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The pursuit of computational efficiency has led to the proliferation of throughput-oriented hardware, from
GPUs to increasingly wide vector units on commodity processors and accelerators. This hardware is designed
to execute data-parallel computations in a vectorized manner efficiently. However, many algorithms are more
naturally expressed as divide-and-conquer, recursive, task-parallel computations. In the absence of data par-
allelism, it seems that such algorithms are not well suited to throughput-oriented architectures. This article
presents a set of novel code transformations that expose the data parallelism latent in recursive, task-parallel
programs. These transformations facilitate straightforward vectorization of task-parallel programs on com-
modity hardware. We also present scheduling policies that maintain high utilization of vector resources while
limiting space usage. Across several task-parallel benchmarks, we demonstrate both efficient vector resource
utilization and substantial speedup on chips using Intel’s SSE4.2 vector units, as well as accelerators using
Intel’s AVX512 units. We then show through rigorous sampling that, in practice, our vectorization techniques
are effective for a much larger class of programs.
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24:2 B. Ren et al.

1 INTRODUCTION

As energy efficiency and power consumption become increasingly relevant issues for processor
and accelerator designers, hardware resources for parallelism are shifting from general-purpose
multicores to throughput-oriented computing with GPUs, accelerators (e.g., Intel’s Xeon Phi), and
increasingly wide single instruction multiple data (SIMD) units on commodity processors provid-
ing efficient, vector-based parallel computation. In fact, because SIMD extensions on commodity
processors tend to require relatively little extra hardware, executing a SIMD instruction is essen-
tially “free” from a power perspective, making vectorization an attractive option.

Vector designs are well suited to executing data-parallel algorithms, where the same computa-
tion is performed on each of a series of data items, and modern vectorizing compilers do a rea-
sonable job of finding parallelism in simple, data-parallel loops and mapping that parallelism to
vector units on general-purpose processors [37, 42]. In addition, programming models, such as
CUDA and OpenCL simplify the task of mapping data-parallel computations to vector hardware
on GPUs [43, 56]. Unfortunately, many algorithms are more naturally expressed as divide-and-
conquer, recursive, task-parallel computations. Such programs do not naturally decompose into
data-parallel representations—there are no dense, vectorizable loops. Hence, it seems that existing
vector hardware is a poor target for such programs.

To address this shortcoming, there have been many proposals to map coarse-grained tasks to
commodity GPUs [1, 58] or to modify GPU hardware to better accommodate recursive parallelism
with fine-grained tasks [27, 46, 54]. In this article, we consider the problem of effectively mapping
fine-grained, recursive, parallel applications to commodity vector units. Addressing this problem
would allow programmers to adopt a standard, task-parallel programming model and easily adapt
existing applications to leverage the otherwise unused computational resources that exist on most
general processors, as well as in newer accelerators such as Intel’s Xeon Phi.

This article focuses on exploiting vector parallelism on a single core. We propose code transfor-
mations that restructure recursive, task-parallel applications to expose their latent data parallelism
that allows for efficient vectorization. A typical divide-and-conquer application can be thought of
as a computation tree, with each interior node in the computation tree representing work done
prior to making a recursive call, children of a node in the tree representing the work done during
each recursive call, and leaf nodes representing work done during the base case. Figure 1 shows
an abstract recursive code—the article’s running example—and its associated computation tree. An
execution of the application is equivalent to a valid tree walk. In particular, the normal sequential
execution of this computation can be represented by a depth-first walk of the tree.

In our experimental evaluation, we observe that our techniques can find vectorization opportu-
nities in all of the benchmarks considered, ranging from small microbenchmarks to larger kernels.
On two hardware platforms, an Intel Xeon E5 with the SSE4.2 instruction set and an Intel Xeon
Phi with the AVX512 instruction set, we could obtain up to 12.23X speedup. We also discovered
that our scheduling policy is effective at maintaining high SIMD utilization while bounding space
usage and incurring relatively low overheads. Overall, this article presents the first set of tech-
niques for mapping application segments that constitute general, recursive, task-parallel kernels
to commodity vector hardware. Our approach allows programmers to leverage the “free” execu-
tion resources available in SIMD units even for programs and kernels that do not appear to be
amenable to data-parallel vectorization.

The above evaluation demonstrates the usefulness of our vectorization approach on several
recursive programs with distinct tree shapes. In order to evaluate the vectorization techniques
beyond the chosen benchmarks, we employ a rigorous sampling strategy to explore the space the
possible tree structures for a given number of nodes and height. We then simulate our vectorization
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foo(8)

foo(4)

foo(4) Q
foo(2) 9

1 void foo(int x) foo(2) foo(2)

2 if (isBase(x))

3 baseCase () foo(2)
4 else

5 11 = inductiveWork1(x) //11 = x/2

6 spawn foo (11)

7

8

12 = inductiveWork2(x) //12 = x/2 i
spawn foo (12)
(a) Simple recursive code. spawn creates new

tasks.

(b) Computation tree. Black boxes are
baseCase computations, dark gray
boxes are inductiveWorkl com-
putations, and light gray boxes are
inductiveWork2 computations.

Fig. 1. Recursive, task-parallel code and computation tree.

strategy on these trees to demonstrates that our approach indeed achieves good SIMD utilization,
on average, for relatively deep trees.
There is trend towards wider SIMD units to maximize performance achieved under a given

power envelope. We use the simulation to estimate the vectorization potential of our strategy
on wider SIMD units. We demonstrates that our approach sustained good SIMD utilization for
moderately deep trees. Our approach continues to achieve good, through reduced, SIMD utilization
as the average number of nodes per level in the tree drops to be comparable to the SIMD width.

Contributions. The key contributions of this article are:

RIGHTS

The code transformations that create a tree walk that can be efficiently vectorized. The
transformations handle three important issues: (1) expose data-parallel computation by per-
forming a breadth-first expansion of the computation tree; (2) reduce the amount of space
used and the number of cache misses by switching to depth-first execution when enough
parallelism has been generated; and (3) when irregularities in the computation tree cause
reduction in available parallelism, regenerate parallel work using re-expansion.

Block management schemes, including a novel stream compaction algorithm to ensure that
parallel work and data accesses remain structured for efficient SIMDization.

Experimental evaluation demonstrating the benefits of the vectorization strategy on eight
benchmarks.

A rigorous sampling approach to evaluate the vectorization strategy on arbitrary tree
shapes with a given number of nodes and tree height.

Simulation-based demonstration of the effectiveness of our SIMDization approach on wider
vector architectures.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 24. Publication date: December 2019.

L I P M



24:4 B. Ren et al.

v €7 [ Values)
b e{true, false} [Booleans]
P €{pr.p2s - -, pi} [Parameters]
Le{li,b,...} [Locals]
re{r,r,...} [Reducers]

ep € BExprs == fp(e1,e2,...) | b
ecExprsz=v | 1l | p | ep | fole, e ...)
sp € BaseStmts ::=return | sp;s, | [:=e
| if e;, then s, else s;, | while (ep) sp
| reduce(r, e)
s; € IndStmts z=return | s;;s; | [:==e
| if ep, then s; else s; | while (ep) s;
| spawnf(e;, ez, ..., ex)
m € Method = f(p1, . . ., px) if ep then s, else s;

Fig. 2. Language for recursive, task-parallel methods.

This article is an extension of prior work by Ren et al. [51]. In addition to detailed experimental
results and an expository SIMD code example, the key additional contributions of this article are
the simulation-based evaluation of our strategy (discussed in detail in Sections 7 and 8), corre-
sponding to the last two contributions listed above, and a discussion of the locality implications
of our vectorization strategy.

2 PRELIMINARIES

Specifying Recursive, Task-Parallel Programs. This article targets the vector parallelization of re-
cursive, task-parallel applications. To clarify the types of applications we transform and parallelize,
we consider a language for specifying recursive, task-parallel programs, defined in Figure 2. The
language is a variant on Cilk [7, 18]. We emphasize this language to clarify the types of programs
we tackle. In our implementations, we transform and evaluate programs written in C that conform
to this language’s restrictions.

A k-ary recursive method evaluates a conditional (a function returning a Boolean) to decide
whether or not to execute the base case or inductive case. The base case is used to produce com-
putation results. Base case statements can assign expression results to local variables (note that
expressions can include calls to arbitrary, stateless, non-recursive functions), perform branching
or loops, or perform reductions over one of a set of global reducer objects [17]. These associative,
commutative updates to global state are used in lieu of return values. Of note, this means that the
execution of multiple base case tasks can be readily parallelized. While using reduction objects
instead of return values may seem limiting, we have found that many recursive methods can be
written in this manner.

The inductive case can perform additional computations and make recursive calls using the
spawn directive, which binds expression values to the arguments of the subsequent recursive in-
vocation. As in Cilk, spawned methods can be executed in parallel with (and are assumed to be
independent of) any subsequent work in the spawning method. This is the source of task paral-
lelism in our language.!

IWe only consider self-recursive programs in this article for simplicity. We also assume the number of spawn calls in a
method can be statically bounded. These are not fundamental limitations of our technique.
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There is an implicit synchronization at the end of each method: all spawned (callee) methods
must return before their parent (caller) method can return. Unlike in Cilk, our language does not
have an explicit sync keyword. No additional work can be performed after spawned tasks “rejoin”
execution. All computations expressed in our language can be viewed as computation trees: spawns
create children of the current task, and base case computations, which do not perform spawns, are
leaves of the computation tree.

In terms of our language description, Figure 1(a) can be interpreted as follows: foo defines the
recursive method, which takes one argument. isBase() performs some computation to decide
whether or not to perform the base case, which is defined by baseCase(). If isBase() returns
false, inductiveWork() and inductiveWork2() perform the necessary computations to set up
two spawns of recursive tasks. While the running example only has two children tasks, in general,
any number of child tasks can be spawned in the inductive case.

Strawman Vectorization. To grasp the difficulties involved in vectorizing a recursive application
described in our language, it is helpful to understand why the obvious solution will not work. Con-
sider executing a task-parallel program written in our specification language using a traditional
multicore, work-stealing runtime, as used by Cilk [7, 14, 18]. In a Cilk-style work-stealing runtime,
a computation tree is run in parallel using a “work-first” scheduling policy [18], where a thread
executes a computation tree depth-first. When a thread spawns a task, it immediately executes the
spawned task and places the executing task’s “continuation” (the remaining work of the function)
in a local pool. Other threads that need work may steal continuations to execute the remainder
of the computation. In the absence of work stealing (i.e., if every thread has sufficient work), this
policy results in each thread executing a subtree of the computation tree in a depth-first manner.

One obvious approach to vectorization is to map this basic execution strategy to vector units. At
a high level, a thread can be assigned to each SIMD lane of a vector unit, and each thread picks a
node in the computation tree and executes it in a vector-parallel manner with (some) other nodes
in the computation tree then proceeds to the next node in a depth-first manner.

Implementing this strategy on SIMD units is extremely difficult. Because each “thread” executes
a different portion of the computation tree, the threads’ stacks grow and shrink at different times.
All of this stack management must be done manually because all of the SIMD lanes are under
the control of a single, actual thread, necessarily incurring extra overhead. Moreover, performing
the stack management in a vector-friendly manner is impossible because the stacks diverge. Thus,
storing/loading data from each thread’s stack will require scatter and gather operations, which
perform poorly on vector units designed for packed loads and stores.

