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Abstract A generating function is given for the number, E(l, k), of irreducible k-
fold Euler sums, with all possible alternations of sign, and exponents summing to l. Its
form is remarkably simple:

∑

n E(k + 2n, k) xn =
∑

d|k µ(d) (1 − xd)−k/d/k, where µ is
the Möbius function. Equivalently, the size of the search space in which k-fold Euler
sums of level l are reducible to rational linear combinations of irreducible basis terms is
S(l, k) =

∑

n<k

(

⌊(l+n−1)/2⌋
n

)

. Analytical methods, using Tony Hearn’s REDUCE, achieve
this reduction for the 3698 convergent double Euler sums with l ≤ 44; numerical methods,
using David Bailey’s MPPSLQ, achieve it for the 1457 convergent k-fold sums with l ≤ 7;
combined methods yield bases for all remaining search spaces with S(l, k) ≤ 34. These
findings confirm expectations based on Dirk Kreimer’s connection of knot theory with
quantum field theory. The occurrence in perturbative quantum electrodynamics of all
12 irreducible Euler sums with l ≤ 7 is demonstrated. It is suggested that no further
transcendental occurs in the four-loop contributions to the electron’s magnetic moment.
Irreducible Euler sums are found to occur in explicit analytical results, for counterterms
with up to 13 loops, yielding transcendental knot-numbers, up to 23 crossings.
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1 Introduction

Recent progress in number theory [1, 2] interacts strongly with the connection between
knot theory and quantum field theory, discovered by Dirk Kreimer [3, 4], and intensively
investigated to 7 loops [5] by analytical and numerical techniques. The sequence of irre-
ducible non-alternating double Euler sums studied in [1] starts with a level-8 sum that
occurs in the 6-loop renormalization of quantum field theory [5], where its appearance is
related [4] to the uniquely positive 8-crossing knot 819; the sequence of irreducible non-
alternating triple Euler sums in [2] starts with a level-11 sum that occurs at 7 loops, where
its appearance is associated with the uniquely positive hyperbolic 11-crossing knot [5].

These exciting connections, between number theory, knot theory, and quantum field
theory, led to work with Bob Delbourgo and Dirk Kreimer [6], on patterns [7] of transcen-
dentals in perturbative expansions of field theories with local gauge invariance, and with
John Gracey and Dirk Kreimer [8], on transcendentals generated by all-order [9] results
in field theory, obtainable in the limit of a large number, N , of interacting fields [10, 11].

In the course of the large-N analysis [8], the number theory in [1] appeared to consti-
tute a severe obstacle to the development of the connection between knot theory and field
theory. From the skeining of link diagrams that encode the flow of momenta in Feynman
diagrams, we repeatedly obtained a family of knots, associated with the occurrence of
irreducible Euler sums in counterterms. The obstacle was created by the (indubitably
correct) ‘rule of 3’ discovered in [1], for non-alternating sums ζ(a, b) =

∑

n>m 1/namb of
level l = a + b. The analysis of [1] shows that non-alternating sums of odd levels are re-
ducible, while at even level l = 2p+2 there are ⌊p/3⌋ irreducibles, where ⌊. . .⌋ is the integer
part. At levels 8 and 10 this made us very happy, since we had the 8-crossing knot 819

to associate with ζ(5, 3), and the 10-crossing knot 10124 to associate with ζ(7, 3). There-
after the knots increase in number by a ‘rule of two’, giving ⌊p/2⌋ knots with l = 2p + 4
crossings. So there are two 12-crossing knots, while [1] has only one level-12 irreducible,
and two 14-crossing knots, which is [1] the number of level-14 irreducibles.

Faced with a 12-crossing knot in search of a number, we saw two ways to turn: to
study 4-fold non-alternating sums, or 2-fold sums with alternating signs. The first route
is numerically intensive: it soon emerges that well over 100 significant figures are needed
to find integer relations between 4-fold sums at level 12. The second route is analytically
challenging; it soon emerges that at all even levels l ≥ 6 there are relations between
alternating double sums that cannot be derived from any of the identities given in [1].

Remarkably, these two routes lead, eventually, to the same answer. The extra 12-
crossing knot is indeed associated with the existence of a 4-fold non-alternating sum,
ζ(4, 4, 2, 2) =

∑

n>m>p>q 1/n4m4p2q2, which cannot be reduced to non-alternating sums
of lower levels. It is, equivalently, associated with the existence of an irreducible alter-

nating double sum, U9,3 =
∑

n>m {(−1)n/n9} {(−1)m/m3}. The equivalence stems from
the unsuspected circumstance that the combination ζ(4, 4, 2, 2) − (8/3)3 U9,3, and only
this combination, is reducible to non-alternating double sums. Moreover, l = 12 is the
lowest level at which the reduction of non-alternating 4-fold sums necessarily entails an
alternating double sum. The ‘problem pair’ of knots are a problem no more. Their entries
in the knot-to-number dictionary [12] record that they led to a new discovery in number
theory: the reduction of non-alternating sums necessarily entails alternating sums.
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This discovery led me to study the whole universe of k-fold Euler sums, with all
possible alternations of sign, at all levels l. As will be shown in this paper, it is governed
by beautifully simple rules, which might have remained hidden, were it not for Dirk
Kreimer’s persistent transformation of the Feynman diagrams of field theory to produce
a pair of 12-crossing knots.

The remainder of the paper is organized as follows. Section 2 states1 the formula for
the number, E(l, k), of irreducible k-fold sums, with all possible alternations of sign, at
level l. Section 3 outlines the process by which it was discovered. The anterior numerics
of Section 4 describe the high-precision evaluation methods and integer-relation searches
that helped to produce the formula; the posterior analytics of Section 5 describe computer-
algebra proofs of rigorous upper bounds on E(l, k) that are respected (and often saturated)
by it. Section 6 summarizes numerical and analytical findings by listing an instructive
choice of concrete bases. Section 7 shows that all 12 of the irreducible sums with l ≤ 7
appear in perturbative quantum electrodynamics. Section 8 considers the import, for
quantum field theory, for knot theory, and for number theory, of results obtained by
calculations up to level 23, corresponding to knots with up to 23 crossings, and to Feynman
diagrams with up to 13 loops.

2 Result

To specify an alternating k-fold Euler sum, one may give a string of k signs and a string
of k positive integers. It is very2 convenient to combine these strings, by defining

ζ(a1, . . . , ak) =
∑

ni>ni+1

k
∏

i=1

(sign ai)
ni

n
| ai|
i

, (1)

for k > 1, on the strict understanding that the arguments are non-zero integers, and that
a1 6= 1, to prevent a divergence. Hence one avoids a proliferation of disparate symbols for
the 2k types of k-fold sum. The correspondence with the double-sum notations of [1] is

ζ(s, t) = σh(t, s) , (2)

ζ(−s, t) = αh(t, s) , (3)

ζ(s,−t) = −σa(t, s) , (4)

Us,t ≡ ζ(−s,−t) = −αa(t, s) , (5)

for positive integers s and t, with emphatically no implication of analytic continuation.

In perturbative quantum field theory, three-loop radiative corrections [13, 14] involve

U3,1 =
∑

n>m>0

(−1)n+m

n3m
= 1

2
ζ(4) − 2

{

Li4
(

1
2

)

+ 1
24

ln2 2
(

ln2 2 − π2
)}

. (6)

At six [15, 16, 17] and seven [5] loops, counterterms associated with the (4, 3) and (5, 3)
torus knots, 819 [4] and 10124 [5], involve U5,3 and U7,3, whose irreducibility is equiva-
lent to that of ζ(5, 3) and ζ(7, 3), respectively. In higher counterterms, the independent

irreducibility of U9,3 and U7,5 is associated [8] with a pair of 12-crossing knots.
1It would be very difficult to prove. One cannot even prove that ζ2(3)/ζ(6) is irrational.
2Without such a convention, results such as (22,30) become almost unreadable.
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In what follows, the number of summations, k, is referred to as the depth of the
sum (1), and l =

∑

i | ai| is referred to as its level. The set Sl,k of convergent sums of level
l and depth k has

N(l, k) = 2k

(

l − 1

k − 1

)

− 2k−1

(

l − 2

k − 2

)

(7)

elements, as is easily proven by induction. The number of convergent sums at level l is

N(l) =
l
∑

k=1

N(l, k) = 4 × 3l−2 , (8)

provided that l > 1.

Table 1: Euler’s triangle3 of irreducibles, at level l and depth k, for l + k ≤ 32 .

l\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

1 1
2 1
3 1
4 1
5 1 1
6 1 1
7 1 2 1
8 2 2 1
9 1 3 3 1
10 2 5 3 1
11 1 5 7 4 1
12 3 8 9 4 1
13 1 7 14 12 5 1
14 3 14 20 15 5 1
15 1 9 25 30 18 6 1
16 4 20 42 40 22 6 1
17 1 12 42 66 55 26 7 1
18 4 30 75 99 70 30 7 . . .
19 1 15 66 132 143 91 35 . . .
20 5 40 132 212 200 112 . . .
21 1 18 99 245 333 273 . . .
22 5 55 212 429 497 . . .
23 1 22 143 429 715 . . .
24 6 70 333 800 . . .
25 1 26 200 715 . . .
26 6 91 497 . . .
27 1 30 273 . . .
28 7 112 . . .
29 1 35 . . .
30 7 . . .
31 1 . . .

