
Declarative Algorithms for Generation, Counting and Random
Sampling of Term Algebras

Paul Tarau

Department of Computer Science and Engineering

University of North Texas

Denton, Texas

paul.tarau@unt.edu

ABSTRACT
From a declarative variant of Rémy’s algorithm for uniform ran-

dom generation of binary trees, we derive a generalization to term

algebras of an arbitrary signature. With trees seen as sets of edges

connecting vertices labeled with logic variables, we use Prolog’s

multiple-answer generation mechanism to derive a generic algo-

rithm that counts terms of a given size, generates them all, or

samples a random term given the signature of a term algebra.

As applications, we implement generators for term algebras

defining Motzkin trees, use all-term and random-term generation

for mutual cross-testing and describe an extension mechanism that

transforms a random sampler for Motzkin trees into one for closed

lambda terms.

CCS CONCEPTS
• Theory of computation→ Generating random combinato-
rial structures; Lambda calculus; • Software and its engineer-
ing → Constraint and logic languages; Software testing and
debugging;

KEYWORDS
declarative algorithms, combinatorial generation, random term

generation, edge-based tree representations, term algebras, Motzkin

trees, generation of random lambda terms

ACM Reference format:
Paul Tarau. 2018. Declarative Algorithms for Generation, Counting and

Random Sampling of Term Algebras. In Proceedings of SAC 2018: Symposium
on Applied Computing , Pau, France, April 9–13, 2018 (SAC 2018), 8 pages.
https://doi.org/10.1145/3167132.3167262

1 INTRODUCTION
Rémy’s algorithm [10] elegantly generates random binary trees

of a given size. It is a uniform random sampling algorithm as any

tree of a given size is equally likely to be generated. It is also an

exact sampler as the random trees are exactly of the specified size.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00

https://doi.org/10.1145/3167132.3167262

Rémy’s original algorithm works by grafting new leaves at inter-

nal or leaf nodes of a binary tree. Typical implementations like

algorithm R in [6] involve an array representation of the tree with

destructive assignments used to update and extend the array. While

one could easily transliterate such procedural algorithms by using

non-backtrackable destructive assignments on arrays represented

as compound terms in Prolog, we have chosen to design a declar-

ative algorithm as this usually reveals the intuitive idea behind

the construction process - in this case that one can grow a tree by

grafting at the splitting point of and edge a left or right leaning leaf.
More importantly, the idea of grafting edges ending in leaves to

each member of a set of edges can be lifted naturally from binary

trees to trees that grow by grafting k such edges corresponding to a

function-symbol of arity k . This leads us to a declarative implemen-

tation of an algorithm that generates trees representing elements

of a term algebra specified by a given signature (i.e., the set of

function-symbols of different arities including constant symbols

of arity 0), with its most obvious application being generation of

random Prolog terms for testing purposes.

Furthermore, one cannot avoid noticing that the generation of
all trees of a given size, and the random generation of a tree, can
share exactly the same algorithm, when seen as Prolog code, except

that multiple-answer predicates like member/2 are replaced with

counterparts picking a random element of a list.

At the same time, this fortunate sharing of the declarative descrip-
tion of the two generation mechanisms suggests means for checking

the correctness of each other and observe some of their otherwise

intractable properties. For instance, if the all-term generator would

miss terms, it would entail that the random generator would also

do the same. On the other hand, the distribution obtained by count-

ing the function-symbols and constants on random terms at sizes

unreachable by all-term generators is a good estimate of what is

likely to happen to the all-term generators asymptotically.

As applications, Motzkin trees (also called binary-unary trees)

are of special importance as they are close to lambda terms in de

Bruijn notation (and even isomorphic with the very interesting

subset of neutral normal forms as shown in [3]). We will add to

them an extension algorithm that “completes” a Motzkin tree to

a closed lambda term involving very few or most of the time no

retries for random terms above size 1000.

The main contributions of the paper are:

• a new, declarative implementation of a variant of Rémy’s

algorithm

• all-terms and random term generation in term algebras of a

given signature, in particular for Prolog terms built from a

set of constants and function-symbols of given arities

1203

https://doi.org/10.1145/3167132.3167262
https://doi.org/10.1145/3167132.3167262


• mutual correctness checking by sharing the code between

all-terms and random generators

• an algorithm to derive closed lambda terms from Motzkin

trees

The rest of the paper is organized as follows. Section 2 revisits

Rémy’s algorithm and proposes a simplified implementation based

on extending edges holding vertices represented as logic variables.

Section 3 describes generators for term algebras of a given signature.

Section 4 overviews applications to generate Motzkin trees and

shows mechanisms to cross-validate all-term and random term

generators. Section 5 describes an algorithm that extends Motzkin

trees to closed lambda terms. Section 6 overviews related work

and discusses some properties of our algorithms, including their

limitations and possible future generalizations. Section 7 concludes

the paper.

The paper is structured as a literate Prolog program to facilitate

an easily replicable, concise and declarative expression of our con-

cepts and algorithms. The code extracted from it is at http://www.

cse.unt.edu/~tarau/research/2017/ranalg.pro with an extended ver-

sion at http://www.cse.unt.edu/~tarau/research/2017/lpgen.tar.gz ,

tested with SWI-Prolog [13] version 7.4.2.