3 FROM TASK PARALLELISM TO DATA PARALLELISM

This section overviews how a recursive, task-parallel program can be transformed to enable vector-
parallel execution. Rather than implementing our schedulers as runtime components separate from
the task-parallel application, as in traditional multicore implementations, our approach to vector-
ization uses code transformations that integrate scheduling decisions into the (transformed) appli-
cation code. That is, we transform the application code to produce particular execution schedules.
We choose this approach to facilitate vectorizing fine-grained tasks. The overheads of runtime
scheduling are tolerable when parallelism can be achieved by threads that run large numbers of
tasks independently. However, exploiting vector hardware requires fine-grained parallelism. To be
vectorized, operations must be grouped together at the granularity of individual instructions.

The key insight behind our vectorization strategy is that through careful code transformations,
recursive, task-parallel algorithms can be transformed into blocked recursive algorithms, which
group together multiple tasks in the original computation tree into blocks that can be efficiently
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1 void bfs_foo (ThreadBlock tb)

2 ThreadBlock next

3 foreach (Thread t : tb)

4 if (isBase(t.x))

5 baseCase ()

6 else

7 11 = inductiveWork1(t.x)
8 next.add (new Thread(11))
9 12 = inductiveWork2 (t.x)
10 next.add (new Thread(12))
11 bfs_foo (next)

Fig. 3. Breadth-first version of code in Figure 1(a).

executed in a vectorized manner with low overhead. These transformations have two effects: (1) by
building these computation blocks out of tasks in the tree that are all at the same depth, our trans-
formations avoid the stack management pitfalls that compromise the naive solution described pre-
viously, and (2) by creating blocks out of individual fine-grained tasks, our transformations enable
the instruction-by-instruction grouping necessary for vectorized execution.

Our vectorization strategy consists of three components:

(1) We transform the original recursive, task-parallel code into blocked code that executes the
computation tree level-by-level in breadth-first manner. Breadth-first expansion exposes
opportunities for parallelism. The blocked structure of the code enables vectorization, and
the level-by-level strategy ensures that the stack frames necessary for vectorized compu-
tation can be organized to support vectorized memory operations.

(2) A pure breadth-first execution can consume large amounts of space (proportional to the
computation tree’s width) and lead to a large number of cache misses due to decreased
locality. Therefore, we produce a second transformed version of the code that implements
a blocked depth-first execution schedule, essentially spawning “threads” for each task in
a block of tasks. Each thread explores its portion of the computation tree in a depth-first
manner, and the threads execute in lockstep, each taking identical paths through their
respective computation subtrees. By executing in a depth-first manner, the amount of
storage required for saving state is proportional to the depth of the tree, and by executing
in lockstep, each “thread” is kept at the same depth of the tree as the other threads in the
block, simplifying stack management.

(3) Because some branches of the computation tree are shallower than others, some threads
may “die out” early, reducing SIMD utilization. To ameliorate this, we have designed a
re-expansion mechanism that toggles between breadth-first execution to generate more
parallel work and depth-first execution to control space usage.

4 TRANSFORMATIONS AND SCHEDULING

This section describes the three techniques discussed in Section 3 in more detail. We focus primar-
ily on the code transformations necessary to achieve particular scheduling policies. The details
regarding how this transformed code can be efficiently vectorized are in Section 5.

4.1 Breadth-First Execution to Extract Data Parallelism

Our first transformation produces a breadth-first, level-by-level traversal of the computation tree
to generate large blocks of work that can be readily vectorized. Figure 3 shows the transformed
code for the code example in Figure 1(a).

The essential idea of the transformation is that each invocation of bf's_foo executes all of the
instances of foo in a given level of the tree before proceeding to the next level. Each task instance
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Extracting SIMD Parallelism from Recursive Task-Parallel Programs 24:7

is assigned to a Thread structure, which contains the information that would be in the stack frame
for that task instance (specifically, any arguments to the task). A ThreadBlock contains threads
for each task at a given level of the computation tree. bf's_foo is initially called with a thread block
containing a single thread whose x field is set to the original parameter to foo.

The transformed code is straightforward. At each spawn directive, rather than invoking the next
method, the code creates an additional thread for the next task, with the appropriate arguments,
and places it into the next thread block for the next level of the computation tree. Once all of the
computation at the current level of the tree has been completed, the transformed code invokes
bfs_foo on next, moving to the next level of the computation tree.

This transformation has several effects. First, consider the loop in line 3 in Figure 3. This is
a dense loop over a vector (of Threads). Through a combination of loop distribution, inlining, if-
conversion, and other standard compiler transformations, this loop can be transformed into a series
of dense loops over individual instructions, which then can be readily vectorized. Note that the or-
der in which tasks at a given level are executed can change after loop distribution. For instance, all
of the left children of the current level can be added to the next thread block before all of the right
children. This reordering is (a) still compatible with the parallel semantics of our language and
(b) potentially beneficial to vectorization, as left children behave similarly and right children be-
have similarly in many task-parallel applications. The most challenging task in vectorization is vec-
torizing the addition of new Threads to the next block in lines 8 and 10. Section 5 describes a gen-
eral stream compaction mechanism that can manage the blocks in an efficient, vectorized manner.

The second effect of this transformation is that it quickly generates substantial amounts of par-
allel work. Although the initial thread block has only one thread in it, the block gets larger at
each level, creating additional parallel work. While this feature is beneficial for keeping the vector
units busy and maintaining high utilization, the size of these blocks can get prohibitive for large
computation trees. The total amount of state that must be tracked can get as large as the width
of the computation tree. Moreover, as the thread blocks get larger, the code begins to suffer from
poor cache performance. By the time execution moves to the next level of the computation tree,
the Threads added to the next thread block will have been evicted from cache.

4.2 Depth-First Execution to Limit Space Usage

To overcome the space explosion incurred by the breadth-first execution strategy, we make the
following observation. Suppose we stop the controlled breadth-first execution after a certain level,
and let each thread in the resulting thread block execute its computation subtree to completion,
as in Figure 4(a). In other words, after some number of rounds of running bf's_foo, we invoked
df's_foo instead. Thus, each thread at the level where breadth-first execution is stopped executes
its computation subtree in a depth-first manner by invoking the original recursive code. This exe-
cution strategy no longer increases space usage exponentially. In particular, if there are T threads in
the thread block when df's_foo is invoked and the depth of the computation tree is D, the space
usage is O(TD).

The downside to this execution strategy is that the loop in line 2 of Figure 4(a) is not as easily
vectorizable as the dense loop in Figure 3. While the loop is still dense, traditional techniques for
vectorizing dense loops do not handle recursive methods. So, a question emerges: have we merely
saved space at the expense of losing vectorization?

In a recent work, Jo and Kulkarni [29] proposed a compiler transformation called point blocking
that targets repeated recursive traversals of trees. In particular, for code that performs multiple
recursive traversals of a tree in parallel, point blocking transforms the code so that multiple
traversal threads are blocked together, and the blocks of threads traverse the tree in lockstep.
For applications such as Barnes-hut when multiple traversals are performed in lockstep, each
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1 void blocked_foo(ThreadBlock tb)

1 void dfs_foo(ThreadBlock tb) 2 ThreadBlock left, right

2 foreach (Thread t : tb) 3 foreach (Thread t : tb)

3 if (isBase(t.x)) 4 if (isBase(t.x))

4 baseCase () 5 baseCase ()

5 else 6 else

6 11 = inductiveWork1(t.x) 7 11 = inductiveWork1 (t.x)
7 foo (11) 8 left.add (new Thread(11))
8 12 = inductiveWork2(t.x) 9 12 = inductiveWork2(t.x)
9 foo (12) 10 right.add (new Thread(12))

1 blocked_foo(left)

(a) Depth-first execution after breadth-first blocked foo (right)

execution.
(b) Blocked depth-first execution.

TIKIRER

(c) Schedule of computation for blocked code after first two levels have been executed in breadth-first
manner. Leaf nodes with the same label are executed as part of the same block.

Fig. 4. Depth-first version and computation schedule.

thread in the block operates on the same part of the tree structure in close succession, leading to
improved locality. Jo et al. [28] later observed that the code structure generated by point blocking
made such tree traversal codes amenable to vectorization.

The key insight for our transformation is that when each thread in a block of threads traversing
the computation tree executes its subtree to completion, the block is performing repeated recursive
traversals not of a literal tree (as in Jo and Kulkarni’s work), but of an abstract computation tree.
While each thread does not “traverse” (execute) exactly the same computation tree, they each
dynamically unfold their computation tree by executing the same code. This is the same as each
thread traversing a single tree but performing slightly different work at each node in the tree.
Point blocking can be directly applied to the code in Figure 4(a) to produce a new, blocked depth-
first execution where all the threads in the block execute their computation trees in lockstep.

Figure 4(b) shows the result of applying point blocking to the depth-first code. The key to the
transformation is that rather than creating a single thread block for the next level of computation,
a separate thread block is created for each spawn directive in the code. Then, the depth-first version
of the code is called for each thread block in succession, so every thread executes its left subtree (to
completion) before executing its right subtree. Figure 4(c) shows the computation order imposed
by the transformation after the first two levels of the computation tree are executed in a breadth-first
manner. Just as in the breadth-first code, all of the threads in a thread block are at the same level
of the tree. Unlike breadth-first code, the thread blocks for the next level of the tree can have no
more threads than the thread block at the current level. As such, space usage is contained.

The transformed code can be vectorized in the same way as the breadth-first code. As in the
breadth-first code, the depth-first code naturally groups together corresponding children. Each
thread block for the next level only contains children from one spawn directive. Because different
spawns in a task often behave differently, this scheduling strategy promotes similarity of tasks that
are vectorized together, reducing vector divergence.
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Fig. 5. Computation after partial breadth-first execution.

There is a downside to blocked depth-first execution: threads can only be executed in parallel if
they both visit the “same” node in their computation tree (in other words, if the computation trees
overlap). If one thread in a block executes its base case while the other threads continue recursing,
the size of the next level block will be smaller. If a block becomes too small, there may no longer
be enough threads in the block to keep all of the SIMD lanes in a vector unit occupied, resulting
in underutilization and lost parallelization opportunities. For example, consider the stylized com-
putation tree in Figure 5 with the dashed triangles representing the rest of the tree. If breadth-first
expansion has executed the black nodes of the computation tree, there are now four threads ready
to execute the gray portions of the tree. Blocked depth-first execution will cause the four threads to
execute their code in lockstep. However, threads 1 and 4 in Figure 5 have left-biased computation
trees, while 2 and 3 have right-biased subtrees. While threads 1 and 4 execute their left subtrees,
2 and 3 must sit idle. With only two active threads in a thread block, we cannot fully use even a
four-way vector. The next section describes a scheduling policy to address this under-utilization.

4.3 Re-Expansion to Improve Utilization

To mitigate the under-utilization that can arise due to lack of overlap between different threads’
computation trees, we propose a scheduling strategy called re-expansion. Essentially, re-expansion
toggles back and forth between breadth-first execution and depth-first execution: the former to
generate work when thread block sizes get too small, and the latter to execute work in bounded
space when thread block sizes get too large. For example, if re-expansion were applied to the
Figure 5 computation tree, then after threads 2 and 3 drop out of the left portion of the depth-first
computation, threads 1 and 4 can switch back to breadth-first execution, generating more work to
run in parallel. Intuitively, re-expansion looks for more parallel work in the subtrees of the “live”
threads during depth-first execution.

