
Prime and Prejudice: Primality Testing Under Adversarial
Conditions

Martin R. Albrecht

martin.albrecht@rhul.ac.uk

Royal Holloway, University of London

Jake Massimo

jake.massimo.2015@rhul.ac.uk

Royal Holloway, University of London

Kenneth G. Paterson

kenny.paterson@rhul.ac.uk

Royal Holloway, University of London

Juraj Somorovsky

juraj.somorovsky@rub.de

Ruhr University Bochum

ABSTRACT
This work provides a systematic analysis of primality testing under

adversarial conditions, where the numbers being tested for primal-

ity are not generated randomly, but instead provided by a possibly

malicious party. Such a situation can arise in secure messaging

protocols where a server supplies Diffie-Hellman parameters to the

peers, or in a secure communications protocol like TLS where a

developer can insert such a number to be able to later passively

spy on client-server data. We study a broad range of cryptographic

libraries and assess their performance in this adversarial setting.

As examples of our findings, we are able to construct 2048-bit com-

posites that are declared prime with probability 1/16 by OpenSSL’s

primality testing in its default configuration; the advertised per-

formance is 2
−80

. We can also construct 1024-bit composites that

always pass the primality testing routine in GNU GMP when con-

figured with the recommended minimum number of rounds. And,

for a number of libraries (Cryptlib, LibTomCrypt, JavaScript Big

Number, WolfSSL), we can construct composites that always pass
the supplied primality tests. We explore the implications of these

security failures in applications, focusing on the construction of

malicious Diffie-Hellman parameters. We show that, unless careful

primality testing is performed, an adversary can supply parameters

(p,q,д) which on the surface look secure, but where the discrete

logarithm problem in the subgroup of order q generated by д is easy.
We close by making recommendations for users and developers.

In particular, we promote the Baillie-PSW primality test which is

both efficient and conjectured to be robust even in the adversarial

setting for numbers up to a few thousand bits.

KEYWORDS
Primality testing; Miller-Rabin test; Lucas test; Baillie-PSW test;

Diffie-Hellman; TLS

ACM Reference Format:
Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and Juraj So-

morovsky. 2018. Prime and Prejudice: Primality Testing Under Adversarial

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243787

Conditions. In CCS ’18: 2018 ACM SIGSAC Conference on Computer & Com-
munications Security, Oct. 15–19, 2018, Toronto, ON, Canada. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3243734.3243787

1 INTRODUCTION
Many cryptographic primitives rely on prime numbers, with RSA

being the most famous example. However, even in constructions

that do not rely on the difficulty of factoring integers into prime

factors, primality is often relied upon to prevent an adversary from

applying a divide-and-conquer approach (e.g. in the Pohlig-Hellman

algorithm or in a Lim-Lee small subgroup attack [60]) or to prevent

the existence of degenerate cases such as zero divisors (which may

complicate security proofs or reduce output entropy).

One approach to obtaining prime numbers in instantiations of

these cryptographic primitives is to produce such numbers as they

are needed on whatever device requires them. This is accomplished

by sampling random integers and checking for primality. This

process can be computationally intensive to the point of being

prohibitively so. The high cost of producing prime numbers led

implementations to seek ways to reduce this cost and, as demon-

strated in [44], these performance improvements may then lead to

devastating attacks.

If the required prime numbers are public, an alternative approach

is possible: (low-power) devices are provisioned with prime num-

bers from a server or a standard. For example, the popular Telegram

messenger [35] uses Diffie-Hellman (DH) parameters provided by
the server to establish end-to-end encryption between peers. If the
peers do not validate the correctness of the supplied DH parame-

ters,
1
the Telegram server can provide malicious DH parameters

with composite group orders and thereby passively obtain the es-

tablished secrets.

Another example is the Transport Layer Security protocol [18]

which can use Diffie-Hellman key exchange to establish master se-

crets in the handshake protocol. The DH parameters are generated

by the TLS server and sent to the client during each TLS hand-

shake.
2
It is clear that the TLS server provider does not gain any

advantage by sending malicious DH parameters to the client since

it knows the established master key. However, we can consider an

adversarial developer who implements a malicious sever with back-

doored DH parameter generation, cf. [19, 63]. If such parameters

are accepted by TLS clients and used in the DH key exchange, a

passive adversary can observe the traffic and obtain the master key.

1
We stress that they do perform validation in the default implementation.

2
Up to version 1.2 (inclusive) of the protocol.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

281

https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145/3243734.3243787

Here, weak DH parameters that still pass tests by trusted tools offer

a sense of plausible deniability. Moreover, if an application simply

silently rejects bad parameters then any countermeasures could be

overcome by repeatedly sending malicious parameter sets having a

reasonable probability of fooling those countermeasures, until the

target client accepts them.

In recent years we have seen several backdoors in cryptographic

implementations. For example, NIST standardised the Dual EC pseu-

dorandom number generator (PRNG) which allows an adversary to

predict generated random values if it can select a generator point

Q and collect enough PRNG output [10]. In 2016 it was shown that

Juniper implemented this PRNG which enabled an adversary to

passively decrypt VPN sessions [9].

A notable example of a potential backdoor involving a composite

number is the security advisory [53] pushed by command-line data

transfer utility socat, which is popular with security professionals

such as penetration testers. There, the DH prime p parameter was

replaced with a new 2048 bit value because “the hard coded 1024

bit DH p parameter was not prime’’. The advisory goes on to state

“since there is no indication of how these parameters were chosen, the
existence of a trapdoor that makes possible for an eavesdropper to
recover the shared secret from a key exchange that uses them cannot
be ruled out”, which highlights a real world application of this attack
model. Similarly, the prime group parameter p given by Group 23

of RFC5114 [32] for use in DH key exchanges has been found to be

partially vulnerable to small subgroup attacks [60]. It might seem

that code reviews and the availability of rigorous primality testing

(in, say, mathematical software packages, cf. Appendix J) impose

high rates of detectability for malicious parameter sets in code or

standards, but as these examples highlight, such sets still occur in

practice.

Given these incidents we can assume a motivated adversary who

is able to implement software serving maliciously generated primes

and/or DH parameters. Thus, there is a need for cryptographic

applications that rely on third-party primes to perform primality

testing. Indeed, many cryptographic libraries incorporate primality

testing facilities and thus it appears this requirement is easy to

satisfy. However, the primary application of these tests is to check

primality (or, more precisely, compositeness) for locally-generated,

random inputs during prime generation. Thus, it is a natural ques-

tion to ask whether these libraries are robust against malicious

inputs, i.e. inputs designed to fool the library into accepting a com-

posite number as prime. We refer to this setting as primality testing
under adversarial conditions.

1.1 Overview of Primality Testing
One of the most widely used primality tests is the Miller-Rabin [41,

51] test. Based upon modular exponentiation by repeated squar-

ing, Miller-Rabin is an efficient polynomial-time algorithm with

complexity O (t log3 n) where t is the number of trials performed.

Yet due to its probabilistic nature, it is well known that a t-trial
Miller-Rabin test is only accurate in declaring a given composite

number to be composite with probability at least 1 − (1/4)t . Arnu-
alt [2], Pomerance [50] and Narayanan [43] all explore methods of

producing Miller-Rabin pseudoprimes, that is, composite numbers

that when tested by Miller-Rabin, achieve the highest probability

of (1/4)t of being wrongly classified as “probably prime”.

Another common choice is the Lucas test [7], and its more strin-

gent variant the strong Lucas probable prime test. Similarly to

the Miller-Rabin test, t trials of a strong Lucas test will declare

a given composite number as being composite with probability

at least 1 − (4/15)t and as being prime with probability at most

(4/15)t [3]. As with the Miller-Rabin test, there are known methods

for constructing strong Lucas pseudoprimes [2].

The Lucas test (strong or standard) can be combined with a single

Miller-Rabin test (on base 2) to form what is known as the Baillie-

PSW test [49]. Due to slightly longer running times, this test is often

only adopted for use in mathematical software packages and seen

less in cryptographic libraries. Unlike the Miller-Rabin and Lucas

tests when performed alone, there are no known pseudoprimes for

the Baillie-PSW test (yet there is no proof that they cannot exist).

Clearly, when conducting a Miller-Rabin or Lucas test, the choice

of the parameter t (the number of trials) is critical. Many crypto-

graphic libraries, for example OpenSSL [48], use test parameters

originating from [14] as popularised in the Handbook of Applied
Cryptography [40]. These give the number of iterations of Miller-

Rabin needed for an error rate less than 2
−80

, when testing a random
input n. A main result of [14] is that if n is a randomly selected b-bit
odd integer, then t independent rounds of Miller-Rabin testing to

give an error probability:

P (X |Yt) < b3/22t t−1/242−
√
tb

for 3 ≤ t ≤ b/9 and b ≥ 21,

where X denotes the event that n is composite, and Yt the event
that t rounds of Miller-Rabin declares n to be prime. This bound

enables the computation of the minimum value t needed to obtain

P (X |Yt) ≤ 2
−80

for a range of bit-sizes b; see Table 2.
However, these error estimates are for primality testing with

Miller-Rabin on randomly generated n. In the adversarial setting,
we are actually concerned with the probability that t trials of Miller-

Rabin (or some other test) declare a given n to be prime, given that

it is composite. This probability is independent of bit-size, and is at

most (1/4)t if random bases are used in Miller-Rabin tests. Similar

remarks apply for both variants of the Lucas test.

1.2 Contributions & Outline
We investigate the implementation landscape of primality testing in

both cryptographic libraries and mathematical software packages,

and measure the security impact of the widespread failure of imple-

mentations to achieve robust primality testing in the adversarial

setting.

We review primality testing in Section 2. In Section 3, we then

review known techniques for constructing pseudoprimes and ex-

tend them with our target applications in mind. In Section 4, we

then survey primality testing in cryptographic libraries and mathe-

matical software, evaluating their performance in the adversarial

setting. We propose techniques to defeat their tests where we can.

Overall, our finding is that most libraries are not robust in the ad-

versarial setting. Our main results in this direction are summarised

in Table 1.

As one highlight of our results, we find that OpenSSL with its

default primality testing routine will declare certain composites

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

282

Table 1: Results of our analysis of cryptographic libraries. This shows how the number of rounds
of Miller-Rabin used is determined, whether a Baillie-PSW test is implemented, the documented
failure rate of the primality test (that is, the probability that it wrongly declares a composite to be
prime), and our highest achieved failure rate for composite input.

Library Rounds of MR testing Baillie-PSW? Documented Our Highest

Failure Rate Failure Rate

OpenSSL 1.1.1-pre6 Default bit-size based No < 2
−80

1/16

GNU GMP 6.1.2 User-defined t No (1/4)t 100% for t ≤ 15

GNU Mini-GMP 6.1.2 User-defined t No (1/4)t 100% for t ≤ 101

Java 10 User-defined t Yes (≥ 100 bits) < (1/2)t 0% for ≥ 100 bits

JSBN 1.4 User-defined t No < (1/2)t 100%

Libgcrypt 1.8.2 User-defined t No Not given 1/1024†

Cryptlib 3.4.4 User-defined t ≤ 100 No Not given 100%

LibTomMath 1.0.1 User-defined t ≤ 256 No (1/4)t 100%

LibTomCrypt 1.18.1 User-defined t ≤ 256 No (1/4)t 100%

WolfSSL 3.13.0 User-defined t ≤ 256 No (1/4)t 100%

Bouncy Castle C# 1.8.2 User-defined t No (1/4)t (1/4)t

Botan 2.6.0 User-defined t No ≤ (1/2)t (1/4)t

Crypto++ 7.0 2 or 12 Yes Not given 0%

GoLang 1.10.3 User-defined t Yes < (1/4)t 0%

GoLang pre-1.8 User-defined t No < (1/4)t 100% for t ≤ 13

†
When calling the check_prime function as opposed to gcry_prime_check (or calling gcry_prime_check in versions prior to 1.3.0).

n of cryptographic size to be prime with probability 1/16, while

the documented failure rate is 2
−80

. This arises from OpenSSL’s

reliance on Table 2 to compute the number of rounds of Miller-

Rabin testing required, and this number decreases as the size of

n increases. As another highlight, we construct a 1024-bit com-

posite that is guaranteed to be declared prime by the GNU GMP

library [23] for anything up to and including 15 rounds of testing

(the recommended minimum by GMP). This is as a result of GNU

GMP initialising its PRNG to a static state and consequently using

bases in its Miller-Rabin testing that depend only on n, the num-

ber being tested. We also show how base selection by randomly

sampling from a fixed list of primes, as in Cryptlib, LibTomCrypt,

JavaScript Big Number (JSBN) and WolfSSL, can be subverted: we

construct composites n of cryptographic size that are guaranteed to

be declared prime by these libraries regardless of how many rounds

of testing are performed.

We go on to examine the implications of our findings for appli-

cations, focussing on DH parameter testing. The good news is that

OpenSSL is not impacted because of its insistence on safe primes

for use in DH; that is, it requires DH parameters (p,q,д) for which
q = (p−1)/2 and both p,q are tested for primality. Our current tech-

niques cannot produce malicious parameters in this case. On the

other hand, when more liberal choices of parameter are permitted,

as is the case in Bouncy Castle and Botan, we are able to construct

malicious DH parameter sets which pass the libraries’ testing but

for which the discrete logarithm problem in the subgroup generated

by д is easy.

We close by discussing avenues for improving the robustness of

primality testing in the adversarial setting in Section 6.

1.3 Disclosure and Mitigations
We reported our findings and suggested suitable mitigations based

on the outcome of our analysis to OpenSSL, GMP, JSBN, Cryptlib,

LibTomMath, LibTomCrypt, WolfSSL, Bouncy Castle and Botan.

We give a short review of the outcome of these discussions.

When we reached out to the OpenSSL developers, they were

in the process of amending their primality testing code to make

it FIPS-complaint [47]. However, these changes do not consider

the adversarial scenario on which our paper focuses, and the de-

fault settings in OpenSSL remain weak in that scenario. Thus, it

is left to the user to choose parameters suitable for this scenario.

LibTomMath and LibTomCrypt developers are also in the process

of adjusting the primality testing functions within their library.