3It seems appropriate to call it Euler’s triangle; see Section 8.3 for the connection with Pascal’s.
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The main purpose of this work is to determine, as in Table 1, the number, E(l, k), of
irreducible sums in Sl,k, i.e. the minimum number of sums which, together with sums of
lesser depth and products of sums of lower level, furnish a basis for expressing the elements
of Sl,k as linear combinations of terms, with rational coefficients. The conclusion is that

E(l, k) = δl,2δk,1 +
2

l + k

∑

2d|l±k

µ(d)

(

l+k
2d
l−k
2d

)

, (9)

where the summation is over the positive integers d such that (l± k)/2d are integers, and
is weighted by the Möbius function, µ(d), which vanishes if d is divisible by the square of
a prime and otherwise is ±1, according as whether d has an even or odd number of prime
divisors. With the exception of ln 2, from S1,1, and π2, from S2,1, the irreducibles come
from Sk+2j,k, with j > 0. Moreover, Sk+2j,k contains the same number of irreducibles as
Sj+2k,j, as illustrated in Table 1.

From (9) one obtains the number of irreducibles at level l:

E(l) =
l
∑

k=1

E(l, k) =
1

l

∑

d|l

µ(l/d) {Fd+1 + Fd−1} , (10)

in terms of the Fibonacci numbers. The integer sequence (10) is tabulated as M0317 by
Sloane and Plouffe [18], who record its origin in the study [19] of congruence identities.
It shows that the irreducibles are an exponentially decreasing fraction of the number of
convergent sums at level l:

E(l)

N(l)
∼ 9

4l
exp(−βl) ; β = ln

6√
5 + 1

≈ 0.6174 . (11)

This relative sparsity is illustrated in Table 2.

Table 2: The numbers, E(l) and N(l), of irreducibles and sums, at level l, for l ≤ 13 .

l 1 2 3 4 5 6 7 8 9 10 11 12 13

E(l) 1 1 1 1 2 2 4 5 8 11 18 25 40
N(l) 1 4 12 36 108 324 972 2916 8748 26244 78732 236196 708588

From (9) one may obtain the size, S(l, k), of the search space for sums of level l and
depth k, i.e. the minimum number of terms that allow one to express every element of Sl,k

as a linear combination, with rational coefficients. This basis consists of the irreducibles
with level l and depths no greater than k, together with all the independent terms that
are formed from products of sums whose levels sum to l and whose depths sum to no
more than k.

One may generate S(l, k) from E(l, k), by expanding

lmax
∑

n=1





lmax
∑

l=1



(X2,1,1 x2)ly +
l
∑

k=1

E(l,k)
∑

i=1

Xl,k,i x
lyk









n

(12)

to order lmax in both x and y, where lmax is greatest level required, and Xl,k,i serves as
a symbol for the ith irreducible in Sl,k, so that (X2,1,1)

n stands for any rational multiple
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of π2n, and hence for ζ(2n). Then S(l, k) is obtained by selecting the terms of order xl,
dropping powers of y higher than yk, setting y = 1, and counting the length of the resulting
expression. This procedure is easily implemented in REDUCE, Maple, Mathematica, etc.

Table 3: The size, S(l, k), of the search space for sums in Sl,k, for k ≤ l ≤ 15 .

l\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1
2 1 2
3 1 2 3
4 1 3 4 5
5 1 3 6 7 8
6 1 4 7 11 12 13
7 1 4 10 14 19 20 21
8 1 5 11 21 26 32 33 34
9 1 5 15 25 40 46 53 54 55
10 1 6 16 36 51 72 79 87 88 89
11 1 6 21 41 76 97 125 133 142 143 144
12 1 7 22 57 92 148 176 212 221 231 232 233
13 1 7 28 63 133 189 273 309 354 364 375 376 377
14 1 8 29 85 155 281 365 485 530 585 596 608 609 610
15 1 8 36 92 218 344 554 674 839 894 960 972 985 986 987

Inspection of Table 3 reveals that the sizes satisfy the recurrence relation

S(l + 1, k) = S(l, k − 1) + S(l − 1, k) , for l > k > 1 . (13)

Moreover, the Fibonacci numbers appear at maximum depth:

S(l, l) = S(l, l − 1) + 1 = Fl+1 . (14)

From the Lucas relation between Fibonacci and binomial numbers, one obtains

S(l, k) =
k−1
∑

n=0

(

⌊

l+n−1
2

⌋

n

)

, (15)

as the solution to (13,14).

Since the process of generating Table 3 from Table 1 is reversible, formula (9) may be
replaced by the simple statement that at level l the size of the search space increases by
the binomial coefficient

S(l, k + 1) − S(l, k) =

(

⌊

l+k−1
2

⌋

k

)

, (16)

when the depth is increased from k to k+1. This pragmatic formulation4 is rather helpful,
when using an integer-relation search algorithm, such as PSLQ [20]. An even simpler,
though informal, restatement appears in Section 8.3.

4Computation leaves no doubt as to the equivalence of (9) and (16), though it is not yet proven.
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3 Discovery

Some brief historical remarks seem in order at this stage, since my route to (9) in fact
began with the observation of 7 members of the Fibonacci sequence (14), during the
course of 800-significant-figure integer-relation searches entailed by the relation between
knot theory and field theory.

Using David Bailey’s magnificent MPPSLQ [21] implementation of PSLQ [20], I suc-
ceeded in reducing all 1457 sums in {Sl,k | 1 ≤ k ≤ l ≤ 7} to just 12 numbers and their
products. These irreducible numbers may conveniently be taken as

ln 2, π2, { ζ(l) | l = 3, 5, 7}, {α(l) | l = 4, 5, 6, 7}, U5,1, ζ(5, 1,−1), ζ(3, 3,−1), (17)

with the polylogarithms

α(l) =
(− ln 2)l

l !

{

1 − l(l − 1)

12

(

π

ln 2

)2
}

+
∞
∑

n=1

1

2nnl
(18)

populating the deepest diagonal of Table 1. As in (6), the definition (18) postpones the
appearance of π2(ln 2)l−2 and (ln 2)l to depths l − 1 and l, respectively, which is required
by (16). Moreover α(1) = α(2) = 0, and α(3) = 7

8
ζ(3), which is not a new irreducible.

After noting the Fibonacci sequence for the maximum sizes S(l, l), with l ≤ 7, I sought
a combinatoric form for S(l, k). Formula (15) suggested itself on the empirical basis of
the 28 cases with 1 ≤ k ≤ l ≤ 7, and was then submitted to intense numerical and
analytical tests at higher levels, as indicated in Sections 4 and 5. I implemented the
generator (12), using the weight and length commands of REDUCE [22], and constructed
Table 1, working backwards from (16). Next came the observation that the generating
functions for the k = 2 and k = 3 columns of Table 1 have comparable forms:

G2(x) = 1
2

{

1/(1 − x)2 − 1/(1 − x2)
}

, G3(x) = 1
3

{

1/(1 − x)3 − 1/(1 − x3)
}

. (19)

The symmetry of Table 1 was vital to the discovery of the simple formula

Gk(x) =
∞
∑

n=0

E(k + 2n, k) xn =
1

k

∑

d|k

µ(d) (1 − xd)−k/d , (20)

which produces formula (9). Computation of
∑

k E(l, k), for 3 ≤ l ≤ 100, revealed that it
produced the integers nearest to

∑

d|l µ(l/d)φd/l, where φ = 1
2
(
√

5+1) is the golden section.
The equivalent form (10) was obtained by submitting the integer sequence E(3), . . . , E(23)
to Neil Sloane’s helpful on-line [23] version of [18]. It was noteworthy that this lookup
returned the values E(1) = E(2) = 1, from the Fibonacci form (10), agreeing with the
appearance of ln 2, at l = 1, and π2, at l = 2. Their inclusion in the k = 1 column of
Table 1, above Euler’s triangle, thus became appropriate, as they appear to usher in the
higher transcendentals, in much the same way that F1 = F2 = 1 seed the exponential
growth of MPPSLQ’s CPUtime (or Fibonacci’s rabbits) along the deepest diagonal of
Table 3.

It remains to describe yet more probing numerical and analytical tests, in further
support of the claim in (16), and its equivalent version in (20). Nonetheless, it is hoped
that the reader already shares some of my feeling that these two formulæ are simply too
beautiful to be wrong.
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4 Anterior numerics

4.1 Numerical evaluation

Suppose that one wishes to obtain a high-precision approximation to S∞ = limN→∞ S(N),
where the truncated sum S(N) =

∑

n≤N R(n) has a summand R(n) with an asymptotic
series in 1/n, starting at 1/nC+1, with C > 0. From {S(n) | N − M ≤ n ≤ N}, one may
form a table {T (n, m) | N − M + m ≤ n ≤ N, 0 ≤ m ≤ M}, by the procedure

T (n, m + 1) =
(C + m + n) T (n, m) − n T (n − 1, m)

C + m
, (21)

with T (n, 0) = S(n). The method exploits the vanishing of C + m + n− n/(1− 1/n)C+m

as n → ∞. It takes M(M + 1)/2 applications of (21) to produce T (N, M). Provided
that N >> M ≥ 1, and that rounding errors have been controlled, one obtains the
approximation S∞ = T (N, M) + O(M !/NM+C), where the factorial becomes significant
for N >> M >> C ≥ 1.

This elementary and economical method of accelerated convergence is applicable to
every Euler sum of the form (1) that has no argument equal to unity, in which case
repeated appeal to the Euler-Maclaurin formula [24] underwrites the absence of logarithms
in the expansion of the truncation error, and the outermost summation is of the form
∑

n {R(2n) ± R(2n + 1)}, with R(n) = O(1/na), for an argument a1 = ±a. Thus one
should store truncations after even increments of n1, and set C = a1 − 1 for a1 ≥ 2, or
C = | a1| for a1 ≤ −1, in procedure (21). To obtain the starting values, one has merely
to set up a single loop that updates and stores each layer of the nest as its particular
summation variable, ni, assumes the even and odd values within the loop. Thus the
evaluation time for a truncation at N of a k-fold sum is roughly proportional to kN .