Implementing re-expansion is straightforward because both the breadth-first and blocked depth-
first code take thread blocks as arguments, so each can call the other to switch execution strategies.
Figure 6 shows how re-expansion can be integrated into the transformed code.

Re-expansion requires two thresholds: a max_block_size that triggers depth-first execution
when the blocks are getting too big and a reexpansion_threshold that triggers breadth-first
execution when there is too little parallel work. These thresholds are application-specific, as they
are governed by the computation tree structure. To set these thresholds, we pick a target space
utilization, T, 4y (i.e., the maximum number of threads we want active at a time), and determine
the expansion factor, e, of an application (the maximum number of spawns in a task). We set both
max_block_size and reexpansion_threshold to T,,qx /e, so that after one round of breadth-first
execution, we cannot create more than T}, threads.
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1 void bfs_foo (ThreadBlock tb)

2 ThreadBlock next

3 foreach (Thread t : tb)

4 /+ same as foreach in Figure 3 lines 4-10+/
5 if (next.size() < max_block_size)

6 bfs_foo (next)

7 else

8 blocked_foo (next)

10 void blocked_foo(ThreadBlock tb)
11 ThreadBlock left , right
12 foreach (Thread t : tb)

13 /+ same as foreach in Figure 4(b) lines 4-10 =/
14 if (left.size() > reexpansion_threshold)

15 blocked_foo(left)

16 else

17 bfs_foo(left)

18 if (right.size() > reexpansion_threshold)

19 blocked_foo(right)

20 else

21 bfs_foo(right)

Fig. 6. Re-expansion pseudocode.

4.4 Overall Transformation Algorithm

Figure 7 formalizes our transformation strategy using a set of rewrite rules. The rewrite functions
X[[-1 operate on on methods, m, and inductive statements, s;, as specified in Figure 2. Each rewrite
rule takes a method or statement and rewrites it into a new method or statement. The rewrite
functions take as an argument a state variable that specifies whether the rewrite is for the breadth-
first version of the code or the blocked version of the code (corresponding to Figures 3 and 4(b),
respectively). Portions of the rewritten code in bold represent fixed output code, while portions in
italics depend on the details of the statement being rewritten.?

At a high level, the rewrite rules operate as follows: A method is rewritten into three separate
methods: a breadth-first version of the method, a blocked version of the method, and a method
with the same signature as the original method that invokes the breadth-first version. We also
insert a structure declaration that specifies what an individual stack frame of a Thread should
contain, namely, each of the parameters to the method call.

The breadth-first and depth-first methods are similar, except the breadth-first version has one
ThreadBlock (a vector of Thread s), called next, while the depth-first version has an array of
Thread-Blocks, nexts, with one ThreadBlock per spawn call (we assume that each spawn in
the original method body has an implicit, consecutively-assigned identifier, denoted id; #spawn
is the total number of spawn calls). After processing the method bodies for each Thread in the
ThreadBlock, the breadth-first method checks the re-expansion threshold and invokes itself on
the next, while the depth-first method does so for each block in nexts.

The inductive statement bodies of both methods are rewritten using similar rules. In both cases,
return statements are rewritten to continue s so that all threads in a block can be processed before
returning from the method. Statement composition just recursively rewrites the two composed
statements. All statement types not shown in Figure 7 (e.g., conditionals and while loops) invoke
the rewrite rules on any sub-statements (as in statement composition) but leave the rest of the
statement unchanged. The key to the transformations is the rewritten spawn call. It is replaced

2 As noted in Section 2, all of our benchmarks are written in C restricted to operations consistent with the specification
language. Transforming those C programs uses analogous rewrites.
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X[return]lz = continue

Xlisis sille = XIsilly s Xl[s;

X[[spawn[l-d]f(el, [Z T ex)[([m — bfs]) =
next.add(new Thread(ey, ey, . . ., ex))

Xl[spawny; 4 f (€1, €2, . . -, ex)[([m — blocked]) =
nexts[id].add(new Thread(e;, e, . . ., ex))

X[f (1, - - - pi) if b then s;, else s; ]|z =
struct Thread {typeof(p1) : p1 . . . typeof(pr) : px }
fors(ThreadBlock tb)
ThreadBlock next;
for Thread t : tb
pi=tps. . pr=tpr;
if b then s;, else X[[s; [([m — bfs])
if (next.size < max_block_size) fi,i(next)
else filocked(NeXt)
Jolocked (ThreadBlock tb)
ThreadBlock nexts[#spawn]
for Thread t : tb
Pr=tpis. . pr=tpgs
if b then s;, else X[[s; ]([m +— blocked])
for ThreadBlock next : nexts
if (next.size > reexpansion_threshold) fiocked (N€XE)

else fi,i(next)

ThreadBlock init;
initadd(new Thread(p, . . ., Pr))s
ﬁ)fs (init)§

Fig. 7. Rewrite rules to implement transformations.

by a directive to add a new Thread (i.e., a new stack frame) to the appropriate next block. In the
case of the breadth-first rewrite, we add the Thread to the single block. In the case of the blocked
rewrite, we add the Thread to the block corresponding to the spawn being rewritten.

4.5 Locality Implications of Vectorized Execution

In a task-parallel recursive program executed sequentially, we expect there to be locality between
a node in the computation tree and its left child—the left child executes immediately after its
parent, so locations touched by the parent are likely still in cache when the left child executes. In
contrast, we would expect poor locality between a task and any of its other children: between the
execution of a parent node and its second child, the entire left subtree must be executed, evicting
the parent’s data from cache and resulting in cache misses. As a rough shorthand, we can say that
the locality inherent to recursive task parallel programs is between parents and left children. A
natural question to ask, then, is how this locality is affected by our vectorized scheduling strategies.

We can analyze this question in terms of reuse distance. The reuse distances for locations touched
by both the parent and its left child are constant.? In contrast, the reuse distance between a node
and its right child is proportional to the size of the entire left-side computation tree—because this

3This analysis presumes that the working set size of each task is constant, and the same for every task.
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reuse distance is related to the input size, to a first approximation we can say that right children
have no locality, and can be ignored.

The blocked execution strategy imposed by our transformations increases the reuse distance of
all accesses. No longer do we execute a left child immediately after its parent—we must execute
all of the other tasks in a given block before proceeding to the next level block. We observe two
key properties of our execution strategies.

OBSERVATION 1. If a task is executed in a particular block, its left child (if one exists) will always
be in the next block to execute.

To see why this is, consider the execution of a block of tasks, b. If the block is small enough that
the next block of tasks will execute in breadth-first mode, then that next block will contain all the
child tasks of the tasks in b, including all of their left children. If the block is too large, so that our
scheduling strategy switches to depth-first mode, then the children of the tasks in b are grouped
into several blocks. The first of these blocks to execute will be the block containing all of b’s left
children.

OBSERVATION 2. A left child will never execute more than 2xmax_block_size tasks after its
parent.

This observation follows directly from the first observation, as well as the fact that blocks can
never contain more than max_block_size tasks.

These two observations together mean that the reuse distance between a parent and its left child
will never increase by more than a factor of twice the block size. Moreover, since max_block_size is
a parameter under programmer control, this block size can be chosen, based on the cache size, to
ensure that data touched by a parent task will remain in cache when the left child executes. Hence,
our execution strategy can be tuned to preserve the locality of the original sequential program.

5 EFFECTIVE SIMD IMPLEMENTATION

Thus far, the discussion has focused on maximizing opportunities for vectorization by exposing
the data parallelism latent in recursive-parallel programs. In this section, we discuss the mech-
anisms employed to translate this opportunity into actual performance. This involves replacing
operations on individual threads with operations that span the entire thread block, maximizing
the use of vector instructions in place of scalar instructions, and improving the data and operation
structures to enable vectorized execution. We note how each aspect of a function body—stack man-
agement, base case check, and base case and recursive execution—can be optimized. We present
the implementation and optimization details in terms of our running examples.

Optimized Stack Operations. Performing a blocked depth-first recursive call or a breadth-first
re-expansion allows the stack operations of individual threads to be optimized. We exploit the fact
that all recursive calls invoke the same function, merging the stack frames of individual threads
into a thread block, which is allocated and deallocated with a constant number of instructions.
The stack management overhead thus reduces with increasing block size. Within each thread
block, all instances of individual data elements across all stack frames are stored contiguously.
This structure-of-arrays layout avoids expensive scatter/gather operations and simply replaces
the scalar stores and loads in individual threads with the corresponding vector instructions. More-
over, the software stack is further optimized by a reuse strategy. In the breadth-first execution,
our transformation does not handle any return values, and the old stack blocks are not necessarily
preserved while we are working on the new ones. Thus, we can always reuse the old blocks to
further limit the memory usage. For depth-first execution, because we need to traverse up and
down the computation tree, we keep a block for each level and reuse it for each access.
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AoS to SoA Transformation. To generate the structure-of-arrays layout required by our optimized
stack operation, we statically apply the standard transformation from array-of-structures (AoS) to
structure-of-arrays (SoA) to our software stack blocks if the whole program meets our language
specification, such as classic recursive fibonacci and n-queens algorithms. If only the kernel meets
our language specification (e.g., uts), this transformation is implemented dynamically by inserting
two transformation functions manually: AoS to SoA before the kernel and SoA to AoS after the
kernel to minimize the necessary code analysis and maintain the code reuse across other functions.

Vectoring Operations. The first operation a task performs is to check whether or not to exe-
cute the base or recursive case. This operation, denoted by isBase(), is performed by all threads
and can be readily vectorized. The code is transformed into an iterative loop that performs the
isBase() computation across all threads in a block. This loop is then vectorized by the compiler.
In general, we use the compiler’s vectorization support where possible and introduce explicit vec-
tor instructions only where necessary. This way, we rely on the compiler to manage register allo-
cation, scalar optimizations, and to choose appropriate instruction sequences.

The result of executing isBase() is a vector of boolean flags (characters or bits depending on
the instruction set) that denotes if the branch is to be taken by each thread. The base and recursive
cases in the different threads can now be executed using vector instructions in which elements
of the vector are masked using the Boolean flags. However, this would significantly complicate
vector code generation. Not all scalar instructions have equivalent masked vector counterparts. In
addition, such masked execution significantly degrades vector utilization and performance.