2 REVISITING RÉMY’S ALGORITHM,
DECLARATIVELY

One might wonder why binary trees cannot be generated by ran-

domly adding nodes at their leaves, as a naive algorithm would

proceed. As thoroughly explained, for instance in [6], this would

not produce a uniform distribution, i.e., not all trees of a given size

would have the same chance to be generated.

Rémy’s original algorithm [10] grows binary trees by grafting

new leaves with equal probability for each node in a given tree. An

elegant procedural implementation is given in [6] as algorithm R,
by using destructive assignments in an array representing the tree.

While one could emulate it on top of a procedural or declarative

emulation of updatable arrays (e.g., with nb_setarg/3 in SWI-

Prolog), we will design here a declarative implementation.

2.1 Trees are connected graphs: let’s build
them as sets of edges

First, as trees are (connected) graphs, one can represent them as sets

of edges. We will use logic variables to label their ends representing
either internal or leaf nodes. We would also label each edge as

left or right to indicate their position relative to a node in the

binary tree. Thus a left edge originating in A with target B will

be represented as e(left,A,B). We start with a list of two edges

from root node A returned by the predicate remy_init/1.

remy_init([e(left,A,_),e(right,A,_)]).

The random choice of the edges (or the non-deterministic one, by

replacing choice_of/2 with its commented out alternative
1
) is

generated by the predicate left_or_right/2 as:

1
Note that in the extended code covering the paper, we provide specific files to

parameterize either random or all-term generation that include a shared generic

algorithm, as close to an object-oriented style as possible in a language like Prolog.

They contain also, specific signatures supporting the generalization of the algorithm

to several term algebras.

left_or_right(I,J):-

choice_of(2,Dice),

left_or_right(Dice,I,J).

choice_of(N,K):-K is random(N).

% choice_of(N,K):-N>0,N1 is N-1,between(0,N1,K).

left_or_right(0,left,right).

left_or_right(1,right,left).

This avoids adding the actual choice predicates as arguments partly

to keep the code described here less verbose and partly to avoid

meta-calls in the inner loops slowing down the execution of the

algorithm.

We can grow a new edge by “splitting an existing edge in two”

via the predicate grow/3:

grow(e(LR,A,B), e(LR,A,C),e(I,C,_),e(J,C,B)):-

left_or_right(I,J).

Note that a single clause defines grow/3, independently of the left
or right denoting the relation of the edge to its source node A.
It adds three new edges corresponding to arguments 2, 3 and 4
and removes one, represented as its first argument. Note also, that

contrary to Rémy’s original algorithm, our tree grows “downward”

as new edges are inserted at the target of existing ones. As the

set of edges is in bijection with the set of vertices of a binary tree,

except the root, this choice does not change any of the correctness

assumptions of Rémy’s original algorithm, as proven in [10].

The new node C, connected to A by inheriting the type LR of the

edge e(LR,A,B)will be made to point to a new leaf “_” via the edge
e(I,C,_) and to the tree below node B via the edge e(J,C,B).

The left / right choice among I and J, is provided by the

predicate left_or_right(I,J).
This leads us the basic step of the algorithm, where a set of

edges Es is rewritten as a set of new edges NewEs as given by the

predicate remy_step/4. To avoid computing the size L of the set

Es we maintain it by adding 2=3-1 as one node is removed and

3 are added at a given step. Note that we pick an edge randomly
among the L available by calling choice_of/2, operation provided

by remy_step1, that navigates the list to to where the rewriting

step grow/3 happens.

remy_step(Es,NewEs,L,NewL):-

NewL is L+2,

choice_of(L,Dice),

remy_step1(Dice,Es,NewEs).

remy_step1(0,[U|Xs],[X,Y,Z|Xs]):-grow(U, X,Y,Z).

remy_step1(D,[A|Xs],[A|Ys]):-D>0,D1 is D-1,

remy_step1(D1,Xs,Ys).

The predicate remy_loop iterates over remy_step until the desired
2K size is reached, in K steps as we grow by 2 edges at each step.

Note also that the initial 2 edges are added when K=1 by calling

remy_init.

remy_loop(0,[],0).

remy_loop(1,Es,2) :-remy_init(Es).

remy_loop(K,NewEs,N3):-K>1, K1 is K-1,

remy_loop(K1,Es,N2),

1204

http://www.cse.unt.edu/~tarau/research/2017/ranalg.pro
http://www.cse.unt.edu/~tarau/research/2017/ranalg.pro
http://www.cse.unt.edu/~tarau/research/2017/lpgen.tar.gz


remy_step(Es,NewEs,N2,N3).

Example 1. illustrates the generation of a random list of edges of
size 4:

?- remy_loop(2,Edges,N).
Edges =

[e(left,A,B),e(right,A,C),e(right,C,D),e(left,C,E)],
N = 4.

2.2 From sets of edges to trees as Prolog terms
The final step, “unleashing”the power of logic variables, extracts

a Prolog term representing the binary tree from the list of edges

labeled with unbound variables. The predicate bind_nodes/2 it-

erates over edges, and for each internal node it binds it to terms

provided by the constructor a/2, left or right, depending on the

type of the edge. Note that, given the order-independence of the

binding of logical variables, the same term is built independently

of the order of the edges.

Next, the predicate bind_leaf binds the remaining unbound

nodes with the constant v/0 labeling the leaf nodes. Correctness
follows from the fact that a node is a leaf if and only if it remains

unlabeled when the source of an edge is marked with the a/2
constructor, i.e, if it is not the source of an edge.

