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Abstract

In a recent letter [J. Phys. A 26, L801 (1993)], Yaldram et al studied

the critical behaviour of a simple lattice gas model of the CO-NO catalytic

reaction. The model exhibits a second order nonequilibrium phase transi-

tion from an active state into one out of infinitely many absorbing states.

Estimates for the critical exponent β suggested that the model belongs to

a new universality class. The results reported in this article contradict

this notion, as estimates for various critical exponents show that the model

belongs to the universality class of directed percolation.
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Nonequilibrium phase transitions occur in many models studied in physics, chem-

istry, biology or even sociology. A special group of models, that have attracted a

great deal of interest in recent years, exhibit a continuous transition into an ab-

sorbing state. The best known examples are probably directed percolation (DP)

[1]–[4], Reggeon field theory [5, 6], the contact process [7]–[9], and Schlögl’s first

and second models [10]–[13]. Extensive studies of these and many other models

[14]–[22] with a unique absorbing state have revealed that they belong to the

same universality class. This provides firm support for the conjecture that con-

tinuous transitions into a unique absorbing state generically belong to the DP

class [12, 13].

For models with multiple absorbing states the situation is not so simple. Some

studies of two-dimensional surface reaction models yield critical exponents differ-

ent from those of directed percolation in (2+1)-dimensions [23, 24]. However, the

pair contact process (PCP) and dimer reaction (DR) model (in one dimension)

clearly belongs to the DP universality class [25, 26], at least as far as the static

critical behaviour is concerned. In all of these models the number of absorbing

configurations grows exponentially with system size. However, all of the absorb-

ing configurations are characterized by the vanishing of a unique quantity, e.g.,

the number of particle pairs in the PCP or in other cases the [23, 24] number of

nearest neighbor vacancy pairs.

Recently, Yaldram et al. [27], studied the critical behaviour of a simple lattice

model of the CO-NO catalytic reaction in which CO + NO → CO2 + 1

2
N2.

Schematically the reaction steps are given as:

COg + ∗ → COa, (1)

NOg + 2∗ → Oa + Na, (2)

COa + Oa → COg
2 + 2∗, (3)

Na + Na → Ng
2 + 2∗, (4)

where the superscript g (a) refers to a molecule in the the gas fase (adsorbed on

the surface) and ∗ marks an empty site. The catalytic surface is modelled by

a two-dimensional triangular lattice. The rules of the computer algorithm are

quite simple, with probability p a CO molecule is adsorbed on an empty site and

with probability 1 − p NO adsorption is attempted. Since NO dissociates upon

adsorption it requires a nearest neighbour pair of empty sites. In the simulations

this is done by first chosing an empty site at random and then chosing one of the

six nearest neighbours randomly, if the neighbour is empty O is placed on the

original site and N on its neighbour. After each adsorption the nearest neighbours
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are checked (in random order) and CO+O reacts to form CO2 which leaves the

surface at once, likewise N+N forms N2 which desorbs immediately. It is thus

obvious that any state without empty sites is absorbing. All processes depend

on the presence of empty sites so an efficient algorithm uses a list of these. After

each attempted adsorption the time variable is incremented by 1/Ne, where Ne

is the number of empty sites prior to the attempt, thus making each time step

equal to (on the average) one attempted update per lattice site. The algorithm

outlined above differs from that used by Yaldram et al. in one aspect, when NO

adsorbs they choose a pair of empty sites at random, whereas I choose one empty

sites and a nearest neighbor and only adsorb NO if the nearest neighbor is empty.

This makes NO adsorption less likely in my algoritm. However, one would expect

this merely to lead to a change in the location of the phase transitions not to a

change in the critical behaviour. Computer simulations by Yaldram et al. [27]

shows that when p < p1 the system always enters an absorbing state in which the

lattice is covered by a mixture of O and N (but off course without any nearest

neigbour pairs of N). Note that the symmetry of the lattice prevents a CO from

being surrounded by N, as some of these N would have to be nearest neighbours

and thus react. The number of absorbing configurations grows exponentially

with system size. Note also that an absorbing configuration, though not unique,

is characterized by the vanishing of the number of empty sites. At p1 the model

exhibits a continuous phase transition into an active state in which the catalytic

process can prodeed indefinetely. Finally when p exceeds a second critical value

p2 the model exhibits a discontinuous phase transition into a CO and N covered

state. The phase diagram of the CO-NO reaction model is thus very similar to

that found in various similar catalytic model [14, 23, 24]. Near the critical point

p1 one would expect the concentrations ρX of various lattice sites X (X = O, N,

CO, or an empty site) to follow simple power laws,

ρX − ρsat
X ∝ (p − p1)