Stream Compaction. Utilization can be improved by partitioning the threads into groups that
perform identical actions. All threads performing the base case need to be separated from those
performing the recursive case. Once grouped, the threads performing the same action, be it base
or recursive case, can be vectorized without masking. For breadth-first re-expansion, it is also
beneficial to sort the recursive calls based on their spawn identifier (see Section 4.4). The ordering
of the recursive calls is ensured during breadth-first expansion by enqueuing the ith recursive call
by all threads before any (i + 1)-th calls. Grouping the threads into those executing base case or
recursive case is performed using stream compaction:

1 foreach (Thread t : tb)

2 if (t.isBase) baseCase.add(t)

3 else recursiveCase.add(t)
i

//vectorized execution of baseCase threads
//vectorized execution of recursiveCase threads

The most efficient approach to vectorizing the stream compaction operation—the foreach loop
in the preceding code snippet—depends on the instruction set and space requirements. The Xeon
E5 supports the shuffle instruction that can perform an in-place permutation of the contents of a
vector register. Stream compaction corresponds to a permutation that gathers the threads taking
the same branch path. This shuffle operation can be encoded as:

pos=0

shuffleOp = Thread[tb.size ()]

1

2

3 foreach (Thread t : tb)

4 if (t.isBase) shuffleOp[pos++] =t

We further optimize this loop by pre-computing shuffleOp values for all possible boolean
vectors and placing them in a shuffle table. For a vector width (the number of elements can
be processed by a single vector instruction) t, there are 2° possible entries in the shuffle table.
Stream compaction now involves one lookup into this table to determine the desired shuffle
and executing the vector shuffle instruction. While efficient in time, the space overhead of the
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Py S
Input: [8,0,0,9,..]  Output: [0, 0,0, 0, ..] shuffleTable =
([0, 1],
misLeafL : [0, 1] misLeafH: [1, O] [0, FI,
[1,F],

ShuffleTable [01:] = [0, F] ShuffleTable [102] = [1, F]:| [F, F]]
R T D,
 ShuffleFlag = [0, (1+2), F, F1 = [0, 3, F, F] AdvPlr =
: advPtr = AdvPtr[01.] + AdvPtr[10:] =2 -
B lasasenasesnse asasenasesnse nsatanasesnsesnsatenasesnsasasatesasesnsasasagt [2’ 1’ 1, 0]

Input: [8, 0, ,9),'...] ‘L Output: [8,9, 0,0, ...]

ptr ptr += advPtr

Fig. 8. An illustration simulating four-way SIMD stream compaction using two-way SIMD shuffle tables.

shuffle table is exponential with the vector width. We address this by computing the shuffle to be
performed using a smaller shuffle table and a multi-pass algorithm. This is conceptually similar
to factorization-based implementations of various permutation operations [15, 32, 48].

Let us consider the compaction of a vector X into another vector Y, denoted by compact(X[0 :
N] — Y[0: NJ]). We observe that this can be factorized as:

compact(X[0 : m] — Y[0 : nnz(X[0 : m])]);
compact(X[m+1: N] — Y[nnz(X[0: m]) + 1: N])

where nnz(X[a : b]) is the number of predicates of interest (e.g., the number of non-zeroes) in
vector X between positions a and b. In addition to the shuffle table, we pre-compute and store
the nnz() function into an advance table, denoting how far the position of the next compaction
must be advanced. Note that the table size is exponential with the vector width, while the factor-
ized compaction requires a number of instructions linear in the number of factorization steps. For
example, we can reduce the size of the shuffle tables by a factor of 256 (from 2'° to 2%) by using
an eight-way table instead of a 16-way table. This incurs only a few additional instructions rather
than 16 that would be required by a sequential compaction. As vector width increases, which is ex-
pected on future systems targeting energy-efficient performance improvements, the benefits from
this approach improve even more.

To further clarify our stream compaction algorithm, consider a simplified example shown in
Figure 8. This example shows how to use two-way SIMD shuffle tables to implement four-way
SIMD stream compaction. In the input array, @ represents base tasks (leaf tasks), and non-@ denotes
inductive tasks (non-leaf tasks). The bit masks in leaf masks arrays, mIsLeaflL and mIsLeafH,
correspond to [8, 0] and [0, 9] in the input array, respectively, and 1 indicates base tasks (leaf tasks),
while @ denotes inductive tasks (non-leaf tasks). In the two-way SIMD shuffle table, ShuffleTable,
@ and 1 are indexes of the input array, and F means that no element from input array will be shuffled
to this position. The crucial step of this algorithm is to look up the two-way SIMD shuffle table
(ShuffleTable) according to the two-way leaf masks (mIsLeaflL and mIsLeafH) and combine
the two shuffle arrays with two indexes into one shuffle array with four indexes. In this step, we
must look up another array according to the leaf masks, AdvPtr, which maps the number of
non-leaf tasks to the leaf mask, to find the combination position, and add the SIMD width (2
in this case) to the indexes in the second shuffle table lookup (ShuffleFlag = [0, (1+2), F,
F1). In our real implementation, we use eight-way SIMD shuffle tables to implement 16-way SIMD
stream compaction. The following list shows the streaming compaction code for SIMD width of
16 on CPU.
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1 #define lhalf(m) (m& 0x000000FF)
2 #define uhalf(m) ((m & 0x0000FF00) >> 8)
#define uoffset 0x0808080808080808

w

6 /«Streaming Compaction for SIMD Width of 16 on CPU+/
7 int streamCompactionCPU(__m128i «vec_n, unsigned mask)
8 unsigned char sv[16]; unsigned nnz = 0;

9 __ml128i vec_sv;

10 /+Create the 16 bytes shuffle variable half by half«/
1 sv[0:8] = shuffle_table[lhalf (mask)]

12 nnz += advance_ptr[lhalf(mask)]

13 sv[nnz:nnz+8] = uoffset +

14 shuffle_table [uhalf (mask)]

15 nnz += advance_ptr[uhalf(mask)]

16 sv[id:16] = OxFF // fill rest with OxFF

17 /«Apply Streaming Compaction on vec_n=x/
18 vec_sv _mm_load_si128 ((__m128i «) sv)
19 svec_n _mm_shuffle_epi8( «vec_n, vec_sv)
20 return nnz

The current generation Xeon Phi does not have a vector shuffle instruction. However, it has a
masked scatter operation that can store a subset of the elements in the vector into memory. We
observe that the mask for the scatter operation can be computed as an exclusive prefix sum. An
exclusive prefix sum of a vector X into vector Y is defined as:

<i
Y[i] = ) (X[j] should be compacted ? 1 : 0)
J

~.

I
(=]

As in the case of the shuffle table, we store the prefix-sum function into a table. The prefix-sum
computation can be factorized when combined with the advance table. Thus, the space overhead
can be reduced at the expense of a few additional instructions to compute the masked scatter
instruction. Therefore, for both Xeon E5 and Xeon Phi, we can perform stream compaction in a
vectorized fashion with low space and time overhead.

Selective Manual Vectorization. After applying AoS to SoA transformation to our software block,
theoretically, the blocked recursive kernel is ready to be vectorized either by compiler or by hand.
Because modern product compilers (e.g., icc) have limited ability to handle branches and cannot
support streaming compaction operations automatically, we need to manually insert vectoriza-
tion intrinsics whenever there are some application-specific branches in the recursive kernel. We
have inserted the stream compaction function as a prepared code snippet to handle the branches
between the isBase and inductive cases.

6 EVALUATION

In empirically evaluating the performance of our techniques across eight recursive benchmarks,
we note that vectorization of recursive benchmarks introduces overheads of various kinds. The
data-parallel rather than strict depth-first execution can increase register pressure as well as the
cache footprint of each function invocation. As the block size gets larger, the footprint can exceed
the cache sizes, degrading cache locality. Stream compaction incurs table lookup costs, additional
instructions, and memory operations that introduce additional overheads. In addition, the benefits
of vectorization are limited by both the availability of enough concurrency (e.g., due to the presence
of scaler instructions that are not effectively vectorized by the compiler across threads) and the
ability of the blocked depth-first and breadth-first schemes to expose this concurrency in the form
of data parallelism. This section shows that the vectorization gains from our techniques outweigh
the overheads across most of our benchmarks.
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Table 1. Benchmarks

Benchmark Problem #Lev #Task #SLoc  #vSLoc M

E5 Phi
knapsack long 31 2.15B 217 81 87 84
fib 45 45 3.67B 29 48 9.0 84
parentheses 19 37 4.85B 37 58 10.5 70
nqueens 13 14 59.8M 64 57 4.9 48
graphcol 3(38-64) 39 42.4M 139 47 31 417.6
uts 20 1572 136K 655 72 214 165
binomial C(36,13) 36 4.62B 36 62 83 74
minmax 4x4 13 2.42B 246 224 181 121

All benchmarks use 16-wide vector operations, except knapsack and UTS on the Xeon E5, which employ
eight-wide and four-wide vector operations, respectively. #Lev is the number of computational tree levels,
#SLoc is the source lines of code of the base version, and #vSLoc is the SIMD source lines of code in our
vectorized version.

6.1 Evaluation Platform and Benchmarks

We evaluate our transformations on the Intel E5-2670 and Xeon Phi. The E5 is a 8-core, 2.6-GHz
Sandy Bridge processor with 32-KB L1 cache per core, 20-MB last-level cache, and 128-bit SSE 4.2
instruction set.* The Xeon Phi is a 61-core SE10P co-processor running at 1.1 GHz with 32-KB L1
cache and 512-KB L2 cache per core, supporting 512-bit AVX512 instructions. Recall that our focus
is single-core vectorization: all of our experiments use a single core of the target platform.

We evaluated our technique on eight benchmarks, ranging from microbenchmarks to larger ker-
nels. The benchmarks are written in C, although each obeys the restrictions of the specification
language in Figure 2, notably that recursive tasks be independent from each other, all global up-
dates be in the form of reduction operations, and the body of the recursive method be separable into
inductive and base cases. All benchmarks were compiled with Intel icc-13.3.163 compiler and -03.
The Xeon Phi experiments were conducted in the native mode with -mmic option. The scalar-to-
blocked transformation was implemented as two passes using a modified version of SimTree [28]
and took hundreds of milliseconds.® Vectorization was performed as described in Section 5.

The benchmarks are: (1) knapsack, which computes the optimal solution to the knapsack
problem [12];® (2) fib, which computes the 45-th Fibonacci number [12]; (3) parentheses,
which computes the number of well-formed parentheses string combinations with 19 parenthe-
ses; (4) nqueens, which counts the number of valid solutions to the 13-queens problems [2]; (5)
graphcol, which counts the number of valid ways of coloring a 38-node, 64-edge graph with
three colors [27]; (6) uts, which counts the number of nodes in a probabilistic binomial tree [44];
(7) binomial, which recursively computes the combination 34C13 [27]; and (8) minmax, a min-max
search for tic-tac-toe on a 4 X 4 board.

Table 1 characterizes the benchmarks and their sequential execution time. We present speedups
relative to these sequential times in the rest of the evaluation. We use the smallest data type pos-
sible without loss of generality to maximize vector width (e.g., we define n in fib as a char on
E5 due to the exponential nature of the computation). On the Phi, we use the int data type for
all benchmarks because the IMCI instruction set does not support shorter data types well. Task-
parallel programs typically resort to sequential execution below a problem size, referred to as task

4We do not use AVX as it does not support shuffle instructions.
5 Available at https://engineering purdue.edu/plcl/vectorcilk.
®We use the “long” input without pruning to ensure determinism.
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Fig. 9. Distribution of tasks in selected benchmarks. x-axis: recursion depth; y-axis: number of all and base
case tasks.

cut-off, to ensure sufficient task granularity to amortize the runtime scheduling costs. Given our
focus on SIMD execution, we do not employ such cut-off to maximize vectorization opportunities.
Figure 9 characterizes the structure of each benchmark’s computation tree. In general, binomial
and minmax have similar characteristics as to fib and nqueens, respectively. For each benchmark,
we show the number of levels, the total number of tasks in each level, and the number of tasks
executing the base case in each level. knapsack is a perfectly balanced tree with base case tasks
only at the last level. fib, binomial, and parentheses are more unbalanced with parentheses
having some intermittent shallower branches. nqueens and minmax have a large number of leaves
at almost all levels and a large fanout. graphcol and uts have a more uneven distribution of total
tasks and leaves. uts is a deep computation tree with the fewest number of tasks in each level.