Note that we use maplist to iterate over lists and to apply a

predicate to their corresponding elements.

bind_nodes([],v).

bind_nodes([X|Xs],Root):-X=e(_,Root,_),

maplist(bind_internal,[X|Xs]),

maplist(bind_leaf,[X|Xs]).

bind_internal(e(left,a(A,_),A)).

bind_internal(e(right,a(_,B),B)).

bind_leaf(e(_,_,Leaf)):-Leaf=v->true;true.

The predicate remy_term/2 puts the two main steps together.

remy_term(K,B):-

remy_loop(K,Es,_),

bind_nodes(Es,B).

Example 2. illustrates the generation of a random term with 4
internal nodes as well timings for a larger random tree.

?- remy_term(4,T).
T = a(a(v, v), a(v, a(v, v))) .
?- time(remy_term(1000,_)).
1,025,950 inferences,
0.085 CPU in 0.098 seconds (12113466 Lips)

While the algorithm handles fairly large terms in reasonable time,

we do not claim that its average performance is linear, like in the

case of Knuth’s procedural implementation, given that it takes time

proportional to the size of the set of edges to pick the one to be ex-

panded. However, that one can improve its expected O(N 2) perfor-

mance with a tree representation of the set of edges toO(Nloд(N ))

or even to amortized O(N ) with a dynamically growing array rep-

resentation using arbitrary arity compound terms as containers.

3 A GENERAL ALGORITHM FOR TERM
ALGEBRAS OF GIVEN SIGNATURE

Combinatorial algorithms (as shown for instance in [4]) are a natu-

ral match to Prolog’s synergy between unification, multiple-answer

generation and definite clause grammars (DCGs). We will start with

a simple generator, that we will use as a reference implementation

for an algorithm generating term algebras of a given signature, that

can be seen as a generalization of Rémy’s algorithm.

3.1 A simple generator, using DCGs
As we want to ensure that terms of an exact size are generated,

for a given “size” definition, we spend some “Fuel” at each step,

as implemented by the predicate spend/3, that decrements the

amount of remaining “Fuel”.

spend(Fuel,From,To):-From>=Fuel,To is From-Fuel.

We adopt an empirically justified definition of size, in the sense that

when creating a function symbol of arity N, we consume N units of

“Fuel”. This will result in a term having a size proportional to the size
that a Prolog term has when represented on the heap.

We will use Prolog’s DCG mechanism to chain the arguments

controlling the size consumed at each step. The predicate gen(Fs,T)
generates a term T using the list Fs of function-symbol/arity pairs

(including constants seen as having arity 0). At each step in the

predicate gen/4, a function-symbol F/K is non-deterministically

chosen. Size is implicitly defined as the arity K of the function-

symbol, thus 0 for constants in the predicate gen_cont, responsible
to start the predicate gens/5 which iterates with Prolog’s arg/3
over each argument of a compound term created with Prolog’s

generic term constructor functor/3.

gen(Fs,T)-->{member(F/K,Fs)},gen_cont(K,F,Fs,T).

gen_cont(0,F,_,F)-->[].

gen_cont(K,F,Fs,T)-->{K>0},spend(K),

{functor(T,F,K)},

gens(Fs,0,K,T).

gens(_,N,N,_)-->[].

gens(Fs,I,N,T)-->{I1 is I+1,arg(I1,T,A)},

gen(Fs,A),

gens(Fs,I1,N,T).

For the reader unfamiliar with DCGs, we mention that the 2 extra

arguments constraining the size of the terms are added when the

“-->” clause constructor is used. We expose the generator via the

predicate gen/3, that given input arguments N=intended size of a

term and Fs=set of function-symbol/arity pairs, iterates over all

terms T of size N built using Fs.

gen(N,Fs, T):-gen(Fs,T,N,0).

Example 3. illustrates the generation of all binary trees of size 6
seen as defined by the signature [v/0,a/2].
?- gen(6,[v/0,a/2],T).
T = a(v,a(v,a(v,v))) ;
T = a(v,a(a(v,v),v)) ;
T = a(a(v,v),a(v,v)) ;
T = a(a(v,a(v,v)),v) ;

1205



T = a(a(a(v,v),v),v) .

3.2 A unified “choice definition” for all-term
and random-term generators

We start by observing that by replacing in our variant of Rémy’s

algorithm of section 2 the predicate choice_of/2 by

choice_of(N,K):-N>0,N1 is N-1,between(0,N1,K).

we obtain a generator for all terms of a given size. Let us note that it

is a fortunate feature of Prolog that an one-line code change turns

a random term generator into an all-term generator. This brings us

to design our choice operator to be oblivious to iterating over all

choices or picking a choice randomly. For a random term generator

we define the following “customized” choice operators:

member_choice(Choice,Choices):-

length(Choices,L),L>0,

I is random(L),

nth0(I,Choices,Choice).

select_choice(Choice,Choices,ChoicesLeft):-

length(Choices,L),L>0,

I is random(L),

nth0(I,Choices,Choice,ChoicesLeft).

between_choice(From,To,Choice):-

D is To-From+1,

Choice is From+random(D).

The predicate member_choice/2 pics randomly an element of a list.

It could also be defined in terms of select_choice/3 that picks

an element randomly and returns the remaining ones on a list.

The predicate between_choice/3 pics randomly an integer Dist
between From and To, endpoints included.