For sums with no unit arguments, one needs therefore only a few lines of conventional
FORTRAN, which may be handed over to David Bailey’s TRANSMP [25] utility, to pro-
duce code that calls his MPFUN [26] multiple-precision subroutines. As a rule of thumb,
the working accuracy should be somewhat better than the square of the desired output
accuracy, when using (21). When, and only when, rounding errors are so controlled, an
output accuracy of very roughly M !/NM is achieved by M iterations of (21), with input
data obtained from looping over N pairs of successive even and odd integers. For a 4-fold
sum, the accumulation of data takes roughly 50N calls of MPFUN subroutines, and the
acceleration of the convergence takes roughly 8M2 calls. Thus, to achieve P significant
figures for a 4-fold sum, one should choose a value of M that keeps the time factor,
T ≈ 50(10PM !)1/M + 8M2, close to its absolute minimum. I find that between 780 and
800 significant figures are reliably and efficiently achieved with M = 440 iterations, and
truncation at N = 104, which entails T ≈ 2×106 calls to MPFUN subroutines, operating
at multiple precision 1700. This takes less than half an hour on a DEC Alpha 3000-600
machine, corresponding to a call rate that is faster than 1 kHz. The memory requirement
is less than 1 MB: an array of 440 × 240 4-byte cells holds the truncations in multiple
precision and is updated iteratively by (21).

Of course, the above method fails as soon as one sets any of the arguments to unity.
However, all is not lost. By iteratively applying the Euler-Maclaurin formula, one arrives
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at the conclusion that the maximum power of ln n in the truncation error
∑

i,j Ai,j(ln n)i/nj

is the largest number, d, of successive units in the string of arguments, since only for
j = 1 does the integration of (ln x)i/xj increase the power of ln x. Consider, for example,
ζ(a, 1, b, 1), with a 6= 1 and b 6= 1. By the time the logarithm generated by the n4

summation is felt by the n2 summation, it has acquired an inverse power of n2, thanks to
the benignity of the Euler-Maclaurin formula for the n3 summation. Thus this sum has
demon-number d = 1, even though it contains two unit arguments. On the other hand,
ζ(a, b, 1, 1) and ζ(a, 1, 1, b) have d = 2, as does ζ(a, 1, 1, b, 1, a, 1, 1), for example. At level
l the most demonic convergent sum has unity for all its arguments, except for the first,
which must therefore be a1 = −1. Fortunately, it is possible to give exact expressions for
this beast, with d = l−1, and another, with d = l−2. With a string of n unit arguments
denoted by {1}n, the all-level results

ζ(−1, {1}l−1) =
(− ln 2)l

l !
, −ζ(−1,−1, {1}l−2) = Lil

(

1
2

)

=
∞
∑

n=1

1

2nnl
, (22)

were inferred numerically, and then obtained analytically, by Jon Borwein and David
Bradley, as the coefficients of tl in G(t,−1) and t

∫ 1
0 dz G(t, z)/(1 + z), generated by the

trivially summable hypergeometric series G(t, z) = tz 2F1(1 + t, 1; 2; z) = (1 − z)−t − 1.
From t

∫ 1
0 dz G(t, z)/z one generates the corollary, ζ(2, {1}l−2) = ζ(l), of a theorem [27]

∑

ai>δi,1, l=Σiai

ζ(a1, a2, . . . , ak) = ζ(l) , (23)

from Andrew Granville, which was used to check evaluations of non-alternating sums.

To mitigate the computational difficulties caused by unit arguments, truncation errors
may be obtained analytically for combinations of Euler sums of the form

S(a; b1, . . . , bk−1) =
∞
∑

n=1

(sign a)n

n| a|

k−1
∏

i=1

n−1
∑

mi=1

(sign bi)
mi

m
| bi|
i

. (24)

It seems appropriate to call (24) a boxed sum, since the symmetrical inner summations
span a lattice that is confined to a (k−1)-dimensional hypercube by the outer summation
variable. It is built out of symmetrical combinations of Euler sums with depths no greater
than k, and is, so to speak, a ‘cheap boxed set’, available at a reduced [28] computational
price, since it requires only the multiplication of k−1 polygamma Euler-Maclaurin series,
followed by a single further application of the Euler-Maclaurin formula, to determine the
truncation error to any order for which ones favorite computer-algebra engine has the
power to multiply, differentiate, and integrate double series in ln n and 1/n. Only depth-1
data is needed, since the inner summations can be rewritten as

∑

mi
−∑mi≥n, with the

first term giving a constant and the second an asymptotic series in 1/n, except for bi = 1,
which gives Euler’s constant, a log, and an asymptotic series.

This Euler-Maclaurin method is the obvious generalization of that used in [28], in the
restricted cases with bi = 1, or bi = −1. In the general case, much computer-algebra time
may be consumed by multiplying asymptotic series for the distinct values of bi and then
integrating a long expression involving many powers of lnn and 1/n, though the algorithm
is straightforward to implement. To obtain a few hundred significant figures in a short
time one may stay within REDUCE, without feeding thousands of lines of FORTRAN
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statements to TRANSMP; at higher precision one benefits from this transfer of function,
at the expense of non-trivial file management, when handling many boxed sums.

From an analytical point of view, it is highly significant that every 3-fold Euler sum
can be transformed into a boxed sum: ζ(a1, a2, a3) ≃ −S(a2; a1, a3), where ≃ will hence-
forward stand for ‘equality modulo terms of lesser depth, their products, and consequent
questions of convergence’. The argument is simple [2]: to the summation with N ≥ n1 >
n2 > n3 ≥ 1, for the truncation of ζ(a1, a2, a3), add that with N ≥ n2 > n1,3 ≥ 1, for the
truncation of S(a2; a1, a3). Adding the case n1 = n2, which has lesser depth, one has cov-
ered the values N ≥ n1 ≥ 1, and hence has a product of truncated sums of lesser depth.
Thus ζ(a1, a2, a3) + S(a2; a1, a3) ≃ 0. The questions of convergence obviously concern
the case with a2 = 1, in the limit N → ∞. Such issues are handled with great dexterity
in [2], in the case of non-alternating triple sums. Dealing, as now, with truncated sums, no
problem of convergence arises. The snag is that one must multiply truncations to obtain
the product term, so the process becomes both messy and ad hoc, from the perspective of
a programmer seeking a systematic algorithm for sums of any depth. From a numerical
point of view, little is gained from boxability at depth k = 3.

Truly nested Euler sums (1) have depth k ≥ 4, where only combinations of them
can be boxed. In the next subsection it will be shown that at k = 4 there first occurs
a significant phenomenon, of central relevance to the claim of Section 2, and to knot-
theoretical studies [3, 4, 5, 8]. But first, there is an outstanding computational dilemma
to confront. Should one attempt to automate the process of chaining applications of
the Euler-Maclaurin formula, feeding in the required values for multiple Euler sums from
runs of lesser depth, and carefully separating the odd and even summations, at each
link of a chain whose length one would like to vary? Or should one, rather, use the
empirical truncation data to accelerate the convergence? In the absence of logs, the one-
line procedure (21) settles the issue, to my mind. Why use masses of computer algebra
to feed into TRANSMP information that is already sitting in the numerical data, in such
immediately usable form? When there are logs, from unit arguments, the matter is moot.
Having taken the empirical approach when the going was easy, I opted to stick with it,
when the going got tough, at depths k ≥ 4, with d > 0 demons.

It is clear that high-precision knowledge of K(d, M) = 1+ (d+1)M truncated values,
for a sum with demon-number d, should suffice to accelerate the convergence by a factor
of roughly M !/NM , as was achieved with (21), for d = 0. How best to achieve this, for
d > 0, is another matter. Unable to devise an easily programmable iterative method
like (21), I returned to the brute-force method of using K(d, M) truncations to solve
directly for K(d, M) unknowns, as was done a decade ago [15] in the investigations which
first suggested the appearance of irreducibles with depth k > 1 at the six-loop level of
renormalization of quantum field theory, a prediction amply confirmed by recent six- and
seven-loop analysis [5], and illuminated by knot theory [3, 4].

After translating the Gauss-Jordan [29] method into MPFUN calls, one may system-
atically obtain the K(d, M) coefficients, in the approximation

S(n) ≈ S∞ +
d
∑

i=0

(lnn)i
C+M−1
∑

j=C

Ai,j

nj
, (25)

from K(d, M) truncations, and in particular find an accurate value for S∞. I chose the
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truncations {S(N + pL) | 0 ≤ p ≤ (d + 1)M}, taken distances L apart, starting at some
value N . The choices of M , N , L, and working accuracy, to achieve a desired output
accuracy for a sum with demon-number d, are an art learnt by experience, not yet a
science that is fit to be explained here. Suffice it to say that it is wise to work at the cube

of the desired accuracy, and that solving 103 sets of 103 equations, at a working accuracy
of one part in 10103

, in order to perform 103 Euler-sum searches with the MPPSLQ [21]
integer-relation finder, is demanding of core memory, CPUtime, vigilance, and patience.
The rewards, in increased analytical understanding, are considerable.

4.2 Exact numerical results

By an exact numerical result, I mean an equation whose exactness is beyond intelligent
doubt, yet is validated, to date, only by very high precision numerical evaluation. It is,
strictly speaking, possible that an equation presented here is a divine hoax, just as the
rationality of ζ2(3)/ζ(6) is still a possibility. The improbability beggars all description.

The exact numerical result that sparked the genesis of Tables 1 and 3, and revealed
their utter simplicity, was found at level l = 12 and depth k = 4. It reads

25 · 33 ζ(4, 4, 2, 2) = 25 · 32 ζ4(3) + 26 · 33 · 5 · 13 ζ(9) ζ(3) + 26 · 33 · 7 · 13 ζ(7) ζ(5)

+ 27 · 35 ζ(7) ζ(3) ζ(2) + 26 · 35 ζ2(5) ζ(2)− 26 · 33 · 5 · 7 ζ(5) ζ(4) ζ(3)

− 28 · 32 ζ(6) ζ2(3) − 13177 · 15991

691
ζ(12)

+ 24 · 33 · 5 · 7 ζ(6, 2) ζ(4)− 27 · 33 ζ(8, 2) ζ(2)− 26 · 32 · 112 ζ(10, 2)

+ 214 U9,3 (26)

and the sting is in its tail.