6.2 Overall Speedup from Blocked SIMD Execution

Table 2 and Table 3 show the overall speedup of our vectorized execution strategies on the E5 and
Xeon Phi architectures.” Pure breadth-first execution sometimes runs out of memory on Xeon Phi
and, in general, provides poor performance, likely stemming from the fact that it has poor cache
performance due to large block sizes. With our hybrid depth-first/breadth-first strategy, without
re-expansion, we achieve speedups of 1.38-5.10x (geometric mean of 2.13X) on the E5 and a 0.61—
5.23X (geometric mean of 1.78X) on the Xeon Phi. Adding re-expansion elevates speedups to 1.39-
8.95% (geometric mean of 2.58x) on the E5 and 0.93-12.23X (geometric mean of 2.76X) on the
Xeon Phi. Using re-expansion typically employs less space because it yields equivalent or better
speedups at smaller block sizes.

6.3 Understanding Vectorized Performance

We now explore the various factors that affect vectorized performance in detail.

The most obvious parameter affecting performance is the size of the thread blocks used by our
code transformations. Larger thread blocks clearly require more memory. More importantly, thread
block size determines the fundamental trade-off underlying the performance results. Larger block
sizes lead to more work that can be vectorized, increasing SIMD utilization. However, large blocks
suffer from poor locality, increasing cache misses (see Section 4.5). Therefore, to achieve robust
performance, we want to achieve good SIMD utilization with the smallest possible block size.

"The results in this section and the next were certified by the artifact evaluation committee.
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Table 2. Best Block Size and Execution Times for Different
Vectorization Strategies—E5

Benchmark Xeon E5

Breadth-first No Re-expansion Re-expansion

only speedup Block Speedup Block Speedup
knapsack 1.17 212 1.90 21 1.91
fib 1.67 218 1.99 2 2.03
parentheses 1.23 214 1.84 21 1.85
nqueens 4.38 223 5.10 21 6.33
graphcol 1.08 221 2.99 28 8.95
uts 1.68 21 1.69 2M 1.68
binomial 1.14 218 1.38 218 1.39
minmax 0.83 2% 1.79 210 2.17
Geometric mean 1.44 2.13 2.58
*Performance is close to that for 2° block size.

Table 3. Best Block Size and Execution Times for Different
Vectorization Strategies—Xeon Phi

Benchmark Xeon Phi

Breadth-first  No Re-expansion Re-expansion

only speedup Block Speedup Block Speedup
knapsack OOM 28 5.23 28 5.10
fib 0.65 210 3.07 2° 3.50
parentheses OOM 2° 1.32 2° 1.39
nqueens 0.83 222 1.18 212 2.96
graphcol 0.79 2% 1.88 28 12.23
uts 1.0 21 2.05 2M 2.05
binomial OOM 21 1.76 2° 1.99
minmax OOM 213 0.61" 28 0.93
Geometric mean 0.81 1.78 2.76

The poor performance of minmax is due to excessive cache misses in the Xeon Phi’s small
cache. If the cache is warmed up for the kernel computation, we can achieve a speedup of
1.09 without re-expansion and and 1.49 with (not counting the warm-up).

SIMD Utilization. Figure 10 shows how SIMD utilization changes with block size.® SIMD utiliza-
tion is the percentage of tasks that are executed as part of full SIMD blocks. Other tasks, which
are part of the “epilog” of vectorized execution, lead to idle SIMD lanes. Higher SIMD utilization
means more effective use of SIMD resources and, all else being equal, better performance. SIMD
utilization for a benchmark is determined by vector width and block size, so, for all benchmarks
except knapsack and uts, utilization with respect to block size is the same for both platforms.

SIMD utilization increases rapidly with block size, and for all benchmarks, with or without re-
expansion. Given a sufficiently large block, our transformations can achieve almost perfect utiliza-
tion. Crucially, however, with re-expansion, the block size required for perfect utilization shrinks
on several benchmarks (notably, nqueens, minmax, graphcol, and uts). To understand why, re-
call that, without re-expansion, we generate parallel work using breadth-first expansion only at

81n Figures 10-14, legends for knapsack apply to all graphs. “no reexp” refers to vectorization without re-expansion, while
“reexp” includes our re-expansion technique.
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Fig. 10. SIMD utilization. x-axis: block size; y-axis: percentage of tasks that can be vectorized.
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Fig. 11. Xeon E5 cache miss rate. x-axis: block size; y-axis: miss rate for level 1(d1) and last level (Ild) caches.

the beginning of the computation and the subsequent blocked depth-first execution cannot gen-
erate additional parallel work. Therefore, to achieve high utilization, we must generate a large
amount of parallelism (large blocks) in the initial breadth-first expansion before we begin depth-
first execution. Re-expansion’s ability to generate additional parallelism later in execution allows
it to tolerate a smaller block size. Re-expansion has little effect on utilization for some bench-
marks, notably knapsack, fib, binomial, and parentheses. For knapsack, re-expansion is never
needed because of the perfectly balanced tree. The other three benchmarks (fib, binomial, and
parentheses) have more subtle behavior, which we investigate more carefully later.

E5 Cache Efficiency and Speedup. SIMD utilization only affects the amount of work that can be
vectorized, which is not the only factor that affects performance. Another crucial factor, which mil-
itates against large blocks, is cache efficiency. It is the interplay between utilization and efficiency
that determines speedup. We next investigate this behavior on the E5 platform.

Figure 11 shows both the L1 and last-level data cache misses rates with varying block size, with
and without re-expansion. As the block size grows, cache misses increase. To understand why;,
note that all of the threads in a thread block are accessed twice: once when they are added to the
thread block and a second time when they are executed. If the thread block is too large, the thread
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Fig. 12. Xeon E5 speedup. x-axis: block size; y-axis: speedup relative to sequential baseline.

data will have been evicted by the second access. Unsurprisingly, we see fairly sharp discontinu-
ities, representing cutoffs when blocks no longer fit in the cache. Different benchmarks have fairly
different cache behaviors as they have different computational patterns. Some benchmarks, such
as fib, do very little data access, while others, including nqueens, minmax, and graphcol, perform
lots of lookups. Nevertheless, the broad trend of increasing cache misses with growing block size
persists.

Our vectorization speedup stems from a combination of both SIMD utilization and cache be-
havior. Figure 12 shows the overall speedups of our techniques with varying block sizes. For all
the benchmarks except uts, we see a consistent pattern: speedup increases with block size as
SIMD utilization increases. Then, at larger block sizes, cache misses begin to dominate, while we
encounter diminishing utilization returns, causing speedups to drop.

These results demonstrate the key advantage of our re-expansion scheduling strategy. By generating
more work throughout execution, re-expansion allows our transformed code to achieve high SIMD
utilization with smaller block sizes, affording large benefits from vectorization before poor cache
performance drags down overall speedups. This effect is most noticeable for nqueens, minmax, and
graphcol, where re-expansion achieves near-perfect SIMD utilization at block sizes small enough
to avoid the cache-miss cliff, resulting in very high speedups. Even for benchmarks where re-
expansion is not as critical, such as fib, binomial, and parentheses, re-expansion achieves peak
speedup at somewhat smaller block sizes, reducing overall memory use.

The exceptions to these trends are knapsack and uts. The former does not benefit from re-
expansion because of its balanced computation tree, and, as threads never die out, the block size
never gets small enough to trigger re-expansion. The latter has a relatively narrow computation
tree and is quite unbalanced. Hence, it performs best when the block size is large enough to obviate
the need for doing depth-first execution in the first place (2'* threads).

Xeon Phi Cache Efficiency and Speedup. The relationship between the SIMD utilization, cache
efficiency, and overall speedup on the Xeon Phi is consistent with that on the E5. Figure 13 shows
the memory system behavior of our benchmarks. Due to a complex L2 cache structure, it is impos-
sible to collect accurate L2 cache miss rates on the Xeon Phi using hardware counters.’ Instead,
we use CPI to characterize the overall memory performance. Figure 14 shows overall speedup.

“https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-
2-understanding.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 24. Publication date: December 2019.

RIGHTSE LI MN iy


https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding

Extracting SIMD Parallelism from Recursive Task-Parallel Programs 24:21

12% g 10% 25 14 14% 12
10 % 7 g iy 12 12% 10
8% 6 3. 10 10% 8
6% & i 8% 3 8 8% .

’ / 4% | 2 6 6%
49, [noJegxpdl —— 3 ° K 4
mo’reexp cpi 2 o 1. 4 4%
2% regxp d1 1 2% (1) 2 2% [ 2
__IBEXP CPi »wewreee: . [
0% 0 0% 0 0 0% 0
20 95 510515520 525 530 20 o5 210215.220225230 20 95 510515520525 530 2
(a) knapsack (b) fib (c) parentheses
8% 12 1% 12% 8% 9
4 B s
5 10 0.8% |, 10 %
6% . \ oo 6% Z
0.6 % ¢
4% 6 6% 4% :
0
» . 04% . ‘o . ;
= 2 02% 05 2% ° 2
o | ———
0% 0 0% 0 0%E 0 0% 0
20 25 210 515 520 525 2002 5% 56 58p 101214 20 25 2107152052550 20 25 210515 20 525 50
() graphcol (f) uts (g) binomial (h) minmax

Fig. 13. Xeon Phi miss rate. x-axis: block size; left y-axis: L1 cache miss rate; right y-axis: clock cycles per
instruction (CPI).
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Fig. 14. Xeon Phi speedup. x-axis: block size; y-axis: speedup relative to sequential baseline.

The speedup on Xeon Phi is even better than that on the E5 for most benchmarks, owing to the
more powerful vector processing unit (VPU) and rich SIMD intrinsics available on the Xeon Phi.
Benchmarks like nqueens, minmax, and parentheses show worse speedup mainly because they
can fit better into the last-level cache on the E5 and not on the Xeon Phi because of the data-type
and cache-size differences.

Re-expansion Benefit. Figure 15 examines the benefits from re-expansion in exposing data par-
allelism. For each level of the computation tree, the figure shows two quantities: the number of
re-expansions performed at that level and the factor of increase in the number of tasks at the next
level due to re-expansion. Larger factors denote greater benefit. A factor of 1 means that the block
size did not change after re-expansion. We do not show knapsack’s and uts benchmarks because
their execution never triggers re-expansion. Among the other benchmarks, re-expansion has lim-
ited benefit for fib, binomial, and parentheses based on the fact that these computation trees
are also relatively balanced, and re-expansion is triggered fairly late and does not generate much
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Fig. 16. Speedup with and without stream compaction (sc) on E5 and Xeon Phi, normalized to sequential
baseline.

additional parallelism because the trees are no longer expanding (getting wider). Re-expansion
is much more useful in adapting to tree structures with base cases intermingled with recursive
tasks at shallower depths. We observe this for nqueens, minmax, and graphcol, which can get
re-expansion factors as high as 8, 9, and 3, respectively.