They plan to remove the fixed base Miller-Rabin testing and replace

the function with a Baillie-PSW test in accordance with our rec-

ommendations [33]. WolfSSL have made several adaptations in an

upcoming release [26] to their primality testing in response to our

findings. This includes now performing Miller-Rabin with pseudo-

random bases, not overriding the user’s choice of iterations and

increasing the number of rounds performed on prime parameters

in DH and DSA check functions. Bouncy Castle have also made

changes based upon our findings, by removing the DH verification

function and replacing it with a whitelisting approach in upcoming

release 1.8.3. They are also looking into performing Baillie-PSW in

future versions as per our suggestion. Botan version 2.7.0 [37] has

increased the number of rounds of Miller-Rabin performed in DH

verification and includes the addition of the Lucas test to perform

Baillie-PSW as per our suggestions. GNU GMP, Mini-GMP and

Cryptlib all remain unchanged, but the authors of Cryptlib pointed

out a code comment that indicates the limitations of their primality

test. We received no correspondence from JSBN.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

283

2 BACKGROUND ON PRIMALITY TESTING
A primality test is an algorithm used to determine whether or not a

given number is prime. These primality tests come in two different

varieties; deterministic and probabilistic. Deterministic primality

testing algorithms prove conclusively that a number is prime, but

they tend to be slow and are not widely used in practice. A famous

example is the AKS test [1]. We do not discuss such tests further

in this paper, except where they arise in certain mathematical soft-

ware.

Probabilistic primality tests make use of arithmetic conditions

that all primes must satisfy, and test these conditions for the number

n of interest. If the condition does not hold, we learn that n must

be composite. However, if it does hold we may only infer that n is

probably prime, since some composite numbers may also pass the

test. By making repeated tests, the probability that n is composite

conditioned on it having passed some number t of tests can be

made sufficiently small for cryptographic applications. A typical

target probability is 2
−80

, cf. [40, 4.49]. A critical consideration here

is whether n was generated adversarially or not, since the bounds

that can be inferred on probability may be radically different in the

two cases; more on this below.

We now discuss threewidely-used tests: the Fermat,Miller-Rabin,

and Lucas tests.

2.1 Fermat Test
The Fermat primality test is based upon the following theorem.

Theorem 2.1 (Fermat’s Little Theorem). If p is prime and a is
not divisible by p, then

ap−1 ≡ 1 (mod p).

To test n for primality, one simply chooses a base a and computes

an−1 (mod n). If an−1 . 1 (mod n), then we can be certain that

n is composite. If after testing a variety of bases ai , we find that

that they all satisfy an−1i ≡ 1 (mod n), we may conclude that n is

probably prime.

It is well known that there exists composite numbers that satisfy

an−1 ≡ 1 (mod n) for all integers a that are not divisible by n.
These numbers completely thwart the Fermat test, and are known

as Carmichael numbers. Thesewill be of relevance in the sequel. The

following result is fundamental in the construction of Carmichael

numbers.

Theorem 2.2 (Korselt’s Criterion). A positive composite in-
teger n is a Carmichael number if and only if n is square-free, and
p − 1 | n − 1 for all prime divisors p of n.

2.2 Miller-Rabin Test
The Miller-Rabin [41, 51] primality test is based upon the fact that

there are no non-trivial roots of unity modulo a prime. Let n > 1 be

an odd integer to be tested and write n = 2
ed + 1 where d is odd. If

n is prime, then for any integer a with 1 ≤ a < n, we have:

ad ≡ 1 mod n or a2
id ≡ −1 mod n for some 0 ≤ i < e .

The Miller-Rabin test then consists of checking the above condi-

tions, declaring a number to be (probably) prime if one of the two

conditions holds, and to be composite if both fail. If one condition

holds, then we say n is a pseudoprime to base a, or that a is a non-
witness to the compositeness of n (since n may be composite, but a
does not demonstrate this fact).

For a composite n, let S (n) denote the number of non-witnesses

a ∈ [1,n−1]. An upper-bound on S (n) is given by results of [42, 51]:

Theorem 2.3 (Monier-Rabin Bound). Let n , 9 be odd and
composite. Then

S (n) ≤
φ (n)

4

where φ denotes the Euler totient function.

This bound will be critical in determining the probability that

an adversarially generated n passes the Miller-Rabin test. Since for

large n, we have φ (n) ≈ n, it indicates that no composite n can pass

the Miller-Rabin test for t random bases with probability greater

than (1/4)t . Hence achieving a target probability of 2
−80

requires

t ≥ 40. The test is commonly implemented using either (a) a set of

fixed bases (e.g. JSBN) or (b) randomly chosen bases (e.g. OpenSSL).

Of course, the (1/4)t bound only holds in the case of randomly

chosen bases.

2.3 Lucas Test
The Lucas primality test [7] makes use of Lucas sequences, defined

as follows:

Definition 2.4 (Lucas sequence [3]). Let P and Q be integers and

D = P2 − 4Q . Then the Lucas sequences (Uk) and (Vk) (with k ≥ 0)

are defined recursively by:

Uk+2 = PUk+1 −QUk where, U0 = 0,U1 = 1,

Vk+2 = PVk+1 −QVk V0 = 2, V1 = P .

The Lucas probable prime test then relies on the following theo-

rem (in which

(
x
p

)
denotes the Legendre symbol, with value 1 if x

is a square modulo p and value -1 otherwise):

Theorem 2.5 ([12]). Let P , Q and D and the Lucas sequences
(Uk), (Vk) be defined as above. If p is a prime with gcd(p, 2QD) = 1,
then

Up−
(
x
p

) ≡ 0 (mod p). (1)

The Lucas probable prime test repeatedly tests property (1) for

different pairs (P ,Q). This leads to the notion of a Lucas pseudo-

prime with respect to such a pair.

Definition 2.6 (Lucas pseudoprime). Let n be a composite number

such that gcd(n, 2QD) = 1. IfUn−(xn)
≡ 0 (mod n), then n is called

a Lucas pseudoprime with respect to parameters (P ,Q).

We can now introduce the notion of a strong Lucas probable

prime and strong Lucas pseudoprime with respect to parameters

(P ,Q) by the following theorem.

Theorem 2.7 ([3]). Let p be a prime number not dividing 2QD.
Set p −

(
D
p

)
= 2

kq with q odd. Then one of the following conditions
is satisfied:

p | Uq or ∃i such that 0 ≤ i < k and p | V
2
iq . (2)

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

284

The strong Lucas probable prime test repeatedly tests prop-

erty (2) for different pairs (P ,Q). This leads to the definition of

a strong Lucas pseudoprime with respect to parameters (P ,Q) as
follows.

Definition 2.8 (strong Lucas pseudoprime). Let n be a composite

number such that gcd(n, 2QD) = 1. Set n −
(
D
n

)
= 2

kq with q odd.

Suppose that:

n | Uq or ∃i such that 0 ≤ i < k and n | V
2
iq .

Then n is called a strong Lucas pseudoprime with respect to parame-

ters (P ,Q).

A strong Lucas pseudoprime is also a Lucas pseudoprime (for

the same (P ,Q) pair), but the converse is not necessarily true. The

strong version of the test is therefore seen as the more stringent

option.

Remark. The Lucas pseudoprime and strong Lucas pseudoprime
tests are also known as a Lucas-Selfridge test and a strong Lucas-
Selfridge test respectively, specifically when used with Selfridge’s pa-
rameters P = 1, Q = −1.

Analogously to the Monier-Rabin theorem for pseudoprimes

for the Miller-Rabin primality test, Arnault [3] showed that for

an integer D and n a composite with gcd(D,n) = 1 and n , 9,

the number of pairs (P ,Q) with 0 ≤ P ,Q < n, gcd(Q,n) = 1,

P2 − 4Q ≡ D (mod n) such that n is strong Lucas pseudoprime

with respect to (P ,Q) is at most 4n/15. There is an exception to this

result for certain forms of twin primes (we omit the details here), but

Arnualt goes on to prove that even these particular forms of twin

prime n have at most n/2 pairs (P ,Q) such that n is a strong Lucas

pseudoprime with respect to (P ,Q). From this, we can infer that t
applications of the strong Lucas test would declare a composite n
to be probably prime with a probability at most (4/15)t .

2.4 Baillie-PSW
The Baillie-PSW [49] test is a probabilistic primality test formed

by combining a single Miller-Rabin test with base 2 with either

a Lucas or strong Lucas pseudoprime test. The idea of this test is

that the two components are “orthogonal” and so it is very un-

likely that a number n will pass both parts. Indeed, there are no

known composite n that pass the Baille-PSW test. Gilchrist [20]

confirmed that there are no Baillie-PSW pseudoprimes less than 2
64
.

PRIMO [38] is an elliptic curve based primality proving program

that uses the Baillie-PSW test to check all intermediate probable

primes. If any of these values were indeed composite, the final

certification would necessarily have failed. Since this has never

occurred during its use, PRIMO’s author Martin estimates [62] that

there are no Baillie-PSW pseudoprimes with less than about 10000

digits. This empirical evidence suggests that numbers of crypto-

graphic size for use in Diffie-Hellman and RSA are unlikely to be

Baillie-PSW pseudoprimes. However, Pomerance gives a heuristic

argument in [49] that there are in-fact infinitely many Baillie-PSW

pseudoprimes. The construction of a single example is a significant

open problem in number theory.

3 CONSTRUCTING PSEUDOPRIMES
In this section, we review known methods of constructing pseu-

doprimes for the Miller-Rabin and Lucas tests. We also provide

variations on these methods. We will use the results of this section

in the next one, where we study the robustness of cryptographic

libraries for primality testing in the adversarial setting.

3.1 Miller-Rabin Pseudoprimes
The exact number of non-witnesses S (n) for any composite number

n can be computed given the factorisation of n [12]. Generating

composites n that have large numbers of non-witnesses is not so

straightforward. In empirical work, Pomerance et al. [50] showed
that many composite numbers that pass a Miller-Rabin primality

test have the form n = (k + 1) (rk + 1) where r is small and k + 1
is prime. More recently, Höglund [25] and Nicely [45] used the

Miller-Rabin primality test as implemented in GNU GMP to test

randomly generated numbers of this form for various values of r
and for various different sizes of k . Their results support the claims

made by [50].

We now consider existing methods for producing composites

which have many non-witnesses, for two forms of the Miller-Rabin

test: firstly where the bases are chosen randomly and secondly

where a fixed set of bases is used.

3.1.1 Random Bases. For random bases, we are interested in

constructing compositen that have large numbers of non-witnesses,

i.e. for which S (n) is large. Such numbers will pass the Miller-Rabin

test with probability S (n)/n per trial; of course, this probability is

bounded by φ (n)/4n ≈ 1/4 by the Monier-Rabin theorem, but we

are interested in how close to this bound we can get. We rely on

the following:

Theorem 3.1 ([43]). Consider an odd composite integer n withm
distinct prime factors p1, . . . ,pm . Suppose that n = 2

e ·d + 1 where d
is odd. Also suppose that n =

∏m
i=1 p

ti
i where each pi can be expressed

as 2ei · di + 1 with each di odd. Then

S (n) =
m∏
i=1

gcd(d,di) · *
,

2
min(ei) ·m − 1

2
m − 1

+ 1+
-
. (3)

Note how the bound in this theorem does not depend on the

exponents ti , indicating that square-free numbers will have rela-

tively large S (n). Also note the dependence on the terms gcd(d,di),
indicating that ensuring that the odd part of each prime factor pi
has a large gcd with the odd part of n is necessary for large n. As
an easy corollary of this theorem, we obtain:

Corollary 3.2 ([43]). Let x be an odd integer such that 2x + 1
and 4x + 1 are both prime. Then n = (2x + 1) (4x + 1) has φ (n) = 8x2

and achieves the Monier-Rabin bound, i.e. it satisfies S (n) = φ (n)/4.

The proof of this corollary follows easily on observing that we

may takem = 2 and d = d1 = d2 = x in the preceding theorem.

Narayanan [43] also showed that if n is a Carmichael number of

the form p1p2p3, where each pi is a distinct prime with pi ≡ 3

(mod 4), then S (n) achieves the Monier-Rabin bound. He also gave

further results showing that these two forms for n are the only

ones achieving the Monier-Rabin bound, with all other n satisfying

S (n) ≤ φ (n)/6.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

285

3.1.2 Fixed Bases. Some implementations of the Miller-Rabin

primality test select bases from a fixed list (often of primes), rather

than choosing them at random. For example, until 2010, the Py-

Crypto 2.1.0 (2009) [34] primality test isPrime() performed 7

rounds of Miller-Rabin using the first 7 primes as bases, while

LibTomMath chooses the first t entries from a hard-coded list of

primes as bases.

Arnault [2] presented a method for producing composite num-

bers n = p1p2 · · ·ph that are guaranteed to be declared prime by

Miller-Rabin for any fixed set of prime bases A = {a1,a2, . . . ,at }.
We give an overview and examples of Arnault’s method in Appen-

dix A.

Since fixed base Miller-Rabin tests are relatively uncommon in

implementations, it might seem that Arnault’s method would not

be very useful. We shall however see that this method is particularly

helpful when an implementation chooses bases randomly from a

large fixed list of possibilities. For example, an implementation

might select prime bases randomly from a list of primes below

1000; since Arnault’s method scales well (we simply need to solve

more congruences simultaneously with the CRT) we can use this

method to produce a composite n such that all primes below 1000

are non-witnesses for n. We shall see applications of this approach

for different libraries in Sections 4.3, 4.5, 4.7, 4.8, 4.9 and 4.10.

3.1.3 Hybrid Technique. The method above produces compos-

ites that are in fact always Carmichael numbers. We know from

Section 3.1.1 that if n is a Carmichael number with 3 distinct prime

factors all congruent to 3 (mod 4), then n has the maximum num-

ber of non-witnesses, φ (n)/4. We can set h = 3 in Arnault’s method

and tweak it slightly to ensure that, as well as producing n with

a specified set A of non-witnesses, it produces an n meeting the

Monier-Rabin bound, so that random base Miller-Rabin tests will

also pass with the maximum probability. The tweak is very simple:

we ensure that 2 ∈ A; this forces p1 ≡ 3 or 5 (mod 8); we then

select p1 ≡ 3 (mod 8) so that p1 ≡ 3 (mod 4). Arnault’s method

sets pi = ki (p1−1)+1 where the ki are co-prime to all the elements

of A. Since 2 ∈ A, the ki must all be odd; it is easy to see that this

forces pi ≡ 3 (mod 4) too.
We will give an application of this technique in Section 4.6.

