
Constraint Analysis for Code Generation:
Basic Techniques and Applications in FACTS

KOEN VAN EIJK,† BART MESMAN,†‡§ CARLOS A. ALBA PINTO,† QIN ZHAO,†

MARCO BEKOOIJ,† JEF VAN MEERBERGEN,†‡§ and JOCHEN JESS†§

Code generation methods for digital signal processors are increasingly hampered by the combina-
tion of tight timing constraints imposed by signal processing applications and resource constraints
implied by the processor architecture. In particular, limited resource availability (e.g., registers)
poses a problem for traditional methods that perform code generation in separate stages (e.g.,
scheduling followed by register binding). This separation often results in suboptimality (or even
infeasibility) of the generated solutions because it ignores the problem of phase coupling (e.g., since
value lifetimes are a result of scheduling, scheduling affects the solution space for register bind-
ing). As a result, traditional methods need an increasing amount of help from the programmer
(or designer) to arrive at a feasible solution. Because this requires an excessive amount of design
time and extensive knowledge of the processor architecture, there is a need for automated tech-
niques that can cope with the different kinds of constraints during scheduling. By exploiting these
constraints to prune the schedule search space, the scheduler is often prevented from making a
decision that inevitably violates one or more constraints. FACTS is a research tool developed for this
purpose. In this paper we will elucidate the philosophy and concepts of FACTS and demonstrate
them on a number of examples.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code gen-
eration/compilers/optimization; B.5.1 [Register-Transfer-Level Implementation]: Design—
Memory design; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures—Parallel
processors

General Terms: Algorithms, Design

Additional Key Words and Phrases: DSP, constraint analysis, scheduling, phase coupling, fore-
ground memory, register binding

1. INTRODUCTION

The exponential growth in the number of gates that can be integrated on a
single chip has made the subject of embedded systems the central focus of
many design and research groups. Next to commonly used microprocessors
such as MIPS and ARM, embedded digital signal processors (DSPs) comprise
the performance backbone for application domains such as communication and
multimedia. About five years ago, application domain specific instruction set

Authors’ addresses: †Department of Electrical Engineering, Eindhoven University of Technology,
P.O. Box 513, NL-5600MB Eindhoven, The Netherlands; ‡Philips Research Laboratories, Prof.
Holstlaan 4, NL-5656AA Eindhoven, The Netherlands; §Eindhoven Embedded Systems Institute,
Eindhoven University of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2000 by the Association for Computing Machinery, Inc.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000, Pages 774–793.

Constraint Analysis for Code Generation • 775

processors (ASIPs) [Leupers et al. 1994] were indicated as suitable architec-
tures for satisfying the demands of embedded DSPs [Paulin et al. 1995], such
as small code size, high performance, and low power dissipation. These pro-
cessors often contain highly irregular datapaths and relatively few registers,
resulting in a strong phase coupling (e.g., the register addresses allowed for
reading operands may depend on the specific function executed). Because com-
piler retargetability [Leupers 1997] is considered an essential feature in the
context of ASIPs, processor-specific optimizations are ideally not part of ASIP
compilers. Some general-purpose tecchniques have been exploited to capture
the strong phase coupling resulting from datapath irregularities [Kästner and
Langenbach 1999]. These CLP [Kuchcinski 1997] or ILP formulations tend
to grow large when applied to the whole problem, thereby inducing unac-
ceptable overhead in schedule length and code size [Paulin and Liem 1996].
As a result, most programmers prefer to write assembly code in order to ex-
ploit the efficiency of ASIP architectures. This requires extensive knowledge of
the processor architecture as well as the instruction set and can be very time-
consuming.

Lately, a trend can be observed toward more orthogonal instruction sets in
digital signal processors to ease high-level compilation, portability of software,
and retargetability and maintenance of compiler software [TI 1997; TM 1997].
In particular, VLIW architectures have been acclaimed for the orthogonality of
the associated instruction sets. The first cracks in this trend toward regularity
have already appeared, however: For reasons of synthesizability, clock speed,
and power, some DSP companies partition the (ideally) single register file in
a number of files [Faraboschi et al. 1998] with a limited number of registers.
This potentially increases local register pressure and introduces additional
communication delay between clusters of functional units [Faraboschi et al.
1998], so it creates additional constraints and irregularities that the compiler
has to deal with.

Probably the most significant obstacle for large-scale embedding of VLIW pro-
cessors is the problem of code size, which creates a severe cost factor for on-chip
program memory/cache and a large contribution to power consumption in hand-
held devices. It can therefore be expected that for a large application domain, in-
terest in power and cost-efficient (but irregular) DSP architectures will remain,
and possibly increase. Compiler research in this area is essential and should
focus, among others, on supporting the combination of constraints arising
from architectural features and the application domain, and take phase coupl-
ing into account in order to arrive at feasible and efficient solutions [Bashford
and Leupers 1999; Mesman et al. 1999; Rau et al. 1998]. FACTS is a research
tool for code generation based on these observations.

The rest of the paper is organized as follows. Section 2 gives an overview of
FACTS and demonstrates the basic philosophy with an example. In Section 3
our model and search space representation are explained. Some basic con-
straint analysis techniques are treated in Section 4. In Section 5 we demon-
strate how these basic techniques are used in a search strategy to satisfy
more global constraints or to optimize with respect to some criterion. Ex-
perimental results are given in Section 6. Section 7 summarizes the main
ideas presented in this paper and concludes with a short discussion of future
work.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

776 • K. van Eijk et al.

Fig. 1. A simple example to illustrate constraint analysis.

2. AN INTRODUCTION TO FACTS

In this section we first give an example of how constraint analysis can prune
the schedule search space to prevent a scheduler from making decisions that
lead to constraint violation. This is followed by an overview of the structure of
FACTS and the techniques implemented in it.