Benefits from Stream Compaction. We evaluate the benefits from stream compaction on two rep-
resentative benchmarks: fib, one of the benchmarks with a small kernel, and nqueens, which
has a larger kernel. Figure 16 shows the speedups achieved by the best block size configuration,
compared to the sequential execution, when the stream compaction is performed sequentially (as
compared to our table-lookup based compaction). We see that the table-lookup-based compaction
is faster in all cases with significant improvements for smaller kernels. In fact, optimized stream
compaction is crucial to performance on the smaller kernels. Even for benchmarks with larger
kernels, we observe 5-10% overall performance improvement. We also observe similar behavior
for the other benchmarks considered.

6.4 Opportunity Analysis

Various factors preclude us from achieving the perfect speedup (i.e., 16 for 16-way SIMD) from vec-
torization. Here, we try to quantify the theoretically maximum achievable speedup. Given that only
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Table 4. Estimated Maximum Vectorization Speedup on E5:
Vect (and non-Vect) Denotes the Fraction of Vectorizable
(and None Vectorizable) Instructions

Sequential Vectorized
Benchmark Vect non-Vect Vect non-Vect Speedup
nqueens 0.94 0.06 0.06 0.03 10.74
graphcol 0.99 0.01 0.06 0.01 14.28
uts 0.81 0.19 0.20 0.20 2.50
minmax 0.62 0.38 0.04 0.25 3.48

Sequential (and Vectorized) columns show the fractions before (and after)
vectorization. Speedup shows the theoretical max speedup.

the kernel computation is vectorized, we compute the effect of Amdahl’s law due to non-kernel
overheads by looking at the number of non-kernel instructions. While the number of instructions
executed does not strictly determine performance, this opportunity study provides some insight
into vectorization potential (assuming 1.0 CPI). As it is difficult to isolate the core computations
in benchmarks with small tasks (fib, parentheses, knapsack, and binomial), we focus on the
remaining benchmarks.

Table 4 shows the fraction of vectorizable and non-vectorizable instructions for the remain-
ing benchmarks. The “Sequential” columns indicate that a significant fraction of computation is
vectorizable. In our modeled vectorized code, we assume perfect speedup for the vectorizable in-
structions (column 4), reducing the instruction count by a factor of the vector width. We profile
the re-expansion version of the code to account for changes in the number of non-vectorizable
instructions based on our transformations (column 5). Note that our transformations can occa-
sionally reduce the number of non-kernel instructions (e.g., nqueens and minmax) because of the
way they optimize stack management operations. The modeled maximum speedup is the ratio
of the total number of dynamic instructions in the modeled vectorized version to the sequential
versions. Even with perfect vectorization, the anticipated speedup for uts and minmax is only 2.5
and 3.48, respectively (due to the large number of non-kernel instructions that are not vectorized).
nqueens and graphcol fare better. Compared with Table 2 and Table 3, our vectorized implemen-
tations achieve a large fraction of this theoretical max speedup despite suffering from overheads,
such as cache misses.

6.5 Extend to Multi-Core

While this work focuses on single-core SIMD optimization, the transformed code is also recursive
and can be mapped to multi-core systems to explore task parallelism. More details about extending
this work to multi-core parallelism are carefully studied in our later work [52]. We report some
key results from that work in this section to show its feasibility and efficiency. We parallelize
both the original task parallel-only code and our transformed code with both task parallelism and
data parallelism by MIT Cilk!® on the same machine (with 2 sockets, i.e. 16 cores in total), and
compare their speedup over the sequential code (whose execution time is reported in Table 1). The
comparison result is reported in Table 5. Ty and Ti4 are the execution time of the original code with
Cilk parallelization, while T, and Tiex are the execution time of our transformed code with Cilk,
in which, 1 and 16 denote the thread number.

The transformed code demonstrates much better performance than the original one with Cilk
parallelization, resulting in 8.28X and 7.61X geometric mean speedup for 1-thread and 16-thread,

Ohttp://supertech.lcs.mit.edu/cilk/.
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Table 5. The Speedup of Parallel with Cilk Versions
Over the Sequential Version

Benchmark Ts/Ty  Ts/Tix Ts/Tie  Ts/Tiex
knapsack 0.14 1.68 2.2 24.8
fib 0.09 1.57 1.3 22.9
parentheses 0.08 1.42 1.2 20.3
nqueens 0.89 4.00 14.2 61.6
graphcol 0.85 8.74 13.0 108
uts 0.97 1.58 15.4 23.0
binomial 0.07 1.00 1.0 14.9
minmax 0.31 1.65 4.9 20.6

Geometric mean  0.25 2.07 3.85 29.29

Ts: sequential execution time; T: single-threaded execution time
of the original Cilk version; Ti: single-threaded SIMD execution
time of re-expansion version; T1¢ and T : execution time of orig-
inal and re-expansion versions on 16 workers, respectively.

respectively. This is caused by three major reasons: first, the reduction of recursive function calls
from pure task parallelism to the combination of both task parallelism and data parallelism; second,
the vectorization optimization, and associated efficient data layout transformations such as AoS
to SoA; and third, good scalability from one worker to multiple workers—16-thread parallelization
accelerates the optimized single-thread benchmarks by 14.15X in geometric mean.

7 PROFILING GENERAL COMPUTATION TREES

The previous section evaluated our vectorization and scheduling strategies for a set of eight com-
mon benchmarks. However, these benchmarks represent a very small space of the possible compu-
tation structures that could arise in recursive, task-parallel programs. As a result, we are left with
an open question: can we characterize the effectiveness of our scheduling approach in a more
general, rigorous way?

One way to answer this question is to evaluate arbitrary computation trees: rather than looking
for more benchmarks that may or may not be different in their characteristics from the bench-
marks we have already studied, what if we could simulate the behavior of different benchmarks to
evaluate the effectiveness of our scheduling strategy. This section and the following one (i) gen-
erate arbitrary computation trees, and (ii) simulate how effective our scheduling strategies would
be on those computation trees. By measuring SIMD utilization for these trees, we can determine
whether our strategies exploit sufficient parallelism in this more general setting.

7.1 Building a Tree of Specified Configuration

We can define different types of computation trees using two parameters: n, the number of nodes
in the tree, characterizes the amount of work done in the computation. The height of the tree, h,
characterizes how much parallelism exists in the tree. These parameters correspond to the work
and span parameters used in the theoretical study of parallelism. A tree with height logn has max-
imum parallelism, while one with height n/2 (we only consider full binary trees, where each node
has zero or two children) has very little parallelism.

The first challenge is to devise a scheme to build random binary trees of a specified configu-
ration. In other words, we want to build trees with a specific number of nodes, n, and a specific
height, h. We call such a tree an (n, h) tree. Such a tree contains exactly n nodes, at least one leaf
at depth h, and no leaves at depth greater than h.
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Because there are a very large number of trees of any potential configuration, we would instead
like to sample the space of trees. To ensure statistical rigor for our sampling, we must ensure that
our tree generation algorithm uniformly samples a space: when generating (n, h) trees, we must
generate any tree that meets the specified configuration with equal probability. Note that if we did
not uniformly sample the space of trees, it is possible that our tree generation algorithm would
bias our samples towards trees that have unusually high or unusually low utilization, making our
conclusions about the effectiveness of our strategy suspect. The problem of uniformly sampling
the space of trees has been studied previously [36, 39, 53], but these approaches focus on trees
that do not have a depth constraint—in other words, on generating trees with a specific number of
nodes, but without ensuring a fixed depth.

Below, we outline a recursive procedure for generating an arbitrary (n, h) tree, uniformly sam-
pled from the space of all (n, h) trees.

7.1.1  Recursively Building Arbitrary Trees. First, we describe an algorithm for building arbitrary
(n, h) trees, without regard to uniformity. Consider the problem of building a tree with exactly n
nodes. For simplicity, we will assume that we are building full binary trees, where every node is
either an interior node with two children, or a leaf (hence, n must be odd).

A simple, top-down recursive method to build a binary tree with exactly n nodes is as follows:
assign 1 node as the root node. Then split the remaining n — 1 nodes between the left and right
children, assigning k nodes to the left subtree and n — 1 — k nodes to the right subtree. We then
repeat this process recursively, building a (k, h — 1) tree rooted at the left child, and an (n — 1 —
k,h — 1) tree rooted at the right child. This strategy yields a full binary tree with exactly n nodes.
However, this strategy does not guarantee that the tree has height h.

To guarantee that the tree reaches a height of h, we break this problem into two constraints. First,
we must ensure that no path is longer than h nodes. Meeting this constraint is straightforward:
a tree with k nodes must have height at least lg(k + 1). As long as we ensure that a subtree of
desired height h has at most 2" — 1 nodes in it, then we can construct a tree that does not exceed
the maximum height. Hence, when splitting a set of nodes between left and right subtrees, we
ensure that the split of nodes ensures that both subtrees can be built without exceeding the height
limit. By enforcing this restriction at all steps, we guarantee that the tree we build has at most h
levels.

However, we must now satisfy a second constraint: the tree must have height h, which means
there must be at least one path from root to leaf of length h. To satisfy this constraint, we consider
some random path from root to leaf of length h—we call this the green path, and at least one must
exist in an (n, h) tree. Our goal is to ensure that a green path exists. We label nodes in the tree
green if it lies along the green path, and red if not. Note the following: if a node is a green node,
one of its children must be green, and the other must be red. If a node is a red node, both of its
children must be red.

We can incorporate this information into the tree construction algorithm to ensure that we have
a green path as we build the tree. The root node is green, by definition. When building the tree, if
we are at a green node, we make sure that one child is green—if that child is an (n, h) tree, n must
be at least h, ensuring there are enough nodes to reach the target height.

We capture the above two constraints by setting maximum and minimum number of nodes that
can be assigned to each subtree. While building an (n, h) tree, if the node is red, then the maximum
number of nodes that can be assigned to a subtree (which has depth h — 1) is 27~! — 1. If the node
is green, we choose one of the nodes to be a green node. The maximum number of nodes that can
be assigned to that subtree is still 2~! — 1, but the minimum number of nodes that can be assigned
to that subtree is h — 1.
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1 max_depth D;
2 void buildtree (int n, int d, Color ncolor)
3 Color lcolor, rcolor; //colors of subtrees

4 int split; //number of nodes for left child
5 lcolor = rcolor = RED;

6 if(d == D) //at maximum depth

7 return;

9 if (ncolor == green)

10 if (rand() % 2)

11 lcolor = GREEN;

12 else

13 rcolor = GREEN;

14 while (true)

15 split = rand() % (n — 1);

16 if (isValid (split, d, lcolor, rcolor))
17 //conforms to min and max

18 //given subtree colors

19 break;

20 buildtree (split, d + 1, lcolor);
21 buildtree (n — split, d + 1, rcolor);

23 int build (nodes n)
24 buildtree (n,0,GREEN);

Fig. 17. Binary tree building algorithm.

We thus build a recursive algorithm as in Figure 17, with the split between left and right subtrees
being generated at random, and then check (in the isValid call) to ensure that each subtree is
receiving nodes in the legal range (and that each subtree is being allocated an odd number of
nodes).

