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Abstract
A polycube is a face-connected set of cubical cells on Z3.
To-date, no formulae enumerating polycubes by volume
(number of cubes) or perimeter (number of empty cubes
neighboring the polycube) are known. We present a few
formulae enumerating polycubes with a fixed deviation from
the maximum possible perimeter.
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1 Introduction

A polyomino of area n is an edge-connected set of n
squares on Z2. Likewise, a d-dimensional polycube of
volume n is a connected set of n cubes on Zd, where
connectivity is through (d−1)-dimensional faces. Two
fixed polycubes are considered identical if one can be
translated into the other; in this paper we consider
only fixed polycubes. The study of polycubes (in
two and higher dimensions) began in the 1950s in
statistical physics [5] and in the 1960s in enumerative
combinatorics [6].

Let A3(n) denote the number of polycubes of vol-
ume n (sequence A001931 in the On-line Encyclope-
dia of Integer Sequences [1]). Lunnon computed A3(n)
manually up to n = 6 [7] and later up to n = 12 [8].
Aleksandrowicz and Barequet [3] provided counts up
to n = 18. Luther and Mertens [9] set the current
record by computing A3(19), improving and extending
the original algorithm of Redelmeier [10] for counting
polyominoes in the plane. To-date, no formula is known
for A3(n) (or for the number of polycubes in any dimen-
sion).

In statistical physics, the perimeter of a polycube P
is defined as the number of perimeter cells—empty cells
neighboring P . (A similar definition is used for other
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Figure 1: A polycube and its dual graph

combinatorial structures, e.g., by Blecher et al. [4].)
We denote by A3(n, p) the number of polycubes having
volume n and perimeter p. It is easy to observe that we
always have p ≤ 4n+2. Let, then, k = (4n+2)−p denote
the “perimeter defect” of P . Our main result is that
for each fixed non-negative value of k, the generating
function of the sequence (A3(n, 4n+ 2− k)) is rational.
This work generalizes a previous work [2], in which we
investigated polyominoes (polycubes in two dimensions)
with fixed defect.

2 Formulae for Small Defect

2.1 Notation and Basic Facts Along with a poly-
cube P , we will consider its dual graph P ∗: The vertices
of P ∗ correspond to the cells of P , and two vertices of P ∗

are adjacent if the corresponding cells of P share a face.
Figure 1 shows a polycube and its dual graph. Occa-
sionally, we shall use the graph-theoretic terminology
of P ∗ for P : For example, we shall refer to the degree
of a cell of P , the number of edges in P , etc.

The volume of a given polycube P will be denoted
by n, and its perimeter by p. In Proposition 2.1(1),
we show that we always have p ≤ 4n + 2. Hence, we
introduce a new parameter k = (4n + 2) − p, to be
referred to as the (perimeter) defect of P .

The excess of a perimeter cell X of P is the number
of neighbors of X that belong to P , minus 1. An excess
cell is a perimeter cell with non-zero excess (i.e., an
empty cell with at least two occupied neighboring cells).
Let e be the total excess of P , that is, the sum of
excesses over all perimeter cells of P . Finally, let r be
the circuit rank of the dual graph of P (also known as
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Figure 2: Cases for k = 2 (Proposition 2.3)

the cyclomatic number of P ), i.e., the minimal number
of edges that must be removed from P in order to obtain
a tree. (It is well known that in a connected graph
G = (V,E), we have r = |E| − |V | + 1.) For example,
the circuit rank of the polycube in Figure 1(a) is 8, and
it is manifested by eight red edges in the graph shown
in Figure 1(b). We then have the following basic facts:

Proposition 2.1. For every polycube of size n and
perimeter p, we have (1) p ≤ 4n+2; and (2) k = e+2r.

