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ABSTRACT
λυ is an extension of the λ-calculus which internalises the calculus
of substitutions. In the current paper, we investigate the combin-
atorial properties of λυ focusing on the quantitative aspects of
substitution resolution. We exhibit an unexpected correspondence
between the counting sequence for λυ-terms and famous Catalan
numbers. As a by-product, we establish effective sampling schemes
for random λυ-terms. We show that typical λυ-terms represent, in
a strong sense, non-strict computations in the classic λ-calculus.
Moreover, typically almost all substitutions are in fact suspended,
i.e. unevaluated, under closures. Consequently, we argue that λυ
is an intrinsically non-strict calculus of explicit substitutions. Fi-
nally, we investigate the distribution of various redexes governing
the substitution resolution in λυ and investigate the quantitative
contribution of various substitution primitives.

CCS CONCEPTS
• Theory of computation → Equational logic and rewriting;
Abstract machines; • Mathematics of computing → Combinat-
orics;
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1 INTRODUCTION
Substitution of terms for variables forms a central concept in vari-
ous formal calculi with qualifiers, such as predicate logic or different
variants of λ-calculus. Though substitution supports the computa-
tional character of β-reduction in λ-calculus, it is usually specified
as an external meta-level formalism, see [5]. Such an epitheoretic
presentation of substitution masks its execution as a single, in-
divisible calculation step, even though it requires a considerable
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computational effort to carry out, see [37]. In consequence, the
number of β-reduction steps required to normalise a λ-term does
not reflect the actual operational cost of normalisation. In order
to effectuate substitution resolution, i.e. the substitution execution,
its process needs to be decomposed into a series of fine-grained
atomic rewriting steps included as part of the considered calculus.

An early example of such a calculus, internalising the evalu-
ation of substitution, is combinatory logic [18]; alas, bearing the
price of loosing the intuitive, high-level structure of encoded func-
tions, mirrored in the polynomial blow-up of their representation,
see [30, 31]. Focusing on retaining the basic intuitions behind
substitution, various calculi of explicit substitutions highlighting
multiple implementation principles of substitution resolution in
λ-calculus were proposed throughout the years, cf. [1, 20, 34, 40].
The formalisation of substitution evaluation as a rewriting process
provides a formal platform for operational semantics of reduction
in λ-calculus using abstract machines, such as, for instance, the
Krivine machine [17]. Moreover, with the internalisation of substi-
tution, reduction cost reflects more closely the true computational
complexity of executing modern functional programs.

Nonetheless, due to the numerous nuances regarding the evalu-
ation cost of functional programs (e.g. assumed reduction or strict-
ness strategies) supported by a general tradition of considering
computational complexity in the framework of Turing machines
or RAM models rather than formal calculi, the evaluation cost in
term rewriting systems, such as λ-calculus or combinatory logic,
gains increasing attention only quite recently, see [2, 3, 33]. The
continuing development of automated termination and complexity
analysers for both first- and higher-order term rewriting systems
echoes the immense practical, and hence also theoretical, demand
for complexity analysis frameworks of declarative programming
languages, see e.g. [25, 43]. In this context, the computational ana-
lysis of first-order term rewriting systems seems to most accurately
reflect the practical evaluation cost of declarative programs [14, 16].
Consequently, the average-case performance analysis of abstract
rewriting machines executing the declared computations requires
a quantitative analysis of their internal calculi. Such investigations
provide not only key insight into the quantitative aspects of basic
rewriting principles, but also allow to optimise abstract rewrit-
ing machines so to reflect the quantitative contribution of various
rewriting primitives.

Despite their apparent practical utility, quantitative aspects of
term rewriting systems are not well studied. In [15] Choppy, Ka-
plan and Soria provide a quantitative evaluation of a general class
of confluent, terminating term rewriting systems in which the
term reduction cost (i.e. the number of rewriting steps required
to reach the final normal form) is independent of the assumed
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normalisation strategy. Following a similar, analytic approach, Der-
showitz and Lindenstrauss provide an average-time analysis of
inference parallelisation in logic programming [21]. More recently,
Bendkowski, Grygiel and Zaionc analyse quantitative aspects of
normal-order reduction of combinatory logic terms and estimate
the asymptotic density of normalising combinators [7, 11]. Alas,
due to the intractable, epitheoretic formalisation of substitution
in untyped λ-calculus, its quantitative rewriting aspects have, to
our best knowledge, not yet been investigated. Some asymptotic
aspects of β-reduction in the simply-typed λ-calculus, however,
are considered in [41] where it is shown that typically almost all
λ-terms of orderk have a β-reduction sequence of length (k−2)-fold
exponential in the term size.

In the following paper we offer a combinatorial perspective on
substitution resolution in λ-calculus and propose a combinatorial
analysis of explicit substitutions in λυ-calculus [34]. The paper is
structured as follows. In Section 2 we draft the basic characterist-
ics of λυ required for the reminder of the current paper. Next, we
introduce the necessary analytic toolbox used in the quantitative
analysis, see Section 3. In Section 4 we enumerate λυ-terms and
exhibit the declared correspondence between their corresponding
counting sequence and Catalan numbers. Some statistical proper-
ties of random λυ-terms are investigated in Section 5. In 5.1 we
relate the typical form of λυ-terms with the classic, epitheoretic
substitution tactic of λ-calculus. The quantitative impact of sub-
stitution suspension is investigated in 5.2. In 5.3 we discuss the
contribution of various substitution resolution primitives. The final
Section 6 concludes the paper.

2 PRELIMINARIES
2.1 λυ-calculus
In the current subsection we outline the main characteristics of
λυ-calculus (lambda-upsilon calculus) required for the reminder of
the paper. We refer the curious reader to [6, 34] for a more detailed
exposition.