7.1.2  Uniform Sampling for Node Splits. The procedure outlined above guarantees that we will
build a random tree of the desired (n, h) configuration. However, the procedure is biased: the proba-
bility of producing each possible (n, h) tree is not equal. The culprit is the split calculation in line 15
of Figure 17. The split samples from a uniform distribution of possible splits. If we are allocating
8 nodes between left and right subtrees where the left subtree must have height 3 and the right
subtree must have height at most 3, it is equally likely to choose a split of 7 and 1 as it is to choose
a split of 5 and 3. However, there is only one tree with the split 7/1: a full tree on the left and
a single node on the right. In contrast, there are two trees with the split 5 and 3. To ensure we
uniformly sample trees, therefore, we must bias our choice towards the 5/3 split. In particular, at
each point where we choose a split of nodes, we must choose a given split with probability equal
to the proportion of trees that have that particular split compared to the total number of trees [33].

Hence, the first step is to determine the total number of trees of any given configuration. While
the number of full binary trees with n nodes can be computed using the Catalan numbers, we
note that this does not take into account the height restriction. We thus must define a formula for
computing this value. We start by defining a recurrence a(n, h): the number of full binary trees
with n nodes and height at most h:

0 if n is even
0 ifn>2"—1
a(n,h) = }l_z ifn=1

Z a(i,h—1)-a(n—-1-i,h—1) otherwise

i=1
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Table 6. Initialized Table
for Tree Count

2 0o - -
1 1 1 1
0 0 O 0
Node# |0 1 .. D
Depth

We immediately see that the number of nodes with exactly height h, e(n, h), is a(n, h) — a(n,h — 1).
This formula generates OEIS #A073345.!!

We can use these recurrence equations to create two tables: treetable, which contains entries
for different values of a, with one row for each possible number of nodes, and one column for
each possible depth (Table 6 shows how the table is initialized), and exacttrees, which contains
entries for different values of e in a similar manner. We can then use these tables to sample from
the distribution of different tree configurations.

Suppose we are at a red node, with height h, and would like to split n nodes between the left and
right trees. The total number of trees that can be rooted at this node is a(n, h). We thus generate a
random number, s, between 1 and a(n, h). We then calculate a vector of length n — 1:

vlk]=alk,h—1)*a(n—-1-k,h—1)

Note that the summation of this vector is a(n, h), as can be seen from the recurrence above, and
the vector represents the probability distribution function of the possible splits between left and
right subtrees. We then compute a vector v’ that represents a prefix sum of v. We can then scan
through v’ to find the appropriate “bucket” (i.e., the entry v[i] such that v’[i] <s < o'[i + 1]).
This represents a randomly sampled split between left and right trees, with the sample uniformly
chosen from the distribution of possible trees.

If we are dealing with a green node, the process is slightly different. In this case, the vector we
compute is as follows:

vlkl]=e(k,h—1)*xa(n—-1-k,h—1).

In other words, one subtree must have exactly height h — 1 (i.e., is the green tree), while the other
must have height at most h — 1 (i.e., is the red tree). The split value, s, we randomly generate is
from the summation of this new v. Once the split is determined, we can randomly choose which
subtree is the green one.

With these modifications to the choice of splits in line 15, the algorithm of Figure 17 uniformly
samples all possible trees.

7.2 Profiling Trees

Once a tree is generated, the obvious question is how to profile the tree—how to simulate vec-
torized execution for the tree to determine utilization. Interestingly, this is straightforward. Note
that building the tree uses a recursive function. Furthermore, the computation tree generated by
this function exactly corresponds to the tree the function eventually builds (we invoke the method
once at each node of the tree we want to build). Moreover, the recursive function adheres to the
requirements of our task-parallel programming model (indeed, the two recursive calls in Figure 17

Mhttp://oeis.org/A073345.
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Fig. 18. Central limit theorem used to show that, for 1k, 10k, and 100k trials, the distribution of utilization
values is fairly normal.

are independent, and could be spawned). We can therefore directly apply our vectorization transfor-
mations to this code. The result is a blocked form of the program, where the number of tasks in each
block corresponds to the number of nodes in the tree that could be executed in a SIMD manner.
Indeed, we are arguably not simulating computation trees—our tree construction algorithm is a
task-parallel, recursive algorithm with parameters to generate the desired computation tree.

We can thus execute the transformed version of Figure 17 and directly profile utilization, given
a target SIMD width (P) and block size (kP). Moreover, we can easily implement versions of the
blocked code without re-expansion (once we switch to depth-first execution, we stick with depth-
first execution) and with re-expansion (we switch back to breadth-first execution if our block size
drops below P). The next section describes the results of this profiling.

8 PROFILING-BASED EVALUATION

We now evaluate the performance of our vectorization techniques using the tree generation tech-
nique outlined in the previous section. Re-expansion exploits SIMD hardware by the creation and
maintenance of data blocks. Therefore, SIMD width, block size, re-expansion thresholds, and tree
shapes (Nodes and Depth) determine the benefits of SIMD utilization. Individually, these parame-
ters show their distinct impact on vectorization. Together, they are useful to analyze vectorization
behavior in systems where there are constraints on some of these parameters.

For our analysis, we simulate vectorization with the following parameters as default values,
unless otherwise specified: SIMD width of 16, block size of 64, and 10,000 nodes in the tree. All
values are averaged over 100,000 trials. We perform our simulations on a system with a 2.6-GHz
8-core Intel E5-2670 CPU with 32-KB L1 cache per core, and 20-MB last-level cache. The simulation
code was compiled with Intel icc-13.3.163 compiler with ‘-O3’.

8.1 Repeated Trials to Sample Utilization

We measure average utilization over repeated independent trials to get consistent results. Because
all these trials are independent, sufficiently large trials will comply with the central limit theorem.
Using the default system settings of SIMD width 16, block size 64, and 10,000 nodes, we choose
a tree of depth 20 to show that the variation in utilization over 100,000 trials obeys the theorem
(Figure 18). As seen in Figure 18, the distribution of trial values follows a normal distribution and
remains consistent for 1000, 10,000, and 100,000 trials. Based on this observation, we perform all
experiments with 100,000 or more trials to produce consistent averages.
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Fig. 20. Impact of Re-expansion: Utilization achieved with and without re-expansion for various class of
trees.

8.2 SIMD Utilization for Deep Trees

We empirically evaluate the SIMD utilization of the depth-first and re-expansion strategies for trees
whose depths are multiples of full-tree depth. The SIMD utilization ratio is high for full trees. As
tree depth increases, the trees can get more sparsely populated. Maintaining high SIMD utilization
for such trees can become difficult. Re-expansion addresses this by switching between vectoriza-
tion and work generation. To see its impact on SIMD utilization in the context of deep trees, we
profile vectorization behavior for a 10,000-node (full-depth of 13) tree with varying depths. We
start with depths around the full-tree depth and evaluate depths that are multiples of full-depth.
As shown in the Figure 19, for trees with depths varying from 14 to 150, utilization stays above
50%.

8.3 Impact of Re-expansion

We measure the impact of re-expansion by comparing vectorization efficiency with and without re-
expansion. Further, we analyze this impact for various class of trees to emphasize its significance.
For 10,000-node trees, we have an almost full-tree at depth 13. In Figure 20, vectorization for ran-
dom trees between depth 14 and 140 is measured with and without re-expansion (for a fixed block
size). For depth 14, plenty of work is available and re-expansion does not significantly improve

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 24. Publication date: December 2019.

RIGHTSE LI MN iy



24:30 B. Ren et al.

0.8 X Tree | Block [BFSto
f X Depth| Size DFS
0.6 S 18] 400 10
28 1750 14
0.4 s2| 1800 15
D:18 ——
Diog 100 2000| 13
0.2 ’./.éws D:52 1
D:100

Utilization

N
.
(b) Shows the depth
0 __MinAvg Utl —— | at which vector oper-
S 8 3 g g ations begin for vari-
- Ny o o ous trees classes.
. Blocksize . . .
(a) BlockSize Increase to achieve higher utiliza-

tion ratio

Fig.21. Utilization vs. block size for different tree depths without re-expansion. The horizontal line represents
the minimum average utilization when using re-expansion with a block size of 64 for the same tree depths.

utilization. For the same number of nodes, as the trees get deeper, the sparse nature of the trees
expose inefficiencies incurred by depth-first execution. For depths greater than 20, re-expansion
improves vectorization by ~5 times.

We observe that re-expansion improves utilization for a given system configuration. To attain
similar performance without re-expansion, depth-first scheduling without re-expansion needs to
generate more parallel work at the cost of memory by using larger block sizes. Large blocks per-
form breadth-first execution untill deeper levels in the tree to fill the chosen block size.

An alternate way of demonstrating the advantages of re-expansion is to study how re-expansion
allows us to use significantly smaller block sizes, and hence consume less memory. We choose 4
trees of depth 18, 28, 52, and 100 as representative depths.!? When running with re-expansion, and
a block size of 64, the average utilization achieved for these depths was 76%, 66%, 65%, and 61%,
respectively. We then turned off re-expansion, and studied how utilization changed with block
size. The results are in Figure 21(a). As in the previous study, we see that at a block size of 64,
the non-re-expansion runs have poor utilization. More significantly, we see that to achieve the
same utilization as re-expansion with a block size of 64, the non-re-expansion runs require block
sizes of over 400, 1,750, 1,800, and 2,000, respectively. We also see that such large block sizes mean
that significant chunks of the tree must be explored before switching to depth-first execution, as
seen in Figure 21(b). These results emphasize two points: (1) to match SIMD utilization without
re-expansion, block size needs to significantly increase with the tree’s depth and (2) the utilization
achieved is less predictable.

8.4 SIMD and Block Width Considerations

Driven by power and energy considerations, the two key characteristics expected of future sys-
tems are wider SIMD units and reduced memory available per core. In order to be efficient on such
systems, these characteristics require that we achieve good SIMD utilization at small block widths.
Specifically, SIMD width and block size together decide the percentage of work that gets vector-
ized. Block size is usually greater than the SIMD width and holds multiple vectors for efficient
vectorization. Keeping the SIMD width a constant at 16, the variation in utilization with changing
sizes of the block is shown in Figure 22. As shown in the figure, an increase in block size relative

2In Figure 21 to Figure 23, D:<#num> means that the tree with a depth of <#num>, e.g., D:18 means the tree with a
depth of 18.
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to SIMD width causes better packing of data for vectorization. For block size equal to SIMD width,
utilization is poor and drops to 40% for deeper trees. Bigger blocks result in fewer re-expansion
calls and a higher percentage of execution performed by vector units.