3.1.4 Extension For Composite Fixed Bases. The method of Ar-

nault [2] works (as presented) only for prime bases, and not for

composite bases. Although less common, some implementations use

both prime and composite bases in their Miller-Rabin testing. By set-

ting n ≡ 3 (mod 4), we know that e = 1 when writing n = 2
e ·d +1

for d odd. In this case, the conditions to pass the Miller-Rabin test

simply become a(n−1)/2 ≡ ±1 (mod n). Hence, if n ≡ 3 (mod 4)
is pseudoprime to some set of bases {a1,a2, . . . at }, then n is also

pseudoprime for any baseb arising as a productb = ae1
1
·ae2

2
· · · · ·aett

(mod n) (for any set of indices ei ∈ Z). Therefore we can construct

a composite n that is pseudoprime with respect to any list of bases

{b1, . . . ,bt } (of which any number can be composite) by using the

hybrid method described in Section 3.1.3, but with set A in that

method being the complete set of prime factors arising in the bi .
Note that in this method, n is of the form n = p1p2p3 where each
pi ≡ 3 (mod 4), so we have n ≡ 3 (mod 4) as needed. Moreover,

because of the form of n, the composites generated in this manner

will also meet the Monier-Rabin bound.

Wewill give an application of this technique in Section 4.3, where

we study Mini-GMP [23] which uses Euler’s polynomial to generate

Miller-Rabin bases.

3.2 Lucas Pseudoprimes
Like Miller-Rabin pseudoprimes, Lucas pseudoprimes are with re-

spect to some choice of test parameters. Throughout this work we

follow Selfridge’s Method A [7] of parameter selection, which is

summarised as follows:

Definition 3.3 (Selfridge’s Method A [7]). LetD be the first element

of the sequence 5,−7, 9,−11, 13, . . . for which
(
D
n

)
= −1. Then set

P = 1 and Q = (1 − D)/4.

There are two reasons for studying this particular method for

setting parameters. The first is that it is the parameter choice used

when performing the Lucas part of the Baillie-PSW primality test [7,

50]. The second is that this is the method that both Java [11] and

Crypto++ [13] libraries that we study use in their implementation

of the Lucas test.

The Lucas and strong Lucas-probable prime tests with this pa-

rameter choice are commonly referred to in the literature as Lucas

and strong Lucas-Selfridge probable prime tests. Pseudoprimes for

this parameter choice are well-documented. The OEIS sequence

A217120 [5] presents a small list of them, referring to a table of all

Lucas pseudoprimes below 10
14 ≈ 2

47
compiled by Jacobsen [28].

There is an equivalent sequence A217255 [6] for strong Lucas pseu-

doprimes. Any pseudoprime for the strong Lucas probable prime

test with respect to some parameter set (P ,Q), is also a pseudoprime

for the Lucas probable prime test.

Arnault [2] also presented a scalable method that takes as input a

set of parameter choices {(P1,Q1,D1), (P2,Q2,D2), . . . , (Pt ,Qt ,Dt)}
and returns a compositen of the formn = p1p2 · · ·ph that is a strong

Lucas pseudoprime to the parameters (Pi ,Qi ,Di) for all 1 ≤ i ≤ t .
The method is similar to that for constructing Miller-Rabin pseu-

doprimes for fixed bases, but differs in its details. In particular, the

two construction methods are sufficiently different that it seems

hard to derive a single method producing n that are pseudoprimes

for both the Miller-Rabin and Lucas tests.

3.2.1 A specialisation of Arnault [2] for Selfridge’s Method A.
For Selfridge’s Method A, we know that if we take an n such that(
5

n

)
= −1, then a single test on n with parameter set (P ,Q,D) =

(1,−1, 5) will be performed. We next show how to specialise Ar-

nault’s construction [2] so that it will produce composites n that

are guaranteed to be declared prime by a strong Lucas test for this

parameter set.

Following Arnault’s construction, we consider n of the form

n = p1p2p3 where pi = ki (p1 + 1) − 1 for i ∈ {2, 3}, with k2 and k3
odd integers.

We first note that the pi must satisfy certain conditions with

respect to Legendre symbols (see [2, Lemmas 6.1 and 6.2]):(
D

pi

)
=

(
Q

pi

)
= −1 for all i such that 1 ≤ i ≤ 3.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

286

With our single parameter set (P ,Q,D) = (1,−1, 5), this becomes:(
−1

pi

)
=

(
5

pi

)
= −1 for all i such that 1 ≤ i ≤ 3. (4)

Now

(
−1
pi

)
= −1 ⇔ pi ≡ 3 (mod 4). Since pi = ki (p1 + 1) − 1 for

i ∈ {2, 3}, and the ki are odd, then it is easy to show that if p1 ≡ 3

(mod 4) then it follows that pi ≡ 3 (mod 4) for i = 2, 3 as well.

We also have that

(
5

pi

)
= −1 ⇔ pi ≡ 2 or 3 (mod 5). Therefore

condition (4) is satisfied when p1 ≡ 3 or 7 (mod 20) (by the CRT)

and pi ≡ 2 or 3 (mod 5) for i ≥ 2.

At this point we must choose k2,k3 and add conditions that

ensure the coefficients in [2, Lemma 6.1] are indeed integers. These

conditions are simple:

p1 ≡ k
−1
3

(mod k2) and p1 ≡ k
−1
2

(mod k3).

We choose to fix p1 ≡ 7 (mod 20) and select (k2,k3) = (31, 43).
This produces our final congruence that prime p1 must satisfy:

p1 ≡ 6647 (mod 26660). We now search for a prime p1 that satisfies
this congruence, and such thatp2 andp3 satisfyingpi = ki (p1+1)−1
for i = 2, 3 are also primes with p2 ≡ p3 ≡ 2 or 3 (mod 5).

The smallest solution is the following:

p1 = 486527,p2 = 15082367,p3 = 20920703

This yields a 68-bit n = 153515674455111174527 which indeed does

pass the strong Lucas test using Selfridge’s Method A for parameter

selection. Of course, we can take any (p1,p2,p3) satisfying the

above conditions (which are not too onerous to satisfy), and in this

sense the method scales well to numbers n of cryptographically

interesting size. For example, Appendix B shows a 2050-bit example

generated using the above procedure.

This generation technique is also versatile, as we can simply

include additional parameters in our set dependent on which pa-

rameter selection methods a particular test uses. This allows us to

generate composites that are declared prime by a variety of strong

Lucas tests, at the small cost of solving a few more simultaneous

congruences with the CRT.

4 CRYPTOGRAPHIC LIBRARIES AND
MATHEMATICS PACKAGES

Many cryptographic libraries offering implementations of com-

mon cryptographic protocols also provide a toolkit for handling

arbitrary-precision integer arithmetic, including primality testing.

These functions would be used, for example, for testing the primal-

ity of Diffie-Hellman parameters.

This section provides a survey of primality testing in a broad

and representative range of cryptographic libraries (OpenSSL, GNU

GMP andMini-GMP, Java, JavaScript Big Number (JSBN), Libgcrypt,

Cryptlib, LibTomMath, LibTomCrypt, WolfSSL, Bouncy Castle,

Botan, Crypto++ and GoLang). For each library, we first describe

how it implements primality testing. We then tailor a composite

likely to be declared prime by each particular library, and quantify

the probability that our composite passes the library’s primality

test (so that the primality test fails). Our findings are summarised

in Table 1. Throughout, we will refer to the number of rounds of

Miller-Rabin testing as t .

Table 2: The rounds t of Miller-Rabin performed chosen
by OpenSSL when testing b-bit integers with checks =
BN_prime_checks.

b t b t

b ≥ 1300 2 400 > b ≥ 350 8

1300 > b ≥ 850 3 350 > b ≥ 300 9

850 > b ≥ 650 4 300 > b ≥ 250 12

650 > b ≥ 550 5 250 > b ≥ 200 15

550 > b ≥ 450 6 200 > b ≥ 150 18

450 > b ≥ 400 7 150 > b 27

4.1 OpenSSL
OpenSSL is the most widely used open source cryptographic library

and TLS implementation. Throughout, we consider OpenSSL 1.1.1-

pre6 [48], although the components studied are largely stable across

releases and remain similar to that of the early releases (version

0.9.6 of Sept. 2000).

Analysis. The primality tests in OpenSSL reside in the crypto

library, which also houses a wide range of implementations of

cryptographic algorithms. The services provided by the crypto

library are used by the OpenSSL implementations of SSL, TLS and

S/MIME, and have also been used to implement SSH, OpenPGP,

and other cryptographic standards.

The functions called upon to perform primality testing in the

OpenSSL BIGNUM library are BN_is_prime_ex and BN_is_prime-
_fasttest_ex found in bn_prime.c. The bulk of the primality

testing algorithm is done in BN_is_prime_fasttest_ex where

t =checks rounds of Miller-Rabin are performed, each with a ran-

domly chosen base. The checks variable is provided as a parameter

to the primality verification function. The function BN_is_prime_ex
simply calls BN_is_prime_fasttest_exwithout doing any trial di-
visions. The composites n that we produce have factors much larger

than those in the trial divisions that OpenSSL performs. This means

that, for our purposes, the result of calling either function is equiva-

lent. Therefore we will focus only on BN_is_prime_fasttest_ex.

Number of Miller-Rabin rounds. Both primality testing functions

allow the user to determine the rounds of Miller-Rabin performed.

The documentation indicates that if the user sets the value of

checks to the variable BN_prime_checks, then the number ofMiller-

Rabin iterations t is chosen such that the probability of a Miller-

Rabin test declaring a random composite number n as prime is less

than 2
−80

. The number of rounds performed is then based on the

bit-size b of the number n being tested. The relationship between

these two values is shown in Table 2. The entries here are based on

average case error estimates taken from the Handbook of Applied

Cryptography [40], which in turn references [14].

Base Selection. OpenSSL chooses the Miller-Rabin bases it uses in

a pseudorandom manner, by using OpenSSL’s function BN_rand_-
range()with an optional flag set to PRIVATE. This then calls bnrand
to generate a pseudorandom base a in the range 1 ≤ a < n using a

cryptographically strong pseudorandom number generator with

entropy inputs gathered from the operating system, cf. [55] for

details on OpenSSL’s random number generation.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

287

Pseudoprimes. As mentioned in Section 1, the average case esti-

mates from [14] are designed only to be used on testing numbers

during prime generation. Indeed, OpenSSL correctly applies pri-

mality testing as outlined above in this situation. However, we

found nothing in the documentation to warn about the adversar-

ial setting. Instead it appears to be left up to the user to decide

how many rounds of testing are needed, and if they set checks =
BN_prime_checks then Table 2 would dictate how many rounds

are applied. In this setting, we are able to undermine OpenSSL’s

guarantees by producing composite numbers using the methods

described in Section 3.1.1. That is, we can easily construct numbers

of the form n = (2x + 1) (4x + 1) with x odd and 2x + 1, 4x + 1 prime,

and be sure that n will pass random-base Miller-Rabin tests with

probability roughly 1/4 per test. For example, for n having b = 2048

bits, OpenSSL will apply t = 2 tests, and we have a 1/16 chance of

our composite n deceiving OpenSSL.

4.2 GNU GMP
The GNU Multiple Precision Arithmetic Library [23], GNU GMP or

simply GMP, is a popular open source arbitrary precision integer

library that is widely deployed in mathematical software packages.

We consider the latest version GMP 6.1.2 throughout.

Analysis. GMP provides its own datatype to handle big inte-

gers known as mpz_t. GMP’s primality test is implemented in

mpz_probab_prime_p(mpz_t n, int reps). On input n, this
function performs some trial divisions, then a fixed-base Fermat

test with base 210 = 2 · 3 · 5 · 7, and finally t = reps rounds of Miller-

Rabin; the latter is implemented in function mpz_millerrabin. The
value of reps is selected by the caller. The documentation gives

assurance that a composite number will be identified as being prime

with a probability of less than (1/4)reps and states that “reasonable
values of reps are between 15 and 50”.

Base Selection. GMP uses a pseudorandom number generator

(PRNG) to choose the base used for each Miller-Rabin test. The

PRNG’s state is initialised in the function mpz_millerrabin by call-
ing gmp_randinit_default(rstate), which uses the Mersenne

Twister algorithm. This initial seed state is then used as a source

of randomness in mpz_urandomm(a, rstate, n) to generate a

uniform random integer base a between 2 and n − 2 inclusive.
While GMP offers to seed PRNGs and to explicitly pass them to

functions requiring access to pseudorandom numbers, this option

is not available for primality testing, i.e. each call to mpz_miller-
rabinwill work with an identical PRNG state. Thus, since the initial

seed state is constant, the resulting sequence of a values chosen

by mpz_urandomm for a fixed n is also constant. Note, though, that

different a may be chosen for different n, since the bases a are

sampled uniformly in a range depending on n. This, in effect, means

that the bases chosen when testing n are defined as a function of

n. Therefore the result of mpz_probab_prime_p(mpz_t n, int
reps) for fixed values of n and t is deterministic.

3

Pseudoprimes. For integers n, t , let (a1,a2, . . . ,at) denote the

deterministic list of bases used by GMP, where t = reps. By setting

3
We note that the same sequence of ai may still be produced even for different n
when n is only slightly smaller than a power of two. This is due to the application of

rejection sampling by comparison with n to sample in a range up to n.

n = (2x + 1) (4x + 1) with x odd and 2x + 1, 4x + 1 both prime, we

will obtain a number for which random base MR tests will pass with

probability roughly 1/4. Since (a1,a2, . . . ,at) is pseudorandom, we

may expect that an n constructed in this way would pass the MR

tests in GMP with probability (1/4)t . Thus, for example, for the

minimum recommended value of t = 15, it might be feasible to

construct a suitable n which would always be declared prime by

just trying sufficiently many random values of x .
However, recall that we need 2x + 1 and 4x + 1 to be simultane-

ously prime, and we must also pass the base 210 Fermat test. This

makes the cost of constructing n prohibitively high with this direct

approach, since the probability that random x will give prime pairs

(2x +1, 4x +1) is approximately (2/ lnx)2, and the special form of n
means that a Fermat test will pass with probability roughly 1/2 (see

Appendix C), while passing t rounds of MR testing will happen with

probability only (1/4)t . Putting this together, each x would pass

with probability about 1/22t−1 (lnx)2; for a 99% chance of success

in finding a good x with lnx = s , we would need about 5 · 22t−1s2

trials, each trial involving at least a primality test on 2x + 1. For a
1024-bit n and t = 15 trials (the minimum recommended by GMP),

roughly 2
47

trials would be needed, each involving at least a 512-bit

primality test.