Exceptionally, factorizations of rationals were written in (26), with a central dot (not
to be confused with a decimal point) denoting multiplication. If one dislikes the number
691, one may remove it, using ζ(12) = 691π12/(36 ·53 ·72 ·11·13). Factorizations were given
above lest the reader found the unfactorized rationals implausible, on first encountering
an exact numerical result obtained by MPPSLQ. The practice will not be continued.

It is apparent that one needs at least 100 significant figures to discover (26), because
of the product of two 5-digit primes in the π12 term. MPPSLQ (almost always) finds the
integer relation,

∑

i nisi ≈ 0, with smallest euclidean norm, (
∑

i n
2
i )

1/2, consistent with
the requested accuracy of fit. If one knew ζ(4, 4, 2, 2) to only 100 significant figures, the
routine would be at perfect liberty to return 13 ‘random’ 8-digit integers that happened
to fit at 100 significant figures. It would not care that the true form has attractive
factorizations of all integers save one. At 800 significant figures, which is the accuracy to
which (26) has been validated, the probability of it being spurious is of order 10−700.

The import of (26) is dramatic: non-alternating sums, with exclusively positive argu-
ments in (1), do not inhabit a cosy little world of their own, uncontaminated by contact
with their alternating cousins, as the presence of U9,3 clearly demonstrates.

As explained in the introduction, this was wonderful news for the connection between
knot theory and quantum field theory [3, 4, 5, 8]. It was also what sparked the present
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systematic inquiry into the whole universe of Euler sums of the form (1), setting firmly
aside the notion that there is something special about non-alternating sums. The liber-
ating effect is apparent in the discovery of the simple formulæ (16,20), which give order
to the larger universe so embraced.

Inspection of Table 3 reveals some practical limits to exploration. Even with 800
significant figures one might expect to encounter problems finding relations in S15,3, or
S10,4, each of which has 36 basis terms. If just one of the 37 integers in a desired integer
relation exceeds 1023, then MPPSLQ may (quite properly) fit 800-significant-figure data
with 37 ‘random’ 22-digit integers. Experience shows that integers of order 1022 are
produced by successful searches in S13,3, with 28 basis terms. So investigation of S15,3

was judged to be imprudent, with ‘only’ 800 significant figures at hand. Because of the
importance of level 10 in [5], investigation of S10,4 is reported in Section 6.

The successful fit at all levels up to and including l = 7, using the 12 numbers (17),
has been reported, as have the all-level results (22). There remains the apparently trifling
matter of an exact numerical relation in S6,2:

U4,2 = 97
96

ζ(6) − 3
4
ζ2(3) , (27)

with coefficients that Euler could, no doubt, have found by mental arithmetic. Surpris-
ingly, nothing in the most recent work on double sums [1] suggested the existence of such
a relation. It turned out to be relatively easy to devise an analytical proof, when thus
apprised of its need, so the subject is postponed to the next section, where the armory of
analytical tools is augmented. Yet the relation belongs here, since it was David Bailey’s
engine that disclosed it. The analytical techniques, developed to derive (27), feed back
useful information for further numerical analysis.

First, they clear up the whole of the double-sum sector, for good and all, confirming
the knot-theoretic expectation of a ‘rule of 2’, with E(2p, 2) = ⌊p/2⌋, and thus allowing
numerical exploration to progress to k ≥ 3. Secondly, they provide rigorous (though
non-optimal) upper bounds:

E(7, 3) ≤ 3 , E(8, 4) ≤ 4 , E(9, 3) ≤ 6 , E(11, 3) ≤ 11 , E(13, 3) ≤ 17 . (28)

Thirdly, for each bound it is possible to find an overcomplete basis, whose size is deter-
mined by the bound. Thus one needs to evaluate only a small fraction of the sums in
these sectors, and then use MPPSLQ to reduce an overcomplete basis to a minimal basis
of size S(l, k). If the formula for S(l, k) were false, MPPSLQ might sometimes fail to
reduce the basis down to the claimed size, or might reduce it down to a size smaller than
that claimed by (15). Of course, it never did the latter, else the claim would not have
been made. The fact that it never did the former, with 800-significant-figure data, in
search spaces of sizes up to 36, is a testament to its author [21] as well as to the formula.
Finally, and most fortunately, it is possible to construct overcomplete bases, in the spaces
bounded by (28), that are demon-free. Hence 800 significant figures are available, in less
than half an hour per sum, at the touch of button (21).

Thanks to these circumstances, all Euler sums in {Sl,3 | l ≤ 14} and {Sl,4 | l ≤ 9}
have been shown to be reducible to bases of the sizes given in Table 3, by the operation of
MPPSLQ on overcomplete bases. Relatively simple examples of such reductions, in S9,3,
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S11,3 and S8,4, are provided by:

ζ(3,−3,−3) = 6 ζ(5,−1,−3) + 6 ζ(3,−1,−5)− 315
32

ln 2 ζ(3) ζ(5) + 6 U5,1 ζ(3)

+ 40005
128

ζ(2) ζ(7)− 39
64

ζ3(3) + 1993
256

ζ(3) ζ(6) + 8295
128

ζ(4) ζ(5)− 226369
384

ζ(9),

ζ(3,−5,−3) = 1059
80

ζ(5, 3, 3) + 15 ζ(7,−1,−3) + 15 ζ(3,−1,−7) + 701
69

U5,3 ζ(3)

+ 15 U7,1 ζ(3) − 6615
256

ln 2 ζ(3) ζ(7)− 11852967
2560

ζ(11) + 301599
128

ζ(2) ζ(9)

− 124943
5888

ζ2(3) ζ(5) + 1753577
35328

ζ(3) ζ(8) + 2960103
5120

ζ(4) ζ(7) + 3405
32

ζ(5) ζ(6),

ζ(3,−1, 3,−1) = 61
27

ζ(−3,−3,−1,−1) − 14
3

ζ(−5,−1,−1,−1) − 185
27

U5,1 ζ(2)

− 163499
22356

U5,3 + 2051
54

U7,1 + 28
9

ln2 2 U5,1 + 35
96

ln2 2 ζ2(3)

− 581
64

ln2 2 ζ(6) − 8735
576

ln 2 ζ(2) ζ(5)− 903
64

ln 2 ζ(3) ζ(4)

− 1441
288

ζ(2) ζ2(3) + 10365875
476928

ζ(3) ζ(5) + 36916435
1907712

ζ(8). (29)

In S13,3, the relations are more complex, with the prime factor 102149068537421 ap-
pearing in one case. Nonetheless, the probability of a spurious fit is less than 10−200,
in all cases, and is often much less than this. The existence of further relations, forbid-
den by (20), cannot be disproved by numerical methods. The euclidean norms of such
unwanted relations would, however, exceed those of the discovered relations by factors
ranging between 1010 and 1020, which makes it extremely implausible that the formula is
in error in any of the spaces with S(l, k) ≤ S(8, 8) = F9 = 34.

5 Posterior analytics

5.1 Analytical tools

The analysis of [1, 2] makes use of two very simple types of relation between Euler sums.
In the general case of k-fold sums, with all possible alternations of sign, it is somewhat
difficult to notate these relations, in all generality. To avoid cumbersome formulæ, terms
that involve sums of lower depth, and their products, will be omitted, as in the case of
ζ(a1, a2, a3) ≃ −S(a2; a1, a3).

The first type of relation involves permutations of arguments:

0 ≃ ζ(a1, a2, a3, . . . , ak) + ζ(a2, a1, a3, . . . , ak) + ζ(a2, a3, a1, . . . , ak) + . . .

+ ζ(a2, a3, a4, . . . , a1) . (30)

The proof is trivial: by including all insertions of a1 in the string a2, a3, . . . , ak, one obtains
a combination of sums that differs from the product ζ(a1) ζ(a2, a3, . . . , ak) only by terms
in which summation variables are equal, corresponding to sums of depth k−1. For 4-fold
sums, such relations reduce a set of 24 possible permutations to a set of 9, when the
arguments are distinct.

The second type of relation follows from use of the partial-fraction identity [1, 2]

1

AaBb
=
∑

s>0

1

(A + B)a+b−s

{(

a + b − s − 1

a − s

)

1

As
+

(

a + b − s − 1

b − s

)

1

Bs

}

(31)
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for positive integer a and b. To see how this is used, consider the product ζ(a)ζ(b, c, d),
with positive arguments. It may be written as

∑

n,p,q,r 1/na(p + q + r)b(q + r)crd, where
each summation variable runs over all the positive integers. Now apply (31), setting
A = n and B = p + q + r. The second type of resulting partial fraction is of the form
∑

n,p,q,r 1/(n + p + q + r)a+b−s(p + q + r)s(q + r)crd, which is an Euler sum. To the first
type, apply (31) with A = n and B = q + r. Its second terms are also Euler sums. To
its first, apply (31) with A = n and B = r. Each term so produced is an Euler sum.
Thus one has obtained a relation for non-alternating sums. By including signs, 16 such
relations can be generated. In general, one gets 2k relations by k − 1 applications of (31)
for every set of k exponents that one chooses for the initial product of sums.

It can seen that there is no scarcity of trivially derivable relations between Euler
sums. The notable achievement of [1] was to organize the relations between double sums
in such a way as to prove the reducibility of all double sums of odd level. In [2] non-
alternating triple sums of even level were proven to be reducible. It was conjectured that
non-alternating sums of level l and depth k are reducible whenever l + k is odd. The
stronger claim made by (9) is that this applies to alternating sums as well. In the course
of the present work, reducibility has been demonstrated, by a combination of analytical
and numerical methods, for all odd values of l + k such that S(l, k) ≤ S(14, 3) = 29.

