
The Solvability of the Halting Problem for 2-State 

Post Machines 

STAL AANDERAA 

Oslo University, Oslo, Norway 

AND 

PATRICK C. FISCHER 

CorneU University, Ithaca, New York 

ABSTRACT. A Post machine is a Turing machine which cavmot both write and move on the 
same machine step. it is shown that the halting problem for the class of 2-state Post machines 
is solvable. Thus, there can be no universal 2-state Post machine. This is in contrast with the 
result of Shannon that there exist universal 2-state Turing machines when the machines are 
capable of both writing and moving on the same step. 

This paper is directed to one of the principal differences between the definition of 
Turing machines in terms of quintuples as given by Turing in [5], and the quadruple 
version given by Post in [3] and used by Davis [1]. The halting problem for the 
class of all 2-state (quintuple version) Turing machines is unsolvable, since Shamlon 
has exhibited a universal 2-state Turing machine [4l. We show here that  the halting 
problem for the class of all 2-state Post machines is solvable, i.e., that  there exists a 
uniform effective procedure for determining, given any 2-state Post machine and its 
initial instantaneous description, whether or not the ensuing computation will halt. 
This result is mentioned, but  not proved, in [2]. 

We assume familiarity with at least one of the references given above, and sum- 
marize the Post formalism only briefly. A Post machine is a variant of a Turing 
machine involving the usual finite set ~ of symbols, finite set Q of states, and un- 
bounded almost-blank tape with read-write head. I t  is described as a set of quad- 
ruples of the form (ql, $3, X, qk> where q~ C Q, q~ C Q, Sj E ~, and either 
X E ~ or X = L or X = R (L, R ~ ~).  No two distinct quadruples may agree 
in their leftmost two components. Let us denote quadruples in which X E % as 
S-quadruples and those in which X = L or R as M-quadruples. 

The membership of the quadruple (ql, S j ,  X, qk> in the set defining a Post ma- 
chine means that  during a computation if the machine is in state q, while scanning 
the symbol S i ,  it takes action X and enters state qk. If action X is a symbol, 
then the machine replaces the symbol Sj under scan by the symbol denoted by  X; 
if X = L or R, the machine moves one square to the left or right, respectively, on 
its tape. We call such an action the execution of the quadruple. The machine halts 
if it encounters a state-symbol configuration for which it has no quadruple begin- 
ning with that  configuration. 

The solvability of the halting problem requires exploitation of the 2-state assump- 
tion and of the fact that a Post machine, unlike a quintuple Turing machine, can- 
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Definition. 
of the form: 

not both write a symbol and move during the execution of a single quadruple. (The 
halting problem for 3-state Post machines, however, is unsolvable [2].) We begin 
the analysis with some lemmas. 

A blocking loop is a (necessarily finite) sequence of S-quadruples 

(q~ , Sh  , Sj~ , q~:) 

(q~, , Sh  , Sh , q~) 
. . . 

(qi, , Sj ,  , Sh , qh) 

The length of a blocking loop is the number n of quadruples in the loop. 
LEM~A 1. The halting or nonhalting of a Post machine is unaltered if the quad. 

ruples in a blocking loop of length n > 1 are replaced by blocking loops of length 1 
as follows: 

(qh , S h ,  Sh , q~) 

(q~2, Sh ,  S~2, qi~) 
. . .  

(q~., S~,,, S j . ,  q~.) ~I 

PROOF. Once a machine enters any blocking loop, it never halts. 
LEMMA 2. For every Post machine there is an equivalent Post machine (except for 

the nature of any blocking loops) with the same numbers of symbols and states in which i 
the execution of an S-quadruple during a computation is either followed by the execu- 
tion of an M-quadruple or by the execution of the same S-quadruple (in which case 
the machine is in a length 1 blocking loop) or by a halt. 

PROOF. First apply Lemma 1 to eliminate all blocking loops of length n > 1. 
Then search for sets containing two S-quadruples and one M-quadruple of the 
following form, where X = L or R: 

(qi, , Sh , S h ,  q~2) 

(q~2 , Sh  , Sj3 , qi~> 

(qi3 , S i s ,  X ,  qk) 

Change the first quadruple in such a set to (qil , Sh , Sis,  q~3). The ultimate be- 
havior of the machine is not affected by this change, and the execution of the first 
quadruple will now be followed by the execution of all M-quadruple. This process 
is repeated until all S-quadruples not followed by themselves are followed by l•/- 
quadruples. 

We now restrict our attention to machines satisfying the conclusion of Lemma 2. 
We call such machines active Post machines. 

Definition. If a Post machine contains an S-quadruple (q~, S i ,  S t ,  qk), then 
St will be said to be a successor to S j .  A symbol which is a successor to some sym- 
bol will be called a successor symbol. 

LEM~rA 3. In a 2-state active Post machine, any symbol which is a successor symbol 
has at most one successor. 