Instead, and partly inspired by the ROCA attack [44], we consider

x of the special form x = kM + 189 whereM is a product of the first

ℓ primes from in the set P = {2, 3, . . . , 373} and k is a randomly

chosen integer of a size to make n = (2x + 1) (4x + 1) have a desired
target size (say, 1024 bits). The selection of x of this form ensures

that 2x + 1 = 2kM + 379 and 4x + 1 = 4kM + 757 are not divisible by
the first ℓ primes in P, boosting the chances that 2x + 1 and 4x + 1
are both prime (the form of x essentially ensures that 2x + 1, 4x + 1
pass trial divisions for the first ℓ primes in P; here we rely on the

fact that 379 and 757 are both prime and larger than 373). The

offset of 189 is specially chosen so that the Fermat test on n to base

210 will always pass for n of the chosen form. This follows from a

bespoke mathematical analysis that is deferred to Appendix C.

Our code for constructing x (and n) of this special form first

picks a target bit-size for n, then selects ℓ as large as possible so

that there are enough choices for k for there to be sufficiently many

candidates that one suitable x will result. For each resulting x , our
code tests 2x + 1 and then 4x + 1 for primality, and (if these tests

pass) applies the GMP primality test for the desired number of t
rounds of MR testing.

For n of 1024 bits, we set ℓ = 69, taking M as the product of

the primes up to 349, and leaving a 51-bit value for k . The choice
of M increases the probability that both of 2x + 1 and 4x + 1 are
prime by a factor of roughly 25, and the form of x ensures that the

Fermat test always passes, giving another factor of 2 improvement.

Using a total of 33,885 core-hours (3.87 core-years) of computation

in parallel on 872 cores running at 2.4GHz, we found the following

1024-bit example passing GMP’s primality test with t = 15 rounds

of MR testing:

n = 2
960 · 0x0000000000000000000000000000000081d564fbdd20b406

+ 2768 · 0x750af7bd334dcf547b131a1d8f8235fd603dba44e22e0775

+ 2576 · 0x0ecf755051d33cb8895413f5d69f5a3df701889e3a69f92e

+ 2384 · 0xdd3f5f36662521877231ba4753a3e7185a89ddb0b2d73a35

+ 2192 · 0x9e976a9bcfeae1a7c026d74bc7515a5010f3cd62c69fa9ad

+ 20 · 0x7b699f40e7a85192e1a4aa95537363fcb93d789aee32bbbf.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

288

We recall that this n will always pass GMP’s primality testing

for 15 MR rounds because the generation of the MR bases depends

deterministically on n.

4.3 Mini-GMP
Mini-GMP is a small implementation of a subset of GMP’s mpn
and mpz interfaces included within GMP 6.1.2 [23]. This library

includes its own miniature implementation of mpz_probab_prime-
_p(n, reps). Themost significant change compared to GMP is that

Miller-Rabin is performed explicitly with a deterministic sequence

of t bases obtained by evaluating Euler’s polynomial a(x) = x2 +
x + 41 at x = 0, 1, 2, . . . , t − 1. It also omits GMP’s Fermat test.

Pseudoprimes. The use of a sequence of deterministic bases in

Mini-GMP enables us to predict the bases that will be chosen for

any particular value t of reps. The bases are not all prime (though

Euler’s polynomial famously does produce many primes), so we

cannot directly use Arnault’s method from Section 3.1.2. Instead, we

use our extension for composite, fixed bases method in Section 3.1.4.

Using this approach, we constructed a 2960-bit composite n =
p1p2p3 that passes up to t = 101 rounds of Mini-GMP’s Miller-

Rabin testing. Of the 101 bases produced by Euler’s polynomial,

86 were already primes and the remaining 15 bases all factorised

into various combinations of the four primes 163, 167, 179 and 199.

The combined list of 90 unique primes was then used with the

method described in Section 3.1.4 to produce n. This n is given

in Appendix D. We note that the documentation for Mini-GMP is

shared with the main GMP library, implying to a user that 15 to 50

rounds of MR testing would be reasonable.

4.4 Java
Java implementations provide their own methods for arbitrary pre-

cision arithmetic, including primality tests, as seen in java.math.-
BigInteger. We consider OpenJDK10 [11], although there seems

to be no significant changes to this section of the code in older

versions such as JDK8.

Analysis. The primality testing function isProbablePrime is

passed a single parameter certainty. This is a value chosen by

the user and is described in the documentation as: “a measure

of the uncertainty that the caller is willing to tolerate: if the call

returns true the probability that this BigInteger is prime exceeds (1−
1/2certainty).” The certainty parameter is then used to determine

how many rounds of testing will be performed. This is done by

calling the function primeToCertainty. This function first sets a

variable n as (certainty+ 1)/2. This would produce a non-integer
result when certainty is even, yet the result is cast to an integer,

implicitly flooring the result.
4

This function also takes into consideration the bit-size of the

number being tested; if it is less than 100, then Miller-Rabin is

performed with at most 50 rounds; if it is greater than 100, then

both Miller-Rabin and a Lucas probable prime test with Selfridge’s

4
Because of the role that n plays in determining the number of rounds of Miller-Rabin

to be performed, the result is that there is no difference in testing isProbablePrime(k)
and isProbablePrime(k+1) when k is odd. This has an effect on the assurance given

to the user — the guarantee of 1 − 1/2certainty is no longer accurate for half of the

values of certainty.

parameters are performed, as described in Section 3.2. In the latter

case, the maximum number of rounds of Miller-Rabin is determined

based on the bit-size of the tested number, similarly to OpenSSL.

In both cases, the user’s choice of certainty will determine the

actual number of rounds of Miller-Rabin performed only if it is less
than the internally-specified number for that bit-size.

Pseudoprimes. For numbers of cryptographically interesting size,

Java performs both Miller-Rabin and Lucas probable prime tests. Us-

ing the method outlined in Section 3.2 we could produce composites

that are guaranteed to be declared prime by the Lucas test. However,

the resulting forms do not fit into any of the known families of com-

posites having high numbers of Miller-Rabin non-witnesses. Hence,

we are unable to construct any numbers passing Java’s primality

test with high probability using our current techniques.

4.5 JavaScript Big Number (JSBN)
The Java Script Big Number (JSBN) library written by TomWu [64]

provides a small cryptographic toolkit for Java Script applications.

Here we study the most recent release JSBN 1.4 from 2013. Ac-

cording to its homepage the library has been used in a variety of

applications, including: Forge (a pure JavaScript implementation of

SSL/TLS), Google’s V8 benchmark suite version 6, the JavaScript

Cryptography Toolkit and the RSA-Sign JavaScript library.

Analysis. The library offers the primality test bnIsProbable-
Prime(t) where the parameter t defines the number of rounds of

Miller-Rabin the user wishes to perform. The code documentation

states that this function will “test primality with certainty ≥ 1− .5t ”.

The function pseudorandomly chooses a base a for each round of

Miller-Rabin from a hard-coded list of all primes below 1000 called

lowprimes.

Pseudoprimes. We can consider this implementation as perform-

ing tests with fixed bases, where the bases chosen are all primes be-

tween 2 and 1000. We can then use Arnault’s method (Section 3.1.2)

to construct composite numbers n that pass JSBN’s primality test

no matter how many rounds of testing t the user wishes to per-

form. For example, we used SageMath 7.6 [54] to obtain a 4279-bit

composite n having 3 prime factors, see Appendix E for the details.

4.6 Libgcrypt
Libgcrypt [31] is a general purpose cryptographic library origi-

nally based on code from GnuPG. The library provides various

cryptographic functions, including public key algorithms, large in-

teger functions and primality testing. We analyse the current stable

version 1.8.2, released in December 2017

Analysis. The documentation for Libgcrypt states that the func-

tion used for checking the primality of primes is gcry_prime_check
which is found in primegen.c. This function then calls check_prime
in which the actual testing performed. This function check_prime
performs three testing steps. The first step is trial division with all

primes up to 4999. The second step is a Fermat test with base a = 2.

The last step comprises t rounds of Miller-Rabin where the bases

are pseudorandomly chosen. We note that t is user defined, but
cannot be set to less than 5. The default for checking the numbers

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

289

produced in the prime generation algorithm is set to 5, but when a

user calls gcry_prime_check the choice of t is hard-coded to 64.

Pseudoprimes. Following Section 3.1, beating steps 1 and 2 of

the testing performed in check_prime is trivial if we choose n as

a Carmichael number of the form n = pqr where p,q, r > 4999.

By using the hybrid technique in Section 3.1.3, we can create a

Carmichael number that also has the maximum number of ran-

domly distributed non-witnesses. We then need only to overcome

the t Miller-Rabin tests with pseudorandom bases. This happens

with probability (1/4)t . If the user calls gcry_prime_check then

the probability with which we can fool this test would be only

2
−128

. Yet performing 64 rounds of Miller-Rabin is quite time con-

suming, and a user may be tempted to bypass gcry_prime_check
and call check_prime with fewer rounds. In this hypothetical situ-

ation, or in versions of Libgcrypt prior to 1.3.0 (2007) [30] (where

gcry_prime_check would call t = 5 rounds by default) the best we

could achieve is passing the test with probability 1/1024 (for t = 5).

4.7 Cryptlib
Cryptlib 3.4.3 [24] is an open source security toolkit library devel-

oped by Peter Gutmann. It provides a variety of services including:

public key algorithms, various cryptographic functions and primal-

ity testing.

Analysis. The primalty test in Cryptlib is the function prime-
Probable found in kg_prime.c and is composed of t rounds of
Miller-Rabin, where the value of t must be between 1 and 100

(inclusive) and is chosen by the user upon calling. The function

then chooses the base for each test incrementally from the start

of a fixed list of primes. This is either a list of the first 54 primes

(2 to 251) or the first 2048 primes (2 to 17863), depending on the

preprocessor directive CONFIG_CONSERVE_MEMORY.

Pseudoprimes. Since t ≤ 100, we will at most only ever test using

the primes between 2 and 541 (the hundredth prime) as bases. We

can therefore generate numbers that are guaranteed to be declared

prime by this test for any valid input t , simply by using Arnault’s

method to generate a composite n that has the first 100 primes as

non-witnesses. Indeed, using the method described in Section 3.1.2

we can produce a 2329-bit composite that is pseudoprime to all

prime bases up to and including 541. See Appendix F for details.

4.8 LibTomMath
LibTomMath v1.0.1 [16] is an open sourcemultiple-precision integer

library with a number theoretic toolkit.

Analysis. LibTomMath includes several methods for primality

testing in the form of trial division, Fermat tests, and Miller-Rabin

tests. The latter two take a single base a and a number n to test as

arguments and return whether or not a is a witness or non-witness.

The main primality test is defined by the function mp_prime_is-
_prime, which takes arguments n (the number to be tested), and

integer t with 1 ≤ t ≤ 256. It then performs some trial divisions (on

a default of the first 256 primes) and then t rounds of Miller-Rabin.

The selection of bases to be used is made similarly as in Cryptlib: it

simply picks incrementally from a list of hard-coded primes (but

this time a list of 256 primes up to 1619 are used).

The documentation of LibTomMath (bn.pdf) discusses the num-

ber of rounds of Miller-Rabin required with the statement: “Gener-
ally to ensure a number is very likely to be prime you have to perform
theMiller-Rabin with at least a half-dozen or so unique bases. ”. This is
complemented with a function mp_prime_rabin_miller_trials
that gives the number of rounds needed to achieve an error rate less

than 2
−96

based on the bit-size of the number tested (similar to that

in OpenSSL and [14]) and a comment in the header file tommath.h
above mp_prime_rabin_miller_trials that states the probability
of a false classification is no more than (1/4)t .

Pseudoprimes. Since the bases are chosen deterministically based

on the value of t , we can achieve a failure rate of 100% simply by

using the method of Section 3.1.2 to produce a composite n that

has the first 256 primes as non-witnesses; such an n is guaranteed

to be declared prime by mp_prime_is_prime, for any value of t
(including the t chosen by mp_prime_rabin_miller_trials that
describes an error rate less than 2

−96
). Appendix G provides a 7023-

bit example of such an n. Much smaller examples can be obtained if

smaller values of t are guaranteed to be used; in particular, we can

easily obtain a 1024-bit example for t ≤ 40 (see also Appendix G).

4.9 LibTomCrypt
LibTomCrypt v1.18.1 [15] is an additional cryptographic toolkit

that shares many resources with LibTomMath.

Analysis. The primality test in LibTomCrypt is called as

isprime(n,t,result). It takes as arguments an n to test and car-

ries out t rounds of Miller-Rabin. The documentation of LibTom-

Crypt advises that each round of Miller-Rabin reduces the probabil-

ity of n being a pseudoprime by a factor of 4, and therefore deduces

that the overall error is at most (1/4)t . LibTomCrypt supports se-

lection from three different big integer libraries at runtime.

If LibTomMath is chosen then isprime will call mp_prime_is-
_prime as described in Section 4.8, passing on parameters n and t . If
TomsFastMath [17] is chosen then isprimewill call fp_isprime_ex,
a function defined in the math library TomsFastMath that performs

equivalent testing as LibTomMath’s mp_prime_is_prime. If GMP is

selected then isprime will call mpz_probab_prime_p as described

in Section 4.2. The value of t used by any of the three choices is

inherited from the original call to isprime, however if t = 0 the

value is overwritten to t = 40.

Pseudoprimes. If either LibTomMath or TomsFastMath are se-

lected, the pseudoprimes described in Section 4.8 (see Appendix G)

will always be declared prime by the primality test. If GMP is

selected we can apply the analysis in Section 4.2 to generate pseu-

doprimes (see Appendix C).

4.10 WolfSSL
WolfSSL 3.13.0 [27] (formerly CyaSSL) is a small SSL/TLS library

targeted for use in embedded systems. WolfSSL provides primality

testing tools based on public domain TomsFastMath 0.10 [17] and

LibTomMath 0.38 [16] functions.

Analysis. The primality test inWolfSSL is the function mp_prime-
_is_prime which takes a number n to be tested and the rounds

of testing t as parameters. This function is directly taken from an

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

290

older version of LibTomMath, namely 0.38 [16]. WolfSSL will use

LibTomMath by default, but can optionally be compiled to use Toms-

FastMath 0.10 [17] at runtime. The primality test in LibTomMath

0.38 is unchanged from that analysed in version 1.0.1 in Section 4.8.

When using TomsFastMath, mp_prime_is_prime calls fp_isprime
which strips the user’s choice of t and simply calls fp_isprime_ex
with the hard-coded value of t = 8. The function fp_isprime_ex
then performs trial division (on a default of the first 256 primes) and

then does 8 rounds of Miller-Rabin using the first 8 primes as bases.