As remarked previously, the identities of [1] are insufficient to derive the simple re-
lation (27). No tally was given in [1] of the numbers of alternating double sums left
unreduced at even levels, though the tally ⌊p/3⌋ was made for non-alternating double
sums at level 2p + 2. Using REDUCE, one easily discovers that the relations given in [1]
allow reduction of double sums to the set {Un+2m,n | min(n, m) > 0} and that no further
reduction is possible without additional input. Using MPPSLQ, one easily discovers that
a truly irreducible set is furnished by {U2a+3,2b+1 | a ≥ b ≥ 0}. Thus the relations derived
in [1] are insufficient in a way that is very easy to state: they fail to relate the even cases
{U2a+4,2b+2 | a ≥ b ≥ 0} to the odd cases {U2a+3,2b+1 | a ≥ b ≥ 0}.

To remedy this failure, it was sufficient to derive the further5 relation

ζ(a, b) + ζ(−a,−b) =
∑

s>0

(a + b − s − 1)!

{

ζA(a + b − s, s)

(a − s)! (b − 1)!
+

ζB(a + b − s, s)

(b − s)! (a − 1)!

}

(32)

ζA(a, b) = ζ(a, b) + ζ(−a, b) − 21−a {ζ(a, b) + ζ(a + b)} (33)

ζB(a, b) = 21−aζ(a, b) (34)

with a > 1 and b > 1. To prove (32), one writes ζ(a, b)+ζ(−a,−b) =
∑

m,n 2/(2m+n)anb.
Then (31), with A = 2m + n and B = n, yields (33,34), after some rearrangements.

5.2 Double sums in knot theory and field theory

Adjoining (32) to relations in [1], it was possible to use REDUCE to derive expressions
for the 3698 double sums up to level 44, in terms of the 121 irreducible double sums

{U2a+3,2b+1 | a ≥ b ≥ 0, a + b ≤ 20} . (35)

5Jon Borwein later told me that (32,33,34) were known to, though not used by, the authors of [1].
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The family of positive knots [8] that gave rise to this investigation has braid6 words

{σ2σ
2a+1
1 σ2σ

2b+1
1 | a ≥ b ≥ 1} , (36)

whose enumeration satisfyingly matches that of the irreducibles (35).

Note that one omits the knots {σ2σ
2a+1
1 σ2σ1 | a ≥ 0} from the tally of 3-braids

in (36), since Reidermeister moves transform them to {σ2a+3
1 | a ≥ 0}, which are the

2-braid torus knots, corresponding [4] to the depth-1 irreducibles {ζ(2a + 3) | a ≥ 0},
whose occurrence has been studied to all [33, 34, 35, 36] orders in quantum field theory.
Correspondingly, the Euler sums {U2a+3,1 | a ≥ 0} do not occur in counterterms7 though
they may appear in the finite parts of integrals obtained from Feynman diagrams, and
hence in the relationships between physical quantities, such as the charge and magnetic
moment of the electron.

In fact, two of the most impressive perturbative calculations [13, 14] of physical quan-

tities in quantum field theory produce the polylogarithm Li4
(

1
2

)

, with the precise com-

bination of (ln 2)4 and π2(ln 2)2 terms given in (6) for U3,1 = 1
2
ζ(4) − 2 α(4). The ρ-

parameter [13] of electroweak theory entails, at three loops, the level-4 term of [38]

B4 = −
{

8 U3,1 + 5
2
ζ(4)

}

+ O(ε) (37)

in 4 − 2ε spacetime dimensions. The level-4 terms in the three-loop contributions to the
anomalous magnetic moment of the electron, 1

2
(g − 2)e, are obtained from [14] as

−
{

50
3

U3,1 + 13
8

ζ(4)
}

(e/2π)6 , (38)

where −e is the electron’s charge, in units of (ε0h̄c)1/2. Thus the lowest-level double-sum
irreducible, U3,1, is prominent in quantum field theory, though absent from counterterms.

Having seen the importance of double Euler sums in quantum field theory, and their
relation to knot theory, one should move on to 3-fold alternating sums, since these too
occur in field theory, as will be shown in Section 7. Unfortunately, the tools are not yet
available to derive analytically all the relations implied by (20), with k > 2. One must,
therefore, make do with analytical derivations of most of them.

5.3 Proven bounds

At depths 3 and 4, the rigorous bounds (28) were proven by implementing the permu-
tation (30) and partial-fraction (31) procedures in REDUCE, using its solve command.
The results are conveniently returned in terms of ARBCOMPLEX [22] variables equal in
number to the undetermined sums. One may then use the output to form a proven, over-
complete, demon-free basis. This was achieved for all triple sums up to level 14, and all
quadruple sums up to level 9, which is no small undertaking, as may be judged from the
facts that two days of CPUtime were insufficient to solve for the 676 triple sums at level
15, and 128 megabytes of core memory were insufficient to solve for the 1120 quadruple
sums at level 10. I recommend these sectors as test grounds for improved algorithms.

6For an introduction to knot theory, try [30], followed by [31, 32].
7For details of renormalization procedures, see [37], pending publication of [12].
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In the case of triple sums up to level 14, overcomplete bases were constructed by
adjoining the non-alternating [2] irreducibles {ζ(5, 3, 3), ζ(7, 3, 3), ζ(5, 5, 3)} to the set

{ζ(2n + 3,−2m − 1,−2p − 1) | n + m + p ≤ 4, min(n, m, p) ≥ 0} , (39)

which is also undetermined by the permutation and partial-fraction identities. Attempts
to reduce this set analytically, by adding identities obtained in the manner of (32), were
not successful. Therefore the most pressing challenge is to prove the MPPSLQ result that
E(7, 3) ≤ 2, since only the bound E(7, 3) ≤ 3 has been obtained rigorously, from (39). In
the case of quadruple sums up to level 9, the analytical method fails to find two MPPSLQ
relations in S8,4, one of which is given in (29). Hence I recommend the S7,3 and S8,4

sectors as places to start the hunt for more powerful analytical techniques.

6 Concrete bases

To aid the elucidation of (9,16) in Section 8.3, it is instructive to summarize the results of
MPPSLQ, from Section 4, and REDUCE, from Section 5, by giving concrete irreducibles
whose values and products span, inter alia, all those spaces of Table 3 with S(l, k) < 36.
Also included is a choice of the 5 irreducibles in S10,4, which proved attainable with
MPPSLQ, despite the large size, S(10, 4) = 36. To save space, only argument strings are
given, with a bar denoting a negative argument, and hence an alternation of sign at the
corresponding layer of the nest.

For k = 1, one obviously needs ln 2, π2, and the odd-zetas, with argument strings
{(2n+1) | n > 0}. For k = 2, the argument strings {(2n + 1, 2m + 1) | n > m ≥ 0} suffice,
to level l = 44, and presumably for ever. For the remaining spaces with S(l, k) < 36, see
Table 4, which also includes S10,4.

Table 4: Concrete sets of argument strings, yielding demon-free minimal bases.

S5,3 (3, 1, 1)
S7,3 (5, 1, 1) (3, 1, 3)
S9,3 (7, 1, 1) (5, 1, 3) (3, 1, 5)
S11,3 (9, 1, 1) (7, 1, 3) (5, 1, 5) (5, 3, 3) (3, 1, 7)
S13,3 (11, 1, 1) (9, 1, 3) (7, 1, 5) (7, 3, 3) (5, 1, 7) (5, 3, 5) (3, 1, 9)

S6,4 (3, 1, 1, 1)
S8,4 (5, 1, 1, 1) (3, 3, 1, 1)
S10,4 (7, 1, 1, 1) (3, 3, 3, 1) (5, 3, 1, 1) (5, 1, 3, 1) (3, 1, 5, 1)

S7,5 (3, 1, 1, 1, 1)

S8,6 (3, 1, 1, 1, 1, 1)

It is emphasized that the choices of Table 4 are not the most efficient for integer-
relation searches; other choices, as in (17), result in smaller euclidean norms from suc-
cessful searches. However, one learns more from the patterns of Table 4 than from the
economic choices of (17).

First, note that only odd arguments are required: the pattern begun by odd-zetas at
depth 1 persists. Secondly, note that all arguments may taken as negative, save the first,
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when the depth, k, is odd. Since the first argument cannot be unity, demons are thereby
eliminated from the irreducibles. Each is thus computable, to 800 significant figures, in
half an hour, using (21). Finally, note that not all permutations of odd integers occur.

Whether these features persist in larger search spaces, where MPPSLQ may well need
more than 800 significant figures, can only be conjectured. The argument of Section 8.3,
however, lends weight to the belief that the key to understanding irreducibility, at level l
and depth k, lies in an analysis of a restricted set of permutations of partitions of l into
precisely k positive odd integers.

7 Euler sums in quantum electrodynamics

To exemplify the utility and accuracy of the database of exact result for all sums with
l ≤ 7, it was used to evaluate the Laurent expansion of the three-loop on-shell charge-
renormalization [38] constant of dimensionally regularized [39] quantum electrodynamics,
up to terms of level 7, which may be taken as indicative of the transcendentality content
of four-loop contributions to the anomalous magnetic moment of the electron.