Proof. Consider a polycube P of size n and its dual
graph P ∗ = (V,E). If no cube of P had touched
any other cube, then the total perimeter of P would
have been 6n. However, there are two factors that can
contribute to the loss in the perimeter of P : excess cells,
and pairs of adjacent occupied cells. The contribution
of excess cells is obviously e, the total loss caused by free
cells that have more than one occupied neighboring cell.
The contribution of pairs of adjacent occupied cells is
2|E|. Therefore, we have p = 6n− e− 2|E|. Since e ≥ 0
and |E| ≥ n− 1, we have

p ≤ 6n− 2(n− 1) = 4n+ 2,

and, thus, claim (1) is proven. For claim (2), we have

k = 4n+ 2− p = (4n+ 2)− (6n− e− 2|E|)
= e+ 2|E| − 2n+ 2 = e+ 2r.

2.2 Formulae for Defect k = 0,1,2,3

Proposition 2.2.
(1) A3(n, 4n+ 2) = 3 for n ≥ 2 (and 1 for n = 1);
(2) A3(n, 4n + 1) = 12(n − 2) for n ≥ 2 (and 0

for n = 1, 2).

Proof. The formula k = e + 2r allows us to identify all
the possible shapes of polycubes with defect k. If the
defect is either 0 or 1, then necessarily we have r = 0,
and, hence, k = e. Therefore, k = 0 is possible only for
sticks—the 1 × 1 × n, 1 × n × 1, and n × 1 × 1 cubes,
and k = 1 is realizable only by paths with a single bend.
The claims follow at once.

Proposition 2.3. A3(n, 4n) = 30n2 − 222n + 456 for
n ≥ 6 (and sporadic values for n = 4, 5).

Proof. By Proposition 2.1(2), k = 2 implies either {e =
0, r = 1} or {e = 2, r = 0}. This allows us to parti-
tion polycubes with defect k = 2 into several classes,
shown in Figure 2. The general form of a member of
such a class consists of fixed cubes (colored with red)
and legs—sticks (colored with gray) of indeterminate,
possibly 0, length.1 We have the following cases.
Case (a): Non-trees. The combination e = 0, r = 1 is
possible only for the 2× 2× 1 block (possibly aligned in
another way). Therefore, the count is 3 only for n = 4.
In all other cases of k = 2, the polycubes are trees ei-
ther with two perimeter cells of excess 1, or with one
perimeter cell of excess 2.
Case (b): Paths with two coplanar bends in oppo-
site directions. The number of such polycubes is

(
n−2
2

)
(for n ≥ 4), which is the number of decompositions
of n−4 into three non-negative parts.
Case (c): Planar paths with two bends in the same di-
rection, with at least two cells between the bends. Sim-
ilarly to Case (b), except that here we have six fixed
cells, the count is

(
n−4
2

)
(for n ≥ 6).

Case (d): T-like polycubes. The calculation is identi-
cal to that in Case (b).
Case (e): There is exactly one such polycube for
each n ≥ 5.
The last case is the only case of polycubes which span
three dimensions.
Case (f): A 3-dimensional chain with two bends.
Again, there are

(
n−4
2

)
such polycubes (for n ≥ 6).

These counts should be multiplied by a factor of 3
(Case (a)), 12 (Cases (b,c,d) and (e, n = 5), or 24 (Cases
(e, n ≥ 6) and (f)), depending on the symmetries of the
shape. Summing up all cases completes the proof.

While the formulae for A3(n, 4n + 2 − k) for k =
0, 1, 2 are polynomials of degree k, the formula
for A3(n, 4n − 1) is a cubic quasi-polynomial with pe-
riod 2.

1This coloring convention will be used throughout the paper.
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Proposition 2.4. A3(n, 4n − 1) = 103n3

2 − 623n2 +(
11681

4 + 15(−1)n
4

)
n − 10929

2 − 63(−1)n
2 for n ≥ 12 (and

sporadic values for n ≤ 11).

Proof. The formula k = e+ 2r helps us to partition the
set of such polycubes into 27 mutually-disjoint classes,
shown in Figure 3. The full case analysis will be given
in the full version of the paper; here we discuss in detail
only Cases (xix) and (i).