2.1 A Pruning Example

Because scheduling under resource and timing constraints is an NP-hard prob-
lem, heuristics are needed to solve practical problem instances in a reasonable
time. Most existing schedule heuristics are, however, easily “deceived” by the
schedule freedom apparantly available in a problem instance and are therefore
too often unable to generate a feasible schedule. Driven primarily by prece-
dences and taking resource constraints into account on a clock cycle basis, com-
monly used heuristics such as list scheduling lack the scope to deliberately
postpone operations in order to arrive at a feasible schedule.

We use a small example to illustrate the difficulty of handling the combi-
nation of different types of constraints. In Figure 1(a), a data flow graph with
five operations is given. The ASAP–ALAP intervals are graphically depicted
for each operation. Each such interval defines the as-soon-as-possible (ASAP)
and the as-late-as-possible (ALAP) start time of the associated operation. Be-
cause calculating the exact intervals is again a NP-hard problem, conservative
estimations of these intervals are used. A well-known approach is to perform a
topological sorting of the data flow graph to calculate the maximum path delay
from or to an operation. Note that this approach completely ignores how many
resources are available. For our example, this results in the intervals shown in
Figure 1(a).

The timing constraints state that each execution of the data-flow graph
should take at most six clock cycles (i.e., the latency is 6) and that every

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 777

Fig. 2. The layered structure of FACTS.

three clock cycles, a new execution has to start (i.e., the initiation interval
is 3). Note that this means that two consecutive executions overlap in time
and that therefore a pipelined schedule has to be constructed. A list sched-
uler greedily schedules A, B, and C as soon as possible at clock cycles 0, 1,
and 2 respectively. Since clock cycle 3 coincides with clock cycle 0, the re-
source conflict A–D prohibits operation D from being scheduled at clock cy-
cle 3. Similarly, the resource conflict B–D prohibits operation D from being
scheduled at clock cycle 4. As a result, D is scheduled at clock cycle 5, and
consequently, there is no room left to schedule operation E. In Section 4.1 we
will show how resource constraint analysis is able to identify two additional
sequence constraints (given in Figure 1b) that are implied by the combination
of the resource constraints and the given timing constraints. The reader can
verify that no feasible solutions are excluded by these additional sequence con-
straints. Recalculating the ASAP–ALAP intervals reveals that there is actually
no schedule freedom at all: The schedule shown in Figure 1(b) is the only feasible
schedule.

2.2 FACTS Overview

The structure of FACTS consists of three layers, as depicted in Figure 2. The
core layer contains the internal representations of the algorithm to be sched-
uled and of the schedule search space. At the intermediate layer, the basic
constraint analysis techniques are provided. On top of that, search strategies
are implemented.

2.2.1 DFG and the Distance Matrix. At the core layer of FACTS, each ba-
sic block of the algorithm to be scheduled is represented by a data-flow graph
(DFG). In addition, the schedule search space is represented by a distance ma-
trix. This distance matrix administrates the minimum and maximum difference
between the start times of each pair of operations in a DFG.

The results of the constraint analysis techniques in FACTS are conceptu-
ally expressed as additional sequence constraints in the data-flow graph as in
Figure 1(b). The effects of these results on the schedule search space are com-
puted by updating the distance matrix: incrementing the minimum distance or
decrementing the maximum distance between two operations. In Figure 1(b)
for example, the sequence edge A→ D with delay 4 indicates that operation D
has to start execution at least 4 clock cycles after the start of operation A. The
sequence edge D→ B with delay −2 indicates that operation B cannot start
execution more than 2 clock cycles before the start of operation D. Note that
the combination of these two sequence constraints implies that operation B
cannot start earlier than 2 clock cycles after operation A, as can be verified in

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

778 • K. van Eijk et al.

the schedule in Figure 1(b). The effect of combining two such analysis results
is visible in the distance matrix by computing the longest paths [Cormen et al.
1990] induced by the individual sequence edges. The path A→ D→ B with de-
lay 4+ (−2)= 2 clock cycles implies a minimal distance of 2 clock cycles between
operations A and B. This feature of being able to combine the different analysis
results simply by computing the longest paths between each pair of operations,
is one of the main motivations for choosing the distance matrix to represent the
schedule search space.

The processes that take place in FACTS at the core level can be summarized
as follows:

• Timing constraints are expressed directly in the distance matrix.
• Analysis results are integrated into the distance matrix.
• Precedence constraints (possibly resulting from analysis) are combined in the

distance matrix, such that all implied precedence constraints are also derived.

2.2.2 Basic Constraint Analysis Techniques. At the intermediate layer, the
basic constraint analysis techniques are located. Most of these techniques es-
sentially consist of rules triggered by the combination of one or more pairwise
distances (entries in the distance matrix) and other (often architectural) con-
straints.

For example, in Figure 1(b), the sequence edge A→ D with delay 4 is due to
the following observation: In Figure 1(a), a minimum distance of three clock cy-
cles from operation Ato D is implied by the path of precedences A→ B→C→ D.
Suppose that operation D would be scheduled at exactly this minimum distance
from A. Because the initiation interval is 3, when operation D executes, the next
iteration of operation A also executes, thus violating the resource constraint
A–D. As a result of the initiation interval and the resource conflict A–D, the
minimum distance A→ D of three clock cycles is not feasible, and, therefore,
the distance A→ D should be at least four clock cycles.

The essence of constraint analysis is that additional sequence edges are added
that are necessarily implied by the combination of other constraints. In this way,
the schedule search space is pruned to prevent the scheduler from finding in-
feasible solutions, without eliminating feasible solutions. This demand of nec-
essarily implied sequence constraints can be relaxed, however, as is the case
with symmetry analysis. That analysis technique may eliminate equivalent fea-
sible solutions, provided that at least one such equivalent solution remains (see
Section 4.3).