As one can notice, they mimic some well-known Prolog pred-

icates, which are used if one wants to iterate over all terms of a
given size:

member_choice(Choice,Choices):-
member(Choice,Choices).

select_choice(Choice,Choices1,Choices2):-
select(Choice,Choices1,Choices2).

between_choice(From,To,I):-
between(From,To,I).

As we will see, except for these alternatives for choice predicates,

exactly the same Prolog code can be used to implement our general-

ization of Rémy’s algorithm. Moreover, the number of solutions of

the generator provides a counting mechanism, of interest especially

when no closed formulas or generator functions exist for it (e.g.,

the case of simply-typed lambda terms).

Note that we do not expect the random sampler to be uniform,

given that different function symbol arities introduce a selection

bias. On the other hand, the resulting samplers are always exhaus-
tive, with every term in the set of terms of a given size having a

chance to be selected. In the case of binary trees, as for Rémy’s

original algorithm, this chance is the same for all terms of a given

size, while, for instance, in the case of Motzkin trees, much more

intricate algorithms, as shown in [1] are needed for uniformity.

While we do not ensure the uniform distribution of random terms

of a given size, we can control the probability with which function

symbols are picked, for instance, to customize the generators to

match their frequency in a segment of code for which we would

like to build a random tester.

3.3 Parameterizing with the signature
Like in the case of the generator defined in subsection 3.1, we will

parameterize our program with a set of function-symbol/arity pairs.

The predicate classify_funs separates that list into constants and
arity / list of function-symbol pairs.

classify_funs(FNs,Cs,SortedFs):-

findall(N-F, member(F/N,FNs), NFs),sort(NFs,Ordered),

group_pairs_by_key(Ordered,ByArityFs),

keysort(ByArityFs,[0-Cs|SortedFs]).

Example 4. illustrates this “optional, but convenient” interface
element.
?- classify_funs([g/2,c/0,f/2,d/0,h/3,t/2,s/3],Cs,FXs).
Cs = [c, d], FXs = [2-[f, g, t], 3-[h, s]].

3.4 Distilling some essence : generating the
arity-skeleton

As multiple function-symbols may share the same arity, we choose

to abstract away an ‘‘arity-skeleton” of the generated term, that

will be fleshed out later with the actual function-symbols. This

has the advantage of limiting combinatorial explosion in the case

of multiple function symbols having the same arity. We start by

extracting the set of non-zero arities with get_arities/2.

get_arities(NFs,Ns):-maplist(arg(1),NFs,Ns).

We then initialize our set of edges by picking an edge (randomly or

non-deterministically) depending on member_choice/2.

init_funs(NFs,Ns,Root,Es):-

get_arities(NFs,Ns),

member_choice(N,Ns),

init_fun(Root,N,Es).

The predicate init_fun/3 sketches the key idea of the algorithm:
adding a new function-symbol of arity N means connecting a logic
variable representing the source (in this case the root) to N edges rep-
resenting its arguments represented as (still unbound) logic variables.

init_fun(Root,N,Es):-N>0,

length(Ns,N),N1 is N-1,

numlist(0,N1,Is),

maplist(=(N),Ns),

maplist(make_edge(Root),Ns,Is,Es).

make_edge(X,N,I, e(N,I,X,_)).

Note that we store in an edge e(N,I,From,To) the arity N of the
function-symbol it originates from and the argument position I,
that it points to, as well as the logic variables From and To repre-

senting the source and the target of the edge.

The predicate extension_step/3 extends thework of init_fun/3
to the case where the insertion happens by “splitting an existing

edge in two”, as in the case of our variant of Rémy’s algorithm

in section 2. We insert a new term A by splitting edge X->Y into

X->A and A->Y, and then inserting leaves in all positions, except a

position K to where we insert a new edge from A.

1206



Note that we select a new arity among those smaller or equal to D,
a parameter which limits how much size we have left. This prunes

function-symbols that would bring too many edges, exceeding the

prescribed size.

While in the case of the binary trees in section 2 we have ex-

tended an edge by adding to it a leaf to the left or the right, here

we add N leaves centered on a chosen argument position K with

N-1 leaves added around it, and the tree below the edge inserted at

position K.

extension_step(GoodNs,OldEs,[e(M,I,X, A),

e(Arity,K,A,Y)|Es],N1,N2):-

GoodNs=[_|_],

select_choice(e(M,I,X, Y),OldEs,OtherEs),

member_choice(Arity,GoodNs),

Last is Arity-1,

N2 is N1+Arity,

between_choice(0,Last,K),

add_leaves(0,Arity,K,A,Es,OtherEs).

The predicate select_choice/3 helps rewriting an edge e(M,I,X,
Y) as a set of edges where leaves will be inserted in all positions,

except position K where the tree below the end of the edge Y will
be attached.

The predicate add_leaves extends the set of edges with leaves

seen as unbound variables. It exempts edge K, taken care of by

the predicate extension_step. Note that DCGs are used to chain

together the states of the lists of edges at each step.

add_leaves(N,N,_,_)-->[].

add_leaves(I,N,K,A)-->{I<N,I=:=K,I1 is I+1},

add_leaves(I1,N,K,A).

add_leaves(I,N,K,A)-->{I<N,I=\=K,I1 is I+1},

[e(N,I,A,_)],

add_leaves(I1,N,K,A).