The number of polycubes of type (xix), as depicted,
is equal to the number of decompositions of n−7 into
four non-negative parts, which is

(
n−4
3

)
. To count the

number of orientations, the polycubes of this type can
be seen as a path P which spans all three dimensions
plus a leg whose direction is determined by the middle
part of P . There are 3! possibilities to embed P so as
to span all three dimensions. In each direction, both
positive and negative directions are possible, for a total
of 3! · 23 = 48 options. Therefore, the total count of
polycubes of this type is

48

(
n− 4

3

)
= 8n3 − 120n2 + 592n− 960.

Refer now to Case (i) (drawn in Figure 4(a) in a
two-dimensional view). The numbers a, b, c, d determine
a polyomino in this class uniquely. Obviously, c ≥ 2
and a ≥ c+1; we do not need to care for upper
bounds. Once a and c are chosen, we have n−a−c−3
cells for b+d. Moreover, d ≤ b−2 and, therefore,
d ≤ (n−a−c−5)/2. Hence, the summation is

∑
c≥2

∑
a≥c+1

bn−a−c−5
2 c∑

d=1

1.

Due to the rounding in the upper bound for d, the
explicit formula splits into two cases depending on the
parity of n: For even n, we obtain

fE(n) = (−10 + n)(144− 34n+ 2n2)/48,

and for odd n, we obtain

fO(n) = (−11 + n)(126− 32n+ 2n2)/48.

Considering all possible orientations, the total count in
this case is

24

(
fE(n) + fO(n)

2
+ (−1)n

fE(n)− fO(n)

2

)
= n3−27n2+

(
481

2
+

3(−1)n

2

)
n− 27(−1)n

2
− 1413

2
.

As we will see in Section 2.3, the formulae for
Cases (i)–(iii) are non-polynomial due to the presence of
parts whose (indeterminate) lengths are dependent. In
all other cases, this phenomenon does not occur, hence,
the formulae are polynomial. Summing up the formulae
for all cases (see Table 1) completes the proof.

2.3 Generating Functions In this section we shall
see how to obtain the same results in a uniform way by
using generating functions. For each case, extracting
the coefficient from the generating function provides the
desired formula, and then we can sum up the generating
functions of all cases and obtain the one of the total
formula.

Let us return to Case (i) for defect k = 3 (redrawn
in Figure 4(b)). In addition to twelve fixed cells which
contribute x12 to the generating function, polycubes
of this type contain two equal-length pairs of legs
(of lengths c′ and d′), and two independent legs (of
lengths a′ and b′). Each independent leg contributes
the factor 1

1−x , and each equal-length pair of legs

contributes the factor 1
1−x2 . Polycubes of this type

can be aligned with either the xy, yz, or zx plane, and
within each plane there are eight possible orientations.
Hence, the generating function is

24x12

(1− x2)
2
(1− x)2

=
24x12

(1− x)
4
(1 + x)

2 ,

and its partial fraction decomposition is

3x12
(

1

1− x
+

3

2
· 1

(1− x)2
+ 2 · 1

(1− x)3

+ 2 · 1

(1− x)4
+

1

1 + x
+

1

2
· 1

(1 + x)2

)
.

The coefficient extraction from these basic generating
functions yields

[xn]
24x12

(1− x)4(1 + x)2
=

3

(
n− 12

0

)
+

9

2

(
n− 11

1

)
+ 6

(
n− 10

2

)
+ 6

(
n− 9

3

)
+ 3(−1)n

(
n− 12

0

)
+

3

2
(−1)n

(
n− 11

1

)
,

which simplifies to the formula for Case (i) in Proposi-
tion 2.4.
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(i) (ii) (iii) (iv) (v)

(vi) (vii) (viii) (ix) (x)

(xi) (xii) (xiii) (xiv) (xv)

(xvi) (xvii) (xviii)