Remark. We choose to outline λυ-calculus following the present-
ation of [35] where indices start with 0 instead of [6, 34] where
de Bruijn indices start with 1, as introduced by de Bruijn himself,
cf. [19]. Although both conventions are assumed in the context of
static, quantitative aspects of λ-calculus, the former convention
seems to be the most recent standard, cf. [8, 10, 13, 26–28].

The computational mechanism of β-reduction is usually defined
as (λx .a)b →β a[x := b] where the right-hand side a[x := b] de-
notes the epitheoretic, capture-avoiding substitution of term b for
variable x in a. λυ-calculus [34] is a simple, first-order rewriting
system internalising substitution resolution of classic λ-calculus in
de Bruijn notation [19]. Its expressions, called (λυ)-terms, consist of
indices 0, 1, . . . (for convenience also referred to as variables), ab-
stractions and term application. Terms are also equipped with a new
closure operator [s] denoting the ongoing resolution of substitution
s . Explicit substitutions are fragmented into atomic primitives of
shift, denoted as ↑, a unary operator lift, written as ⇑, mapping
substitutions onto substitutions, and finally a unary slash operator,
denoted as /, mapping terms onto substitutions. Terms containing
closures are called impure whereas terms without them are said to

be pure. De Bruijn indices are encoded using a unary base expan-
sion. In other words, n is represented as an n-fold application of the
successor operator S to zero. Figure 1b summarises the specification
of λυ-terms.

The rewriting rules of λυ-calculus consist of the usual β-rule,
specified in this framework as (λa)b → a[b/] and an additional
set of (seven) rules governing the resolution of explicit substitu-
tions, see Figure 1a. Remarkably, these few rewriting rules are
sufficient to correctly model β-reduction and also preserve strong
normalisation of closed λ-terms, see [6]. The simple syntax and
rewriting rules of λυ-calculus are not only of theoretical import-
ance, but also of practical interest, used as the foundation of various
reduction engines. Let us mention that λυ-calculus and its abstract
U-machine executing (strong) β-normalisation was successfully
used as the main reduction engine in Pollack’s implementation
of LEGO, a proof checker of the Calculus of Constructions, the
Edinburgh Logical Framework, and also for the Extended Calculus
of Constructions [38].

Example 2.1. Consider the term S = λx .λy.λz.xz (yz). Note that
in the de Bruijn notation, S is written as λλλ20(10). Likewise, the
term K = λx .λy.x is denoted as λλ1. Certainly, Kab →+β a for each
term a. Note however, that with explicit substitution resolution in
λυ, this reduction is fragmented into several reduction steps, as
follows:

(λλ1)a → (λ1)[a/]
→ λ(1[⇑ (a/)])
→ λ

(
0[a/][↑]

)

→ λ (a[↑]) .
Note that in the final reduction step of the above we obtain a[↑].
The additional shift operator guarantees that (potential) free indices
are aptly incremented so to avoid potential variable captures. If a
is closed, i.e. each variable in a is bound, then a[↑] resolves simply
to a, as intended.

3 ANALYTIC TOOLBOX
We base our quantitative analysis of λυ-terms on techniques bor-
rowed from analytic combinatorics, in particular singularity ana-
lysis developed by Flajolet and Odlyzko [23]. We refer the unfamil-
iar reader to [24, 42] for a thorough introduction to (multivariate)
generating functions and analytic combinatorics.

Remark. Our arguments follow standard applications of singu-
larity analysis to (multivariate) system of generating functions
corresponding to algebraic structures. For the reader’s convenience
we offer a high-level, though limited to the subject of our interest,
outline of this process in the following section.

3.1 Singularity analysis
Interested in the quantitative properties of λυ-terms, for instance
their asymptotic enumeration or parameter analysis, we typic-
ally take the following general approach. We start the analysis
with establishing a formal, unambiguous context-free specifica-
tion describing the structures of our interest. Next, using symbolic
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(λa)b → a[b/] (Beta)
(ab)[s]→ a[s](b[s]) (App)
(λa)[s]→ λ(a[⇑ (s )]) (Lambda)
0[a/]→ a (FVar)

(S n)[a/]→ n (RVar)
0[⇑ (s )]→ 0 (FVarLift)

(S n)[⇑ (s )]→ n[s][↑] (RVarLift)
n[↑]→ S n. (VarShift)

(a) Rewriting rules.

T ::= N | λT | T T | T [S]
S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

(1)

(b) Terms of λυ-calculus.a

aNotice that de Bruijn indices are encoded in unary base,
using a successor operator S.

Figure 1: The λυ-calculus rewriting system.

methods [24, Part A. Symbolic Methods] we convert the specifica-
tion into a system of generating functions, i.e. formal power series
F (z) =

∑
n≥0 anzn in which the coefficient an standing by zn , writ-

ten as [zn]F (z), denotes the number of structures (objects) of size n.
Interested in parameter analysis, so obtained generating functions
become bivariate and take the form F (z,u) =

∑
n,k≥0 an,kznuk

where an,k , also written as [znuk ]F (z,u), stands for the number of
structures of sizen for which the investigated parameter takes value
k ; for instance, an,k denotes the number of terms of size n with
exactly k occurrences of a specific redex pattern. In this context,
variable z corresponds to the size of specified structures whereas u
is said to mark the investigated parameter quantities.

When the obtained system of generating functions admits an
analytic solution (i.e. obtained formal power series are also analytic
at the complex plane origin) we can investigate the quantitative
properties of respective coefficient sequences, and so also enumer-
ated combinatorial structures, by examining the analytic properties
of associated generating functions. For that purpose, we focus on
the location of their singularities, i.e. complex points onto which the
respective generating functions cannot be analytically continued.
The location of their nearest singularities (sometimes referred to as
dominant singularities) dictates the main, exponential growth rate
factor of the investigated coefficient sequence.