Iterating the extension steps is similar to the process described

for binary trees. The predicate extend_to(M,NFs,Root,NewEs)
starts with a set of function/arity pairs NFs from where it initializes

the list of edges Es, extracts the root of the tree and the list of arities
Ns that it passes to the predicate extension_loop.

extend_to(M,NFs,Root,NewEs):-

init_funs(NFs,Ns,Root,Es),

length(Es,N),

extension_loop(Ns,Es,NewEs,N,M).

The predicate extension_loop iterates over extension steps

until the prescribed size of the edge set is reached.

extension_loop(_,Es,Es,N,N).

extension_loop(Ns,Es,NewEs,N1,N3):-D is N3-N1,D>0,

filter_smaller(Ns,D,GoodNs),

extension_step(GoodNs,Es,EsSoFar,N1,N2),

extension_loop(GoodNs,EsSoFar,NewEs,N2,N3).

The predicate filter_smaller/3 ensures that only only arities

that will not overflow the size limit are used to extend the set of

edges.

filter_smaller([],_,[]).

filter_smaller([I|_Is],D,[]):-I>D. % they are sorted!

filter_smaller([I|Is],D,[I|Js]):-I=<D,

filter_smaller(Is,D,Js).

We can test the generation of edges driven by “arity-skeletons” with

the predicate ext_test, that, given a desired number of edges M
and a set of function-symbol-arity pairs, returns a Root paired with

a list of edges.

ext_test(M,CFs, Root-Edges):-classify_funs(CFs,_,NFs),

extend_to(M,NFs,Root,Edges).

Example 5. illustrates its work the predicate ext_test that, given
the signature [v/0,l/1,a/2], generates a random set of edges of size
5.
?- ext_test(5,[v/0,l/1,a/2],Root-Edges).
Root=A,
Edges=[e(2,1,A,B),e(2,1,B,C),e(2,0,B,D),e(2,0,A,E),

e(1,0,E,F)] .

3.5 Fleshing-it out: functors first, then
constants at leaves

Like in the case of our variant of Rémy’s algorithm in section

2, we extract a term by iterating over the edges and binding the

logic variables according to their intended semantics, with function-

symbols of the appropriate arity for internal nodes and constant

symbols for the leaves.

First, the predicate edges2term/3 applies to each edge the pred-

icate edge2fun/2 which covers internal nodes, but leaves edges

unbound as they do not point to any other node. The predicate

leaf2constant/2 finishes the work by binding the leaves to con-

stants.

edges2term(Cs,NFs,Xs):-

maplist(edge2fun(NFs),Xs),

maplist(leaf2constant(Cs),Xs).

The predicate edge2fun/2 selects among function-symbols using

member_choice/2 before building the corresponding terms. To en-

sure that in the case of random generation two edges originating

from the same node do not try to build different terms when mul-

tiple function-symbols of the same arity are present, we need to

only call this operation once, when the variable T is unbound. Note

also that the (unique) arity / set of function-symbols list needs to

be selected with member/2 from the set NFs, as otherwise a random
choice could induce failure by picking the wrong arity form the set

NFs.

edge2fun(NFs,e(N,I,T,A)):-I1 is I+1,member(N-Fs,NFs),

(var(T)->member_choice(F,Fs);true),

functor(T,F,N),arg(I1,T,A).

The predicate leaf2constant binds the unbound target Leaf of
an edge to the constant C selected by member_choice(C,Cs) from

the set Cs.

leaf2constant(Cs,e(_,_,_,Leaf)):-

member_choice(C,Cs),

( Leaf=C->true

; true

).

1207



3.6 Putting it all together
The predicate gen_terms(M,FCs,T) takes as input the desired size
of a generated term M and a set of function-symbol / arity pairs FCs
with constants represented as having arity 0. It returns a term T of

size M, based on a size definition that weights each function-symbol

as its arity.

gen_terms(M,FCs,T):-classify_funs(FCs,Cs,NFs),

extend_to(M,NFs,T,Es),edges2term(Cs,NFs,Es).

The predicate gen_terms/3 puts together the main steps of our al-

gorithm by first separating the constants Cs from the arity / function-

symbol set pairs, then extending the set of edges to size M and finally
extracting the terms from the set of edges. Note that the algorithm

generates a multiset of terms in the case we define the all-terms

choice predicates, that can be trimmed to a set of unique terms

using SWI-Prolog’s distinct/2 predicate with

gen_term(M,FCs,T):-distinct(T,gen_terms(M,FCs,T)).

As this does not make any difference when a unique random term

is generated, we expose the overall functionality of our algorithm

through a simple interface defined by the predicate gen_term/3.

Example 6. illustrates some uses of gen_term/3 to generate all-
term terms.
?- gen_term(3,[v/0,l/1,a/2],T).
T = l(l(l(v))) ;
T = l(a(v, v)) ;
T = a(l(v), v) ;
T = a(v, l(v)) .

Example 7. illustrates some uses of gen_term/3 to generate ran-
dom terms.
?- gen_term(30,[0/0,1/0,(~)/1,(*)/2,(+)/2],T).
T = ~((~(0*0)* ~(~(~(~(~(~(~(~(1))))*

(1+1)*0))+0*1))+ ~(1))* ~(1)) .

