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ABSTRACT
While it is commonly believed RSA requires two primes p and
q, that is incorrect. Infinite examples of RSA encryption moduli
n = pq exist with p and/or q composite that generate correct RSA
keys. This can be explained in the undergraduate cryptography
classroom with support from public domain technologies like the
python numbthy library [4] and the Gephi graph processor [3].
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1 INTRODUCTION
The RSA cryptosystem [1] ostensibly requires two primes p,q with
pq = n and two integers e,d chosen such that ed ≡

ϕ(n)=(p−1)(q−1)
1,

where ϕ denotes Euler’s Totient function . Its security is based on
the time required to factor n = pq without knowing p or q, since
no polynomial-time factoring algorithms are known.

Since large primes are tested probabalistically, students may ask
what happens if one or both of p,q is composite. In fact, there are
infinite examples of n = pq with p and/or q composite where RSA
continues to function correctly.

2 IDEMPOTENT FACTORIZATIONS AND
CLASSROOM EXAMPLES

A factorization of n into pq is idempotent if λ(n) | (p − 1)(q − 1),
where λ is the Carmichael lambda function. Note p or q may be
composite. The p and q of an idempotent factorization generate
correctly functioning RSA keys [2].

There are infinite n with idempotent factorizations. A list of all
such n < 226 is available at [5]. Rather surprisingly, integers exist
for which all of their bipartite factorizations are idempotent. We
call these integers maximally idempotent [2]. Examples of these are
also available at [5].
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Maximally idempotent integers can be constructed by choosing a
prime p, identifying all divisors ai of λ = p−1 such that pi = ai +1
is prime, and constructing the divisor graph for λ. A divisor graph
has nodes for all ai , with edges from ai to aj if λ/ai | aj . A f -clique
corresponds to an f -factor maximally idempotent integer [2].

Divisor graphs can be visualized with Gephi [3]. The divisor
graph for λ = 36 is shown in Figure 1. It has 6 3-cliques and one
4-clique, corresponding to 7 maximally idempotent integers from
2109 to 63973. Choosing n = 2109,p = 57,q = 37 or p = 111,q = 19
will generate valid RSA keys, even though p is composite.

Figure 1: Divisor graph for λ = 36

3 CONCLUSIONS
Although it is common to tell students two primes are required for
RSA to work, that is not strictly true. Any p,q for which λ(pq) |
(p − 1)(q − 1) will generate working RSA keys.

Knowledge of number theory is not required to present this
material. For students and instructors in a more applied setting,
the examples in [5] can be presented directly to demonstrate that
primality is not required for RSA to function. Python code is also
available at [6]. Teachers in a more theoretical setting can use the
analysis here and in [2] to present these concepts in more detail.
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