Theorem 3.1 (Exponential growth formula [24, Theorem IV.7]). If
A(z) is analytic at the origin and R is the modulus of a singularity
nearest to the origin in the sense that

R = sup{r ≥ 0 : A(z) is analytic in |z | < r } ,
then the coefficient an = [zn]A(z) satisfies

an = R−nθ (n) with lim sup |θ (n) | 1n = 1 .

Generating functions considered in the current paper are algeb-
raic, i.e. are branches of polynomial equations in form of P (z, F (z)) =

0. Since
√
z cannot be unambiguously defined as an analytic func-

tion near the origin, the main source of singularities encountered
during our analysis are roots of radicand expressions involved in
the closed-form, analytic formulae defining studied generating func-
tions. The following classic result due to Pringsheim facilities the
inspection of such singularities.
Theorem 3.2 (Pringsheim [24, Theorem IV.6]). If A(z) is repres-
entable at the origin by a series expansion that has non-negative
coefficients and radius of convergence R, then the point z = R is a
singularity of A(z).

A detailed singularity analysis of algebraic generating functions,
involving an examination of the type of dominant singularities fol-
lows as a consequence of the Puiseux series expansion for algebraic
generating functions.
Theorem 3.3 (Newton, Puiseux [24, Theorem VII.7]). Let F (z) be
a branch of an algebraic function P (z, F (z)) = 0. Then in a circular
neighbourhood of a singularity ρ slit along a ray emanating from
ρ, F (z) admits a fractional Newton-Puiseux series expansion that
is locally convergent and of the form

F (z) =
∑

k≥k0
ck (z − ρ)k/κ ,

where k0 ∈ Z and κ ≥ 1.
With available Puiseux series, the complete asymptotic expan-

sion of sub-exponential growth rate factors associated with coeffi-
cient sequences of investigated algebraic generating functions can
be accessed using the following standard function scale.
Theorem 3.4 (Standard function scale [24, Theorem VI.1]). Let
α ∈ C \ Z≤0. Then, f (z) = (1 − z)−α admits for large n a complete
asymptotic expansion in form of

[zn]f (z) = nα−1
Γ(α )

(
1+ α (α−1)

2n +
α (α−1) (α−2) (3α−1)

24n2 +O
(

1
n3

))

where Γ : C \ Z≤0 → C is the Euler Gamma function defined as

Γ(z) =

∫ ∞

0
xz−1e−xdx .

3.2 Parameter analysis
Consider a random variableXn denoting a certain parameter quant-
ity of a (uniformly) random λυ-term of sizen. In order to analyse the
limit behaviour of Xn as n tends to infinity, we utilise the moment
techniques of multivariate generating functions [24, Chapter 3]. In
particular, if F (z,u) is a bivariate generating function associated
with Xn where u marks the considered parameter quantities, then
the expectation E(Xn ) takes the form

E(Xn ) =
[zn] ∂

∂u F (z,u) |u=1
[zn]F (z, 1) .

Consequently, the limit mean and, similarly, all higher moments
can be accessed using techniques of singularity analysis. Although
such a direct approach allows to investigate all the limit moments of
Xn (in particular its mean and variance) it is usually more conveni-
ent to study the associated probability generating function pn (u)
instead, defined as

pn (u) =
∑

k≥0
P(Xn = k )u

k =
[zn]F (z,u)
[zn]F (z, 1) .
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With pn (u) at hand, it is possible to readily access the limit
distribution of Xn . In the current paper we focus primarily on
continuous, Gaussian limit distributions associated with various
redexes in λυ-calculus. The following Quasi-powers theorem due
to Hwang [29] provides means to obtain a limit Gaussian distribu-
tion and establishes the rate at which intermediate distributions
converge to the final limit distribution.

Theorem 3.5 (Quasi-powers theorem, see [24, Theorem IX.8]). Let
(Xn )

∞
n=1 be a sequence of non-negative discrete random variables

(supported by Z≥0) with probability generating functions pn (u).
Assume that, uniformly in a fixed complex neighbourhood of u = 1,
for sequences βn ,κn → ∞, there holds

pn (u) = A(u) · B (u)βn
(
1 +O

(
1
κn

))

where A(u) and B (u) are analytic at u = 1 and A(1) = B (1) = 1.
Assume finally that B (u) satisfies the following variability con-

dition:
B′′(1) + B′(1) − B′(1)2 , 0. (2)

Then, the distribution Xn is, after standardisation, asymptotically

Gaussian with speed of convergence of order O *,
1
κn
+

1√
βn

+-:
P *,

Xn − E(Xn )√
V(Xn )

≤ x+- = Φ(x ) +O *,
1
κn
+

1√
βn

+-
where Φ(x ) is the standard normal distribution function

Φ(x ) =
1√
2π

∫ x

−∞
e−ω

2/2dω .

The limit expectation and variance satisfy
E(Xn ) ∼ B′(1)n

V(Xn ) ∼
(
B′′(1) + B′(1) − B′(1)2

)
n

(3)

4 COUNTING λυ-TERMS
In the current section we begin the enumeration of λυ-terms. For
that purpose, we impose on them a size notion such that the size of a
λυ-term, denoted as | · |, is equal to the total number of constructors
(in the associated term algebra, see Figure 1b) of which it is built.
Figure 2 provides the recursive definition of term size.

|n| = n + 1
|λa | = 1 + |a |
|ab | = 1 + |a | + |b |
|a[s]| = 1 + |a | + |s |

|a/| = 1 + |a |
| ⇑ (s ) | = 1 + |s |
| ↑ | = 1.

Figure 2: Natural size notion for λυ-terms.

Remark. Such a size notion, in which all building constructors
contribute equal weight one to the overall term size was introduced
in [9] as the so-called natural size notion. Likewise, we also refer to
the size notion assumed in the current paper as natural.