It thus acts equivalently to mp_prime_is_prime in LibTomMath,

but with t = 8.

Pseudoprimes. Since the testing in WolfSSL is in effect the same

as that performed in LibTomMath (but using only 8 rounds of Miller-

Rabin when using TomsFastMath), the composite examples given

in Appendix G are also declared prime with 100% success.

4.11 Bouncy Castle
Bouncy Castle is a cryptographic library written in Java and C# [46].

The primality test in Bouncy Castle Java is based on the BigInteger
class from JDK as described in Section 4.4. Bouncy Castle C# imple-

ments its own primality tests. We analyse Bouncy Castle C# version

1.8.2.

Analysis. The relevant function responsible for primality tests

is located in the class BigInteger. This class provides method

IsProbablePrime which accepts certainty as a parameter. The

method then uses Miller-Rabin tests with t rounds, where t is com-

puted as t = ((certainty − 1)/2) + 1. In each round the base is

selected using a secure random number generator (SecureRandom)
which is provided by the Bouncy Castle library.

The certainty parameter must always be provided to invoca-

tion of the IsProbablePrimemethod. Therefore, a user choice com-

pletely determines how many Miller-Rabin rounds are performed.

For example, this method is directly used in the TlsDHUtilities
class, which provides Diffie-Hellman operations for TLS. When val-

idating the incoming DH parameters, the ValidateDHParameters
method invokes isProbablePrime with certainty = 2. This re-

sults in only a single Miller-Rabin test being carried out.

Pseudoprimes. We can produce composites n using any of the

methods in Section 3.1; such n meet the Monier-Rabin bound and

so will pass Bouncy Castle’s primality testing with probability

(1/4)t with t as derived from certainty. Although there is no

formal documentation, a comment above the primality testing code

indicates that the failure rate of this testing function should be

(1/2)certainty, and so the user’s choice of certainty is achieved.

4.12 Botan
Botan is a cryptographic library written in C++11 [36]. In addi-

tion to the crypto functionality it offers a TLS client and server

implementation. We analyse Botan 2.6.0.

Analysis. The relevant primality test implementation can be

found in numthry.cpp, which contains function is_prime. This
function first evaluates whether a tested number is divisible by

small primes up to 65521. It then performs Miller-Rabin primality

tests with randomly chosen bases. The source of randomness and

the number of Miller-Rabin rounds are based on parameters passed

to the is_prime function. The number of rounds is computed based

on parameter prob and t is set as (prob + 2)/2. Botan’s documen-

tation is very clear on the distinction between testing numbers of

random and possibly adversarial origin. To distinguish the source,

the function is_prime contains a boolean flag is_random. If set,
then the code uses [14] to assign t based on the bit-size of the

number being tested, with a target failure rate less than 2
−80

.

Pseudoprimes. Aswith Bouncy Castle, we can produce composite

n using any of the methods in Section 3.1; such n meet the Monier-

Rabin bound and will pass Botan’s primality test with the highest

probability of (1/4)t where t is from the user’s choice of prob via
t = (prob + 2)/2. In this sense, the test’s guarantees match the

user’s expectations.

4.13 Crypto++
Crypto++ 7.0 is an open source C++ cryptography library originally

written byWei Dai [13]. Crypto++ has a variety of primality testing

algorithms in nbtheory.cpp. These consist of trial division, Fermat,

Miller-Rabin and both strong and standard Lucas probable prime

tests. Crypto++’s primality testing function isprime is performing

both Miller-Rabin and strong Lucas tests. Thus, to fool it, we would

need to find Baillie-PSW pseudoprimes (though the Miller-Rabin

test is a random base test, unlike that performed in Baillie-PSW).

We do not currently know any such pseudoprimes.

4.14 GoLang
The Go programming language (GoLang) 1.10.3 [22] created at

Google in 2009 is an open source project including arbitrary-preci-

sion arithmetic and cryptographic functionality.

Analysis. The relevant primality test implementation can be

found in int.go, which contains function ProbablyPrime(t). The
parameter t defines the number of rounds of Miller-Rabin the user

wishes to perform. The function first performs trial division with

a series of small primes, then t rounds of Miller-Rabin (where

one base is forced to be 2 and all other bases are chosen pseudo-

randomly), and finally a Lucas probable prime test. Therefore the

function is performing a Baillie-PSW test. Before version 1.8, Go’s

ProbablyPrime(t) function applied only the Miller-Rabin tests.

The documentation provided by GoLang makes it clear that the

probability of the function declaring a randomly chosen composite

input to be prime is at most (1/4)t . It also states that “Probably-
Prime(t) is not suitable for judging primes that an adversary may

have crafted to fool the test”.

From an attack perspective it is interesting that the pseudoran-

dom number generator used in this primality test is seeded with

the tested number n. Thus, an attacker can reliably predict the

pseudorandomly generated Miller-Rabin bases.

Pseudoprimes. Since a Baillie-PSW test is being performed, we

know of no composites that are incorrectly declared prime by

GoLang. However, for versions prior to 1.8 released in 2017, we are

able to exploit the insecure nature of the Miller-Rabin base selection

to produce composite numbers that are guaranteed to be declared

prime with respect to a parameter t . Since this is the same method

GNU GMP uses to choose bases for Miller-Rabin, we can use the

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

291

method described in Section 4.2 to produce such composites. We

give an example of a composite n that is always declared prime for

t ≤ 13 in Appendix H.

4.15 Mathematics Software Packages
We have also examined primality tests found in popular mathe-

matics software packages and computer algebra systems, namely:

Magma, Maple, SageMath, SymPy and Wolfram Mathematica. We

include these in our analysis since they might be relied upon by de-

velopers whenmanually checking values in standards or code. Some

of the libraries use deterministic tests for proving primality, though

most still rely on probabilistic methods when testing candidates

larger than 64 bits in size. Maple and SymPy have dependencies on

GMP and therefore inherit the same issues with its primality test as

discussed in Section 4.2; however they all also perform Lucas tests

in their latest versions, so this “cross contamination” does not result

in exploitable weaknesses. Full details are provided in Appendix J.

5 APPLICATION TO DIFFIE-HELLMAN
Validating the correctness of Diffie-Hellman (DH) parameters is

a vital step for verifying the integrity of the key exchange. As

mentioned in the introduction, since the DH parameter set (p,q,д),
with д ∈ Zp generating a group of order q, is public, they can

originate from third-party sources such as a server or a standard.

An adept DH parameter validation function should check that p,q
are both prime and that p = kq + 1 for some integer k . It would
also test that the given generator д generates the subgroup of order

q and that any received DH values lie in the correct subgroup. A

common choice is to set k = 2, and thus p is a safe-prime. For p
that are not safe primes, the group order q can be much smaller

than p, offering performance improvements. The security level is

then based upon the bit-size of q, which must still be large enough

to thwart the Pohlig-Hellman algorithm for solving the Discrete

Logarithm Problem (DLP), which for prime q runs in time O (
√
q).

A common parameter choice is a 160-bit q with a 1024-bit p or a

256-bit q with a 2048-bit p.
More precisely, the Pohlig-Hellman algorithm runs in timeO (

√
t)

where t is the largest prime factor of q. Thus, an attacker armed

with the ability to fool a primality test can supply a sufficiently

smooth composite q such that p = kq + 1 is still prime. For example,

if q is of the form (2x + 1) (4x + 1) this leads to an attack on DLP

with complexity 2
40

resp. 2
64

for the sizes mentioned above.

We stress, though, that none of the constructions for malicious

composites in this work pose a risk to protocols such as Telegram

that insist on k = 2, i.e. which check both q = (p − 1)/2 and p
for compositeness. For example, the construction of Section 3.1.1

would set q = (2x + 1) (4x + 1) and yield p that is always divisible

by 3; moreover q would not be smooth enough for Pohlig-Hellman

to pose a threat for parameters of cryptographically appropriate

size. It is an interesting open question to find a large, sufficiently

smooth composite q passing a primality test with high probability

such that p = 2q + 1 is prime or passes a primality test, too.

We now discuss DH verification functions in various libraries.

For each library, we apply the analysis from Section 4 to check how

robust these libraries are to attack. We note that the other libraries

discussed in Section 4 do not implement a higher-level function for

verification of DH parameters. Of course, this does not prevent an

application from using these libraries to realise its own verification

function. Such an application would inherit the weaknesses and

strengths of the underlying library (when k , 2 is permitted). We

give an example of this scenario for the GMP library below. We

close with a discussion of the important use case of SSL/TLS.

OpenSSL. The file dh_check.c contains the functions DH_check-
_params and DH_check. The former is a lightweight check that just

confirms that p and д are ‘likely enough’ to be valid, by testing

to see if p is odd and 1 < д < p − 1. The latter function is more

thorough and calls BN_is_prime_ex to test the primality of both p
and q = (p − 1)/2. These primality tests are called with checks =
BN_prime_checks, therefore the rounds of Miller-Rabin are deter-

mined by Table 2. This means for example that they will declare

as prime with probability 1/16 composites n of the special form

n = (2x + 1) (4x + 1), for x odd and 2x + 1, 4x + 1 prime, when

n has more than 1300 bits. Since no private data is required, this

testing function’s most likely use-case is checking Diffie-Hellman

parameters that have been generated by someone else (perhaps

from an untrusted server or an unknown origin) and therefore

clearly misuses OpenSSL’s own primality testing functions.

However, since OpenSSL restricts parameter sets (p,q,д) to safe-
primes p, efficient attacks are not feasible. Using our current tech-

niques, we cannot generate a set that will, with high probability,

pass primality testing on both p and q simultaneously and allow

efficient solving of the DLP.

Bouncy Castle. The validation of DH parameters in Validate-
DHParameters extracts p,д from a DH parameter set and then only

checks the primality of p with 1 round of Miller-Rabin. We can

therefore produce composites that are accepted as DH moduli with

probability 1/4. More seriously, q is not given to the check function,

so even with a prime p, the value of д can be chosen so that it has

small order, making Pohlig-Hellman as easy as desired. Even if д
had large prime order, the flexibility in choosing parameters would

allow Lim-Lee small subgroup attacks, as explored in [60].

Botan. The Botan function is_prime is used in the class

DL_Group (located in dl_group.cpp) which is also used for verify-

ing DH parameters. This class contains the verify_group function,
which can be invoked with boolean parameter strong. If strong is
set to true, the is_prime function is invoked with prob=128. This
results in t = 65 Miller-Rabin computations. Otherwise, prob=10
and 6 Miller-Rabin computations are performed. This test is per-

formed for both p and q; the code also checks that q |(p − 1) but
does not insist on p being a safe prime.

Using the methods described in Section 3.1 we can find a q of

160-bits that passes 6 rounds of MR testing with probability 1/4096

such that q has 2 or 3 prime factors. Then we can construct 1024-

bit prime p as p = kq + 1 by using the flexibility in k , and a д
that generates the subgroup of size q. Since this p is indeed prime

and q |(p − 1), all of Botan’s tests on the parameter set (p,q,д) will
pass with probability 1/4096 if strong is set to false. We can

subsequently use the Pohlig-Hellman algorithm to solve the DLP

in the subgroup generated by д and break DH with about 2
28

effort.

See Appendix I for an example of such a parameter set.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

292

GNU GMP. The 256-bit integer q = (2x + 1) (4x + 1) with
x = 0x400286bac15132db85b1c936709f369b passes 15 rounds

of GMP’s primality test mpz_is_probab_prime_p; picking k =
2
1792 + 1254 produce the 2048 bit prime p = kq + 1. The resulting
parameter set (p,q,д) would pass even fully adept DH validation

with certainty if the underlying primality testing was based on

GNU GMP’s code with the minimum recommended number of

rounds of Miller-Rabin.

SSL/TLS. We close by commenting on the situation for DH pa-

rameter testing in SSL/TLS. Here, the server chooses parameters

but only sends (p,д) to the client. There is no requirement that p
be a safe prime. This makes it difficult for clients to validate the DH

parameters (they would need to factor p − 1 and then try different

divisors to determine the order of q) or to perform group mem-

bership tests on received DH values. Consequently most clients

perform only simple sanity checks, e.g. checking that д < {0,±1}.
This makes SSL/TLS vulnerable to a variety of malicious DH param-

eter attacks, cf. [60, 63], and in view of these, exhibiting composite

primes p that fool primality tests would be overkill for the SSL/TLS

standards in their present form. However, our work shows that

even if clients tried to validate DH parameters by factoring p − 1,
finding the order of д and then testing it for primality, they could

still fall foul of malicious DH parameters. And if the SSL/TLS proto-

col were amended so that the server provides full DH parameters,

careful checks would still be needed. Finally we note that only a

small number of fixed, safe prime DH parameter sets are permit-

ted in TLS 1.3. These were recently standardised in RFC 7919 [21],

alleviating these issues for future versions of the protocol.

6 CONCLUSION AND RECOMMENDATIONS
Our work has explored primality testing in the adversarial setting

and its impact for Diffie-Hellman parameter testing. Our main

finding is that leading libraries are not designed for this setting, and

therefore often vulnerable to accepting as prime composite inputs

that are maliciously chosen, see Table 1.

The need for careful distinction between non-adversarial (or ran-

dom) and adversarial primality testing is of course well understood

in the cryptographic research community. However, this distinction

is not necessarily reflected and implemented in cryptographic li-

braries and their documentation. As such, we can generally classify

the underlying cause of the failure in prime classification accuracy

as non-consideration of the adversarial setting. More explicitly, we

can categorise most failures in terms of how the bases for Miller-

Rabin are chosen, i.e. fixed base, predictable bases, insufficient num-

ber of bases. Mini-GMP, JSBN, Cryptlib, LibTomMath, LibTomCrypt

and WolfSSL all fail due to the selection of bases from a fixed list,

whereas GNUGMP and GoLang pre 1.8 both suffer from predictable

bases. OpenSSL, Libgcrypt, Botan and Bouncy Castle C# all have

options to run as many rounds of Miller-Rabin as the user desires,

but either default to, or call the test (elsewhere in the library) with

too few rounds.

Based on our analysis, we make the following recommendations:

• In the absence of known pseudoprimes, we recommend that

libraries switch to using the Baillie-PSW primality test wher-

ever possible. The negative impact on performance is moderate,

and the positive impact on security is significant. An existing

benchmark for such a trade-off is found in the documentation

of the computer algebra system PARI/GP [59] (on which Sage

bases its primality testing functions). PARI/GP implements both

a Miller-Rabin test with user-defined t and a Baillie-PSW test

and indicate [58] that their Baillie-PSW test is about as fast as

their Miller-Rabin test with t = 3.