?- time(gen_term(4000,[v/0,a/2],_)).
% 2,192,586 inferences, 0.515 CPU
% in 0.549 seconds (94% CPU, 4259980 Lips)

?- time(gen_term(6000,[v/0,a/2],_)).
% 4,792,151 inferences, 1.104 CPU
% in 1.149 seconds (96% CPU, 4339722 Lips)

As one can notice, performance for binary trees is comparable

than with the specialized variant of Rémy’s algorithm described in

section 2.

4 APPLICATIONS
4.1 Motzkin trees
We can specialize our generators to a given set of function symbols.

As an example, Motzkin trees (also called binary-unary trees) are

described by

mot_funs([v/0,l/1,a/2]).

Then, as each of our generators is parameterized by the signature

of the term algebra, we obtain:

mot(N,T):-mot_funs(CFs),gen(N,CFs,T).

for generating plain Motzkin trees. In section 5, we will use the

Motzkin tree generator as a skeleton to be extended to lambda

terms.

4.2 Correctness cross-checks between all-terms
generators and random-term generators

One of the fallouts of having the same code work as an all-terms

and random term generator is that we can do some cross-checking

of properties that we expect to hold in both cases.

4.2.1 Testing the equivalence between all-term generators. First,
we can check the empirical soundness of the generator by compar-

ing the terms of a given size it outputs with those of the vanilla

generator gen/2 described in subsection 3.1. While this can be

done for a few terms with human eyes, the faster than exponential

growth with respect to size is better served by counting the terms

generated for successive sizes. We will do that for two term algebras

- one for binary trees and the other for Motzkin trees. As expected,

for binary trees, we obtain in both cases 1, 0, 1, 0, 2, 0, 5,
0, 14, 0, 42, 0, 132, 0, 429 ... with terms in even posi-

tions corresponding to the Catalan numbers, counted by sequence

A000108 in [11]. For Motzkin trees we obtain in both cases 0, 1,
2, 4, 9, 21, 51, 127, 323, 835, 2188, ... corresponding
to the Motzkin numbers that are counted by sequence A001006 in

[11].

As in all-terms generation mode our generic code works signifi-

cantly slower than the depth-first generator gen/2 of subsection
3.1, once we trust their equivalence, we can rely on comparing

assertions that should hold for the random terms as well as terms

provided by our more efficient depth-first term generator gen/2.

4.2.2 No term left behind: checking that any term can be the
chosen one. As we use the same code for the all-terms and random

term generators, equivalence of the former with as the standard

gen/2 generator entails that, in principle, all terms have a chance

to be generated when running the generator in random mode. But,

as a side note, one should keep in mind that the humungous size

of the space of possibilities for a random term of, say, size 1000,
cannot be matched by the period of the random generators we use.

Consequently, only as many distinct terms as the period of the

concrete random generator have a chance to be generated.

4.3 Function-symbol counts: checking the
ingredients of the random recipe

Combinatorial proofs of properties of a Rémy-like generator for a

term algebra of a given signature are fairly intricate and require

creative techniques even for very simple ones like in the case of

Motzkin trees, as shown in [1].

This raises the question if there are simple properties that could

indicate that a similar, “close-enough” empirical distribution exists

for the random terms of large sizes we can generate.

A good candidate for that is the relative count of the function-
symbols occurring in the output of random term and in all-term
generators. In the case of all-terms of a given size we compute that

by summing them up over all the generated terms. Given their large

number, even for small sizes, it is reasonable to think that they are

1208



an indicator of what should happen when building large random

terms of the same signature.

We will not do this for binary trees where for each tree with N
internal nodes we always have N+1 leaves, but we can start with

Motzkin trees, where the counts for unary nodes are independent

of those for binary nodes and leaves. As we can trust the larger

counts reachable by our equivalent standard generators we obtain:

Total counts for size 14:
[a/2-4343160,l/1-4969152,v/0-5196627]

Relative percentages:
[a/2-0.2993,l/1-0.3424,v/0-0.3581]

Counts for random term of size 4000:
[a/2-1334,l/1-1332,v/0-1335]

Relative percentages:
[a/2-0.3334,l/1-0.3329,v/0-0.3336]

Note that the first two counts indicate a (slow) convergence process

toward the asymptotic 1/3 value for each distribution [1, 8]. The

last line, closely matching the asymptotic distribution of 1/3 for

each constructor, is a good indicator of how close our random

generator is to a uniform one.

By using Maciej Bendkowski’s ingenious Boltzmann-sampler

generator [2] one can compare distributions corresponding to Boltz-

mann samplers with those of our generators for any concrete

function-symbol / arity pairs set.

5 ONE MORE LIFT: DECORATING
MOTZKIN TREES TO CLOSED LAMBDA
TERMS

By starting from our random generator for Motzkin trees, or, if

one prefers a uniform distribution for a given size, by using a

Boltzmann sampler as the one automatically generated by [2], one

can “decorate” it to lambda terms in de Bruijn notation [5] simply by

labeling its leaves with de Bruijn indices, indicating their binder as

the number of l/1 constructors encountered on the path to the root

of the tree. To mimic (actually in a stronger way) the ideas behind

the “natural size” described in [3], that favors variables closer to

their binders, one can build for each list of binders from a leaf to

the root, a distribution that decays exponentially with each step, as

defined by nat2probs/2.

nat2probs(0,[]).

nat2probs(N,Ps):-N>0,

Sum is 1-1/2^N,

Last is 1-Sum,

Inc is Last/N,

make_probs(N,Inc,1,Ps).