Certainly, our choice is arbitrary and, in principle, different size
measures can be assumed, cf. [9, 26, 28]. For convenience, we choose

the natural size notion thus avoiding the obfuscating (though still
manageable) technical difficulties arising in the analysis of gen-
eral size model frameworks, see e.g. [26]. Moreover, our particular
choice exhibits unexpected consequences and hence is, arguably,
interesting on its own, see Proposition 4.1.

Equipped with a size notion ensuring that for each n ≥ 0 the
total number of λυ-terms of size n is finite, we can proceed with
our enumerative analysis. Surprisingly, the counting sequence cor-
responding to λυ-terms in the natural size notion corresponds also
to the celebrated sequence of Catalan numbers1.

Proposition 4.1. Let T (z) and S (z) denote the generating func-
tions corresponding to λυ-terms
and substitutions, respectively. Then,

T (z) =
1 − √1 − 4z

2z − 1 (4)

whereas

S (z) =
1 − √1 − 4z

2z

( z

1 − z
)
. (5)

In consequence

[zn]T (z) =

0, for n = 0
1

n + 1

(
2n
n

)
, otherwise

(6)

and

[zn]S (z) =

0, for n = 0
n−1∑

k=0

1
k + 1

(
2k
k

)
otherwise.

hence also
[zn]T (z) ∼ 4n√

πn3/2

whereas

[zn]S (z) ∼ 4n+1

3
√
πn3/2

.

Proof. Consider the formal specification (1) for λυ-terms. Let
N (z) be the generating function corresponding to de Bruijn indices.
Note that following symbolic methods, the generating functions
T (z), S (z), and N (z) give rise to the system

T (z) = N (z) + zT (z) + zT (z)2 + zT (z)S (z)

S (z) = zT (z) + zS (z) + z

N (z) = z + zN (z).

(7)

Note that N (z) is an independent variable in (7). We can therefore
solve the equation N (z) = z + zN (z) and find that N (z) =

z

1 − z .
Substituting this expression for N (z) in the equations definingT (z)
and S (z) we obtain

T (z) =
z

1 − z + zT (z) + zT (z)
2 + zT (z)S (z) (8)

whereas
S (z) = zT (z) + zS (z) + z.

1see https://oeis.org/A000108.
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φ *.,
•

R
+/- = λφ (R)

φ *.,
•

L
+/- = S n when φ (L) = n

φ *.,
•

L
+/- = a[⇑n+1 (s )] when φ (L) = a[⇑n (s )]

φ (•) = 0

φ
*....,

•
•

R

+////-
= φ (R)[↑]

φ
*....,

•
•

L R

+////-
= φ (L)[φ (R)/]

φ *.,
•

L R
+/- = φ (L) φ (R)

Figure 3: Pictorial representation of the size-preserving bijection φ between λυ-terms and plane binary trees.

System (8) admits two solutions, i.e.

T (z) =
1 ± √1 − 4z − 2z

2z and S (z) =
1 ± √1 − 4z
2(1 − z) , (9)

both with agreeing signs.
In order to determine the correct pair of generating functions

we invoke the fact that, by their construction, both [zn]T (z) and
[zn]S (z) are non-negative integers for all n ≥ 0. Consequently, the
declared pair (4) and (5) is the analytic solution of (9). At this point,
we notice that both the generating functions in (4) and (5) resemble

the famous generating functionC (z) = 1 − √1 − 4z
2z corresponding

to Catalan numbers, see e.g. [42, Section 2.3]. Indeed

T (z) =
1 − √1 − 4z

2z − 1 (10)

whereas

S (z) =
1 − √1 − 4z

2z

( z

1 − z
)
.

In this form, we can readily relate Catalan numbers with re-
spective coefficients of T (z) and S (z), see (6). From (10) we obtain
T (z) = C (z)−1. The number [zn]T (z) corresponds thus to [zn]C (z)
for all n ≥ 1 with the initial [z0]T (z) = 0. Furthermore, given
S (z) = C (z)

z

1 − z we note that [zn]S (z) corresponds to the partial
sum of Catalan numbers2 up to n (exclusively). □

The correspondence exhibited in Proposition 4.1 witnesses the
existence of a bijection between λυ-terms of size n and, for instance,
plane binary trees with n inner nodes. In what follows we provide
an alternative, constructive proof of this fact.

4.1 Bijection between λυ-terms and plane
binary trees

Let B denote the set of plane binary trees (i.e. binary trees in which
we distinguish the order of subtrees). Consider the map φ : B → T
defined as in Figure 3. Note that, for convenience, we omit drawing
leaves. Consequently, nodes in Figure 3 with a single or no subtrees
2see https://oeis.org/A014137.

are to be understood as having implicit leaves attached to vacuous
branches.

Given a treeT as input,φ translates it to a corresponding λυ-term
φ (T ) based on the shape ofT (performing a so-called pattern match-
ing). This shape, however, might be determined through a recursive
call to φ, see the second and third rule of the left-hand size of
Figure 3.

Example 4.2. For instance the tree corresponding to the λυ-term
0[⇑ (λ0/)] 1[↑] is:

•
• •

• •
• •

• • •
•

Proposition 4.3. The map φ : B → T is a bijection preserving
the size of translated structures. In other words, given a treeT with
n inner nodes φ (T ) is a λυ-term of size n.

Proof. The fact that φ is size-preserving follows as a direct
examination of the rules defining φ, see Figure 3. A straightforward
structural induction certifies that all translation rules keep the size
of both sides equal.

In order to prove that φ is one-to-one and onto, we note that
each maximal (in the sense that it cannot be further continued)
sequence of successive left branches has to terminate in either a
single leave, hence corresponding to a de Bruijn index through φ, a
single right turn, see the second top rule of the right-hand side of
Figure 3, or a branching point consisting of a left and right turn, see
the third rule of the right-hand side of Figure 3. A final structural
induction finishes the proof. □

With a computable mapφ : B → T it is now possible to translate
plane binary trees to corresponding λυ-terms in linear time in
the size of the binary tree. Composing φ with effective samplers
(i.e. computable functions constructing random, conditioned on
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size, structures) for the former, we readily obtain effective samplers
for random λυ-terms.