2-dimensional patterns

(xix) (xx) (xxi) (xxii) (xxiii)

(xxiv) (xxv) (xxvi) (xxvii)

3-dimensional patterns

Figure 3: Cases for k = 3 (Proposition 2.4)
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Case Volume Count

(i) ≥ 12 − 1413
2 − 27(−1)n

2 +
(

481
2 + 3(−1)n

2

)
n− 27n2 + n3

(ii) ≥ 10 333
2 −

45(−1)n
2 + (−45 + 3(−1)n)n+ 3n2

(iii) ≥ 9 − 201
2 + 9(−1)n

2 +
(

211
4 −

3(−1)n
4

)
n− 9n2 + n3

2

(iv) ≥ 9 −192 + 24n Case Vol. Count

(v) 8 24 (xvi) ≥ 7 −480 + 296n− 60n2 + 4n3

(vi) ≥ 5 −480 + 296n− 60n2 + 4n3 (xvii) ≥ 7 −144 + 24n
(vii) ≥ 6 −120 + 24n (xviii) ≥ 6 −120 + 24n
(viii) ≥ 7 −144 + 24n (xix) ≥ 7 −960 + 592n− 120n2 + 8n3

(ix) ≥ 5 24 (xx) ≥ 6 −240 + 48n
(x) ≥ 5 −96 + 104n− 36n2 + 4n3 (xxi) ≥ 7 −288 + 48n
(xi) ≥ 7 −480 + 296n− 60n2 + 4n3 (xxii) ≥ 5 −96 + 104n− 36n2 + 4n3

(xii) ≥ 7 −144 + 24n (xxiii) ≥ 5 −96 + 104n− 36n2 + 4n3

(xiii) ≥ 6 −120 + 24n (xxiv) ≥ 5 −192 + 208n− 72n2 + 8n3

(xiv) 7 12 (xxv) ≥ 6 −240 + 188n− 48n2 + 4n3

≥ 8 24 (xxvi) ≥ 6 −240 + 188n− 48n2 + 4n3

(xv) ≥ 5 −48 + 52n− 18n2 + 2n3 (xxvii) ≥ 4 24− 20n+ 4n2

Table 1: Counts of cases for k = 3 (Proposition 2.4)

(a)

(b)

Figure 4: Case (i) for k = 3 (two drawings)

In a similar manner, we obtain the generating
function for Case (xix). Seven fixed cells contribute the
factor x7 to the generating function, and each of the
four independent legs contributes to it a factor of 1

1−x .

There are 3! ·23 = 48 different orientations as explained
above, thus, the generating function is

48 · x7

(1− x)
4 =

48x7

(1− x)4
.

k Characteristic Polynomial
0 x− 1
1 (x− 1)2

2 (x− 1)3

3 (x− 1)4(x+ 1)2

Table 2: Characteristic polynomials for 0 ≤ k ≤ 3

A standard coefficient extraction gives

[xn]
48x7

(1− x)4
= 48

(
n− 4

3

)
= 8n3−120n2 +592n−960.

Similar reasoning shows that the characteristic
polynomials (equivalently, the denominator of the ratio-
nal generating functions) for all other cases consists of
(x−1) to the power at most 4, and (x+1) to the power at
most 2. In other words, they all divide (x− 1)4(x+ 1)2.
Therefore, when we sum up the formulae of all cases
in order to obtain the resulting formula for k = 3, the
denominator of the generating function is the least com-
mon multiple of the denominators of all the cases, that
is, (x − 1)4(x + 1)2. Consequently, the characteristic
polynomial for defect k = 3 is (x− 1)4(x+ 1)2. A sim-
ilar, but simpler, reasoning leads to the characteristic
polynomials for k = 0, 1, 2, summarized in Table 2.