2.2.3 Search Strategies. At the top level of FACTS, we deal with search strate-
gies. The objective may be to minimize some criterion such as latency or initi-
ation interval, or to satisfy more global constraints such as a fixed capacity of
a register file. These constraints are global in the sense that they have a gen-
eral effect on all timing relations, without affecting any specific timing relation.
For example, a constraint on the capacity of a register file limits the number
of values simultaneously alive, which is determined by the timing relations.
However, no single value lifetime can be identified that necessarily has to be
serialized with some other value lifetime. It is clear that some value lifetimes
need to be serialized in order to satisfy the capacity constraints, and there-
fore some decisions have to be made regarding the serialization of values. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 779

our search strategies we try to base choices on the identification of potential
bottlenecks for satisfying the corresponding constraint. In the register file ex-
ample, a potential bottleneck is identified using the worst-case lifetime overlap,
detected by coloring a worst-case conflict graph (see Section 5.2).

The following sections discuss the three layers of FACTS in more detail and
give examples of modeling and analysis techniques at each layer.

3. THE DFG MODEL AND THE DISTANCE MATRIX

In this section we will introduce the basic concepts of the core FACTS layer: the
DFG model, the distance matrix, and the way to express some relevant timing
constraints in the DFG and the distance matrix.

3.1 The DFG Model

An algorithmic description can be partitioned into basic blocks. Each basic
block can be modeled by a data flow graph (DFG), which describes the primi-
tive operations performed in that block, and the dependencies between those
operations.

Definition 1 (Data Flow Graph). A data flow graph DFG is a triple (V, Ed ∪
Es, w), where

• V is the set of vertices (operations),
• Ed ⊆ V × V is the set of data precedence edges,
• Es ⊆ V × V is the set of sequence precedence edges, and
• w: Ed ∪ Es → Z is a function describing the timing delay (in clock cycles)

associated with each precedence edge.

Two (dummy) operations are always assumed to be present in the DFG: the
source and the sink. They have no execution delay and represent respectively
the first and the last operation to be executed. We will usually not show the
source and the sink nodes when depicting a DFG.

For reasons of simplicity, we will assume in this paper that all operations
have an execution delay of 1 clock cycle. Theoretically, this is not a significant
restriction, because multicycle operations can be modeled using precedence
constraints [Mesman et al. 1999]. In the actual implementation of FACTS, any
nonnegative integer delay value is supported directly.

The task of scheduling is to assign each operation v∈V a start time s(v).
The number of available cycles is defined by the latency L. In our work we
also consider pipelined schedules [Lam 1988] that execute periodically with a
period called the initiation interval I I. The start times are constrained by the
precedences. A precedence edge (vi, vj) ∈ Ed ∪ Es states that

s(vj) ≥ s(vi)+w(vi, vj) (1)

A chain of precedence edges vi→ vk→· · ·→ vj with total added weight wpath
is called a path, implying that s(vj) ≥ s(vi)+wpath.

Definition 2 (Distance). The distance d(vi, vj) is the length of the longest
path from vi to vj .

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

780 • K. van Eijk et al.

Fig. 3. The interval (or set) representation does not accurately represent relative timing.

A path in the DFG thus represents a minimum timing delay between two oper-
ations. These distances are stored in a distance matrix, which can be calculated
using a all-pairs longest-path algorithm [Cormen et al. 1990].

3.2 Representation of the Schedule Search Space

FACTS uses the distance matrix as a representation of the schedule search space.
This is not an obvious choice, since in the context of constraint satisfaction, other
representations of the schedule search space are much more common. These
representations are focussed on representing the schedule freedom for each
individual operation. That is, for each operation either a set [Nuijten 1994] or
an interval [Timmer and Jess 1993] is kept containing the absolute clock cycle
numbers in which the corresponding operation can be scheduled, such as the
ASAP–ALAP intervals in Figure 1. We feel that the distance matrix fits our
purposes better for the following two reasons.

• The distance matrix administrates relative timing (order). Practically all code
generation constraints have an implication on the ordering of operations
rather than on their absolute start times (e.g., reducing register pressure
can be achieved by serializing value lifetimes). Obviously, this is an order-
ing issue. By focusing on relative ordering information we are better able to
exploit the characteristics of the scheduling problem and of the constraints
relevant for code generation.
• The distance matrix is strictly more accurate than an interval representation.

Any interval can be represented in terms of sequence edges. For an interval
[lb; ub] of an operation A, this requires two sequence edges: A precedence
source→ A with weight lb and a precedence A→ source with weight −ub.
The example in Figure 3 shows that the reverse is not true: The information
expressed in the distance matrix cannot be accurately expressed in terms of
intervals, so the distance matrix is strictly more accurate.

An obvious drawback of maintaining a distance matrix is that it is computa-
tionally more expensive than an interval representation. However, in Section 6
we will provide experimental evidence that this overhead is quite acceptable
in practice, even for larger DFGs containing hundreds of operations. Note that
adding an extra sequence edge does not require recalculation of the entire dis-
tance matrix, but rather an incremental update.

3.3 Expressing Timing Constraints

As indicated in Figure 2, some timing constraints can directly be expressed
at the level of the DFG or the distance matrix. Precedence constraints are
an obvious example; a precedence A→ B implies that d(A, B)≥w(A, B). Other
timing constraints that can be expressed are related to the latency and the
initiation interval:

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 781

Fig. 4. Modeling a constraint on (a) the latency and (b) the initiation interval.

3.3.1 Latency. A constraint on the latency L can be expressed in the DFG
by a sequence edge from the sink to the source with weight −L, as illustrated
in Figure 4(a). According to inequality 1, this is interpreted as s(source)≥
s(sink)− L, which is equivalent to s(sink)≤ s(source)+ L. Because the source is
always scheduled in clock cycle 0, this formula expresses that the sink should
be scheduled in clock cycle L or earlier. Because all other operations precede
the sink, this implies that all operations have to finish their execution within
the first L clock cyles.