Like the three-loop corrections [13] to the ρ-parameter of electroweak theory, on-shell
charge renormalization involves [38]

B4 =
(µ − 1)(µ − 3

2
)

π3µΓ3(3 − µ)

∫ ∫ ∫

d2µp d2µq d2µr

(p2 + 1)(q2 + 1)(r2 + 1)(p − q)2(p − r)2

×
{

1

(p − q − r)2 + 1
− 1

(q − r)2

}

, (40)

which is a difference of three-loop massive bubble diagrams, regularized in 2µ ≡ 4 − 2ε
euclidean spacetime dimensions. In [38] it was reduced to a 3F2 hypergeometric series [40]:

B4 =
7

24ε4

{

1 − Γ(1 − ε) Γ2(1 + 2ε) Γ(1 + 3ε)

Γ2(1 + ε) Γ(1 + 4ε)

}

− π2

3ε2

Γ(1 + 2ε) Γ(1 + 3ε)

26ε Γ5(1 + ε)

+
8

3ε2(1 + 2ε)
3F2

(

1, 1
2
− ε, 1

2
− ε; 3

2
+ ε, 3

2
; 1
)

. (41)

Expanding the Γ-functions in the summand of the series, one obtains the ε-expansion of
B4 from boxed sums of the form

Sodd(a; b1, . . . , bk−1) =
∞
∑

n=1

1

(2n − 1)a

k−1
∏

i=1

n−1
∑

mi=1

1

(2mi − 1)bi
, (42)

which, like (24), is symmetric in {bi}, though now it involves reciprocal powers of odd

integers. To relate these to (1), one combines 2k k-fold Euler sums with arguments
of differing sign, to restrict the nested summations to odd integers. Symmetrizing over
(k−1)! permutations of all but the first argument, one exhausts those summations in (42)
with distinct values of {mi}. Adding combinations of Euler sums with lesser depth, one
iteratively includes the degenerate summations. Hence the expansion of B4 to O(ε3) can
be achieved in terms of the basis (17), by routine (and repeated) reference to the database.
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The result is

B4 = 1
2
{−13 ζ(4) + 32 α(4)} + 1

2
ε {−239 ζ(5) + 192 α(5) + 204 ln 2 ζ(4)}

+ 3
2
ε2
{

13 ζ(6) − 74 ζ2(3) + 160 U5,1 + 384 α(6) − 204 ln2 2 ζ(4)
}

+ 1
72

ε3 {−329385 ζ(7) + 45853 ζ(3) ζ(4) + 10875 ζ(2) ζ(5) + 7680 ζ(5, 1,−1)

−9280 ζ(3, 3,−1)− 11520 α(4) ζ(3) + 176031 ln 2 ζ(6) − 2930 ln 2 ζ2(3)

−48000 ln 2 U5,1 + 248832 α(7) + 44064 ln3 2 ζ(4)
}

+ O(ε4) . (43)

Note that the polylogarithms (18) simplify the expansion; had one merely used the con-

ventional [41] polylogarithms Lin
(

1
2

)

, there would have been 10 additional terms, to this

order in the expansion. The terms involving lnl−4 2 ζ(4) follow α(l), being generated by

∑

l>4

(6ε)l−4

{

16 α(l) − 17

(l − 4)!
(− ln 2)l−4 ζ(4)

}

. (44)

A strong check of (43) was performed, using the representation

(1 + 2ε)

[

Γ(1 − ε)

Γ(1 + ε) Γ(1 − 2ε)

]2
∫ 1

0

∫ 1

0

dx dy

1 − x2y2

[

(1 − x2)(1 − y2)2

(8xy)2

]ε

(45)

of the hypergeometric series in (41), expanding the integrand to O(ε5), and using the NAG
routine D01FCF to evaluate 6 double integrals to 8 significant figures. By contrast, 800
significant figures were rapidly obtained by expressing sums of the form (42) in terms of
those in the database. The agreement of NAG with the more powerful methods developed
here gives one confidence in the computer-algebraic book-keeping that produced (43).

There is a further [42] non-trivial diagram entailed in three-loop charge renormaliza-
tion: the two-loop fermion-propagator [43, 44] diagram, with a three-fermion intermediate
state, contributing to on-shell mass renormalization [43, 45]. However, this is eventually
expressible [38] in terms of Γ-functions and the same hypergeometric series as is encoun-
tered in (41). Thus no further analysis of irreducible Euler sums is entailed, though
there is a great deal of book-keeping to perform, to obtain the three-loop terms in the
dimensionally regularized charge-renormalization constant [38]

Z3 = 1 +
∞
∑

n=1

Cn

(

e2Γ(1 + ε)

(4π)2−εm2ε

)n

, (46)

where e and m are the on-shell charge and mass.

The one-loop and two-loop contributions are easily found exactly [44]:

C1 = − 4

3ε
, C2 = − 4(1 + 7ε − 4ε3)

ε(2 − ε)(1 − 2ε)(1 + 2ε)
. (47)

The first three [38] terms in the Laurent expansion

C3 = − 8

9ε2
+

62

27ε
+
{

128 ln 2 ζ(2) − 22

3
ζ(3) − 368

3
ζ(2) +

4867

81

}

+
∞
∑

n=1

C3,nε
n (48)
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are free of contributions from B4, whose expansion starts at level l = 4. Level-3 terms are
sufficient for the analysis [46, 47, 48] of a restricted set of four-loop contributions to the
anomalous magnetic moment of the muon [49], and for the study of quark-mass effects at
the three-loop level of quantum chromodynamics [50]. Thanks to (43), the expansion (48)
may now be continued to level 7, i.e. to the same level as is reached at four loops in the
electron’s anomaly, whose polylogarithms attain order 2L − 1 at L loops. After much
computer algebra, I was able to obtain:

C3,1 = −384 ln2 2 ζ(2) +
1358

3
ζ(4) − 736

3
α(4) + 1024 ln 2 ζ(2) − 2957

6
ζ(3)

− 1960

3
ζ(2) +

104113

486
(49)

≈ −179.724 615 842 918 120 241 823 332 320 650 562 692 071 547 121 ,

C3,2 = 768 ln3 2 ζ(2) − 284 ln 2 ζ(4) + 384 ζ(2) ζ(3) +
5101

3
ζ(5) − 1472 α(5)

− 3072 ln2 2 ζ(2) +
55571

18
ζ(4) − 30488

9
α(4) + 4096 ln 2 ζ(2)

− 34537

12
ζ(3) − 7324

3
ζ(2) +

1937227

2916
(50)

≈ −427.138 027 736 892 466 683 630 594 488 509 635 499 554 227 264 ,

C3,3 = −1152 ln4 2 ζ(2) + 852 ln2 2 ζ(4) − 1280 ln 2 ζ(2) ζ(3) +
5018

3
ζ2(3) + 6356 ζ(6)

− 8832 α(6)− 3680 U5,1 + 6144 ln3 2 ζ(2) − 34067

3
ln 2 ζ(4) +

6272

3
ζ(2) ζ(3)

+
591473

36
ζ(5)− 60976

3
α(5) − 12288 ln2 2 ζ(2) +

1472549

108
ζ(4)

− 450388

27
α(4) + 13696 ln 2 ζ(2)− 733013

72
ζ(3) − 25226

3
ζ(2) +

33051769

17496
(51)

≈ −1371.792 496 978 355 362 371 049 120 514 541 715 942 648 466 341 ,

C3,4 =
6912

5
ln5 2 ζ(2)− 1704 ln3 2 ζ(4) + 3840 ln2 2 ζ(2) ζ(3) +

33695

54
ln 2 ζ2(3)

− 334273

12
ln 2 ζ(6) +

92000

9
ln 2 U5,1 +

7360

3
α(4) ζ(3) +

68689

36
ζ(2) ζ(5)

− 334907

108
ζ(3) ζ(4) +

2459549

36
ζ(7) − 52992 α(7)− 14720

9
ζ(5, 1,−1)

+
53360

27
ζ(3, 3,−1)− 9216 ln4 2 ζ(2) + 34067 ln2 2 ζ(4)− 10240 ln 2 ζ(2) ζ(3)

+
129179

6
ζ2(3) + 33767 ζ(6)− 121952 α(6)− 152440

3
U5,1

+ 24576 ln3 2 ζ(2)− 1176869

18
ln 2 ζ(4) +

21184

3
ζ(2) ζ(3) +

15720695

216
ζ(5)

− 900776

9
α(5) − 41088 ln2 2 ζ(2) +

27328097

648
ζ(4) − 4616354

81
α(4)

+ 43712 ln 2 ζ(2)− 14076461

432
ζ(3) − 82735

3
ζ(2) +

555842827

104976
(52)

≈ −3273.919 335 883 520 406 469 573 320 145 714 810 021 184 454 681 .

Terms (49,50) are in agreement with the polylogarithms of order up to 5 that were
obtained in [38], though they are much simpler in form, thanks to the use of (18).
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Terms (51,52) are new, and show how complex perturbation expansions may become,
when they entail polylogarithms of orders 6 and 7, as undoubtedly happens in the four-
loop contributions to the electron’s anomaly. However, I would be rather surprised were
the four-loop anomaly to contain further transcendentals, not included above, since Euler
sums are the natural structures to emerge from ε-expansions of generalized hypergeo-
metric series [40, 51, 52] whose parameters differ from half-integers [38, 53, 54], or inte-
gers [8, 55, 56], by multiples of ε. In fact, there is good reason to suppose that not all
of the terms above will occur in the four-loop anomaly, since Laporta and Remiddi [14]

have shown that Li5
(

1
2

)

is absent at three loops.

8 Consequences

The enumerations (9,10,16) have consequences for field theory, knot theory, and number
theory, which will be discussed in that order.

8.1 Field theory

For calculational quantum field theorists, the enumeration (10) amounts to ‘counting the
enemy’, since each new irreducible Euler sum corresponds to the existence of a class
of polylogarithmic integrals that cannot be related to previously evaluated integrals, by
computer-algebraic methods. They are few in number, at the levels where calculations
are currently performed. Their tally, in Table 2, is the integer sequence M0317 of [18].