More importantly, generating functions give us in-
sight into the general case of fixed k. We saw that
for k ≤ 3, the sequence satisfies a linear recurrence be-
cause the generating function is rational, and its char-
acteristic polynomial factors into powers of 1±x (see
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the table above). In Section 3, we show that for each
fixed k, the sequence satisfies a linear recurrence whose
characteristic polynomial factors into cyclotomic poly-
nomials. In order to find the generating function for
polycubes with a fixed defect k, we systematically par-
tition them into finitely-many classes whose generating
functions are routine.

3 The General Form

In this section we show that the generating function for
polycubes of a fixed defect k is always rational.

Theorem 3.1.
∑

n≥0A(n, 4n+ 2− k)xn, the generat-
ing function that enumerates polycubes with a fixed de-
fect k with respect to their volume, is rational. More-
over, its denominator is a product of cyclotomic poly-
nomials. Equivalently, from a certain position, the enu-
merating sequence of such polycubes satisfies a linear re-
currence, and its characteristic polynomial is a product
of cyclotomic polynomials (all of which roots are there-
fore roots of unity).

Proof. The proof consists of the following three steps.

1. First, we partition the set of polycubes with de-
fect k into mutually-disjoint subsets, to be called
“pattern classes.” Informally, a pattern class con-
sists of polycubes which have a “similar shape” (in
some precise sense detailed below);

2. Next, we show that for each pattern class, its
generating function has the form as stated in the
Theorem;

3. Then, we prove that the number of pattern classes
is bounded.

Finally, the combination of (2) and (3) implies the
Theorem.

Step 1. Let us start with some definitions. We
label the grid cells by three coordinates, (x1, x2, x3). A
grid slice is the set of all unit cubes with one coordinate
fixed. Specifically, the grid slice that contains all the
cells with xj = p (the jth coordinate equal to p)
will be denoted by Cj,p. A j-orthogonal cut of a
polycube P is a maximal set C of consecutive grid
slices, Cj,p, Cj,p+1, . . . , Cj,q, such that the projection of
P ∩ (Cj,p−1 ∪ Cj,p ∪ . . . ∪ Cj,q+1) on the plane spanned
by all the coordinates except j is a non-empty finite
set A of (2-dimensional) cells that do not neighbor
each other and have no common neighbors. That is,
this intersection consists of one or several legs with
the same orientation, that extend to all the width of C
augmented by two neighboring slices and have maximal
possible perimeter, and C is a maximal set with such

property. As a special case, we consider a trivial (or
empty) cut, corresponding to the case q = p − 1. See
Figure 5(a) for an illustration. The polycube shown
on this figure has three x-orthogonal cuts (indicated by
red), two y-orthogonal cuts (indicated by blue), and one
z-orthogonal cut (indicated by yellow). (In addition to
coloring the cubes that belong to cuts, we indicate each
cut by a transparent plane.)

The key property of cuts is the following obvious
fact. Suppose that P has a nontrivial cut C. Then,
if one removes the slices of C and glues the remaining
parts of the plane together, a new valid polycube with
the same defect is obtained, and the removed cut
“shrinks” into a trivial cut. Applying this shrinking
procedure to all nontrivial cuts, one eventually obtains
a polycube without nontrivial cuts: such polycubes
will be called reduced. Notice that shrinking a cut
never produces new cuts: indeed, two cuts of the same
orientation are always disjoint, and the intersection of
two cuts of different orientations never contains cells
of P . Therefore, all the cuts are independent in the
sense that successive shrinking of nontrivial cuts in
any order is equivalent to their simultaneous shrinking.
In particular, exactly one irreducible polycube can
be obtained in this way from a given polycube P .
Figure 5(b) shows the irreducible polycube obtained by
reducing the polycube shown in Figure 5(a).

A pattern class is the set of all polycubes that
produce the same irreducible polycube by the shrinking
procedure. Since, as explained above, each polycube
produces a unique reduced polycube, pattern classes
form a partition of the set of polycubes with defect k.