3.3.2 Initiation Interval. We assume that the processor architecture con-
tains a microcoded controller. As a consequence, the same code is executed
every loop iteration. This implies that in each iteration, a value is written to
the same register. Therefore, if loop iterations overlap, we have to ensure that
a value belonging to the current iteration is consumed before it is overwritten
by the production of that same value in the next iteration. Since consecutive
productions are exactly I I clock cycles apart, this means that a value cannot
be alive longer than I I clock cycles. So the operation C that consumes the value
should execute within I I clock cycles after the operation P that produces the
value. Just like the latency constraint, a necessary and sufficient translation
to the precedence model is that for each data precedence edge (P, C)∈ Ed, there
is an edge C→ P with weight −I I, as illustrated in Figure 4(b).

3.4 Expressing Resource Constraints

Resource conflicts are modeled in FACTS by introducing the concept of resources
and by defining the resource usage of each operation. For this purpose, we as-
sociate an operation type with each operation. Let the set TO be the set of op-
eration types. Then the function τ : V→TO defines the operation type of each
operation. In our model, each operation type is associated with a resource type,
which is characterized by a delay value, a data introduction value (to support
pipelined resources), and the number of instances available of that resource
type.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

782 • K. van Eijk et al.

Although our modeling of resource constraints is rather basic, it is interest-
ing to observe that it can still handle many practical issues: Resources can also
be used to model more abstract constraints, such as those arising from a fixed
instruction set. Consider the case that no instruction exists for the parallel ex-
ecution of operations vi and vj , so that the parallel execution of vi and vj should
be prohibited. This can be accomplished by generating an artificial resource
[Timmer et al. 1994] that is used by both vi and vj . A more general constraint
arises from the availability of a limited set of issue slots [TI 1997; TM 1997] to
control the data path of a processor. Both Braspenning [1999] and Eisenbeis
et al. [1999] describe a method to completely replace issue slot constraints by
artificial resources.

4. BASIC CONSTRAINT ANALYSIS TECHNIQUES

This section discusses some of the basic constraint analysis techniques in FACTS.
In Sections 4.1 and 4.2, on resource and storage constraints respectively, se-
quence edges are added to prune the schedule search space without eliminat-
ing feasible solutions. In Section 4.3, symmetry analysis is discussed, which
may eliminate feasible solutions, provided that at least one other “equivalent”
feasible solution remains in the search space.

4.1 Execution Interval Analysis

The method we introduce in this section to analyse resource constraints is based
on examining the intervals in which operations can be executed [Timmer and
Jess 1993; Timmer 1995]. The method focuses on the availability of resources; it
reduces the execution interval of an operation when it observes that no resource
is available for executing that operation in the corresponding clock cycle. The
process is illustrated in Figure 5.

In Figure 5(a), the DFG is given. The latency is 5 clock cycles, and one resource
of type “add” is available for executing the operations. The initial execution
intervals are determined by the ASAP–ALAP intervals as depicted in Figure 5.
The reader can already verify that the timing and resource constraints restrict
the execution interval of operation C to [2; 2], whereas the ASAP–ALAP interval
is [1; 3].

From the initial execution intervals and the available resources (hardware
modules), module execution intervals (MEIs) are calculated (right hand side
of Figure 5c). Each MEI represents the rather abstract notion that some re-
source has to execute an operation. In the example, the constraints imply
that the available adder has to start executing a new operation every clock
cycle.

Execution interval analysis combines the execution intervals of the opera-
tions with the resource constraints by constructing a bipartite schedule graph
in the following way. The operations and their corresponding operation exe-
cution intervals (OEIs) are shown on the left hand side. The module execu-
tion intervals are shown on the right hand side. Note that they are always
ordered on their start and end times. There is an edge between an OEI and a
MEI if the intervals overlap, indicating that the corresponding operation can
be executed in the designated MEI. In addition, it is required that all preceding

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 783

Fig. 5. Execution interval analysis: (a) DFG; (b) execution intervals; (c) bipartite schedule graph.
(d) Edges that can never be part of a complete matching are eliminated. (e) Execution intervals are
adjusted accordingly. (f) The analysis result is annotated in the DFG.

operations of the same operation type can be matched with preceding MEIs
in the bipartite graph. A similar condition is imposed for all succeeding
operations.

The key observation of the analysis is that for every feasible schedule, there
exists a complete matching in the bipartite schedule graph between the OEIs
and the MEIs. That is, every OEI is matched to exactly one MEI and vice versa.
The analysis uses the algorithm of Sangiovanni-Vincentelli [1976] to identify
edges in the bipartite graph that can never be part of a complete matching.
The reader can verify that the bold crossed edges in Figure 5(d) are such edges.
Because these edges can never be part of a matching corresponding to a feasible
schedule, they are removed from the bipartite graph. As a result, operation C
cannot execute in the MEIs [1; 1] and [3; 3]. The execution interval of operation
C is therefore adjusted (Figure 5e). This adjustment corresponds to a pruning
of the search space. The result of the analysis is annotated in the DFG (and the
distance matrix) as indicated in Figure 5(f).

Execution interval analysis also contains an additional analysis: To deter-
mine the earliest possible start time of an operation, a relaxed scheduling prob-
lem involving all its predecessors is solved to determine a lower bound on the
first clock cycle in which all the predecessors are completed. The scheduling
problem is relaxed in the sense that the precedence constraints are essentially
ignored; it is only enforced that each operation cannot start earlier than the
lower bound on its start time. Similarly, all successors are analysed. The prede-
cessors and successors are determined using the distance matrix: An operation
vi is said to precede an operation vj iff d(vi, vj)≥ 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

784 • K. van Eijk et al.

Fig. 6. To solve the register conflict, Cv has to precede Pu.