• Libraries that wish to continue to use Miller-Rabin only (for

example, to maintain a small codebase) should use pseudorandom

bases, cf. Cryptlib, LibTomCrypt, JavaScript Big Number,WolfSSL.

In particular, the bases should not depend only on n, cf. GNU
GMP.

• We also recommend to default to worst-case bounds when pick-

ing the number of iterations and only assume average-case be-

haviour when explicitly instructed to by the user. This may re-

quire changes to interfaces to primality testing code.

• Designers of new protocols should avoid the pitfalls made in

SSL/TLS, where DH parameter validation is made impractical for

clients. TLS 1.3 does so by fixing and requiring use of a small

collection of parameter sets.

Definitions in the cryptographic literature routinely start with “Let

p be a prime . . . ” whereas our work highlights that many imple-

mentations do not necessarily provide strong guarantees for this

assumption to hold. It is thus an interesting open question which

other seemingly innocuous assumptions concerning domain pa-

rameters in the literature can be undermined in a similar fashion.

ACKNOWLEDGEMENTS
Albrecht was supported by EPSRC grant EP/P009417/1. Massimo

was supported by the EPSRC and the UK government as part of the

Centre for Doctoral Training in Cyber Security at Royal Holloway,

University of London (EP/K035584/1). Paterson was supported by

EPSRC grants EP/M013472/1, EP/K035584/1, and EP/P009301/1.

Somorovsky was supported by the Horizon 2020 program under

project number 700542 (FutureTrust).

We thank Christian Elsholtz for initial guidance on the mathe-

matical literature and Ian Miers for assistance with our analysis

of OpenSSL. We are grateful to Brendan McMillion and Nick Sul-

livan from Cloudflare for their generous provision of computing

resources which enabled us to find the examples in Section 4.2.

REFERENCES
[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. 2004. PRIMES is in P. Annals

of mathematics (2004), 781–793.
[2] François Arnault. 1995. Constructing Carmichael numbers which are strong

pseudoprimes to several bases. Journal of Symbolic Computation 20, 2 (1995),

151–161.

[3] François Arnault. 1997. The Rabin-Monier theorem for Lucas pseudoprimes.

Mathematics of Computation of the American Mathematical Society 66, 218 (1997),

869–881.

[4] A Oliver L Atkin and François Morain. 1993. Elliptic curves and primality proving.

Mathematics of computation 61, 203 (1993), 29–68.

[5] Robert Baillie. 2013. OEIS A217120: Lucas pseudoprimes. https://oeis.org/

A217120.

[6] Robert Baillie. 2013. OEIS A217255: Strong Lucas pseudoprimes. https://oeis.org/

A217255.

[7] Robert Baillie and Samuel S Wagstaff. 1980. Lucas pseudoprimes. Math. Comp.
35, 152 (1980), 1391–1417.

[8] Wieb Bosma, John Cannon, and Catherine Playoust. 1997. The Magma algebra

system. J. Symbolic Comput. 24 (1997). https://doi.org/10.1006/jsco.1996.0125

Computational algebra and number theory (London, 1993).

[9] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan

Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla,

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

293

https://oeis.org/A217120
https://oeis.org/A217120
https://oeis.org/A217255
https://oeis.org/A217255
https://doi.org/10.1006/jsco.1996.0125

and Hovav Shacham. 2016. A Systematic Analysis of the Juniper Dual EC Incident.

In ACM CCS 16, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,

Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, 468–479.

[10] Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green,

Tanja Lange, Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav

Shacham, and Matthew Fredrikson. 2014. On the Practical Exploitability of

Dual EC in TLS Implementations. In 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, San Diego, CA, 319–335. https://www.usenix.

org/conference/usenixsecurity14/technical-sessions/presentation/checkoway

[11] Oracle Corporation. 2018. OpenJDK 10 Open Java Development Kit. openjdk.java.
net.

[12] Richard Crandall and Carl Pomerance. 2006. Prime numbers: a computational
perspective. Vol. 182. Springer Science & Business Media. pp.136-140.

[13] Wei Dai. 2018. Crypto++. https://www.cryptopp.com/.

[14] Ivan Damgård, Peter Landrock, and Carl Pomerance. 1993. Average case error

estimates for the strong probable prime test. Math. Comp. 61, 203 (1993), 177–194.
[15] Tom St Denis. 2018. LibTomCrypt. http://www.libtom.net/LibTomCrypt/.

[16] Tom St Denis. 2018. LibTomMath. http://www.libtom.net/LibTomMath/.

[17] Tom St Denis. 2018. TomsFastMath. http://www.libtom.net/TomsFastMath/.

[18] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246 (Proposed Standard). , 104 pages. https://doi.org/10.17487/

RFC5246 Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905,

7919.

[19] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. 2017.

A Kilobit Hidden SNFS Discrete Logarithm Computation. In EUROCRYPT 2017,
Part I (LNCS), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10210.

Springer, Heidelberg, 202–231.

[20] Jeff Gilchrist. 2013. Pseudoprime Enumeration with Probabilistic Primality Tests.

http://gilchrist.ca/jeff/factoring/pseudoprimes.html.

[21] D. Gillmor. 2016. Negotiated Finite Field Diffie-Hellman Ephemeral Parameters

for Transport Layer Security (TLS). RFC 7919 (Proposed Standard). , 29 pages.

https://doi.org/10.17487/RFC7919

[22] Google. 2018. The Go Programming Language. https://golang.org.

[23] Torbjorn Granlund and the GMP development team. 2018. GNU MP: The GNU

Multiple Precision Arithmetic Library. https://gmplib.org.

[24] Peter Gutmann. 2018. CryptLib. http://www.cryptlib.com/.

[25] Andreas Höglund. 2016. MPZ_SPSP’s under GMP 5.0.1.

http://www.hoegge.dk/gmp/gmp501.htm. Last accessed 2016-10-31.

[26] WolfSSL Inc. 2018. Pull request - Prime Number Testing. https://github.com/

wolfSSL/wolfssl/pull/1665.

[27] WolfSSL Inc. 2018. WolfSSL. https://www.wolfssl.com/wolfSSL/Home.html.

[28] Dana Jacobsen. 2015. Pseudoprime Statistics, Tables, and Data. http://ntheory.

org/pseudoprimes.html.

[29] Gerhard Jaeschke. 1993. On strong pseudoprimes to several bases. Math. Comp.
61, 204 (1993), 915–926.

[30] Werner Koch. 2005. GitHub - Libgcrypt changes to de-

fault primality test. https://github.com/gpg/libgcrypt/

commit/78a84338cb36748f17cc444b17ab7033ce384c34#

diff-96a06fc4d0080caec00d423ca08a6c86.

[31] Werner Koch. 2018. Libgcrypt. https://gnupg.org/software/libgcrypt/index.html.

[32] M. Lepinski and S. Kent. 2008. Additional Diffie-Hellman Groups for Use with

IETF Standards. RFC 5114 (Informational). , 23 pages. https://doi.org/10.17487/

RFC5114

[33] LibTomMath. 2018. Pull request - Added Fips 186.4 compliance, an additional

strong Lucas-Selfridge (for BPSW). https://github.com/libtom/libtommath/pull/

113.

[34] Dwayne C. Litzenberger. 2009. PyCrypto 2.1.0. https://pypi.python.org/pypi/

pycrypto/2.1.0.

[35] Telegram FZ LLC. 2018. Telegram Messenger. https://telegram.org.

[36] Jack Lloyd. 2018. Botan. https://github.com/randombit/botan.

[37] Jack Lloyd. 2018. Botan Pull Request - Add Lucas test from FIPS 186-4. https:

//github.com/randombit/botan/pull/1636.

[38] Marcel Martin. 2016. PRIMO–Primality Proving. https://www.ellipsa.eu.

[39] Jud McCranie. 1997. OEIS A014233: Smallest odd number for which Miller-Rabin

primality test on bases less than or equal to the n-th prime does not reveal

compositeness. https://oeis.org/A014233.

[40] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. 1996. Handbook
of applied cryptography. CRC press.

[41] Gary L Miller. 1975. Riemann’s hypothesis and tests for primality. In Proceedings
of seventh annual ACM symposium on Theory of computing. ACM, 234–239.

[42] Louis Monier. 1980. Evaluation and comparison of two efficient probabilistic

primality testing algorithms. Theoretical Computer Science 12, 1 (1980), 97–108.
[43] Shyam Narayanan. 2014. Improving the Speed and Accuracy of the Miller-Rabin

Primality Test. MIT PRIMES-USA. https://math.mit.edu/research/highschool/

primes/materials/2014/Narayanan.pdf.

[44] Matús Nemec, Marek Sýs, Petr Svenda, Dusan Klinec, and Vashek Matyas. 2017.

The Return of Coppersmith’s Attack: Practical Factorization of Widely Used RSA

Moduli. In ACM CCS 17, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, 1631–1648.

[45] Thomas Nicely. 2016. GNU GMP mpz_probab_prime_p Pseudoprimes.

http://www.trnicely.net/misc/mpzspsp.html. Last accessed 2016-10-31.

[46] Legion of the Bouncy Castle Inc. 2018. The Bouncy Castle Crypto Package For C
Sharp. https://github.com/bcgit/bc-csharp.

[47] GitHub The OpenSSL Project. 2018. Pull request - Increase number of MR tests

for RSA prime generation #6075. https://github.com/openssl/openssl/pull/6075.

[48] The OpenSSL Project. 2018. OpenSSL: The Open Source toolkit for SSL/TLS.

www.openssl.org.

[49] Carl Pomerance. 1984. Are there counter-examples to the Baillie-PSW primality

test. Dopo Le Parole aangeboden aan Dr. A. K. Lenstra..

[50] Carl Pomerance, John L Selfridge, and Samuel SWagstaff. 1980. The pseudoprimes

to 25 · 109 . Math. Comp. 35, 151 (1980), 1003–1026.
[51] Michael O Rabin. 1980. Probabilistic algorithm for testing primality. Journal of

number theory 12, 1 (1980), 128–138.

[52] Wolfram Research, Inc. 2018. Mathematica, Version 11.3. Champaign, IL, 2018.

[53] Gerhard Rieger. 2016. Socat security advisory 7 - Openwall oss-security mailing
list. http://www.openwall.com/lists/oss-security/2016/02/01/4.

[54] William Stein et al. 2017. Sage Mathematics Software Version 8.2. The Sage Devel-
opment Team. Available at http://www.sagemath.org.

[55] Falko Strenzke. 2016. An Analysis of OpenSSL’s Random Number Gener-

ator. In EUROCRYPT 2016, Part I (LNCS), Marc Fischlin and Jean-Sébastien

Coron (Eds.), Vol. 9665. Springer, Heidelberg, 644–669. https://doi.org/10.1007/

978-3-662-49890-3_25

[56] SymPy. 2017. SymPy GitHub repository. Available at https://github.

com/sympy/sympy/commit/9e35a94eceaff73b350794dcc70b4a412dc2f6e6#

diff-e20bc128d13486b598a04fce77584900.

[57] SymPy Development Team. 2017. SymPy: Python library for symbolic mathematics.
http://www.sympy.org

[58] The PARI Group 2018. PARI/GP Frequently Asked Questions. The PARI Group, Univ.
Bordeaux. available from http://pari.math.u-bordeaux.fr/faq.html#primetest.

[59] The PARI Group 2018. PARI/GP version 2.9.0. The PARI Group, Univ. Bordeaux.
available from http://pari.math.u-bordeaux.fr/.

[60] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney, Joshua Fried,

Marcella Hastings, J. Alex Halderman, and Nadia Heninger. 2017. Measuring small

subgroup attacks against Diffie-Hellman. In NDSS 2017. The Internet Society.
[61] Waterloo Maple (Maplesoft) 2017. Maple Version 2017. Waterloo Maple (Maple-

soft). Available at https://www.maplesoft.com/products/Maple/.

[62] EricW.Weisstein. 2018. Baillie-PSW Primality Test FromMathWorld- AWolfram

Web Resource. http://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html.

[63] David Wong. 2016. How to Backdoor Diffie-Hellman. Cryptology ePrint Archive,

Report 2016/644. https://eprint.iacr.org/2016/644.

[64] Tom Wu. 2017. JSBN: RSA and ECC in JavaScript. http://www-cs-students.

stanford.edu/~tjw/jsbn/.

A AN OVERVIEW OF ARNAULT’S METHOD
Arnault’s method generates n of the form n = p1p2 . . .ph where

the pi are distinct odd primes such that n is pseudoprime to a set

of t prime bases {a1,a2, . . . ,at }. By [2, Lemma 3.2] we know that

if gcd(a,n) = 1 and

(
a
pi

)
= −1 for all 1 ≤ i ≤ h, then a will be a

Miller-Rabin non-witness with respect to n (this set of conditions is

sufficient but not necessary for a to be a Miller-Rabin non-witness

with respect to n).
Now, by Gauss’s law of quadratic reciprocity, we know that, for

any prime p,
(
a
p

)
can be determined from

(p
a

)
and the values of a

and p taken modulo 4. This in turn means that, for each a, we can
compute the set Sa of possible non-residues mod 4a of potential

primes p. That is, we can compute the set Sa satisfying(
a

p

)
= −1 ⇐⇒ p mod 4a ∈ Sa .

Arnault’s method selects p1 and then determines the other pi from
equations of the form pi = ki (p1 − 1) + 1 where the ki are values
also chosen as part of the method (with k1 = 1). This is done so as

to ensure that the resulting n = p1p2 . . .ph is a Carmichael number.