βX , (5)

where ρsat
X is the saturation concentration. Note that the saturation concentration

for empty sites and CO is zero, whereas it is non-zero for O and N. Yaldram et al.

[27] found that p1 = 0.185(2), where the figure in parenthesis is the uncertainty in

the last digit, and βX = 0.20− 0.22. The estimates for βX are much smaller that

the value β = 0.592(10), obtained using the scaling relation β = δν‖ [11] with

δ = 0.460(6) and ν‖ = 1.286(5) [28], for directed percolation in (2+1)-dimensions.

This could indicate that the CO-NO model belongs to a new universality class.

However, the uncertainty in the estimate for p1 is quite large, especially con-

sidering that the β estimates are obtained using values of p − p1 between 0.01

and 0.001, which overlaps the error estimate for p1. Moreover, the lattice sizes

(40 × 40) used in the simulations are very small. Actually for such small lattice
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sizes one would expect finite-size effects to be quite prominent. All in all I think

there is ample reason to doubt the validity of the exponent estimates obtained

by Yaldram et al..

In this article I report the results of extensive simulations of the CO-NO model

using time-dependent simulations and finite-size scaling. The general idea of

time-dependent simulations is to start from a configuration which is very close to

the absorbing state, and then follow the “average” time evolution of this config-

uration by simulating a large ensemble of independent realisations. This method

is straight forward and very successful for models with a unique absorbing state

[11, 15, 18, 19, 28]. For models with multiple absorbing state the situation is

more intricate, as a recent study [26] revealed that the dynamic critical exponents

predicted via time-dependent simulations depend upon the choice of initial con-

figuration. However, two important facts emerged from this study, first of all the

predictions for the location of the critical point was allways correct, and secondly

if one uses an initial configuration reminiscent of a typical absorbing configuration

the predictions for the dynamical critical exponents coincide with those expected

from the static critical behaviour. A recent more thorough study by Mendes et al.

[29] have confirmed this picture and led to a generalized scaling ansatz for models

with multiple absorbing states. In this study I generate the initial configuration

by simulating the CO-NO model on a 128×128 lattice (with periodic boundary

conditions) at the value of p under investigation until it enters an absorbing state.

An off-set (x, y) is then chosen randomly on this lattice. Hereafter the configura-

tion is mapped cyclically onto a larger (512×512) lattice such that (x, y) is at the

origin of the larger lattice. The particle at position (i, j) on the large lattice is the

same as the particle at position (i+x mod 128, j+y mod 128) on the small lattice.

Hereafter a pair of empty sites is placed at the origin. The size of the large lattice

ensures that the cluster of empty sites grown from the seed at the origin never

reaches the boundaries of the lattice. We thus start in a configuration close to an

absorbing state (just two sites are open) and it should be close to a typical ab-

sorbing state of the infinite system. For each such configuration I simulated 5000

independent samples and typically 50–100 independent configurations for a total

of 250-500,000 samples. Each run had a maximal duration of 2000 time steps,

but most samples enters an absorbing state before this limit is reached. As usual

in this type of simulation I measured the survival probability P (t), the average

number of empty sites n̄(t), and the average mean square distance of spreading

R̄2(t) from the origin. Notice that n̄(t) is averaged over all runs whereas R̄2(t)

is averaged only over the surviving runs. In accordance with the scaling ansatz

for models with a unique absorbing state [11, 28] it follows that these quantities

have the following scaling form,
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P (t) ∝ t−δΦ(∆t1/ν‖), (6)

n̄(t) ∝ tηΨ(∆t1/ν‖), (7)