4.2 Storage Constraint Analysis

In this section we treat a relatively simply constraint arising from the decision
to assign two values to the same register. This decision could be taken by a
designer, by a search strategy for register binding (Section 5.2), or by necessity
simply because there is, for example, only one flag register available to store a
number of condition variables. Whenever two values are assigned to the same
register, their corresponding lifetimes are forced to be serialized. In general
this can be done in two ways (value u precedes value v or vice versa). Some-
times there already exists a precedence between the various accesses to u and
v that excludes one of these possibilities. One such situation is illustrated in
Figure 6.

In this situation, the sequence edge Cv→Pu is a constraint necessary and
sufficient to solve the register conflict between u and v. Such situations are
recognized by simple rules [Mesman et al. 1998] that examine the distance
matrix for precedences.

4.3 Symmetry Detection

Many signal processing algorithms exhibit certain symmetries, for example be-
cause their structure is completely or partly regular. Practical examples include
algorithms for performing a fast Fourier transform or a discrete cosine trans-
form. These symmetries have a negative impact on the accuracy of constraint
analysis techniques; these techniques are not capable of “breaking” the sym-
metries in order to decrease the apparent scheduling freedom because doing so
would possibly remove feasible schedules. Therefore, we developed additional
techniques for detecting and utilizing symmetry while preserving feasibility.

In general, the concept of symmetry is strongly related to the property of
an object that it does not change under a certain transformation. The kind of
transformation that is relevant for capturing symmetry in a DFG is a relabeling
of the operations such that the operation types and the precedence edges are
preserved. Such a transformation is called an automorphism.

Definition 3 (Automorphism). An automorphism is a bijective function α:
V→V such that

• Each operation is mapped to an operation of the same type: ∀v∈V: τ (v)=
τ (α(v)).

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 785

• Each edge is mapped to an edge having the same weight: ∀(vi, vj)∈ Ed∪ Es:
(α(vi), α(vj))∈ Ed∪ Es)∧ (w(vi, vj)=w(α(vi), α(vj)).

Given an automorphism, the following DFG transformation describes how
an extra sequence edge can be added to break the symmetry.

FEASIBILITY PRESERVING TRANSFORMATION 1. Given an operation vi and an au-
tomorphism α that maps vi to another operation, that is, α(vi)= vj with vi =/ vj.
Introduce a sequence edge from vi to vj with weight zero.

To illustrate this transformation, consider the DFG of Figure 5. Because there
exists an automorphism that exchanges operations Aand B, the transformation
allows us to introduce a sequence edge with weight 0 from A to B. Similarly, it is
allowed to put a sequence edge from D to E. In combination with the execution
interval analysis, this associates a unique start time with each operation.

For the proof that Transformation 1 preserves feasibility, as well as for a more
detailed discussion and additional techniques, we refer the interested reader
to [Van Eijk et al. 1998].

5. BOTTLENECK IDENTIFICATION AND SEARCH STRATEGIES

At the top level of FACTS, we deal with search strategies. Instead of analyzing or
adding constraints, at this level we actually try to find a solution to a code gen-
eration problem. It builds on the other two levels in two ways. First, decisions
made by the search strategy affect the schedule search space. The techniques
in the lower two levels of FACTS are responsible for pruning the search space
according to such a decision. This will prevent the search strategy from mak-
ing decisions that are inconsistent with the constraints and previously made
decisions. Second, the constraint analysis techniques may provide information
valuable for the identification of potential bottlenecks. In this section we discuss
search strategies for the two main code generation problems: scheduling and
register binding.

5.1 Scheduling

This section describes the scheduler used in FACTS. We emphasize that this
scheduler is not designed to optimize some criterion, but rather to find a sched-
ule that complies with the set of constraints. The interaction between the top-
level search strategies and basic constraint analysis in our view ensures that
consistency with the constraint set is maintained. That is, the scheduler makes
a decision, and constraint analysis prunes the search space accordingly.

The scheduler combines a branch-and-bound approach with a scheduling
strategy based on the bipartite graph model discussed in Section 4.1. The basic
idea is to first fix the order of operations assigned to the same functional re-
source type by assigning operation execution intervals (OEIs) to module execu-
tion intervals (MEIs). This assignment does not immediately fix the start times
of the operations but does already decide upon issues most relevant for finding
a feasible schedule. This statement is theoretically justified by [Timmer 1995]
for nonpipelined schedules that do not have to satisfy sequence constraints.
For each MEI, all possible matchings to OEIs are tried until a feasible schedule
is found. Only at the end of the scheduling process are the actual start times

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

786 • K. van Eijk et al.

Fig. 7. Global approach for register binding.

chosen. After each scheduling decision, constraint analysis is run; whenever
infeasibility is reported, backtracking is performed.

Whenever the bipartite schedule graph contains clear bottlenecks for find-
ing a feasible schedule, those are solved first. In this context, a bottleneck is
defined as a MEI of length 1 with only a small number of adjacent OEIs. If no
clear bottlenecks exist, the scheduler uses heuristics similar to those for list
scheduling. For more information the reader is referred to [Timmer 1995].

5.2 Register Binding

In this section we discuss our register binding approach. We assume that val-
ues are already bound to register files (in case of multiple register files). This
binding usually follows from an assignment of operations to functional units.
Furthermore, we assume that each register file has a fixed capacity that has
to be respected during register binding. We intend to exploit the freedom avail-
able for scheduling to obtain a feasible register binding. The binding process is
illustrated in Figure 7.

For each register file, an upper bound on the required number of registers
can be computed based on the distance matrix; an exact figure is unknown be-
cause a complete schedule is not yet determined. When the upper bound for
each register file already respects the file’s capacity, the additional precedences
are transferred to the scheduler and register binder for completion, as shown
on the right hand side of Figure 7. However, in most cases and especially in
the beginning of the process, the schedule freedom of the operations will be
relatively large, resulting in many potential lifetime overlaps, thus inevitably
violating some register file’s capacity. In this case the maximum number of
overlapping values has to be reduced by identifying one or more pair(s) of val-
ues that can be serialized. This value pair is selected in the lifetime sequencer
in Figure 7. The constraint analysis techniques discussed in Section 4 sub-
sequently calculate the effect of this serialization on the schedule freedom of
all operations. This is necessary to prevent the lifetime sequencer (in subse-
quent iterations) from making serializations that are not possible. The pro-
cess iterates until the capacity of each register file matches the worst-case
requirements.