We offer a Coq proof of Proposition 4.3 together with a certi-
fied Haskell implementation of φ in an external repository3 with
supplementary materials to the current paper.

Remark. Using Rémy’s elegant sampling algorithm [39] construct-
ing uniformly random, conditioned on size, plane binary trees of
given size n with φ provides a linear time, exact-size sampler for
λυ-terms. For a detailed presentation of Rémy’s algorithm, we refer
the curious reader to [4, 32]. Additional combinatorial paramet-
ers, such as for instance the number of specific redex sub-patterns
in sampled terms, can be controlled using the tuning techniques
of [12] developed within the general framework of Boltzmann
samplers [22] and the exact-size sampling framework of the so-
called recursive method [36].

5 STATISTICAL PROPERTIES OF RANDOM
λυ-TERMS

In the current section we focus on quantitative properties of random
terms. We start our quest with properties of explicit substitutions
within λυ-calculus. In what follows, we investigate the proportion of
λυ-terms representing intermediate steps of substitution in classic
λ-calculus.

5.1 Strict substitution forms
When a β-rule is applied and (λx .a)b is rewritten to a[x := b] the
meta-level substitution of b for variable x in a is executed some-
what outside of the calculus. In operational terms, the substitution
a[x := b] is meant to be resolved ceaselessly and cannot be, for
instance, suspended or even (partially) omitted if it produces a dis-
pensable result. Such a resolution tactic is reflected in λυ-calculus in
terms of the following notion of strict substitution forms.

Definition 5.1. A λυ-term t is in strict substitution form if there
exist two pure (i.e. without explicit substitutions) terms a,b and a
sequence t1, . . . , tn of λυ-terms such that

a[b/]→ t1 → · · · → tn = t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

In other words, strict substitution forms represent the intermedi-
ate computations of resolving substitutions in the classic λ-calculus.
Certainly, by design λυ-calculus permits more involved resolution
tactics, mixing for instance Beta-reduction and υ-reductions. In
the following proposition we show that the proportion of terms
representing the indivisible, classic resolution tactic tends to zero
with the term size tending to infinity. Therefore, typical terms in
λυ-calculus do not match the strict, epitheoretic substitution in the
classical λ-calculus, but rather represent an ongoing, non-strict
substitution tactic.

Proposition 5.2. Asymptotically almost all λυ-terms are in lazy
substitution form.

Proof. We argue that the set of strict substitution forms is
asymptotically negligible in the set of all λυ-terms. Consequently,
3see https://github.com/maciej-bendkowski/combinatorics-of-explicit-substitutions.

its complement, i.e. lazy substitution forms, admits an asymptotic
density one, as claimed.

Consider the class of λυ-terms containing nested substitutions,
i.e. subterms in form of a[b/] where b is impure. Note that if a term
contains nested substitutions, then it cannot be in strict substitu-
tion form. Let us therefore estimate the asymptotic density of terms
without nested substitutions. Following the combinatorial specifica-
tion (1) for λυ-terms we can write down the following specification
for T using the auxiliary classes S of (restricted) substitutions, and
P of pure λυ-terms:

T ::= N | λT | T T | T [S]
S ::= P/ | ⇑ (S) | ↑
P ::= N | λP | PP .

(11)

Note that (11) is almost identical to (1) except for the fact that
we permit only pure terms under the slash operator in the defin-
ition of S. We can now apply symbolic methods and establish a
corresponding system of generating functions:

T (z) = N (z) + zT (z) + zT (z)
2
+ zT (z)S (z)

S (z) = zP (z) + zS (z) + z

P (z) = N (z) + zP (z) + zP (z)2.

(12)

Solving (12) for T (z) we find that

T (z) =
1 − z − zS (z) −

√(
1 − z − zS (z)

)2 − 4z2
1−z

2z (13)

whereas

S (z) =
z + zP (z)

1 − z and P (z) =
1 − z −

√
(1 − z)2 − 4z2

1−z
2z . (14)

Note that both S (z) and P (z) share a common, unique dominant
singularity ρ � 0.295598 being the smallest positive root of the

radicand expression (1 − z)2− 4z2
1 − z in the defining formula of P (z),

see (14). Moreover, due to the presence of the expression zS (z) in
the numerator of (13) ρ is also a singularity of T (z). Denote the
radicand expression of (13) as R (z). Note that

d

dz
R (z) = −2

(
1 − z − zS (z)

) (
1 + S (z) + z d

dz
S (z)

)
− 4z2

(1 − z)2−
8z

1 − z .
(15)

Since S (z) is a generating function with non-negative integer coeffi-
cients both S (z) and its derivative d

dz
S (z) are positive in the interval

z ∈ (0, ρ). Therefore, the derivative d

dz
R (z) is negative for values

z ∈ (0, 1) satisfying 1 − z − zS (z) ≥ 0. A direct computation veri-
fies that 0 < z ≤ ρ satisfy this condition. Consequently, R (z) is
decreasing in the interval z ∈ (0, ρ).

At this point we note that R (0) = 1 whereas R ( 14 ) > 0. It fol-
lows therefore that R (z) has no roots in the interval (0, 14 ). Since
the generating function T (z) corresponding to all (unrestricted)
λυ-terms has a single dominant singularity ζ = 1

4 , see (4) and (5), a
straightforward application of the exponential growth formula (see
Theorem 3.1) reveals that λυ-terms without nested substitutions
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are asymptotically negligible in the set of all λυ-terms. So is, as well,
its subset of strict substitution forms. □

5.2 Suspended substitutions
Closures in λυ-terms are intended to represent suspended, une-
valuated substitutions in the classic λ-calculus. In other words,
substitutions whose resolution is meant to be carried out in a non-
strict manner. It the current section we investigate the quantitative
impact of this suspension on random terms.