But the conditions

(
a
pi

)
= −1 for all 1 ≤ i ≤ h imply that, for each

a ∈ A and each 1 ≤ i ≤ h we have ki (p1 − 1) + 1 ∈ Sa . Rewriting

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

294

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
openjdk.java.net
openjdk.java.net
https://www.cryptopp.com/
http://www.libtom.net/LibTomCrypt/
http://www.libtom.net/LibTomMath/
http://www.libtom.net/TomsFastMath/
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC5246
http://gilchrist.ca/jeff/factoring/pseudoprimes.html
https://doi.org/10.17487/RFC7919
https://golang.org
https://gmplib.org
http://www.cryptlib.com/
https://github.com/wolfSSL/wolfssl/pull/1665
https://github.com/wolfSSL/wolfssl/pull/1665
https://www.wolfssl.com/wolfSSL/Home.html
http://ntheory.org/pseudoprimes.html
http://ntheory.org/pseudoprimes.html
https://github.com/gpg/libgcrypt/commit/78a84338cb36748f17cc444b17ab7033ce384c34#diff-96a06fc4d0080caec00d423ca08a6c86
https://github.com/gpg/libgcrypt/commit/78a84338cb36748f17cc444b17ab7033ce384c34#diff-96a06fc4d0080caec00d423ca08a6c86
https://github.com/gpg/libgcrypt/commit/78a84338cb36748f17cc444b17ab7033ce384c34#diff-96a06fc4d0080caec00d423ca08a6c86
https://gnupg.org/software/libgcrypt/index.html
https://doi.org/10.17487/RFC5114
https://doi.org/10.17487/RFC5114
https://github.com/libtom/libtommath/pull/113
https://github.com/libtom/libtommath/pull/113
https://pypi.python.org/pypi/pycrypto/2.1.0
https://pypi.python.org/pypi/pycrypto/2.1.0
https://telegram.org
https://github.com/randombit/botan
https://github.com/randombit/botan/pull/1636
https://github.com/randombit/botan/pull/1636
https://www.ellipsa.eu
https://oeis.org/A014233
https://math.mit.edu/research/highschool/primes/materials/2014/Narayanan.pdf
https://math.mit.edu/research/highschool/primes/materials/2014/Narayanan.pdf
https://github.com/bcgit/bc-csharp
https://github.com/openssl/openssl/pull/6075
www.openssl.org
http://www.openwall.com/lists/oss-security/2016/02/01/4
http://www.sagemath.org
https://doi.org/10.1007/978-3-662-49890-3_25
https://doi.org/10.1007/978-3-662-49890-3_25
https://github.com/sympy/sympy/commit/9e35a94eceaff73b350794dcc70b4a412dc2f6e6#diff-e20bc128d13486b598a04fce77584900
https://github.com/sympy/sympy/commit/9e35a94eceaff73b350794dcc70b4a412dc2f6e6#diff-e20bc128d13486b598a04fce77584900
https://github.com/sympy/sympy/commit/9e35a94eceaff73b350794dcc70b4a412dc2f6e6#diff-e20bc128d13486b598a04fce77584900
http://www.sympy.org
http://pari.math.u-bordeaux.fr/faq.html#primetest
http://pari.math.u-bordeaux.fr/
https://www.maplesoft.com/products/Maple/
http://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html
https://eprint.iacr.org/2016/644
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/

this, we obtain that:

p1 mod 4a ∈
h⋂
i=1

k−1i (Sa + ki − 1), (5)

wherek−1i (Sa+ki−1) denotes the set {k
−1
i (s+ki−1) mod 4a |s ∈ Sa }.

This gives a set of conditions on the value of p1 modulo 4a for

each a ∈ A; typically a few candidates for p1 mod 4a remain for

each value of a. By selecting one of these candidates za for each

a ∈ A and using the CRT, the conditions can be combined into a

single condition onp1 modulom = lcm(4,a1, . . . ,at). Theki values
must be selected so that the sets on the right of (5) are non-empty;

typically, they are set to small primes larger than the maximum of

the a ∈ A so that k−1i exists mod 4a for each a.
Arnault’s method then brings into play other restrictions on

p1 mod ki for each i = 2, . . . ,h. These result from the requirement

that n be a Carmichael number. We omit the full details, but, for

example, when h = 3, the additional restrictions can be written as:

p1 = k
−1
3

mod k2 and p1 = k
−1
2

mod k3

Making the ki co-prime to each other and to the a ∈ A ensures that

another application of the CRT can be made to incorporate these

conditions. The end result is a single condition of the form:

p1 = z mod lcm(4,a1, . . . ,at ,k2, . . . ,kh)

where z is a fixed value determined by the choice of the za values

and the additional restrictions.

Finally, the method repeatedly generates candidates for p1 satis-
fying the above constraint and uses the equations pi = ki (p1−1)+1
to determine the other pi . The method is successful for a given p1
if all of the resulting p1, . . . ,ph are prime.

Evidently, the method is complex and not guaranteed to suc-

ceed on every attempt for a given set A. However, it can be it-

erated with different choices of the ki until the sets on the right

of (5) are non-empty; moreover a back-tracking approach can be

used to select the za values to speed-up the entire process of

constructing p1. The density of all-prime solutions (p1, . . . ,ph)
amongst all possible candidates (p1, . . . ,ph) satisfying p1 = z mod

lcm(4,a1, . . . ,at ,k2, . . . ,kh) and pi = ki (p1−1)+1 for i = 2, . . . ,h
can be estimated using standard heuristics concerning the distribu-

tion of primes of size L = lcm(4,a1, . . . ,at ,k2, . . . ,kh); it is roughly

1/(logh (L) ·
∑h
i=2 log(ki)).

Notice that, the larger the set A, the larger the modulus L in the

condition determining p1 will be. Thus, if A contains many bases,

then larger pi and hence larger n will tend to result. Moreover,

all-prime solutions will become less dense. As an example, when

analysing the primality test in Maple V.2, Arnault [2] considers

h = 3 so n = p1p2p3 andA = {2, 3, 5, 7, 11} (so t = 5); he works with

k2 = 13 and k3 = 41 and arrives finally at the condition:

p1 = 827443 mod 4924920.

Forp1 = 286472803, this yields a 29-decimal digit composite passing

Maple’s fixed-base Miller-Rabin primality test.

We give a short example of the method described for an n of the

form n = p1p2p3 for which the first 10 primes are Miller-Rabin non-

witnesses. That is, we target A = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}.
We start by generating the set Sa of residues modulo 4a of primes

p such that

(
a
p

)
= −1 for each base a ∈ A. We now set k2 = 41 and

a

⋂h
i=1 k

−1
i (Sa + ki − 1) Modulo

2 {3, 5} 8

3 {7} 12

5 {3, 7, 13, 17} 20

7 {15} 28

11 {21, 23} 44

13 {21, 47} 52

17 {5, 29, 31, 39, 63, 65} 68

19 {33, 37, 39, 47, 69} 76

23 {31, 47, 57, 87, 89} 92

29 {19, 37, 41, 55, 77, 95, 99, 113} 116

Table 3: Valuesa and the sets
⋂h
i=1 k

−1
i (Sa+ki−1)whenk2 = 41

and k3 = 101.

k3 = 101; these are coprime to all a ∈ A. We find subsets of the Sa
that meet the requirement:

p1 (mod 4a) ∈
h⋂
i=1

k−1i (Sa + ki − 1).

This gives us a set of residues modulo 4a for each a ∈ A that p1
must satisfy. We give an example of this for the first 10 primes in

Table 3.

We then need to make a choice of one residue za per set. This

choice is arbitrary, but we note that not all combinations of choices

will lead to a solution. We give an example of a good set of choices

in Table 3 in bold.

We then have two additional conditions to add, based on our

choice of the ki values. These can be written as:

p1 = k
−1
3

mod k2 and p1 = k
−1
2

mod k3

In our example, we chose k1 = 41 and k2 = 101 which gives us:

p1 ≡ 28 (mod 41) and p1 ≡ 32 (mod 101).

We can then use the Chinese Remainder Theorem to simultaneously

solve for the 10 conditions implied by the bold entries in Table 3

and the two conditions above. In this case, we have the solution:

p1 ≡ 36253030834483 mod 107163998661720.

The prime

p1 = 142445387161415482404826365418175962266689133006163

satisfies this condition, and yields primes

p2 = 5840260873618034778597880982145214452934254453252643

p3 = 14386984103302963722887462907235772188935602433622363

such that the productn = p1p2p3 is a 512-bit number that is a Miller-

Rabin pseudoprime to the bases 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.

B A LARGE STRONG LUCAS PSEUDOPRIME
Using our SAGE implementation of the method as described in

Section 3.2.1, we construct an n of the form n = p1p2p3, where
pi = ki (p1 + 1) − 1 with (k2,k3) = (31, 43) and

p1 = 2
576 · 0x0000000000000000000000bc508ae6dacc43b138c0e9f22d

+ 2384 · 0xfb99b146bedd0ac93f84e8cfe2780a881fdbad85918a6b75

+ 2192 · 0xbd3af841123bad7438fe08c5433ec8b5fa7b0a1b149876bf

+ 20 · 0x5af73cd9a608317066029e0cff4171ce336ff0b666344757.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

295

Then n = p1p2p3 is a 2050-bit strong Lucas pseudoprime for Self-

ridge’s Method A of parameter selection.

C CONSTRUCTING GMP PSEUDOPRIMES
Recall that we work with candidates x of the form x = kM + 189,
and then consider n = (2x + 1) (4x + 1); we select x so that 2x + 1
and 4x +1 are both prime, and we selectM as a product of the first ℓ

primes from the set P = {2, 3, . . . , 373}. We justify this construction

here.

First, note that 2x+1 = 2kM+379while 4x+1 = 4kM+757, where
both 379 and 757 are prime. Considering 2x + 1 modulo each of the

ℓ prime factors p inM , we see that 2x + 1 = 379 mod p , 0 mod p
becausep < 379; similarly, we obtain 4x+1 = 757 mod p , 0 mod p.
Hence no such p divides either 2x + 1 or 4x + 1, so these numbers

are not divisible by any of the primes in the product M (i.e. the

first ℓ primes). For this reason, with random choices of k and with

x = kM + 189, it follows that 2x + 1 and 4x + 1 are more likely to

be prime than they would be for random choices of x . An analysis

of the effect involves an application of the inclusion-exclusion

principle to determine how many numbers are “sieved out” by the

process. We omit the full analysis here, but note that, for numbers

of cryptographically interesting size and with ℓ = 69 that we use

in the construction of our 1024-bit example for n, the effect is to
increase the probability of primality for each number from 1/ lnx
to roughly 5/ lnx . Since we have two numbers 2x + 1, 4x + 1 whose
primality behaves largely independently over the choice of x , this
yields a 25-fold improvement in the performance of our approach

over the direct approach of trying random x values.

Next, we consider the Fermat test on n with base a = 210, as-

suming the factors 2x + 1 and 4x + 1 are prime. This test com-

putes the value of an−1 mod n and compares it to 1. Now n − 1 =
(2x + 1) (4x + 1) = 8x2 + 6x = 2x (4x + 3), so we obtain:

an−1 = (a4x+3)2x = 1 mod 2x + 1

and

an−1 = a8x
2+6x = (a2x+1)4x · a2x = 1 · a2x = a2x mod 4x + 1.

Here, we have made repeated use of Fermat’s Little Theorem (which

states that ap−1 = 1 mod p for prime p and a , 0 mod p).
It follows that an−1 = 1 mod n if and only if a is a quadratic

residue modulo 4x + 1. It follows that n passes a Fermat test to base

a for roughly half of the possible bases a (since roughly half of the

values a mod n are quadratic residues mod4x + 1).
Now we use the fact that a = 210 = 2 · 3 · 5 · 7 to write:(

210

4x + 1

)
=

(
2

4x + 1

) (
3

4x + 1

) (
5

4x + 1

) (
7

4x + 1

)
.

SinceM is even, we can write 4x + 1 = 8k (M/2) + 757 = 5 mod 8,

hence (2

4x+1) = −1. Also (3

4x+1) = (4kM+757
3

) = (757
3
) = (1

3
) =

1, where we use Gauss’s Law of Quadratic Reciprocity and 3|M .

Similarly, we obtain (5

4x+1) = −1 and (7

4x+1) = 1. Combining

everything, we finally get(
210

4x + 1

)
= (−1) · 1 · (−1) · 1 = 1.

We conclude that the Fermat test for n of the given form with base

a = 210 always passes.

D A PSEUDOPRIME FOR MINI-GMP
Using our SAGE implementation of the composite fixed base tech-

nique as described in Section 3.1.4, we construct an n of the form

n = p1p2p3, where pi = ki (p1−1)+1 with (k2,k3) = (10937, 11257)
and

p1 = 2
960 · 0x0002e394

+ 2768 · 0x1a2fe4aa9e66358347f63732494d08635ccc9ae0a3c17764

+ 2576 · 0xa8e266f4d26758ab804a702c235f63b1e109a81fc007f94b

+ 2384 · 0xec5158f231a30b1cbf96a7fc444c09be62f5a809f049cc5d

+ 2192 · 0xe94b84275c38885c9b61a6bdc44111501527722a8ac87ea2

+ 20 · 0xa5d4498caa2d9d07b34001a508fa53063991206268c547d7.

This yields a 2960-bit composite n that is guaranteed to pass

any number up to and including t = 101 rounds of Mini-GMP’s

primality test.

E AN EXAMPLE PSEUDOPRIME FOR JSBN
Using our SAGE implementation of the method as described in

Section 3.1.2 with A containing the first 1000 primes, we construct

a 4279-bit n of the form n = p1p2p3, where pi = ki (p1 − 1) + 1 with
(k2,k3) = (1013, 2053) and

p1 = 2
1344 · 0x0000000000000000000000000000083dda18eb04a7597ca3

+ 21152 · 0xc6bc877df8a08eec6725fa0832cba270c42adc358bc0cf50

+ 2960 · 0xc82cb10f2733c3fb8875231fc1498a7b14cb675fac1bf3c5

+ 2768 · 0x127a76fc11e5d20e27940c95ceba671fe1c4232250b74cbd

+ 2576 · 0xf8448c90321513324c0681afb4ba003353b1afb0f1e8b91c

+ 2384 · 0x60af672a5a6f4d06dd0070a4bc74e425f3eae90379e57754

+ 2192 · 0x82d26e80e247464a4bb817dfcf7572f89f8b9cacd059b584

+ 20 · 0x0e4389c8af84f6a6ea15a3ea5d62cb994b082731ba4cde73.

This produces an n that is guaranteed to be declared prime by

JSBN’s primality test for any certainty parameter t .

F AN EXAMPLE PSEUDOPRIME FOR
CRYPTLIB

Using our SAGE implementation of the method as described in

Section 3.1.2 with A containing the first 100 primes, we construct a

2315-bit n of the form n = p1p2p3, where pi = ki (p1 − 1) + 1 with
(k2,k3) = (641, 677) and

p1 = 2
576 · 0x24a027808260908b96d740bef8355ded63f6edb7f70de9a9

+ 2384 · 0xb99c408f131cef3855b4b0aea6b17a4469ed5a7ec8b2be62

+ 2192 · 0x66c3a9eae83a6769e175cb2598256da977b9e191b9b847a7

+ 20 · 0xe2cf4750d9bc2d64ccd3406f5db662c22c3fc65e3c56eff3.