We illustrate the binding process with the example DFG given in Figure 8(a).
If a greedy list scheduler is used, values a, b, d, and f end up with overlapping
lifetimes, and the schedule requires four registers. It is, however, possible to

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 787

Fig. 8. (a) DFG (b) Conflict graph. Maximum clique identifies bottleneck.

Fig. 9. Rules for determining strong and no conflicts in the conflict graph.

obtain a schedule requiring only two registers simply by postponing operations
D and F.

To reduce the potential lifetime overlap, we have to detect potential conflicts
between pairs of values before a complete schedule is known. The distance
matrix is used to determine the “worst-case” and “best case” lifetime over-
lap between values. This is illustrated in Figure 9. In the left hand figure the
condition is given for the case that value lifetimes never overlap. For example,
values a and e have no conflict. In the right hand figure the condition is given for
the case that value lifetimes surely overlap. We say that values u and v have
a strong conflict. This is, for example, the case for values a and b. If neither
condition holds, we say that u and v have a weak conflict, like values b and d.
Values with a weak conflict can be serialized to reduce the register pressure.
Strong and weak conflicts between values are annotated in a conflict graph as
respectively, drawn and dashed edges between nodes representing values. The
conflict graph for the DFG in Figure 8(a) is depicted in Figure 8(b).

By coloring the conflict graph with a minimum number of colors, bounds
can be calculated on the required number of registers. By only considering the
strong conflicts, a lower bound is obtained, while considering all conflicts results
in an upper bound.

A potential bottleneck is identified by the largest clique (complete subgraph)
in the conflict graph: Because every pair of values in this clique has a conflict,
the number of registers required is at least as large as the size of this clique.
Indeed, the maximum clique in Figure 8(b) consists of the potentially overlap-
ping values a, b, d, and f . We have to reduce this potential bottleneck until
the capacity of the register file is respected. We do this by eliminating conflicts

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

788 • K. van Eijk et al.

Fig. 10. (a) DFG after serializing E→ F (b) Conflict graph.

in the largest clique. A weak conflict is selected between values with maxi-
mum saturation numbers; in a colored conflict graph, the saturation number
of a node is defined as the number of different colors assigned to its neighbors.
The details of this selection process are explained in Alba-Pinto et al. [1999]
and Mesman et al. [1999]. The method selects values d and f to be serial-
ized. The basic constraint analysis rule in Figure 6 implements this decision
by serializing operations E→ F, as depicted in Figure 10(a). This reduces the
potentially required number of registers to three, as shown in Figure 10(b). The
new bottleneck is identified by the clique {a, b, d}. Either conflict a–d or b–d is
selected for serialization, and the sequence edge C→ D is added to obtain the
final schedule requiring two registers.

6. EXPERIMENTAL RESULTS

In this section, we present some experimental results obtained with FACTS. The
experiments are divided into five sets, each demonstrating a specific aspect. All
experiments are run on a machine with a 233 MHz Pentium II processor and
64 MB of memory.

6.1 Constraint Analysis

The first experiment focuses on the accuracy of the constraint analysis tech-
niques. This is evaluated using the fast discrete cosine transform example,
which is well known from the high-level synthesis domain, under various sets
of constraints. We use mobility as our metric for schedule freedom. The mobil-
ity is defined as the average difference between the as-late- as-possible (ALAP)
start time and the as-soon-as-possible (ASAP) start time of the operations:
1
|V|
∑

vi∈V ALAP(vi)− ASAP(vi).
The results are given in Table I. We compare three approaches: the mobility

as calculated by a conventional topological sorting, the mobility as calculated by
the basic constraint analysis techniques in FACTS, and the mobility as calculated
by these techniques after running symmetry detection as a preprocessing step.
The results clearly show the improvements obtained by carefully analyzing
resource and timing constraints in combination.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 789

Table I. Results of constraint analysis on example FDCT (|V| =42, |Ed| =34).

Constraints Topological Basic Analyses + Symm. Detect.
mul alu L Mobility Mobility Time (s) Mobility Time (s)

8 4 8 1.43 0.57 0.1 0.43 0.1
8 3 9 2.43 infeas. 0.1 infeas. 0.1
5 4 10 3.43 3.14 0.1 2.57 0.1
5 3 10 3.43 2.33 0.1 2.07 0.1
4 3 11 4.43 2.62 0.1 1.50 0.1
4 2 13 6.43 5.95 0.1 5.57 0.1
3 2 14 7.43 6.57 0.1 5.59 0.1
2 2 18 11.43 9.52 0.1 8.62 0.1
2 1 26 19.43 16.81 0.1 15.26 0.1
1 1 34 27.43 23.00 0.1 17.90 0.1

Table II. Results of scheduling and latency minimization on the FDCT example.

Constraints Scheduling Min. Latency
mul alu L Solved Time (s) Dec./Inf. L Time (s)

8 4 8 yes 0.2 12/0 8 0.3
8 3 9 yes 0.1 0/0 10 0.6
5 4 10 yes 0.5 30/0 10 0.5
5 3 10 no 1.2 —/100 11 1.7
4 3 11 yes 0.4 20/1 11 0.5
4 2 13 yes 0.5 22/25 13 0.5
3 2 14 yes 0.6 27/10 14 0.6
2 2 18 yes 0.5 26/0 18 0.5
2 1 26 yes 0.6 32/2 26 0.6
1 1 34 yes 0.7 34/4 34 0.8

6.2 Scheduling

The second experiment considers scheduling and latency minimization. Table II
shows the results obtained for the same problem instances as used in the first
experiment.