PROOF. Let St be a successor symbol, and (qi, S j ,  S~, qk) an S-quadruple I 
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producing St .  By Lemma 2 a quadruple beginning with (q~, St) must be an M- 
quadruple. Since there are at most two quadruples with St in the second position, 
there is at most one S-quadruple with St in that position. Thus, St has at most one 
successor. 

Let us consider further a successor symbol such as the St in Lemma 3. If the sym- 
bol is produced during a computation on a given square of the tape of an active 
post machine P, the next quadruple executed must be an M-quadruple. Let us 
assume the M-quadruple in question is (qk, S t ,  R, qp>. Now suppose the read- 
write head of P eventually returns from the right to the square containing St .  
If P is in state qk at this time, it will merely "bounce off" the square, leaving the 
St unchanged. The  only way St can be changed or P can cross the square containing 
St is for P to enter the square in state ~k, the state which is not qk. If this happens, 
we say that  P penetrates the square. 

It can now be seen that  2-state Post machines are "locally deterministic" in the 
following sense: 

LE~IA 4. The contents of a given square on the tape of an active 2-state Post 
machine depend only upon the symbol initially in the square, the state of the machine 
the first time the square is visited, and the number of times the square is subsequently 
penetrated. 

PROOF. After the first visit to a given tape square, the symbol written on it 
cannot be changed except by penetrating the square, and a given penetration can 
occur in only one way. 

Let us now assume that  the tape squares of a 2-state active Post machine P are 
indexed by the integers as though they were unit interwds along the x-axis. Let l 
and r be chosen so that  the tape segment TM between and including squares 1 and r 
contains all the squares initially nonblank and the square being scanned. Thus 
squares 1 -1 ,  1 -2 ,  1 -3 ,  . . .  form a one-ended, unbounded, initially-blank tape 
segment TL to the left, and squares r + l ,  r+2, r+3, . . .  form such a segment TR 
to the right. We analyze the potential behavior of P during penetrations of TR by 
observing its behavior on squares r-t-1 through r + 4 ;  any properties developed will, 
of course, apply in symmetric fashion to TL. 

LE~i~A 5. I f  P eventually visits square r +4, its state when it first visits square r+4 
will be the same as its state when it first visits square r+2. 

PROOF. Squares r + l  through r + 4  are all initially blank. Assume that P is in 
state q when it first visits square r + l .  

Case 1. P is in state q when it first visits square r+ 2. Then we know that when P 
first visits the leftmost square of an unbounded blank tape segment while in state 
q, it first visits the square second from the left in state q. Now if we consider the 
segment r+2, r + 3 ,  r + 4 ,  • .. we find that  its leftmost square is first visited while 
P is in state q. Thus, square r + 3  must first be visited in state q and, similarly, 
square r + 4  must first be visited with P in state q. 

Case 2a. P is in state ~ when square r + 2 is first visited and in state ~ when square 
r+3  is. Then we apply the argument of Case I to the segment r+2 ,  r+3 ,  r+4 ,  • • • 
and conclude that P is in state q when it first visits square r+4 .  

Case 2b. P is in state ~1 when square r + 2 is first visited and in state q when square 
r+3 is. Then we know that  if P first visits the leftmost square of an unbounded 
blank tape segment in state q, it first visits the square second from the left in state 
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q. We now consider the irfitially bLu:oi segment r+3, r+4,  r+5, . . . .  Since P visits 
its leftmost square initially while in state q, P is in state q when it first visits square 
r-l-4. 

We now describe a Turing machine P'  which is shown to halt if and only if P 
does. Squares 1-4 through r+4  of the tape of P' contain the same symbols as the 
corresponding squares on the tape of P. Other squares of the tape of P' are used 
to keep track of four integers, R~, R2, L1, and L2. All four counts are initially 
zero. When P is in segment TM, P'  simply imitates the behavior of P. When P 
is in T~, the contents of squares r + l  through r+4  are noted by P' and the follow- 
big additional procedures are performed: ' 

(1R) If P penetrates square r+2 from the left, a tingle is set to 1. 
(2R) If P leaves square r +2 heading to the left and f~ has been set to 1, counter 

R1 is increased by 1 and f~ is set to zero. (This happens whether or not sqLmre 
r + 1 is actually penetrated.) 

/ 

(3R) If P penetrates square r+4  from the left and counters R1 and R2 both corn 
tain the same number, then P'  deliberately diverges (runs forever) by entering a 
blocking loop. Otherwise, a flag qa is set to 1. 

(4R) If P tries to leave square r+4  heading to the fight, P' acts as though P 
were placed back on square r+4  in the proper state to penetrate that square. 

(SR) If P leaves square r+4  heading to the left and gR has been set to 1, counter 
R~ is increased by I and ga is set to zero. (This happens whether or not square r+3 
is actually penetrated.) 