R̄2(t) ∝ tzΘ(∆t1/ν‖), (8)

where ∆ = |p − p1| is the distance from the critical point, and ν‖ is the time-like

correlation length exponent. If the scaling functions Φ, Ψ, and Θ are non-singular

at the origin it follows that P (t), n̄(t), and R̄2(t) behave as power-laws at p1 with

critical exponents −δ, η, and z, respectively, for t → ∞. Generally one has

to expect corrections to a pure power law behaviour so that, e.g., P (t) is more

accurately given by [28]

P (t) ∝ t−δ(1 + at−1 + bt−δ′ + · · · ) (9)

and similarly for n̄(t) and R̄2(t). More precise estimates for the critical exponents

can be obtained if one looks at local slopes

− δ(t) =
log[P (t)/P (t/m)]

log(m)
, (10)

and similarly for η(t) and z(t). In a plot of the local slopes vs 1/t the critical

exponents are given by the intercept of the curve for p1 with the y-axis. The off-

critical curves often have very notable curvature, i.e., one will see the curves for

p < p1 veering downward while the curves for p > p1 veer upward. This enables

one to obtain accurate estimates for p1 and the critical exponents. In Fig. 1 I

have plotted the local slopes for various values of p. From the plot of η(t) it is

clear that the two lower curves, corresponding to p = 0.1781, and 0.1782, veers

downward showing that p1 > 0.1782. Likevise the upper curve, p = 0.1785, has a

pronounced upwards curvature. Though it is less evident it also seems that the

curve for p = 0.1784 veers upwards. All in all I conclude that p1 = 0.1783(1).

This estimate differs quite a bit from that of Yaldram et al. (p1 = 0.185(2)),

which is probably due to the slightly different algorithms. Note that since NO

adsorption is less efficient in my algorithm one would expect my estimate for p1 to

be smaller, as is also observed in the simulations. From the intercept of the critical

curves with the y-axis I estimate δ = 0.45(1), η = 0.220(5) and z = 1.12(1).

These values agrees very well with those obtained from computer simulations of

directed percolation in (2+1)-dimensions [28], δ = 0.460(6), η = 0.214(8) and

z = 1.134(4).
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From these results it seems reasonable to conclude that the CO-NO model belongs

to the DP universality class. However, due to the somewhat arbitrary choice of

the initial configuration employed in the time-dependent simulations it would be

nice to validate this conclusion through other means. To this end I have also

performed extensive steady-state simulations using a finite-size scaling analysis.

Finite-size scaling, though originally developed for equilibrium systems, is also

applicable to nonequilibrium second-order phase transitions as demonstrated by

Aukrust et. al. [17]. Their method was later applied to models with infinitely

many absorbing states [25, 26]. As in equilibrium second-order phase transitions

one assumes that the (infinite-size) nonequilibrium system features a length scale

which diverges at criticality as, ξ(p) ∝ ∆−ν⊥, where ν⊥ is the correlation length

exponent in the space direction. The basic finite-size scaling ansatz is that the

various quantities depend on system-size only through the scaled length L/ξ, or

equivalently through the variable ∆L1/ν⊥ , where L is the linear extension of the

system. Thus we assume that the density of empty sites (which will be used as

the order parameter of the model) depends on system size and distance from the

critical point as:

ρs(p, L) ∝ L−β/ν⊥F(∆L1/ν⊥), (11)

such that at p1

ρs(p1, L) ∝ L−β/ν⊥. (12)

In ρs, and other quantities, the subscript s indicates an average taken over the

surviving samples. Fig. 2 shows a plot of the average concentration of particles

log
2
[ρs(p1, L)] as a function of log

2
L at the critical point, p1 = 0.1783. All

simulations were performed on lattices of size L × L using periodic boundary

conditions. The maximal number of timesteps in each trial, tM , and number

independent samples, NS, varied from tM = 300, NS = 50, 000 for L = 8 to

tM = 125, 000, NS = 500 for L = 256. The slope of the line drawn in the figure

is β/ν⊥ = 0.81, which comes from the DP estimate β/ν⊥ = 0.81(2), using the

earlier cited estimate for β and ν⊥ = 0.729(8) [28]. The data falls very nicely on

the line drawn using the DP estimate thus confirming that the model belongs to

the DP universality class.