As reviewed in [57, 58, 59], there has been tremendous progress in the use of computer
algebra, most notably by recursive methods within the framework of dimensional regu-
larization, which automate the computation of single-scale massless [60, 61] and on-shell
massive [14, 38, 48] propagator diagrams by symbolic manipulation of vast [62] num-
bers of polynomials in the analytically continued [39] dimensionality, 2µ = 4 − 2ε, of
spacetime. The residual difficulty then resides in extracting the Laurent expansions, as
ε → 0, of a small set of irreducible Feynman integrals. Recent success at three-loops [14],
with the electron’s anomalous magnetic moment, provides an impressive example of the
power of this technique. Following discussions at the AI-HEP-92 workshop [58], Laporta
and Remiddi found it possible to achieve a computer-algebraic reduction of all 3-loop
electron-anomaly diagrams to merely 18 terms [14], using integration by parts [60, 61] in
4 − 2ε dimensions. Drawing on experience of polylogarithmic integration, from previous
4-dimensional work, they were able to extract the requisite Laurent expansions as ε → 0.
Along with the inevitable depth-1 irreducibles, ln 2 and { ζ(n) | n ≤ 5}, their result con-
tains just one irreducible double Euler sum, namely U3,1, though it is presented in [14] in

terms of the more conventional [41] polylogarithm Li4
(

1
2

)

, along with the precise (ln 2)4

and π2(ln 2)2 terms of (6).

In the case of field-theory counterterms, up to L loops, the irreducible Euler sums

{ ζ(2a + 1) | L − 2 ≥ a > 0} , (53)

{U2a+1,2b+1 | a > b > 0, L − 3 ≥ a + b} , (54)

{ ζ(2a + 1, 2b + 1, 2c + 1) | a ≥ b ≥ c > 0, a > c, L − 3 ≥ a + b + c} , (55)
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appear. The first set, studied in [33, 34, 36], corresponds [3] to 2-braid torus knots,
with the trefoil knot 31 ≃ ζ(3) first appearing in counterterms at L = 3 loops. The
second [16, 17] set corresponds [8] to a restricted set of positive 3-braids, with 819 ≃ U5,3

first appearing at L = 6 loops, and the third [2, 5] to positive 4-braids, with the uniquely
positive 11-crossing non-torus knot σ2

1σ
2
2σ1σ3σ

3
2σ

2
3 ≃ ζ(5, 3, 3) first appearing at L = 7

loops. Hence the 5-loop renormalization of φ4 theory was accomplished [63] in terms of
only depth-1 irreducibles, whereas at 6 and 7 loops one first encounters [5] 2-fold and
3-fold Euler sums, respectively.

It is not yet known whether Euler sums exhaust the transcendentals in counterterms
at L ≥ 7 loops. In addition to 10124 = σ2σ

5
1σ2σ

3
1 ≃ U7,3, there are two further positive

knots with 10 crossings, namely [32] 10139 = σ2σ
3
1σ

3
2σ

3
1 and 10152 = σ2

2σ
2
1σ

3
2σ

3
1, which 7-

loop analysis [5] suggests are not associated with Euler sums of depth k < 4. All those,
and only those, subdivergence-free 7-loop φ4 diagrams whose link diagrams skein to 10139

and 10152 appear, on the basis of numerical evidence, to give counterterms that cannot be
reduced to Euler sums with depth k ≤ 3. Hence it is an open (and fascinating) question
whether two8 of the 5 new irreducibles in S10,4 are associated with these knots.

Turning to the finite parts of Feynman diagrams, one learns from three-loop analy-
ses [13, 14] that U3,1 appears, via (37,38). Emphatically no claim is made that Euler
sums exhaust the transcendentality content of perturbative quantum field theory; poly-
logarithms of non-trivial mass and momentum ratios are everywhere dense. In single-scale
process, however, where such ratios are unity, or zero, it may occur that the results entail
only Euler sums, as in the case of electron’s anomaly, 1

2
(g−2)e at three loops [14]. On the

other hand, with a different configuration of unit and zero masses the maximum value of
Clausen’s integral [41] is often generated [42, 53].

The key to deciding whether a result is reducible to Euler sums is an analysis of the
hypergeometric functions [8, 38, 53] p+1Fp(1, {ai}; {bi}; z) that are produced in 4 − 2ε
dimensions. If z = ±1, and {ai, bi | i ≤ p} differ from integers, or half integers, by
multiples of ε, then reducibility to Euler sums is guaranteed, as in (41,43). Such a
reduction to hypergeometric series has been achieved for the electron anomaly, 1

2
(g − 2)e,

at two loops [38, 64], for the charge-renormalization constant, Z3, at three loops [38],
for the Gell-Mann–Low function of quantum electrodynamics to all orders in the large-
N limit [11], and for a corresponding limit of the quantum chromodynamics of heavy-
quark interactions [65]. That is the basis for my strong belief that a similar reduction
to hypergeometric series, or some generalization [66, 67, 68, 69] of them, underlies the
finding of Laporta and Remiddi that the three-loop anomaly involves just one Euler sum
with depth k > 1, namely the very specific polylogarithmic combination (6). It is also
reasonable to expect that this reducibility to Euler sums persists beyond three loops,
where only numerical [70] estimates are currently available.

8.2 Knot theory

To plain knot theorists, the preoccupations of a knot/field-theorist [3, 4, 12] may appear
rather restricted. The correspondence claimed by Dirk Kreimer is between positive knots
and the numbers appearing in field-theory counterterms. His process of discovery began

8Recall that U3,1 and U5,1 are absent from counterterms; no positive knot has crossing number 4 or 6.
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with the observation [3] that the removal of sub-divergences from Feynman diagrams,
construed as a skein relation between link diagrams encoding the momentum flow, yields
a counterterm that is rational if the skeining results in the unknot, as in the case of ladder
diagrams, where cancellations of ζ-functions have been demonstrated perturbatively [4]
and non-perturbatively [71]. It continued [4] with the observation that the 2-braid torus
knot (2L − 3, 2) is produced by skeining the crossed-ladder diagram that generates [33]
ζ(2L− 3) at L ≥ 3 loops.

To continue the correspondence, it was clearly necessary to do two things: to go to
loop-numbers, L, higher than the then current limit of L = 5 [63], which is how I became
involved [5], and to enumerate positive knots, which we9 have taught REDUCE [22] to
do, up to 17 crossings, barring degeneracy of HOMFLY [32] polynomials. Here attention
is largely restricted to knots with up to 13 crossings, as in Table 5. Knots with more
crossings will figure in [12].

Table 5: Positive prime knots related to Euler sums, via field-theory counterterms.

crossings knots numbers

2a + 1 σ2a+1
1 ζ(2a + 1)

8 σ2σ
3
1σ2σ

3
1 = 819 N5,3

9 none none
10 σ2σ

5
1σ2σ

3
1 = 10124 N7,3

σ2σ
3
1σ

3
2σ

3
1 = 10139 ?

σ2
2σ

2
1σ

3
2σ

3
1 = 10152 ?

11 σ2
1σ

2
2σ1σ3σ

3
2σ

2
3 N3,5,3

12 σ2σ
7
1σ2σ

3
1 N9,3

σ2σ
5
1σ2σ

5
1 N7,5 − π12

25·10!

σ2σ
3
1σ

5
2σ

3
1 ?

σ2σ
3
1σ

3
2σ

5
1 ?

σ2
2σ

2
1σ

3
2σ

5
1 ?

σ2
2σ

3
1σ

3
2σ

4
1 ?

σ3
2σ

3
1σ

3
2σ

3
1 ?

13 σ1σ
3
2σ

2
1σ3σ

4
2σ

2
3 N3,7,3

σ2
1σ2σ

3
1σ

2
3σ

2
2σ

3
3 N5,3,5

σ1σ
3
2σ1σ3σ

5
2σ

2
3 ?

σ2
1σ2σ

3
1σ

3
3σ2σ

3
3 ?

σ1σ
3
2σ1σ

2
3σ

3
2σ

3
3 ?

σ2
1σ

2
2σ1(σ3σ

3
2)

2 ?
(σ2σ1σ3σ2)

3σ1 ?
(σ2σ1σ3σ2)

3σ2 ?

Excluding the 2-braid torus knots that correspond to depth-1 Euler sums, the tally of
positive knots with 8 to 13 crossings is apparent in the knot column of Table 5. It forms
the sequence 1, 0, 3, 1, 7, 8, . . . , beginning at 8 crossings with the 3-braid torus knot
819. By contrast, the corresponding sequence for all prime knots with 8 to 13 crossings is
given by M0851 of [18, 23] as 21, 49, 165, 552, 2176, 9988, . . . , whose richness reveals the
specificity of the preoccupations of knot/number/field theorists, to whom, of course, the

9Table 5 was obtained in collaboration with Dirk Kreimer, who will give further details in [12].
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sparsity of positive knots is a delight: it is broadly commensurate with the slow growth
in number of irreducible Euler sums, at corresponding levels.

There is no method, as yet, to assign numbers to knots, other than by brute-force
evaluation of counterterms from diagrams whose skeinings produce the knots. The obsta-
cle to high-precision evaluation of such counterterms, beyond 6 loops, is apparent from
the fact that the knots 10139 and 10152 result, at 7 loops, from diagrams whose evaluation,
via Gegenbauer-polynomial techniques [72], entails 7-fold summations weighted by the
squares [73] of 6–j symbols, in such a manner as to make the evaluation-time of a trunca-
tion at N increase at least as fast as N4. This is in stark contrast with the linear growth
in Section 4.1, whose computational challenge hence pales into insignificance, compared
with that required for [5].