In this case, at each step, the probability to continue further is

reduced to half, work done by make_probs/4.

make_probs(0,_,_,[]).

make_probs(K,Inc,P0,[P|Ps]):-K>0,

K1 is K-1,P1 is P0/2, P is P1+Inc,

make_probs(K1,Inc,P1,Ps).

Once the list of probability thresholds is build, the predicate

walk_probs/3 is used to decide how far, on the list of available

binders it will point.

walk_probs([P|Ps],K1,K3):-random(X),X<P,!,

K2 is K1+1,

walk_probs(Ps,K2,K3).

walk_probs(_,K,K).

Given aMotzkin tree, we decorate each leaf v/0 by turning it into
a natural number representing a de Bruijn index. The value of the de

Bruijn index is determined for each leaf independently by walking

up on the chain of lambda binders with decaying probabilities.

decorate(v,0,X)-->[X]. % free variable

decorate(v,N,K)-->

{N>0,nat2probs(N,Ps),walk_probs(Ps,0,K)}.

decorate(l(X),N,l(Y))-->{N1 is N+1},

decorate(X,N1,Y).

decorate(a(X,Y),N,a(A,B))-->

decorate(X,N,A),

decorate(Y,N,B).

The predicate plain_gen collects the list of free variables left over

when called with a size N and generating a lambda term T.

plain_gen(N,T,FreeVars):-

mot_gen(N,B),

decorate(B,0,T,FreeVars,[]).

To ensure that a term is closed, one restarts until the list of free

variables is empty as shown by closed_gen/3, also returning the

number of retries I.

closed_gen(N,T,I):-

Lim is 100+2^min(N,24),

try_closed_gen(Lim,0,I,N,T).

These restarts are managed by the predicate try_closed_gen/5,
which, when the decorated term is not closed, tries generating a

new term.

try_closed_gen(Lim,I,J,N,T):- I<Lim,

( mot_gen(N,B),decorate(B,0,T,[],[])*->J=I

; I1 is I+1, try_closed_gen(Lim,I1,J,N,T)

).

As an interesting Prolog feature, we use a multiple try if-then-else

(denoted “*->” in SWI-Prolog), to ensure that backtracking occurs

in the condition part of the “*->” operation. Should, however, failure
occur, typically because a given leaf has no unary nodes to be used

as a lambda binder above it, a fresh retry is triggered by calling the

same predicate recursively. The predicate also maintains a count

I->I+1 of the retries, which, in our experiments, are typically not

more than 2 or 3.

Example 8. illustrates random closed lambda terms obtained by
decorating motzkin trees.
?- closed_gen(10,T,I).
T = a(l(1), l(l(l(a(a(2, 1), 1))))), I = 0 .
?- closed_gen(5000,_,I).
I = 3 .

6 RELATEDWORK
Rémy’s algorithm [10], procedurally implemented as algorithm R
in [6] has generated a significant number of attempts to adapt it to

uniformly generate similar data types. Among themwe mention [1]

where it is also shown how difficult it is to ensure uniformity. The

1209



use of de Bruijn indices for the study of combinatorial properties of

lambda terms is introduced in [7]. In [9] a “type-directed” mecha-

nism for the generation of random terms is introduced, resulting in

more realistic (while not uniformly random) terms, used success-

fully in discovering some bugs in the Glasgow Haskell Compiler

(GHC).

For uniform generation of arbitrary data-types specified by a

context-free grammar, the Boltzmann sampler generator of [2]

stands out, as it produces efficient Haskell programs generating

uniformly terms of an expected size or above. By contrast to [4], that

uses data computed by the generator in [2] to build a Boltzmann

sampler for simply-typed closed lambda terms, this paper uses a

variant of Rémy’s algorithm that is also generalized to term algebras

of an arbitrary signature, and thus directly useful for generating

random Prolog terms for test automation of logic programs.

In [12] an serialization algorithm for Prolog terms using a bijec-

tion from a term algebra to to natural numbers is described, that

can, in principle, also be used for the generation of random terms,

although at a much smaller scale, given the limitations on the size of

the integers used as encodings for the terms and the computational

effort involved in the decoding of integers to terms.

While we have dropped the uniformity requirement in our gen-

eralization to term algebras, we have ensured that the generators

are exhaustive - i.e., that every term of a given size has a chance to

be chosen. Given that the same generator is used for all-term and

random term generation, depending only on the choice of selection

predicates, our random samplers are automatically exhaustive. On

the other hand, we can uniformly choose function symbols from

a given signature, and one can customize this selection to a differ-

ent distribution if needed. For instance, choosing probabilities to

be inverse proportional to arities would increase the frequency of

symbols with smaller arities in a random term. Thus, in a random

testing application, one can mimic the distribution of the function

symbols occurring in the program to be tested.

7 CONCLUSIONS
Our declarative implementations of random and all-term generation

algorithms, show that logic programming languages, often seen

outside our field as “domain specific”, can provide means for im-

plementing simple and naturally generic algorithms, thought to be

exclusively in the realm of procedural or object oriented languages.

We have used some essential features of logic programming lan-

guages: the ability of logic variables to stand for absent information

to be completed later and the ability to configure choice operations

as random single-answer or “nondeterministic” multiple answer,

without any other change in the code. Data type genericity” has

spread these days from functional languages like ML and Haskell

to the procedural world, ranging from mechanisms like standard

templates in C++ and generic types in Java, Scala or Swift. While

also supported indirectly by using libraries of monads and monad

transformers in functional languages, the more subtle “algorithm

genericity”, allowing one to overlap via the same code deterministic

execution for random sampling and non-derministic execution for

multiple answer generation, happens with no notational clutter or

semantic complexity in a logic programming language like Prolog.