Definition 5.3. Let s be a substitution and t be a λυ-term. Then, s ,
all its subterms and, all the constructors it contains are said to be
suspended in t if t contains a subterm in form of [s]; in other words,
when s occurs under a closure in t .

In the following proposition we show that, in expectation, almost
all of the term content (i.e. represented computation) is suspended
under closures.

Proposition 5.4. Let Xn be a random variable denoting the num-
ber of constructors not suspended under a closure in a random
λυ-term of size n. Then, the expectation E(Xn ) satisfies

E(Xn ) −−−−−→n→∞
316
3 . (16)

Proof. Let T (z,u) be a bivariate generating function where
[znuk ]T (z,u) denotes the number of λυ-terms of size n with k
constructors not suspended under a closure. In other words, the
number of λυ-terms of size n in which suspended substitutions are
of total size n − k .

Given the specification (1) for T we introduce a new variable u
and mark with it constructors which do not occur under closures.
Note that, in doing so, we no notmarkT recursively inS. Following
symbolic methods we note that T (z,u) satisfies

T (z,u) =
zu

1 − zu + zuT (z,u) + zuT (z,u)
2 + zuT (z,u)S (z). (17)

Taking the derivative ∂u at u = 1 of both sides of (17) we arrive at

∂

∂u
T (z,u) |u=1 =

z

(1 − z)2 +T (z, 1)
(
z + zT (z, 1) + zS (z)

)

+
∂

∂u
T (z,u) |u=1

(
z + 2zT (z, 1) + zS (z)

)

and hence

∂

∂u
T (z,u) |u=1 =

z

(1 − z)2 +T (z, 1)
(
z + zT (z, 1) + zS (z)

)

1 − z − 2zT (z, 1) − zS (z) . (18)

From (4) and (5) we note that both T (z) and S (z) admit Puiseux
expansions in form ofα−β√1 − 4z+O (���1−4z���) for some appropriate
(different forT (z) and S (z)) constants α , β > 0. Consequently, both
the numerator and denominator of (18) admit Puiseux expansions
of similar form. Furthermore, as

a − b√1 − 4z +O
(���1 − 4z���)

c − d√1 − 4z +O
(���1 − 4z���) =

(
ad

c2 − 4d2z + d2 −
bc

c2 − 4d2z + d2
) √

1 − 4z+O
(���1 − 4z���)

we conclude that
∂

∂u
T (z,u) |u=1 = γ − δ

√
1 − 4z +O

(���1 − 4z���)
near z = 1

4 for some (computable) constants γ ,δ > 0.
An application of the standard function scale (see Theorem 3.4)

provides now the asymptotic estimate

E(Xn ) =
[zn] ∂

∂uT (z,u) |u=1
[zn]T (z, 1) −−−−−→

n→∞ C . (19)

A direct calculation gives the specific quantity (16) of C . □

Let us note that the above result marks yet another crucial dif-
ference between λ-calculus and λυ-calculus. In the former, substi-
tutions are carried out somewhat outside of the language whereas
in the latter formalism they are not only internalised, but typically
constitute almost all of the term content.

5.3 Substitution resolution primitives
The internalisation of substitution in λυ-calculus introduces several
new types of redexes governing the resolution of closures, see
Figure 1a. Instead of a single β-redex, specific implementations of
the λυ-calculus rewriting system, such as for instance the abstract
U-machine, have to handle eight rewriting rules together with their
intricate interaction.

In the current section we investigate the distribution of specific
redexes in random λυ-terms, providing insight in the quantitative
contribution of various substitution resolution primitives. Since all
redexes share virtually the same proof scheme, for convenience,
we provide detailed arguments only for the (Beta) rule. Remaining
proofs are merely sketched.

5.3.1 (Beta) redexes.

Proposition 5.5. Let Xn be a random variable denoting the num-
ber of β-redexes in a random λυ-term of size n. Then, after standard-
isation, Xn converges in law to a Gaussian distribution with speed
of convergence of order O

(
1√
n

)
. The limit expectation E(Xn ) and

variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
3
64n and V(Xn ) −−−−−→n→∞

153
4096n (20)

Proof. Routinely, we begin our considerations with establishing
a combinatorial specification for corresponding β-redexes. Note
that given the specification T for general λυ-terms (1) we can
rewrite the left operand in the (T T ) production using the recursive
specification forT . Consequently, we obtain the followingmodified
combinatorial specification:

T ::= N | λT | T [S] |
(T T )︷                                           ︸︸                                           ︷

NT | (λT )T | (T [S])T | (T T )T
S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

(21)

Note that in this form, specification (21) explicitly uses the produc-
tion (λT )T associated with β-redexes. Since the above specifica-
tion is unambiguous, i.e. each λυ-term has precisely one derivation
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starting from T , we can further convert it into the following system
of corresponding bivariate generating functions marking β-redexes:

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)S (z,u) + zT (z,u)
2 +

(u − 1)z2T (z,u)2
S (z,u) = zT (z,u) + zS (z,u) + z.

Note that instead of a direct transformation, we use the, somewhat
indirect, z2T (z,u)2 (u − 1) expression to denote λυ-terms in applic-
ation form where each β-redex is marked with variable u. It should
be understood as follows. First, we count all applications (T T ) by
zT (z,u)2. Next, we over-count marked β-redexes by uz2T (z,u)2.
Finally, we remove the over-counted (and unmarked by zT (z,u)2)
β-redexes by −z2T (z,u)2. At this point, we solve the above system
and find that the generating function T (z,u) satisfies

T (z,u) =
1 − z − z2

1−z −
√(

1 − z − z2
1−z

)2 − 4z2 (1+(u−1)z+ z
1−z )

1−z

2z
(
1 + (u − 1)z + z

1−z
) .