Near the critical point the order parameter fluctuations grow like a power law,

χs = Ld(〈ρ2〉 − 〈ρ〉2) ∝ ∆γ , from which we expect the following finite-size scaling

form,

χs(p, L) ∝ Lγ/ν⊥G(∆L1/ν⊥), (13)
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such that at p1

χs(p1, L) ∝ Lγ/ν⊥ . (14)

Fig. 3 shows a plot of log
2
[χs(p1, L)] vs log

2
L. The slope of the straigth line

is 0.39 as obtained from the DP value γ/ν⊥ = 0.39(2), where I used that γ =

γDP −ν‖ = 0.285(11) with γDP = 1.571(6) [28]. The excellent agreement between

the data and the DP-expectation confirms the DP critical behaviour of this model.

One expects a characteristic time for the system, say the relaxation time, to scale

like

τ(p, L) ∝ L−ν‖/ν⊥T (∆L1/ν⊥), (15)

such that at p1

τ(p1, L) ∝ L−ν‖/ν⊥. (16)

In Fig. 4 I have plotted log
2
[τh(p1, L)], where τh is the time it takes for half

the samples to enter an absorbing state, as a function of log
2
L. The slope of

the line drawn in the figure is ν‖/ν⊥ = 1.764, as obtained from the DP estimate

[28] ν‖/ν⊥ = 1.764(7). The DP estimate is derived from the scaling relation

ν‖/ν⊥ = 2/z using the earlier cited estimate for z. As can be seen the data for

the CO-NO model is again fully compatible with DP critical behaviour.

One may also study the dynamical behaviour by looking at the time dependence

of ρs(p1, L, t). For t ≫ 1 and L ≫ 1 one can assume a scaling form

ρs(p1, L, t) ∝ L−β/ν⊥H(t/Lν‖/ν⊥). (17)

At p1 the system shows a power law behaviour for t < Lν‖/ν⊥ before finite-size

effects become important. Thus for L ≫ 1 and t < Lν‖/ν⊥ , ρ(p1, L, t) ∝ t−θ. From

Eq. (17) we see that this is the case for large L only if θ = β/ν‖. It can be shown

[11] that this ratio also equals the critical exponent δ. Fig. 5 shows the short-time

evolution of the concentration of empty sites at p1 with L = 256, tM = 10, 000,

and NS = 1000. The asymptotic behaviour is consistent with θ = 0.45, as seen

from the slope of the line. This estimate agrees well with the value for directed

percolation θ = δ = 0.460(6), or the estimate δ = 0.45(1) obtained from the

time-dependent simulations presented above.

In conclusion, we have provided very convincing evidence that the critical expo-

nents of the two dimensional CO-NO model are the same as those of directed
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percolation in (2+1)-dimensions. This is the first time that a two dimensional

multi-component model with infinitely many absorbing states has been firmly

placed in the DP universality class. This results lends further support to the

extensions of the DP conjecture to models with multiple components [30] and/or

infinitely many absorbing states [25, 26], at least in cases where the absorbing

states can be characterized by the vanishing of a unique quantity.
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[21] H. Park, J. Köhler, I-M Kim, D. ben-Avraham, and S. Redner, J. Phys. A

26, 2071 (1993).

[22] J. Zhuo, S. Redner, and H. Park, J. Phys. A 26, 4197 (1993).
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Figure Captions

Figure 1 Local slopes −δ(t) (upper panel), η(t) (middle panel), and z(t) (lower

panel), as defined in Eq. 10 with m = 5. Each panel contains five curves with,

from bottom to top, p = 0.1781, 0.1782, 0.1783, 0.1784 and 0.1785.

Figure 2 The concentration of empty sites log
2
[ρs(p1, L)] vs log

2
L. The slope of

the straight line is β/ν⊥ = 0.81.

Figure 3 The fluctuations in the concentration of empty sites log
2
[χs(p1, L)] vs

log
2
L. The slope of the straight line is γ/ν⊥ = 0.39.

Figure 4 The time before half the samples enter an absorbing state log
2
[τh(p1, L)]

vs log
2
L. The slope of the straight line is ν‖/ν⊥ = 1.764.

Figure 5 Log-log plot of ρs(p, L, t), for p = p1 = 0.1783 and L = 256, as a

function of t. The slope of the straight line is θ = 0.45.
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