Step 2. Given an irreducible polycube R, all the
members of the class of R can be easily reconstructed.
Indeed, if R has trivial cut(s), then any polycube from
the class of R can be obtained from R by expanding the
cuts, that is, inserting some number of grid slices with
appropriately oriented legs, to replace some trivial cuts
by nontrivial cuts. In other words, for each trivial cut
of R and for any non-negative integer `, we can insert a
bundle of legs `×1×1, 1×`×1, or 1×1×` (depending on
the orientation of the trivial cut) between all the ports—
pairs of the cells where this trivial cut intersects R.
The contribution of this bundle of legs to the generating
function of the pattern class is clearly 1/(1−xs), where s
is the number of ports of this cut. Therefore, the
generating function of the pattern class of R is xb

(where b is the size of R) multiplied by a product of
some terms of the form 1/(1−xs). For example, for the
reduced polycube R shown in Figure 5(b), the three red
cuts contribute 1/(1−x) ·1/(1−x3)2, the two blue cuts
contribute 1/(1 − x3) · 1/(1 − x2), and the yellow cut
contributes 1/(1−x3). In total, the generating function
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(a) A polycube P (b) The polycube R obtained by reducing P

Figure 5: A polycube and the reduced representative of its pattern class

for the class of R is x51/((1−x)(1−x2)(1−x3)4), since 51
is the number of cubes in R.

If R has no trivial cuts, then R is the only element
in its class, and the generating function is simply xb.

Step 3. Now we prove that, for a fixed value of k,
the number of pattern classes is finite. The central
argument of our proof is the following claim:

In a polycube with fixed defect k, only a finite
number of slices (among those which inter-
sect P ) do not belong to cuts. More precisely:
For a fixed k, there exists a constant γ = γ(k),
such that for each coordinate j, in each poly-
cube P with defect k, at most γ many j-
orthogonal slices, which intersect P , do not be-
long to j-orthogonal cuts.

In order to show that, we analyze what can prevent
from a slice to be a part of a cut. First, we define three
kinds of special cells:

• An occupied cell with at least one pair of occupied
non-opposite neighbors (such cells will be referred
to as L-cells2);

• An excess cell (defined as above, recall that an
excess cell is free); and

• An occupied cell of degree 1.

Suppose that three consecutive j-orthogonal slices,
Cp−1, Cp, and Cp+1 (we omit j from the notation),
intersect P . We show that if Cp is not a part of a

2That is, in a polycube of size at least 2, any cell Z is an L-cell

unless Z has degree 1, or Z has degree 2 and its two neighbors
are attached to opposite faces of Z.

nontrivial cut, then at least one of the slices Cp−1,
Cp, and Cp+1 contains a special cell. Indeed, suppose
for contradiction that Cp−1, Cp, and Cp+1 do not
contain any special cells. First, Cp does not contain two
adjacent cells of P , otherwise the connected component
of P ∩ Cp, that contains such two cells, necessarily
contains a degree-1 cell or an L-cell. Thus, P ∩ Cp

consists of isolated cells, and no pair of such cells has a
common neighbor, otherwise Cp contains an excess cell.
The same is true for Cp−1 and Cp+1. That is, each one
of Cp−1, Cp, and Cp+1 has individually a shape that
fits a slice that belongs to a cut. We need to prove
that these three slices have occupied cells in exactly the
same positions. Assume for contradiction and without
loss of generality that j = 1, and that the projection
of P ∩ Cp−1 on the plane spanned by x2 and x3 is not
equal to that of P ∩ Cp. Assume also, without loss of
generality, that for some q, r we have (p − 1, q, r) ∈ P ,
(p, q, r) 6∈ P . But then (p − 1, q, r) is a degree-1 cell:
only (p − 2, q, r) can be its neighbor. All this means
that Cp belongs to a cut, which is a contradiction.