(22)
In this form it is clear that the dominant singularity ρ (u) is car-

ried by the radicand expression ofT (z,u), see (22). Furthermore, the
singularity ρ (u) is non-constant and moving, i.e. varies smoothly
with u. Its specific form can be readily accessed by equating the
above radicand expression to zero and noting that ρ (u) (see Figure 4)
is the only solution satisfying limu→1 ρ (u) = 1

4 corresponding to
the dominant singularity of T (z, 1). Consequently, ρ (u) can be ana-
lytically continued onto a larger domain containing the point u = 1.
Let ρ (u) denote, by a slight abuse of notation, this continuation of
the definition of the function in Figure 4. It follows that T (z,u) can
be uniquely represented as

T (z,u) = α (z,u) + β (z,u)

√
1 − z

ρ (u)

where both α (z,u) and β (z,u) are non-vanishing near (z,u) =
( 14 , 1). With u fixed sufficiently close to one, we can now apply the
standard function scale (see Theorem 3.4) and obtain the estimate

[zn]T (z,u) = γ
(

1
ρ (u)

)n
with γ =

β (ρ (u),u)

2
√
πn3/2

.

Consequently, the probability generating function pn (u) satisfies

pn (u) =
[zn]T (z,u)
[zn]T (z, 1) = γ

(
ρ (1)
ρ (u)

)n (
1 +O

( 1
n

))

where γ =
β (ρ (u),u)

β (ρ, 1) .

Such a form of pn (u) matches the premises of the Quasi-powers
theorem (see Theorem 3.5) taking

A(u) =
β (ρ (u),u)

β (ρ, 1) , B (u) =
ρ (1)
ρ (u)

and βn = κn = n.

Given the explicit formula of Figure 4 for ρ (u) a routine calculation
verifies the requested variability condition (2). Consequently, an ap-
plication of the Quasi-powers theorem finishes the proof. The limit
expectation and variance (20) associated with Xn can be computed
using formulas (3). □

5.3.2 (App) redexes. In order to mark occurrence of (App) re-
dexes, we take the specification (1) of T and rewrite the production
T [S] into four, more detailed ones, including an explicit production
for (App) redexes.

T ::= N | λT | T T |
T [S]︷                                                  ︸︸                                                  ︷

N [S] | (λT )[S] | (T [S])[S] | (T T )[S]
S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .
A direct translation onto the level of corresponding generation
functions gives

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1)z2T (z,u)2S (z,u)
S (z,u) = zT (z,u) + zS (z,u) + z.

A detailed analysis provides then the following result.

Proposition 5.6. Let Xn be a random variable denoting the num-
ber of (App)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
1
32n and V(Xn ) −−−−−→n→∞

45
2048n

5.3.3 (Lambda) redexes. The case of (Lambda) redexes is vir-
tually identical to (App) redexes. This time, however, a different
production is marked:

T ::= N | λT | T T |
T [S]︷                                                  ︸︸                                                  ︷

N [S] | (λT )[S] | (T [S])[S] | (T T )[S]
S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .
Accordingly,

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1)z2T (z,u)S (z,u)
S (z,u) = zT (z,u) + zS (z,u) + z.

Proposition 5.7. Let Xn be a random variable denoting the num-
ber of (Lambda)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
1
32n and V(Xn ) −−−−−→n→∞

53
2048n

5.3.4 (FVar) redexes. The case of (FVar) redexes is a bit more
involved and requires three layers of production substitution in
order to reach an explicit (FVar) production (see Figure 5).

The corresponding system of generating functions takes then
the form
T (z,u) =

z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1)z3T (z,u)
S (z,u) = zT (z,u) + zS (z,u) + z.
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ρ (u) =
1
4+

1
2

√
3√u + 3

22/3 (u − 1)2/3 +
1
4−

1
2

√√√√√√√ u + 7

4(u − 1)
√

3√u+3
22/3 (u−1)2/3 +

1
4

−
3√u + 3

22/3 (u − 1)2/3 +
1
2

Figure 4: ρ (u)

T ::= N | λT | T T |

T [S]︷                                                                                           ︸︸                                                                                           ︷
N [S]︷                                        ︸︸                                        ︷

0[T /] | 0[⇑ (S)] | 0[↑]
︸                       ︷︷                       ︸

0[S]

| (SN )[S] | (λT )[S] | (T [S])[S] | (T T )[S]

S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

Figure 5: The specification associated with FVar .

Proposition 5.8. Let Xn be a random variable denoting the num-
ber of (FVar)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
3
256n and V(Xn ) −−−−−→n→∞

729
65536n

5.3.5 (RVar) redexes. Similarly to (FVar) redexes, (RVar) redexes
require three layers of substitution. The final layer, however, in-
volves now (SN )[S] (see Figure 6).

When transformed, we obtain the following system of generating
functions:

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1) z4

1 − zT (z,u)
S (z,u) = zT (z,u) + zS (z,u) + z.

Proposition 5.9. Let Xn be a random variable denoting the num-
ber of (RVar)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
1
256n and V(Xn ) −−−−−→n→∞

249
65536n

5.3.6 (FVarLift) redexes. The (FVarLift) redex follows the same
successive transformation of the initial specification T . When
(FVarLift) redexes are obtained and marked, we get the outcome
specification given in Figure 7.

Consequently

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1)z3S (z,u)
S (z,u) = zT (z,u) + zS (z,u) + z.

Proposition 5.10. LetXn be a random variable denoting the num-
ber of (FVarLift)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
1
128n and V(Xn ) −−−−−→n→∞

241
32768n

5.3.7 (RVarLift) redexes. (RVarLift) redexes are specified ana-
logously to (FVarLift) redexes. The deepest level of transformation
involved now (SN )[S] instead of 0[S] as in the case of (FVarLift)
redexes. The resulting specification takes the form given in Figure 8.
And so, the associated system of generating function becomes

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1) z4

1 − z S (z,u)
S (z,u) = zT (z,u) + zS (z,u) + z.