For the scheduler, the table lists whether a feasible schedule is found, the
required run time, and two numbers that indicate the efficiency of the search
space traversal: the number of decisions taken to arrive at the feasible solution
(i.e., the depth of the search tree at the point where this solution is found), and
the number of backtracks performed. The fourth problem instance is actually
infeasible, and therefore the scheduler stops when the number of backtracks
hits a user-defined limit.

Latency minimization is performed by first estimating the minimum latency.
This is followed by repeatedly trying to find a feasible schedule, and if this fails,
increasing the latency with 1. In all cases, the minimum latency is found.

Table III shows the results of latency minimization for two larger, pipelined
examples. For both examples, a range of initiation interval constraints is tested.
L represents the latency of the resulting schedule, while Llb is a lower bound
estimate of the minimum latency. In all cases, the difference is at most two
cycles.

6.3 Run-Time Efficiency

The third experiment evaluates the performance of FACTS on larger examples.
For that purpose, we use two scalable examples: a biquad filter with the number

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

790 • K. van Eijk et al.

Table III. Results of latency minimization on pipelined examples.

Example |V| / |Ed| / |Es| I I L Llb Time (s)

macDT0 210 / 192 / 153 26 infeas. 0.1
27 35 34 54.0
28 33 33 24.3
29 32 32 24.8
30 31 31 22.5

chen ref 138 / 87 / 72 25 infeas. 0.3
26 31 31 14.9
27 32 30 82.2
28 32 30 70.4
29 31 31 17.1
30 32 31 110.4
31 32 31 45.0

Table IV. Efficiency on larger examples.

Constraint Analysis Latency Minimization
Example |V| L Mobility Time (s) L Time (s)

biquad 10 100 52 47.9→ 45.4 0.2 52 6.7
biquad 20 200 102 97.8→ 95.3 0.5 102 67.1
biquad 30 300 152 147.8→ 145.3 1.5 152 280.9
fdct 2s 84 34 19.9→ 11.9 0.2 34 5.0
fdct 3s 126 50 28.0→ 12.8 0.4 50 20.1
fdct 4s 168 66 36.1→ 13.3 0.8 66 53.2
fdct 5s 210 82 44.1→ 13.6 1.4 82 115.0
fdct 6s 252 98 52.1→ 13.8 2.2 98 211.4

of stages as a parameter, and serial compositions of the FDCT example. Ta-
ble IV shows the results for applying constraint analysis and for minimizing
latency.

The process of applying all constraint analysis techniques until no progress is
obtained, runs in seconds. For the biquad example, a relatively small improve-
ment in mobility is obtained because the schedule freedom is actually very
large. For the FDCT example, a significant reduction is obtained. The results
for latency minimization show that also a search strategy on top of constraint
analysis, still has quite reasonable run times. In all cases, the minimum latency
is found.

6.4 Register Binding

The fifth and last experiment demonstrates our register binding strategy
under fixed register file capacity constraints. The results are shown in Ta-
ble V. For each problem instance, the table lists the register file capac-
ity constraints, the number of registers actually used, the required run
time, and the impact of serialization on the mobility of the operations (the
numbers before and after the arrow respectively denote the mobility before and
after serialization). The experimental results clearly show that our method is
steered by the individual register file constraints; despite the presence of tight
timing and resource constraints, it is able to generate different schedules de-
pending on the settings of the individual capacity constraints.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 791

Table V. Results of scheduling with register file capacity constraints.

Example |V|/I I/L RF Caps RF Sizes Time (s) Mobility

fft256 30/4/13 infinite 3, 3, 1, 2 0.1
1, 4, 1, 2 1, 4, 1, 2 0.1 0.7→ 0.3
2, 2, 1, 2 2, 2, 1, 2 0.4 2.3→ 0.0
2, 3, 1, 1 2, 3, 1, 1 0.8 2.1→ 0.0
3, 2, 1, 1 3, 2, 1, 1 0.9 2.1→ 0.0
4, 1, 1, 2 4, 1, 1, 2 0.1 0.7→ 0.4

FDCT 42/18/18 infinite 9, 4 0.1
9, 4 7, 4 2.3 9.5→ 4.0
6, 4 6, 4 2.7 9.5→ 2.0
8, 2 8, 2 0.9 9.5→ 1.4

loeffler 56/26/28 infinite 8, 4, 10 0.4
8, 4, 10 8, 4, 9 3.5 14.4→ 3.1
4, 3, 8 4, 3, 8 4.9 14.4→ 1.0

7. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the code generation tool FACTS. The techniques im-
plemented in FACTS are based on the observation that traditional code gener-
ation methods require too much help and expertise from a designer to satisfy
the combination of timing, resource, and storage constraints encountered when
mapping DSP applications onto embedded processors. FACTS is guided rather
than hampered by these constraints: By using the constraints to prune the
schedule search space, the scheduler is often prevented from making a decision
that inevitably violates one or more constraints.

We have argued that the problem of phase coupling cannot be ignored when
constraints are tight and efficient solutions are desired. Traditional methods
that perform code generation in separate stages are often not able to find an
efficient or even a feasible solution. In our approach, the problem of phase
coupling is addressed by letting all analyses work on a single unified represen-
tation of the schedule search space, the distance matrix. This is an effective
representation because it administrates relative timing, which is important
for solving the scheduling problem. The results of the analyses discussed in
this paper are expressed in terms of sequence constraints and combined in the
distance matrix simply by computing the longest paths between all pairs of
operations.

The efficiency of implementing a strong interaction between several code gen-
eration stages is supported by the experimental results that feature reasonable
run times for DSP applications that are constrained in the timing, resource,
and storage domain. In the current implementation, constraint analysis is per-
formed by applying all techniques consecutively until no further progress is
obtained; the performance can be further improved by developing more effi-
cient strategies to combine the various techniques.