Next, for each kind of special cells, we prove that
the number of its occurrences in a polycube with a fixed
defect k is bounded from above by a constant number.
Recall the formula k = e + 2r. Since each excess cell
contributes at least 1 to e, it follows directly that the
number of excess cells is bounded. Consider now the
L-cells—the corners of L-shapes embedded in P . If the
fourth cell of the L-shape is free, then it is an excess
cell, and thus the L-cell contributes to the count of e;
and if the fourth cell of the L-shape is occupied, then
we have a 2 × 2 block, that is, a loop, and thus the L-
cell contributes to the count of r. Therefore, if we have
an unbounded number of L-cells, then either e or r is
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unbounded too, which is a contradiction. For degree-1
cells, we consider the dual graph of P . Denote by V1,
V2, and V≥3 the sets of cells of degree 1, 2, and at least 3,
respectively. Since the maximum possible vertex-degree
is 6, we have

1|V1|+ 2|V2|+ 6|V≥3| ≥ 2|E| ≥ 2(|V | − 1)

= 2|V1|+ 2|V2|+ 2|V≥3| − 2,

which implies |V1| ≤ 4|V≥3| + 2. However, cells with
degree at least 3 are necessarily L-cells. Since we already
know that the number of L-cells is bounded, it follows
from the last relation that the number of degree-1 cells
is bounded as well.

In summary, we showed that each j-orthogonal
slice, which does not belong to a cut, or at least one of its
neighbors, contains a special cell; and that the number
of special cells is bounded. Therefore, the number of
j-orthogonal slices, which do not belong to the cuts, is
bounded.

It follows directly from this claim that all the
irreducible polycubes with defect k are contained in the
grid cube γ × γ × γ, where γ is a constant number.
Therefore, the number of irreducible polycubes, and,
consequently, that of pattern classes, is finite.

This means that we can simply sum up the gener-
ating functions for all patterns. Since each of them has
a product of cyclotomic polynomials in the denomina-
tor, the same is true for their sum, and the proof is now
complete.

4 Conclusion

In this paper, we provided formulae enumerating 3-
dimensional polycubes with a small defect. We proved
that for any defect, the generating function is rational,
and that the characteristic polynomial is a product of
cyclotomic polynomials.

Our next goal is to extend these results to the higher
dimension. For any dimension d, the maximum possible
perimeter of a polycube of volume n is

Md = 2dn− 2(n− 1) = 2(d− 1)n+ 2,

and the formula k = e + 2r holds in any dimension.
Denote by B(n, d, k) the number of d-dimensional poly-
cubes of volume n and with defect k (that is, perime-
ter Md − k). It is easy to see that B(n, d, 0) = d and
B(n, d, 1) =

(
d
2

)
4(n − 2) = d(d − 1)(n − 2)/2. Then, it

is also easy to verify that patterns of defect k can span
at most k + 1 dimensions. Equivalently, patterns that
span d dimensions have defect at least d−1. Hence, in
order to compute the formula for B(n, d, k), we need
to sum up only the formulas for patterns that span
1 ≤ i ≤ k − 1 dimensions, multiplying the respective

formulae by
(
d
i

)
. Our goal will be, then, to character-

ize B(n, d, k) more precisely.
In addition, Theorem 3.1 generalizes to any dimen-

sion, that is, the generating function of B(n, d, k) is ra-
tional, and its denominator is a product of cyclotomic
polynomials, for any value of d. We will attempt to
prove this formally.

Another direction for future study is the asymp-
totics. We conjecture that in any dimension d and
for any fixed k, the highest-degree factor of the char-
acteristic polynomial will be (x − 1)k+1, contributed,
in particular, by patterns that consist of k + 1 inde-
pendent legs. This would imply that the asymptotics
of (B(n, d, k))n≥0 is γnk, where γ is some constant.

Finally, we plan to analyze possible dependencies
between legs in pattern classes, as functions of d and k.
This will enable us to set bounds on the maximum q,
such that the factor (1− xq) appears in the generating
function of some pattern. In its turn, this will make pos-
sible to estimate the characteristic polynomial without
actual calculations.
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