Proposition 5.11. LetXn be a random variable denoting the num-
ber of (RVarLift)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
1
384n and V(Xn ) −−−−−→n→∞

377
147456n

5.3.8 (VarShift) redexes. The final case of (VarShift) redexes can
be approached as before. Marking N [↑] in the associated specifica-
tion we obtain the specification of Figure 9.

And so

T (z,u) =
z

1 − z + zT (z,u) + zT (z,u)
2 + zT (z,u)S (z,u) +

(u − 1) z3

1 − z
S (z,u) = zT (z,u) + zS (z,u) + z.

7:9



PPDP’18, September 2018, Frankfurt am Main, Germany Maciej Bendkowski and Pierre Lescanne

T ::= N | λT | T T |

T [S]︷                                                                                                        ︸︸                                                                                                        ︷
N [S]︷                                                     ︸︸                                                     ︷

0[S] | (SN )[T /] | (SN )[⇑ (S)] | (SN )[↑]
︸                                           ︷︷                                           ︸

(SN )[S]

| (λT )[S] | (T [S])[S] | (T T )[S]

S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

Figure 6: The specification associated with RVar .

T ::= N | λT | T T |

T [S]︷                                                                                           ︸︸                                                                                           ︷
N [S]︷                                        ︸︸                                        ︷

0[T /] | 0[⇑ (S)] | 0[↑]
︸                       ︷︷                       ︸

0[S]

| (SN )[S] | (λT )[S] | (T [S])[S] | (T T )[S]

S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

Figure 7: The specification associated with FVarLi f t .

T ::= N | λT | T T |

T [S]︷                                                                                                        ︸︸                                                                                                        ︷
N [S]︷                                                     ︸︸                                                     ︷

0[S] | (SN )[T /] | (SN )[⇑ (S)] | (SN )[↑]
︸                                           ︷︷                                           ︸

(SN )[S]

| (λT )[S] | (T [S])[S] | (T T )[S]

S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

Figure 8: The specification associated with RVarLi f t .
.

T ::= N | λT | T T |
T [S]︷                                                                               ︸︸                                                                               ︷

N [T /] | N [⇑ (S)] | N [↑]
︸                             ︷︷                             ︸

N [S]

| (λT )[S] | (T [S])[S] | (T T )[S]

S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

Figure 9: The specification associated with VarShi f t .

Proposition 5.12. LetXn be a random variable denoting the num-
ber of (VarShift)-redexes in a random λυ-term of size n. Then, after
standardisation, Xn converges in law to a Gaussian distribution
with speed of convergence of order O

(
1√
n

)
. The limit expectation

E(Xn ) and variance V(Xn ) satisfy

E(Xn ) −−−−−→n→∞
1
64n and V(Xn ) −−−−−→n→∞

57
4096n

Remark. In order to facilitate the intensive calculations involved
in obtaining redex distributions, one can use formulas (3) and the

implicit form of the singularity ρ (u) defined as a root of an appro-
priate radicand expression P (z,u) of the corresponding bivariate
generating function T (z,u). The quantities ρ ′(1) and ρ ′′(1) can be
extracted using implicit derivatives of the equation P (ρ (u),u) = 0.

Table 1 outlines the obtained means and variances for all con-
sidered λυ-redexes.

6 CONCLUSIONS
Our contribution is a step towards the quantitative analysis of sub-
stitution resolution and, in particular, the average-case analysis
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Table 1: List of redex distributions in descending order of
limit means. Specific values are approximated to the sixth
decimal point.

Redex Mean Variance
(Beta) 0.046875n 0.037354n
(App) 0.031250n 0.021973n

(Lambda) 0.031250n 0.025879n
(VarShift) 0.015625n 0.013916n
(FVar) 0.011719n 0.011124n

(FVarLift) 0.007812n 0.007355n
(RVar) 0.003906n 0.003799n

(RVarLift) 0.002604n 0.002557n

of abstract machines associated with calculi of explicit substitu-
tions. Although we focused on λυ-calculus, other calculi are readily
amenable to similar analysis. Our particular choice is motivated
by the relative, compared to other calculi of explicit substitutions,
simple syntax of λυ. With merely eight rewriting rules, λυ is one of
the conceptually simplest calculi of explicit substitutions. Notably,
rewriting rules contribute just to the technical part of the quantitat-
ive analysis, not its general scheme. Consequently, we expect that
investigations into more complex calculi might be more technically
challenging, however should not pose significantly more involved
issues.

Our quantitative analysis exhibited that typical λυ-terms rep-
resent, in a strong sense, intrinsically non-strict computations of
the classic λ-calculus. Typically, substitutions are not ceaselessly
evaluated, but rather suspended in their entirety; almost all of
the encoded computation is suspended under closures. Not unex-
pectedly, on average, the most frequent redex is (Beta). In the υ
fragment of λυ, however, the most recurrent redexes are, in order,
(App) and (Lambda). The least frequent, and at the same time the
most intricate redex, is (RVarLift). Let us note that such a diversity
of redex frequencies might be exploited in practical implementa-
tions. For instance, knowing that specific redexes are more frequent
than others, abstract machines might be aptly optimised.

Finally, as an unexpected by-product of our analysis, we exhib-
ited a size-preserving bijection between λυ-terms and plane binary
trees, enumerated by the famous Catalan numbers. Notably, such a
correspondence has practical implications. Specifically, we estab-
lished an exact-size sampling scheme for random λυ-terms based
on known samplers for the latter structures. Consequently, it is
possible to effectively generate random λυ-terms of size n in O (n)
time.
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