Our generator for term algebras can be useful, as a practical

application for automating the generation of random tests for logic

programming languages. The decoration algorithm lifting random

Motzkin trees into closed lambda terms can be further specialized

to simply-typed terms as shown in [4] and can be useful for testing

correctness and scalability of compilers for functional languages

and proof assistants, given the fact that we are able to generate

very large such terms. The “edge-splitting” mechanism used for

Rémy’s algorithm and its generalization is likely to be also usable

for generation of random graphs, and in particular for generating

cyclic terms relevant when testing compilers, run-time systems and

libraries of Prolog implementations.

ACKNOWLEDGEMENT
This research is supported by NSF grant 1423324.

We thank the anonymous reviewers of SAC’2018 for their sug-

gestions, Maciej Bendkowski for his enlightening comments on a

previous draft of this paper and the participants of the CLA’2017
workshop (https://cla.tcs.uj.edu.pl/programme.html) for illuminat-

ing discussions.

REFERENCES
[1] A. Bacher, O. Bodini, and A. Jacquot. 2013. Exact-size Sampling for Motzkin Trees

in Linear Time via Boltzmann Samplers and Holonomic Specification. In 2013
Proceedings of the Tenth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), Markus E. Nebel and Wojciech Szpankowski (Eds.). SIAM, 52–61.

[2] Maciej Bendkowski. 2017. Boltzmann-brain. (2017). Software (Haskell stack

module), published electronically at https://github.com/maciej-bendkowski/

boltzmann-brain.

[3] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. 2016.

A Natural Counting of Lambda Terms. In SOFSEM 2016: Theory and Practice of
Computer Science - 42nd International Conference on Current Trends in Theory
and Practice of Computer Science, Harrachov, Czech Republic, January 23-28, 2016,
Proceedings (Lecture Notes in Computer Science), Rusins Martins Freivalds, Gregor

Engels, and Barbara Catania (Eds.), Vol. 9587. Springer, 183–194. https://doi.org/

10.1007/978-3-662-49192-8_15

[4] Maciej Bendkowski, Katarzyna Grygiel, and Paul Tarau. 2017. Boltzmann Sam-

plers for Closed Simply-Typed Lambda Terms. In Practical Aspects of Declara-
tive Languages - 19th International Symposium, PADL 2017, Paris, France, Janu-
ary 16-17, 2017, Proceedings (Lecture Notes in Computer Science), Yuliya Lierler
and Walid Taha (Eds.), Vol. 10137. Springer, 120–135. https://doi.org/10.1007/

978-3-319-51676-9_8 , Best student paper award.

[5] N. G. de Bruijn. 1972. Lambda calculus notation with nameless dummies, a

tool for automatic formula manipulation, with application to the Church-Rosser

Theorem. Indagationes Mathematicae 34 (1972), 381–392.
[6] Donald E. Knuth. 2006. The Art of Computer Programming, Volume 4, Fascicle

4: Generating All Trees–History of Combinatorial Generation (Art of Computer
Programming). Addison-Wesley Professional.

[7] Pierre Lescanne. 2013. On counting untyped lambda terms. Theoretical Computer
Science 474 (2013), 80 – 97. https://doi.org/10.1016/j.tcs.2012.11.019

[8] Pierre Lescanne. 2014. Boltzmann samplers for random generation of lambda

terms. CoRR abs/1404.3875 (2014). http://arxiv.org/abs/1404.3875

[9] Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing

an Optimising Compiler by Generating Random Lambda Terms. In Proceedings
of the 6th International Workshop on Automation of Software Test (AST’11). ACM,

New York, NY, USA, 91–97.

[10] Jean-Luc Rémy. 1985. Un procédé itératif de dénombrement d’arbres binaires et

son application à leur génération aléatoire. RAIRO - Theoretical Informatics and
Applications - Informatique Théorique et Applications 19, 2 (1985), 179–195.

[11] N. J. A. Sloane. 2017. The On-Line Encyclopedia of Integer Sequences. (2017).

Published electronically at https://oeis.org/.

[12] Paul Tarau. 2013. Compact Serialization of Prolog Terms (with Catalan Skele-

tons, Cantor Tupling and Gödel Numberings) . Theory and Practice of Logic
Programming 13, 4-5 (2013), 847–861.

[13] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. 2012. SWI-

Prolog. Theory and Practice of Logic Programming 12 (1 2012), 67–96. Issue Special
Issue 1-2. https://doi.org/10.1017/S1471068411000494

1210

https://cla.tcs.uj.edu.pl/programme.html
https://github.com/maciej-bendkowski/boltzmann-brain
https://github.com/maciej-bendkowski/boltzmann-brain
https://doi.org/10.1007/978-3-662-49192-8_15
https://doi.org/10.1007/978-3-662-49192-8_15
https://doi.org/10.1007/978-3-319-51676-9_8
https://doi.org/10.1007/978-3-319-51676-9_8
https://doi.org/10.1016/j.tcs.2012.11.019
http://arxiv.org/abs/1404.3875
https://doi.org/10.1017/S1471068411000494

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 12.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     12.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     7
     8
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