The counter Rl will keep count of the number of excursions into the segment 
r+2,  r+3,  r+4,  . . . .  In order to avoid counthlg instances in which the read-write 
head visits square r+2  from the left without penetrating it, we have introduced 
the flag f~.  In like manner the counter R: will keep count of the number of excur, t 
sions into the segment r+4,  r+5,  r+6,  • .- , and the flag gR will be used to exclude 
nonpenetrating visits to square r+4  from the left. 

A similar set of rules applies when P is in TL. Rules (1L) through (5L) are ob- 
tained from those above in the obvious way, by interchanging "left" and "right" 
and by replacing f~, gR, R~, R~, r-t-l, r+2,  r+3,  r+4  byfL,  gn, L~, L~, l--l ,  I-2,  
1--3, l - 4 ,  respectively. 

L~M~A 6. The machine e ,  halts if  and only if P does. 
PItOOF. The behavior of P and p, on TM is identical. We compare the behavior 

P when P .... of P and ' is in Ta. 
Observe that for all i, if counter Rt contains i, then for at least the first i excur- 

sions into the initially blank segment r+2, r+3,  r+4, . . .  via penetrating square 
r+2  from the left, P will return to square r ÷ l .  For i=  1 this is true because during 
the first excursion into the segment counters Rt and R2 are both zero. Thus, if 
square r+4  is ever penetrated, rule (3R) will cause P'  to diverge. If R~ reaches a 
count of 1, we know that P' eventually reaches square r + l  without rule (3R) ever 
applying, so that square r+4  is not penetrated and rule (4R) is not used during 
the excursion. Consequently, the behaviors of P' and P are the same during this 
excursion, and P must also return to square r + l .  

Now assume the result holds for 1 _< i _< k. On the (k+l)-s t  excursion into the 
segment r+2, r+3, r-l-4, . . .  counter R~ contains the number k. If R~ reaches a 
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count of k-~l, we know that P' eventuMly reaches square r-l-1 without rule (3R) 
applying during the excursion. Thus, during any penetrations of square r~4  eotmter 
R~ must contain a number less than k. By rule (5R) the count in R2 can be seen to 
register the number of excursions into the segment r~4,  r~5,  r~6,  ..- made by P. 
By the induction hypothesis, for at least the first k excursions into an initially 
blank segment, we are guaranteed that P will return from the segment. Since by 
Lemma 5, P is in the same state when it first penetrates square r+4 as when it 
first penetrates square rW2, one may apply the above argument to the segment 
r~4,  r~5,  r~6,  . - . .  We therefore find that the returns forced upon P' by rule 
(4R) and the returns which P makes under its own power have the same effects 
upon the machine states and the symbols in squares r ~ l  through r+4. Thus, when 
P' returns to square r ~ l ,  P must do likewise. 

We now see that rule (3R) accurately predicts whether or not P will return 
from an excursion into the segment r~4,  r-~5, rT6, . . .  whenever it penetrates 
square r~4.  If the contents of R~ are greater than those of R2, P will return to 
square r ~ 3  and P '  will leave the proper symbols on squares rW1 through r~4.  If, 
on the other hand, R~ and R~ both contain the same mnnber i, say, then P will 
diverge. For this means that during the ith excursion into the segment r+2, rW3, 
r~4,  . . .  , P makes its ith excursion into the segment r-t-4, rW5, rT6, . . . .  In 
similar fashion one can see that P makes its ith excursion into the segment r+6,  
r+7, rT8, • • • and in fact that for any positive integer k, it reaches and pezmtrates 
square r--t-2kW2 before it ever returns to square r~2k. Thus, P diverges by pro- 
ceeding indefinitely along the tape to the right with only minor hesitations along 
the way. 

Since a symmetric argument will apply when P is in TL, we now may conclude 
the correctness of Lemma 6. When P is between squares 1-4 and rT4, P and 
P' have the same behavior and one will halt if and only if the other does. If P 
penetrates square rH~4 from the left, then either rule (3R) applies, in which ease 
both P and P' diverge, or it does not, in which case P and P' both end up between 
squares 1-4  and rT4  still computing and in the same configurations. The same 
happens if P penetrates square 1-4  from the right. 

Since P' is constructed in a uniform effective manner from P, it now suffices to 
solve the halting problem for P~. 

LEMMA 7. The halting problem for machines of the form of P' is solvable. 
PROOF. Except for the infinitely many possible states of the four counters, P~ 

has only finitely many possible (tape-state) configurations. A computation by P~ 
must eventually either halt, diverge by entering a length 1 blocking loop, or repeeat 
a configuration. The latter ease means that there are positive integers t and k such 
that the basic control unit of P~ is in the same state and scanning the same square, 
and squares 1-4  through r ~ 4  contain the same symbols at both times t and l-~k. 
If a repeated configuration occurs, P~ will never halt, for between times tTk and 
t~ 2k exactly the same actions will again occur unless the contents of the counters 
change in such a way as to cause rule (3R) or (3L) to apply, in which ease the ma- 
chine diverges anyhow. 

It has thus been shown: 
THEOREM. The halting problem for the class of 2-state Post machines is solvable. 
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