In this paper, we have not described in detail which features of current DSP
architectures can be captured by FACTS. Rather, we have focused on the abstract
model used. This model fits VLIW architectures quite well. However, it is def-
initely not restricted to only that class of architectures. Our future work will
focus on extensions to the current approach. We intend to implement predi-
cated execution in the register binding model [Zhao and van Eijk 1999], which

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

792 • K. van Eijk et al.

helps to reduce register pressure in case of aggressive global scheduling. An-
other extension that we are considering is a method to assign operations to
functional resources and values to register files in the context of a clustered
architecture with a restricted connection network; this requires FACTS to deal
with communication delays that are unknown before assignment. We also in-
tend to analyze storage models such as fifos and rotating register files, which
could help to reduce code size and/or decrease the initiation interval of pipelined
schedules.

REFERENCES

ALBA-PINTO, C., MESMAN, B., AND VAN EIJK, C. 1999. Register files constraint satisfaction during
scheduling of dsp code. In Symposium on Integrated Circuits and Systems Design (Natal, Brazil,
Oct. 1999).

BASHFORD, S. AND LEUPERS, R. 1999. Constraint driven code selection for fixed-point dsps. In Pro-
ceedings of the 36th ACM/IEEE Design Automation Conference (1999). ACM and IEEE Computer
Society, 817–822.

BRASPENNING, R. 1999. Modeling issue slot constraints with resources. Technical report (May),
Eindhoven University of Technology.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to algorithms. MIT Press.
EISENBEIS, C., CHAMSKI, Z., AND ROHOU, E. 1999. Flexible issue slot assignment for vliw architectures.

In 4th International Workshop on Software and Compilers for Embedded Systems (St. Goar,
Germany, Sept. 1999).

FARABOSCHI, P., DESOLI, G., AND FISHER, J. 1998. Clustered instruction-level parallel processors.
Technical Report HPL-98-204, Hewlett-Packard.

KÄSTNER, D. AND LANGENBACH, M. 1999. Code optimization by integer linear programming. In ACM
Conference on Compiler Construction (1999).

KUCHCINSKI, K. 1997. Embedded system synthesis by timing constraints solving. In International
Symposium on System Synthesis (Antwerp, Sept. 1997).

LAM, M. 1988. Software pipelining: An effective scheduling technique for vliw machines. In SIG-
PLAN Conference on Programming Language Design and Implementation (June 1988).

LEUPERS, R. 1997. Retargetable code generation for digital signal processors. Kluwer Academic
Publishers.

LEUPERS, R., SCHENK, W., AND MARWEDEL, P. 1994. Microcode generation for flexible parallel archi-
tectures. In Working Conference on Parallel Architectures and Compiler Technology (1994).

MESMAN, B., ALBA-PINTO, C., AND VAN EIJK, C. 1999. Efficient scheduling of dsp code on processors
with distributed register files. In International Symposium on System Synthesis (San Jose, Nov.
1999).

MESMAN, B., STRIK, M., TIMMER, A., VAN MEERBERGEN, J., AND JESS, J. 1998. A constraint driven
approach to loop pipelining and register binding. In Proceedings of the Design Automation and
Test in Europe (Paris, 1998). IEEE Computer Society Press.

MESMAN, B., TIMMER, A., VAN MEERBERGEN, J., AND JESS, J. 1999. Constraint analysis for dsp code
generation. IEEE Transactions on Computer-Aided Design 18, 1 (Jan.), 44–57.

NUIJTEN, W. 1994. Time and Resource Constrained Scheduling. Ph.D. thesis, Eindhoven University
of Technology.

PAULIN, P. AND LIEM, C. 1996. Embedded systems: Tools and trends, tutorial. In Proceedings of the
European Design and Test Conference (Paris, Mar. 1996). IEEE Computer Society Press.

PAULIN, P., LIEM, C., MAY, T., AND SUTARWALA, S. 1995. Dsp design tool requirements for embedded
systems: a telecommunications industrial perspective. Journal of VLSI Signal Processing 9, 1.

RAU, B., KATHAIL, V., AND ADITYA, S. 1998. Machine-description driven compilers for epic processors.
Technical Report HPL-98-40, Hewlett Packard research labs.

SANGIOVANNI-VINCENTELLI, A. 1976. A note on bipartite graphs and pivot selection in sparse matri-
ces. IEEE Transactions on Circuits and Systems CAS-23, 12, 817–821.

TI. 1997. TMS320C60xx CPU and Instruction Set Reference Guide. Texas Instruments.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

Constraint Analysis for Code Generation • 793

TIMMER, A. 1995. From Design Space Exploration to Code Generation. Ph.D. thesis, Eindhoven
University of Technology, The Netherlands.

TIMMER, A. AND JESS, J. 1993. Execution interval analysis under resource constraints. In Digest of
Technical Papers of the IEEE International Conference on Computer-Aided Design (Santa Clara,
Nov. 1993). IEEE Computer Society Press, 454–459.

TIMMER, A., STRIK, M., VAN MEERBERGEN, J., AND JESS, J. 1994. Conflict modelling and instruction
scheduling in code generation for in-house dsp cores. In Proceedings of the 32nd ACM/IEEE
Design Automation Conference (1994). ACM and IEEE Computer Society.

TM. 1997. Trimedia TM-1 Media Processor Data Book. Philips Semiconductors, Trimedia Product
Group.

VAN EIJK, C., JACOBS, E., MESMAN, B., AND TIMMER, A. 1998. Identification and exploitation of sym-
metries in dsp algorithms. In Proceedings of the Design Automation and Test in Europe (Munich,
1998). IEEE Computer Society Press, 602–608.

ZHAO, Q. AND VAN EIJK, C. 1999. Register binding for dsp code containing predicated execution. In
Proceedings of the Workshop on Circuits, Systems and Signal Processing (Mierlo, the Netherlands,
Nov. 1999). IEEE Benelux & ProRisc.

Received November 1999; Accepted February 2000

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 4, October 2000.