In Figure 23, we evaluate the SIMD utilization achieved for different SIMD widths when the
ratio of the block size of the SIMD width is kept constant at four. Changing the SIMD width, for
a given ratio of block size to SIMD width, improves vectorization till work generation saturates,
at which point there are not enough nodes to exploit a large number of slots made available by
the larger SIMD vector widths and data blocks. We observe that SIMD utilization remains high for
fuller trees with a maximum depth of 14, 15, and 18. As trees get deeper, the inherent sparsity in
the trees causes a gradual degradation in SIMD utilization achieved. However, even for such deep
and sparse trees, our approach continues to extract benefits from vectorization. For example, for
a 100-deep tree, doubling the SIMD width from 80 to 160 elements decreases the SIMD utilization
from 0.47 to 0.36. This translates to a speedup of 1.53x for the SIMD part of the computation as
the SIMD width is increased from 80 to 160.
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9 RELATED WORK

Parallelism for Multicores. Many modern programming languages for multicores, such as the
Cilk family [7, 14, 18], Thread Building Blocks [49], Task Parallel Library [57], OpenMP [45], and
X10 [62], allow programmers to express task parallelism using constructs like our spawn directive.
Most of these systems use schedulers that are based on either work-sharing or work-stealing. Work-
sharing schedulers typically maintain a central pool of ready tasks and each processor is assigned
tasks when it becomes free to execute them. These schedulers can work on either a pull principle,
where a processor requests work when it is free, or a push principle, where a centralized scheduler
assigns tasks to processors. Work-stealing is essentially a distributed pull strategy; each processor
maintains a local pool of ready tasks and updates this pool as it creates and executes additional
tasks. When a processor’s local pool of ready tasks is empty, it becomes a thief and steals a ready
task from some other processor’s pool.

Two important variants of work-stealing schedulers are relevant to our work. As described in
Section 2, the work-first strategy [18] is similar to our depth-first strategy: when a processor spawns
a task, it places the continuation on its local pool and immediately starts executing the newly
spawned task. In contrast, the help-first strategy [20] is similar to breadth-first execution: a proces-
sor places the newly spawned task on its local pool and immediately executes the continuation.
Guo et al. [20] propose using help-first scheduling to generate work quickly and work-first sched-
uling thereafter to bound space usage. This strategy is similar to the execution strategy adopted by
our initial code transformations that begin with breadth-first execution then switch to depth-first
execution, although a traditional work-stealing scheduler would not provide the necessary struc-
tured execution for vectorization. Our re-expansion strategy is somewhat similar to a variant of
work-sharing, called parallel-depth first scheduling [5], which is designed to provide good locality
by extracting parallelism at the bottom of the tree (rather than the top, as in standard work-stealing
schedulers).

Typical vectorization considerations in these models has focused on inner vectorization where
the base case is vectorized. Our work focuses on an analysis of the vectorization opportunities in
the recursion itself. Raja is focused on enabling SIMD optimization of loop programs prevalent in
scientific applications in a performance portable fashion [24].

Parallelism for Vector Units. The relationship between SIMD and multiple instruction multiple
data (MIMD) parallelism in the context of combinator reduction was considered by Hudak and
Mohr [26]. Modern vectorizing compilers attempt to automatically perform vectorization for small
loops in programs using various techniques [37, 42]. However, they tend to target programs written
in a structured, data-parallel manner and cannot handle even moderately complex programs [37].
In more restricted domains, there has been some success in SIMDizing programs through syn-
thesis [3] and code generation from domain-specific languages [50] and other restricted sets of
problems [28, 31]. These approaches do not work for more general programs. Most work in map-
ping complex applications to vector units has been done by hand [11, 13, 22, 23, 30].

Flattening of nested data parallelism (NDP) [6, 10] has been carefully studied to support effi-
cient SIMD parallelization (and multi-core parallelism in [4]) in the past few decades. The major
difference between this work and the efforts related to NDP is that data parallelism already exists
in NDP in the form of nested collections; however, this work exposes data parallelism from task
parallelism. In other words, as aforementioned, this work focuses on the vectorization opportu-
nities in the recursion. Therefore, this work is able to support the recursive workload that is not
necessarily on any nested collections (like fibonacci or various tree traversals).

Parallelism for GPUs. GPUs offer a more programmable interface than vector units on CPUs, but
the most common programming model for GPUs is fundamentally data parallel [43, 56].
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Transform Data Parallelism to Task Parallelism. In recent years, several attempts have been made
to take GPUs’ inherently data-parallel execution model and adapt it to target task-parallel pro-
grams [1,9, 27, 58, 65]. As an example of these efforts, Whippletree [55] specifically targets NVIDIA
GPUs, and proposes an efficient task-based scheduling method for dynamic workloads like com-
plex rendering pipelines. In particular, Whippletree is based on a persistent thread mode [21]"* and
dynamically assigns available threads to incoming tasks. An advanced feature supported by Whip-
pletree is that it can explore heterogeneous parallelism simultaneously, e.g., some threads process a
number of independent data elements while multiple others process an individual (larger) element
together. Compared to Whippletree, our objectives (and challenges) are different: Whippletree fo-
cuses on scheduling tasks that are relatively straightforward to generate and already added to
multiple independent task queues; while our scheduling aims to seek the help of an optimal order
of tasks generation to maximize the workload similarity, improve the SIMD utilization, and restrict
the memory usage.

Another set of efforts on GPUs that target the similar fine-grained task parallelism as our tech-
niques have already existed in the graphics field. Patney and Owens [47] transform the Reyes ren-
dering algorithm from recursive depth-first to parallel breadth-first to generate GPU tasks as our
breadth-first execution. This work relies on screen-space buckets to alleviate the problem of mem-
ory capacity, however, cannot guarantee bounded memory usage. Later, Weber et al. [60] propose
a partial breadth-first search approach to splitting a part of tasks simultaneously to restrict mem-
ory consumption. The objective of this approach is very similar to our breadth-first to depth-first
execution; however, the basic scheduling is different. Essentially, this work uses a parallel last-in-
first-out buffer where surfaces are read from the end of the buffer, and any generated sub-surfaces
are appended back to the end, and in each iteration, only a fixed number of surfaces (called a batch)
are processed. A key difference between this work and our approach is that it allows processing
tasks from different levels simultaneously when the computation tree’s shape is irregular (or the
buffer size is large). This increases both the task divergence in the same batch and the data locality
optimization difficulty. Similar studies on transforming workload from depth-first to breadth-first,
and restricting the memory consumption by another partial breadth-first search (similar to the
above one) have also been done for KD-tree and BVHs constructions [25, 66] on GPU.

The idea that toggling between BFS and DFS has also been adopted in some other fields to
accelerate specific applications on GPUs, such as machine learning, data mining and software
engineering [35, 59, 61, 63]. For example, RegTT [63] that is closely related to our work proposes
an efficient tree traversal on GPUs by starting with BFS and a reordering of the queries based on
the truncation history, and then switching to DFS, an idea similar to ours with an optimization
that leverages the historical dynamic execution information.

Benefit from Architecture Support: Orr et al. [46] provide a hardware implementation of the chan-
nels model proposed by Gaster and Howes [19] and offer a mapping from simple Cilk-style pro-
grams to their channels implementation. Interestingly, the execution model imposed by channels
on these programs resembles the level-by-level breadth-first execution strategy of our initial code
transformation. To control space, they propose another hardware modification that allows the ex-
ecution of one level of computation to be suspended—in essence, only processing part of each
level of the tree. The key distinctions between our work and this work on GPUs are: (1) GPUs
provide hardware support for SIMD operations, such as execution masking, so GPUs work does
not require to generate and handle such explicit SIMD instructions as our work and (2) this GPU
implementation requires custom hardware support and is not suitable for targeting commodity

13The latest CUDA 10 has explicit persistent thread support.
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vector hardware. An interesting avenue of future work would be to compare Orr et al.’s schedul-
ing strategy with our proposed strategies.

More recently, many efforts [8, 16, 34, 38, 41, 64] parallelize recursive applications (e.g.,
quicksort, and applications based on trees and graphs) on GPU with NVIDIA’s dynamic par-
allelism hardware support.'*. For example, the work of Li et al. [34] specifically investigates the
method that can effectively distribute irregular work to GPU multi-processors and cores by lever-
aging GPUs’ dynamic parallelism. Essentially, these efforts focus on further improving the basic
CUDA dynamic parallelism with some new optimizations (e.g., kernel invocation overhead reduc-
tion or load balancing) to achieve ideal performance. Our proposed scheduling is also capable of
reducing the kernel invocation by consolidating recursive function calls together thus reducing
the total number of recursive calls. Moreover, our latest work [52] extended our single-core SIMD
to multi-core with MIT Cilk and demonstrated good load balancing and scalability. Therefore, an-
other possible direction of our future work is to further study if our proposed scheduling can help
to improve the performance of GPUs’ dynamic parallelism for general task parallel applications
(as KLAP [16] and the work of Zhang et al. [64]).

Note: We would like to highlight that both the software efforts [25, 60, 66] and the architecture
effort like the approach of Orr et al. [46] to limiting block size do not have the same locality-
preservation property that we identify in Section 4.5. Their breadth-first-only strategy does not
preserve Observation 1—left children are not always in the next block to be executed after their
parent’s. Hence, we suspect that their scheduling strategy will exhibit worse locality than ours.

Stream Compaction for Vectorization. Ren et al. [50] first introduced stream compaction as a
general technique for managing blocks of data operated on by vector operations by and per-
formed stream compaction for four-wide vector units, but did not describe a general approach for
arbitrary-length vectors. Mytkowicz et al. [40] described a general permutation strategy for block
management. Permutation is a generalization of stream compaction. However, because stream
compaction is a simpler problem, our algorithm is more efficient as it is linear in the stream size
(rather than quadratic) and can trade-off between the size of pre-computed tables and the number
of lookups.

10 DISCUSSIONS AND LIMITATIONS

As aforementioned, we only consider self-recursive programs in this article for simplicity. We
also assume the number of spawn calls in a method can be statically bounded. These are not
fundamental limitations of our technique: all that matters is whether doing depth-first or breadth-
first expansion. However, our approach indeed has several limitations as follows:

e There are some special cases that our proposed re-expansion technique does not work well.
Figure 24 shows a typical one that the computation tree has long tails in its sub-trees, in
which, although many tasks are independent among these tails that are potential to be
vectorized, there is no re-expansion opportunity when the execution falls in these tails.

e Another issue is that we highly rely on the task similarity to facilitate the vectorization,
therefore the efficiency of our technique will degrade if the spawned tasks are less uniform,
i.e., simultaneous tasks perform substantially different operations.

e In addition, the case with frequent heap access has not been carefully studied yet. It will
work with our approach, however, might be less efficient due to the possible heavy gather
and scatter demands.

We plan to carefully study these issues in our future work.

4https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/.
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Fig. 24. The special case that re-expansion does not work well.

11 CONCLUSIONS

Vectorizing task-parallel programs requires solving several critical challenges: finding data-
parallelism for vectorization, controlling space usage, and ensuring that SIMD units stay fully
utilized. We present code transformations and scheduling strategies that address these problems,
allowing recursive, task-parallel programs to be mapped efficiently to commodity vector hardware.
Moreover, our stream compaction algorithm is applicable beyond our block management code and
could be integrated in production compilers.

Our results represent a first attempt at mapping task-parallel programs to processors with SIMD
units, and there are many opportunities for improved performance. For example, the next version
of the Xeon Phi will support character-level vector operations. With our general stream com-
paction implementation, our scheme will be automatically able to take advantage of the new hard-
ware’s increased vector widths. Moreover, while our current results focus on improving single-
core performance by leveraging SIMD units, our programming model is a standard task-parallel
language. It is feasible to integrate multicore parallelism with traditional work stealing and our
SIMDization technology.
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