This n is declared prime for any valid number of rounds t of
testing performed by Cryptlib’s primality test.

G EXAMPLE PSEUDOPRIMES FOR
LIBTOMMATH, LIBTOMCRYPT AND
WOLFSSL

Using our SAGE implementation of the method as described in

Section 3.1.2 with A containing the first 256 primes, we construct a

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

296

7023-bit n of the form n = p1p2p3, where pi = ki (p1 − 1) + 1 with
(k2,k3) = (2633, 5881) and

p1 = 2
2304 · 0x001e46d6a8

+ 22112 · 0x4d42d684ddb3415e871b661303b1c60f0388dfb9e525f8bc

+ 21920 · 0x51c9de3c9f45627608de2f75dee580d9d4d97cab6fa86dad

+ 21728 · 0x9e6bbfd721f297472480a9bed9508aa884bda9dc56833752

+ 21536 · 0xfac8e89f413a9517d14731277148789987806654a8723593

+ 21344 · 0xa452f960facc9b65f6962cb26131b42650c29c8735083c7e

+ 21152 · 0x6c3a220d77d1cbe7f9628885a7b79465287d4b02ad546007

+ 2960 · 0x1d43306a8813836de5ccd162fbeca4f117552dba01975451

+ 2768 · 0x2f7684e32b0377e76f87b96906f8fa276381db612f76c2c7

+ 2576 · 0xdd97ab4380042c991a4719884377c70065a3614237a41289

+ 2384 · 0x24a1017fbb529443b0ad43c5424753db5b518cee5a1fcd87

+ 2192 · 0xea038ffcad33380db1d89cd4e0b15b480cf0c62e8999924d

+ 20 · 0x0284af806081ea106f35f85a664456166b864650ef034cf3.

This n is declared prime for any valid number of rounds t for the
LibTomMath, LibTomCrypt and WolfSSL libraries.

Also using the method as described in Section 3.1.2 but now with

A containing the first 40 primes, we can construct a 1024-bit n of the

formn = p1p2p3, wherepi = ki (p1−1)+1 with (k2,k3) = (233, 241)
and

p1 = 2
192 · 0x000000000000e17516504450e648b6aedb0c0784e17dda33

+ 20 · 0x63e1956a843076a9e5b6d15a819cf0907a96154d47662d0b.

Thisn is guaranteed to be declared prime by mp_prime_is_prime
with t ≤ 40, and therefore also guaranteed to be declared prime

by mp_prime_is_prime as seen LibTomCrypt 1.18.1 and WolfSSL

3.13.0 for the same values of t .

H AN EXAMPLE PSEUDOPRIME FOR
GOLANG PRE-1.8

Using the method described in Section 4.2, we construct a 1024-bit

composite n that is declared prime by GoLang’s primality test in

versions prior to 1.8 with 100% success for t ≤ 13. We take

n = 2
960 · 0x00000000000000000000000000000000ff7d428a8a9f9ffc

+ 2768 · 0x2ea178501115ec855f1154c054f5f67e15967a139a92fe15

+ 2576 · 0xddf2c49b044820ea8c58551b74f81b45b116da4e1f11b926

+ 2384 · 0x93e0cdc58006bc2052eb9b2fc32c71dd041d1907225e2814

+ 2192 · 0xebe18736f626fea57c965b67b296a6461455226b39aba263

+ 20 · 0x3faeb483847a715c6a01d8d0e401a4aaf8f3d22121fd142f.

I AN EXAMPLE OF A MALICIOUS DH
PARAMETER SET FOR BOTAN

Using our SAGE implementation of the method in Section 3.1.3, we

construct a 160-bitq of the formq = q1q2q3, whereqi = ki (q1−1)+1
with (k2,k3) = (61, 101) and q1 = 537242417098003.

This q is declared prime with probability 1/4096 by Botan’s

verify_group function. By setting k = 2
864 + 134 in p = kq + 1 we

obtain a prime p, and thus by setting the generator д as:

д = 2
960 · 0x0000000000000000000000000000000075ead4f9fa60a06e

+ 2768 · 0x0787a1e0708f5e2055b2899691f7dd73303d5643e57b1636

+ 2576 · 0x66ce328086bd6a0df756175c35549ba7a5ffe517036c0ef1

+ 2384 · 0x44a9542f698255efb66cda28b0b8a5ebebf2c0892f8147d3

+ 2192 · 0x72083822a36098addcd30a1767ccefaae65d1dcd6b45de92

+ 20 · 0x09047326d40b622af6a76218664ba3df13eb0fead02d772a

we obtain a parameter set (p,q,д) such that д generates the sub-

group of order q. The probability that this set is accepted by Botan’s
verify_group function is 1/4096. The DLP in the subgroup gener-

ated by д can be solved using the Pohlig-Hellman algorithm over

each of the 49-bit, 55-bit and 56-bit factors q1,q2 and q3 of q. The
cost is dominated by the largest prime factor, and is approximately

2
28

operations.

J DETAILS OF MATHEMATICS SOFTWARE
PACKAGES

J.1 Magma
Magma V2.23-9 [8] is a mathematical software package designed

for computations in algebra, number theory, algebraic geometry

and algebraic combinatorics.

Analysis. Magma provides a primality testing function that can

either invoke a primality proving algorithm, or what they call a

probable-primality test, depending on the arguments given when

called. The main function call for primality testing is IsPrime(n:-
Proof). The more rigorous method of primality proving is based on

an implementation of the ECPP (Elliptic Curve Primality Proving)

method [4] is used by default, unless the number tested is greater

than 34 × 10
13

or the parameter Proof = False. In this case,

the probable-primality test IsProbablePrime is instead called. By

default, this consists of 20 rounds of Miller-Rabin with random

bases. By setting the optional parameter Bases to some value B,
the number of bases used is B instead of 20.

Pseudoprimes. The pseudoprimes generated in Section 3 attempt

only to overcome probabilistic primality testing and are not de-

signed to overcome primality proving methods such as ECPP.

However, if the parameters are set to invoke the probable-prima-

lity test with default parameters, then composites generated by the

methods in Section 3.1 have a probability of 2
−40

of being falsely

declared prime. This probability is correctly alluded to as being

worst-case by the documentation given for this function.

J.2 Maple
Maple 2017 [61] is a computer algebra system developed by Maple-

soft, that provides a general purpose software tool for mathematics,

data analysis, visualisation, and programming.

Analysis. The primality test in Maple is called as isprime(n) on
a candidate n to be tested. Documentation states that “It returns
false if n is shown to be composite within one strong pseudo-primality
test and one Lucas test. It returns true otherwise”. The function be-

gins with some trial division on a series of small primes before

calling gmp_isprime(n). If the result of gmp_isprime(n) is 1 (i.e.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

297

the number is “probably prime”) and the candidate n being tested

is greater than 5 × 109 ≈ 2
33
, then isprime will go on to perform a

Lucas test on n. In all other cases, the Lucas test is omitted.

Althoughwe cannot directly inspect the code of gmp_isprime(n)
(sinceMaple is proprietary software) we are able to reverse-engineer

this function by calling it on our own input n and assessing how it

performs. Maple’s documentation states that it performs a Miller-

Rabin test and uses GMP for this function, yet since there is no

other code indicative of a Miller-Rabin test in gmp_isprime(n), we
deduce that Maple is calling GMP’s function mpz_probab_prime_p-
(n, reps). Since gmp_isprime(n) takes only a single argument,

we inferred that Maple passes a hardcoded value of reps to GMP.

We were able to verify that the value of reps is actually 5. We

did this by using the methods described in Section 4.2 to generate

composite numbers of various bit-sizes that are declared prime

by mpz_probab_prime_p (n, reps) for reps = 1,2,3,4,5. For
composites that can only pass at most reps = 4, Maple’s gmp_ispr-
ime correctly identifies these as composite. But for composites that

pass reps = 5, the function falsely declares them to be prime.

Pseudoprimes. When testing numbers n ≤ 5 × 109, isprime acts

as a deterministic version of the Miller-Rabin test. We have verified

this by calling mpz_probab_prime_p(n,5) for all n ≤ 5 × 109 and

comparing the results to a list of primes below 5×109. The different

sets of bases that GMP chooses for each n are such that there are

no composites below this threshold that are declared prime by

mpz_probab_prime_p with reps > 3. However, any change made

to the (flawed) way GMP currently chooses its bases for testing

could actually make Maple’s isprime function less accurate (and
no longer deterministic) for n ≤ 5 × 109!

To fool Maple’s primality testing for numbers larger than 5×109,

we would need a composite n passing a Lucas test and 5 rounds of

Miller-Rabin testing. We do not currently know any such n.

J.3 SageMath
SageMath 8.2 (or simply Sage) is a free Python-based open source

mathematics software system originally created byWilliam Stein [54]

but now developed by many volunteers. Sage provides a toolkit

of mathematical functions in areas such as algebra, combinatorics,

numerical mathematics, number theory, and calculus.

Analysis. Although there are many methods one could use to

test the primality of a number in Sage, the flagship function is

is_prime(n, proof) found in /src/sage/rings/integer.pyx.
If called with the value of proof set as True (default when starting

Sage), the function will perform use a provable primality test. If

set to False it uses a strong pseudo-primality test and instead calls

is_pseudoprime(n).
The “provable primality test” called when proof = True is

the PARI [59] isprime function. This then uses a combination of

the Baillie-PSW test, Selfridge “p − 1”, and Adleman-Pomerance-

Rumely-Cohen-Lenstra (APRCL). It is indicated in documentation

that this test can be “very slow” when testing a prime that “has

more 1000 digits”.

The “strong pseudo-primality test” called when proof = False
is less accurate, but much quicker, and is therefore a likely choice

when testing large candidates. The candidates are then tested by

PARI’s is_pseudoprime(n), which consists of a Baillie-PSW test.

Pseudoprimes. Since a Baillie-PSW test is being performed, we

know of no composites that are incorrectly declared prime by Sage-

Math for either boolean value of proof.

J.4 SymPy
SymPy [57] is a free, open source and widely used symbolic com-

putation Python library that provides a computer algebra system

like functionality.

Analysis. Prior to release 1.1 in July 2017, SymPy 1.0 conducted

the primality test found in isprime in the same manner. After some

initial trial divisions, if no factor is found, the function would call

upon a deterministic version of theMiller-Rabin test, using bases de-

scribed in [29, 39]. For numbers larger than≈ 2
53
, the test would call

additional rounds of Miller-Rabin. In all releases up to and including

0.6.6 of 2009, this would simply perform 8 rounds of Miller-Rabin

on the bases {2, 3, 5, 7, 11, 13, 17, 19}. In version 0.6.7 [56], this was

increased to 46 rounds of Miller-Rabin, using the first 46 primes

as bases. The test then remained fundamentally unchanged until

version 1.1 in 2017.

Pseudoprimes. SymPy 1.0 and all previous versions are vulner-

able to composite numbers n generated by the methods in Sec-

tion 3.1.2. These numbers are trivial to construct when the final

Miller-Rabin test is based on the first 8 primes, but even after the

changes made in 0.6.7, all versions prior to 1.1 would wrongly de-

clare composites generated in this manner to be prime. For example,

using the method of Section 3.1.2, we are able to construct a 1024-bit

n of the form n = p1p2p3 that is pseudoprime to all bases selected

by SymPy in all versions prior to 1.1. Here pi = ki (p1 − 1) + 1 with
(k2,k3) = (241, 257) and

p1 = 2
192 · 0x000000000000f8ae31e07964373e4997647e75fa186dd5e7

+ 20 · 0xe42ada869da0b3a333813f8102b1fb5f20623d6543e78a3b.

Since SymPy 1.1 introduced a Baillie-PSW test, we can no longer

generate composites that would be declared prime by SymPy.

J.5 Wolfram Mathematica
Wolfram Mathematica is a computational software package de-

veloped by Wolfram Research that covers scientific, engineering,

mathematical, and computing fields. The current release, Mathe-

matica 11.3 [52], features built-in integration with Wolfram Alpha.

Analysis. Mathematica provides the inbuilt primality test PrimeQ
that is said to perform two Miller-Rabin tests using bases 2 and 3,

combined with a “Lucas pseudoprime” test. Since the source code is

not open source, we are unable to verify the parameters used in the

Lucas test. We note that the documentation references Baillie and

Wagstaff [7], from which Selfridge’s parameters originate. Docu-

mentation of the function also indicates that this procedure is only

known to be correct for n < 10
16

and that “it is conceivable that for
larger n it could claim a composite number to be prime”.

Pseudoprimes. Since a Baillie-PSW test is being performed, we

know of no composites that are incorrectly declared prime.

Session 2C: Crypto Attacks CCS’18, October 15-19, 2018, Toronto, ON, Canada

298

	Abstract
	1 Introduction
	1.1 Overview of Primality Testing
	1.2 Contributions & Outline
	1.3 Disclosure and Mitigations

	2 Background on Primality Testing
	2.1 Fermat Test
	2.2 Miller-Rabin Test
	2.3 Lucas Test
	2.4 Baillie-PSW

	3 Constructing Pseudoprimes
	3.1 Miller-Rabin Pseudoprimes
	3.2 Lucas Pseudoprimes

	4 Cryptographic Libraries and Mathematics Packages
	4.1 OpenSSL
	4.2 GNU GMP
	4.3 Mini-GMP
	4.4 Java
	4.5 JavaScript Big Number (JSBN)
	4.6 Libgcrypt
	4.7 Cryptlib
	4.8 LibTomMath
	4.9 LibTomCrypt
	4.10 WolfSSL
	4.11 Bouncy Castle
	4.12 Botan
	4.13 Crypto++
	4.14 GoLang
	4.15 Mathematics Software Packages

	5 Application to Diffie-Hellman
	6 Conclusion and Recommendations
	References
	A An Overview of Arnault's Method
	B A Large strong Lucas Pseudoprime
	C Constructing GMP Pseudoprimes
	D A Pseudoprime for Mini-GMP
	E An Example Pseudoprime for JSBN
	F An Example Pseudoprime for Cryptlib
	G Example Pseudoprimes for LibTomMath, LibTomCrypt and WolfSSL
	H An Example Pseudoprime for GoLang pre-1.8
	I An Example of a Malicious DH Parameter Set for Botan
	J Details of Mathematics Software Packages
	J.1 Magma
	J.2 Maple
	J.3 SageMath
	J.4 SymPy
	J.5 Wolfram Mathematica

