical semi-

group which fits particularly well the architecture of modern com-

puters allowing very large optimizations. Thanks to these optimiza-

tion computing a children in the tree from its father takes a time

which is comparable to the time needed to simply copy it.

We think that exploring this tree is quite challenging as a parallel

problem. Indeed, though non trivial, the computation of the children

of a node is very fast and the tree is extremely unbalanced. This can

be seen on Figure 1 or on the following experiments: We compare

nodes at depth 30 anb 45: The number of nodes at depth 30 and 45

are 5 646 773 and 8 888 486 816. If we sort decreassingly the number

of descendants at depth 45 of the nodes at depth 30, then

● The first node has 42% of the descendants;

● The second one node has 7.5% of the descendants;

● The 10 first node have 73% of the descendants;

● The 100 first node have 93% of the descendants;

● The 1000 first node have 99.4% of the descendants;

● Only 27 321 nodes have descendants at depth 45;

● Only 5 487 nodes have more than 10
3
descendants;

● Only 257 nodes have more than 10
6
descendants;

Fortunately, the exploration of the tree is easily parallelized on

a multicore machine using Cilk++. The idea here is that different
branches of the tree can be explored in parallel by different cores

of the computer. The tricky part is to ensure that all cores are busy,

giving a new branch when a core is done with a former one. The

Cilk++ [11] technology is particularly well suited for those kinds

of problems. For our computation, we used the free version which

is integrated in the latest version of the GNU C compiler [8].

Cilk is a general-purpose language designed for multithreaded

parallel computing. The C++ incarnation is called Cilk++. The
biggest principle behind the design of the Cilk language is that

the programmer should be responsible for exposing the parallelism,

identifying elements that can safely be executed in parallel; the run-

time environment decide during execution how to actually divide

the work between cores. The parallel features of Cilk++ are used
mainly through the cilk_spawn keyword: used on a procedure

call, it indicates that the call can safely operate in parallel with the

remaining code of the current function. Note that the scheduler is

not obliged to run this procedure in parallel; the keyword merely

alerts the scheduler that it can do so.

We then write the following code for semigroup exploration:

void explore(const Semigroup &S) {
unsigned long int nbr = 0;
if (S.g < MAX_GENUS - STACK_BOUND) {

//iterate along the children of S
auto it = generator_iter<CHILDREN>(S);
while (it.move_next()) {

auto child = remove_generator(S, it.get_gen()).
cilk_spawn explore(child);
nbr++;

}
cilk_results[S.g] += nbr;

}
else explore_stack(S, cilk_results.get_array());

}

In the previous code, the function explore_stack performs a sim-

ilar computation but iteratively (oposed as recursively) with the

help of a stack.
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To give some figure of the performance we managed to achieve,

we performed a full exploration of the tree up to depth 70 on a

32 Haswell core at 2.3 Ghz. The number of monoid at depth 70

is 1607394814170158. It tooks 2.528 ⋅ 106 s (29 days and 6 hours)

exploring 2590899247785594 = 2.59 ⋅ 1015 monoids at a rate of

1.02 ⋅ 109 monoids per second. Each monoid is stored in 240 bytes.

Storing all the computed monoids would take 6.22 ⋅ 1017 bytes of
data, which means that we generated 2.46 ⋅ 1011 bytes of data per
second.

2.3 N. Borie algorithm for integer vector
modulo permutation groups

We briefly report on another successful optimization using the

same methodology. We optimized an algorithm due to N. Borie

for enumerating integer vector modulo permutation groups [2].

The problem is the following: we are given a subgroup G of the

symmetric group Sn . It acts by permutation of coordinates on the

vectors in Nn . The problem is to generate one vector in each orbit.

Note that there are infinitely many such vectors; in practice one

usually wants to enumerate the vectors with a given sum or content.

N. Borie designed a tree structure on those vectors which allows

to enumerate them recursively. At the level of each node, a relatively

complicated computation is done involving partial lexicographic

comparison and a hash table to avoid some duplication. The goal

was to optimize the particular case of small groups where n ≤ 16.
The development went along the following steps:

● permutation, vectors and lexicographic comparison using

vector instructions;

● recursive enumeration using Cilk++
● used thread local strorage for the hash table at the level of

each node

● designed a handmade hash table to avoid dynamic alloca-

tion and adapted to the specific use-case

This last step is due to a very specific use case for the hash table: we

needed it to store a dynamic set where we only add elements and

never remove one, and we clear the hash table very often. Profiling

showed that the hash table may grow up to thousand of elements

but, on the average, is only cleared when containing 2.5 elements !

We decided therefore to use a closed bounded hash table together

with a linked list of used buckets to be able to clear the table quickly.

Altogether, we compared our optimized version with an already

optimized non-parallel compiled version using the Python com-

piler Cython. Computing the 375810 integer vectors of sum 25 for

the largest transitive subgroup of S16 took 9min 23s on a single

core with Sage’s code, whereas our code is able to do it in 0.503s

on 8 cores for a speedup of 1112 times. Finally, the code (not yet

released) is downloadable at [7].

3 CONCLUSION
As a conclusion, we’d like to comment on the main technology used

here, namely Cilk++. It is very efficient at balancing our work on a

shared memory machine. The following table show timings where

C++ is a reference serial implementation and the other column

shows the number of Cilk++ threads:

Threads C++ 1 2 4 8 12

Time (s) 3588 3709 1865 932.4 486.8 325.7

Speedup Cilk 1.03 1. 1.99 3.97 7.61 11.39

However for the GCC implementation, we feel that it is not com-

pletely mature. We indeed found a core bug [6], we describe here

briefly: in C/C++, when a parameter is passed to a function by value,

the calling function is responsible to the construction (including

the allocation) of the parameter. It is responsible to their destruc-

tion too. However, with Cilk++, it is possible to have the calling

function stolen and therefore executed concurrently on another

thread, before the called function returns. The problem was that

the parameter was destroyed too early in this case. Here is a small

code sample to reproduce the problem:

void walk(std::vector<int> v, unsigned size) {
if (v.size() < size)

for (int i=0; i<8; i++) {
std::vector<int> vnew(v); vnew.push_back(i);

// The vnew parameter below is destroyed too early
cilk_spawn walk(vnew, size);

}
}

The bug was corrected quickly but we learned along the way

that GCC is considering deprecating and stopping support for the

Cilk++ features. We feel that this is a big loss for our kinds of

computation.

Altogether, work stealing is very efficient to parallelize those

kinds of computation in a sharedmemorymachine, but to go further,

we badly need an efficient distributed work-stealing framework.
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