Fig. 1: A diagram from cutting a 9-loop bubble that skeins to 13-crossing 4-braids.
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Fortunately, there is a class of Feynman diagrams that may, with effort, be reduced
to triple Euler sums, by analytical methods. A relatively simple example is provided by
the 8-loop two-point diagram of Fig. 1, which is finite in 4 dimensions. With unit exter-
nal momentum, a massless propagator 1/p2

line for each line, unit vertices, and euclidean
measure π−2

∫

d4ploop for each loop, this diagram was evaluated by REDUCE as

G(3, 2, 2) = −405 N3,7,3 + 3675
4

N2,9,2 + 4680 N2,7,2 + 21285
4

ζ(13) − 20535 ζ(11)

+ 6480 ζ(9) ζ(3) + 12680 ζ(9) + 480 ζ(7) ζ(5)− 19500 ζ(7) ζ2(3)

− 7200 ζ(7) ζ(3)− 79380 ζ(7)− 14700 ζ2(5) ζ(3) − 1200 ζ2(5)

− 68160 ζ(5) ζ2(3) + 38880 ζ(5) ζ(3)− 11520 ζ3(3) + 30240 ζ2(3) , (56)

by means of the master formula [5, 15]

G(a, b, c) =
∑

i,j,k

(

2a − i

a

)(

2b − j

b

)(

2c − k

c

)

(i + j + k)!

i!j!k!

∑

p,m,n

∆(p, m, n)

p2a−im2b−jn2c−k

×




(

2

p + m + n − 1

)i+j+k+1

+

(

2

p + m + n + 1

)i+j+k+1


 , (57)
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where ∆(p, m, n) results from angular integrations over Chebyshev polynomials [72] and
is 1, or 0, according as whether g = (p + m + n + 1)/2 is, or is not, an integer satisfying
g > max(p, m, n).

Each irreducible 3-fold sum appearing in (56) belongs to one of the two-parameter
families:

N2m+1,2n+1,2m+1 = ζ(2m + 1, 2n + 1, 2m + 1) − ζ(2m + 1) ζ(2m + 1, 2n + 1)

+
m−1
∑

k=1

(

2n + 2k

2k

)

ζP (2n + 2k + 1, 2m− 2k + 1, 2m + 1)

−
n−1
∑

k=0

(

2m + 2k

2k

)

ζP (2m + 2k + 1, 2n − 2k + 1, 2m + 1) , (58)

N2m,2n+1,2m = ζ(2m, 2n + 1, 2m) + ζ(2m) {ζ(2m, 2n + 1) + ζ(2m + 2n + 1)}

+
m−1
∑

k=1

(

2n + 2k

2k

)

ζP (2n + 2k + 1, 2m− 2k, 2m)

+
n−1
∑

k=0

(

2m + 2k

2k + 1

)

ζP (2m + 2k + 1, 2n − 2k, 2m) , (59)

with product terms
ζP (a, b, c) = ζ(a) {2 ζ(b, c) + ζ(b + c)} , (60)

whose systematic inclusion, with the combinatoric factors in (58,59), removes all trace
of the non-knot number π2 from (56), and likewise from every diagram G(a, b, c) with
a+b+c ≤ 11, according to similar, but much lengthier, evaluations of two-point functions
obtained by cutting bubble diagrams with up to 13 loops, corresponding to knots with
up to 23 crossings.

In general, subdivergence-free bubble diagrams, with up to L loops, yield the knot-
numbers {Na+2,2b+1,a+2 | a ≥ 0, b ≥ 0, L − 4 ≥ a + b} as the very specific combina-
tions (58,59) of Euler sums with depths k ≤ 3 and levels l ≤ 2L − 3 [5]. They are knot-
numbers, in the sense of [3, 4, 5], because counterterms, from subdivergence-free diagrams
that skein to produce the corresponding knots, contain these numbers, and products of
other knot-numbers, corresponding to factor [30] knots. The counterterms do not contain
the non-knot irreducibles ln 2 and π2. Thus the combinations of Euler sums in (58,59) pro-
vide log-free and π-free bases for search spaces in which to evaluate classes of counterterms
from diagrams that skein to 4-braids. For example, it was possible [5] to evaluate all 7-loop
φ4 counterterms from subdivergence-free diagrams that skein to 4-braids in terms of just
3 knot-numbers: ζ(11), ζ(5) ζ2(3), and N3,5,3 + 7 ζ(5) ζ2(3) = ζ(3, 5, 3) − ζ(3) ζ(5, 3),
corresponding to the 2-braid torus knot (11, 2), the factor knot 51 × 31 × 31, and the
uniquely positive 11-crossing hyperbolic10 knot σ2

1σ
2
2σ1σ3σ

3
2σ

2
3. The factor knot 31 × 819 is

not produced by skeining the link diagrams that encode the momentum flow. However,
every diagram that skeins to σ2

1σ
2
2σ1σ3σ

3
2σ

2
3 also produces the other two knots, (11, 2) and

51 × 31 × 31. Until a method is devised to predict the rational coefficients with which
knot-numbers occur, rather than determining them empirically, as at present, the associ-
ation σ2

1σ
2
2σ1σ3σ

3
2σ

2
3 ≃ N3,5,3 can be made only modulo ζ(11) and ζ(5) ζ2(3) terms. On

this understanding, N3,5,3 appears in the 11-crossing entry of Table 5.

10In [5], this knot, 10139, and 10152, were wrongly called satellite knots; all three are, in fact, hyperbolic.
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In Table 5, N3,5,3 is the first irreducible triple sum to appear, at 11 crossings. That is
because the knot-numbers (58,59) are not all independently irreducible. Up to level 13,
the following odd-zeta reductions are obtained, by extending the methods of [2] to (57):

N2,1,2 = 9
2
ζ(5)

N2,3,2 = 75
8

ζ(7)

N3,1,3 = −1
4
ζ(7)

N2,5,2 = 439
36

ζ(9) + 8
3
ζ3(3)

N3,3,3 = 1
3
ζ(9) − 4

3
ζ3(3)

N4,1,4 = 115
18

ζ(9) − 4
3
ζ3(3)

4 N3,5,3 − 5 N2,7,2 = −1031
24

ζ(11) − 88 ζ(5) ζ2(3)

N4,3,4 − 5 N2,7,2 = 103
8

ζ(11) − 80 ζ(5) ζ2(3)

2 N5,1,5 − 5 N2,7,2 = −1091
24

ζ(11) − 56 ζ(5) ζ2(3)

32 N4,5,4 + 140 N3,7,3 − 525 N2,9,2 = 24425
3

ζ(13) − 12880 ζ(7) ζ2(3) − 8400 ζ2(5) ζ(3)

64 N5,3,5 − 100 N3,7,3 + 175 N2,9,2 = −673 ζ(13) + 4400 ζ(7) ζ2(3) + 3440 ζ2(5) ζ(3)

8 N6,1,6 − 12 N3,7,3 + 49 N2,9,2 = −115 ζ(13) + 976 ζ(7) ζ2(3) + 752 ζ2(5) ζ(3) .(61)

At level l = 2L − 3 > 3, corresponding to L > 3 loops, there are L − 3 knot-numbers of
the form {Na+1,2b+1,a+1 | a > 0, b ≥ 0, a + b = L− 3}, while (55) gives ⌈(L− 3)2/12⌉− 1
irreducibles [2]. Hence the knot-numbers (58,59) fail to exhaust the irreducibles, for
L ≥ 16 loops. Up to L = 13 loops, their sufficiency has been proven, using REDUCE.

Two independent irreducibles, chosen to be N3,7,3 and N5,3,5, appear in the 13-crossing
part of Table 5. They are associated with the first two braid words, on the basis of
intensive skeining of the link diagrams that encode momentum flows in bubble diagrams.
A hint of the pen-and-paper labour undertaken by Dirk Kreimer is given by his drawings
in [8], which refer to much simpler Feynman diagrams. Since at least two 13-crossing
knots of Table 5 emerge from skeining any diagram that yields irreducible triple sums of
level 13, we cannot yet determine which rational combination of the two irreducibles is
associated with a given knot. By a combination of skeining and inspection of factorizations
of Alexander [32] polynomials, we arrive at the association of the first two 13-crossing
knots of Table 5 with, as yet undetermined, linear combinations of N3,7,3 and N5,3,5. The
remaining 6 knot-numbers at level 13 cannot all come from S13,3, since Table 1 reveals that
E(13, 3) = 7, of which the two non-alternating irreducibles have already been accounted
for. It is possible that further 13-crossing knot-numbers come from S13,5, whose size,
S(13, 5) = 133, puts it out of the reach of MPPSLQ for the foreseeable future.

At even levels, the associations of Table 5 are made with combinations

Na,b = ζ(−a, b) − ζ(−b, a) , (62)

of alternating double Euler sums. The very simple constructs N5,3 and N7,3 remove
{π2n | n ≤ 5} from diagrams with up to 7 loops that skein to 819 and 10124. Modulo terms
corresponding to factor knots, these two knot-numbers agree with the findings of [5], where
results were written, equivalently, in terms of 29 ζ(8)−12 ζ(5, 3) and 94 ζ(7, 3)−793 ζ(10).
Previously, the numbers in these combinations appeared gratuitous; now they are seen as
consequences of ignoring the wider world of alternating sums.
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Calculations at higher loops reveal that N2a+5,3 is a knot-number at level 2a + 8.
However, a multiple of π2(a+b+6) must be subtracted from N2a+7,2b+5 to obtain a knot-
number for 3-braids with 12 or more crossings. Table 5 shows that this subtraction has a
very simple form at 12 crossings. The discovery of the general form of the subtraction is
frustrated by the fact that counterterms associated with even-crossing knots are generally
much more difficult to calculate than those associated with odd numbers of crossings,
as witnessed by the table of results in [5], where 10139 and 10152 conspired to frustrate
the precise evaluation of all subdivergence-free contributions to the 7-loop β-function of
φ4-theory. As these knots entail computation times scaling as N4 for truncation at N ,
they leave us with a 7-loop result that is known to ‘only’ 11 significant figures, after 103

CPUhours. By way of a hard-won, but relatively simple, exact numerical result at 8 loops,

M(2, 2, 1, 1) = 214 · 3 N9,3 +24 · 3 · 53 · 7 ζ(3) ζ(9)− 25 · 33 ζ4(3)− 23 · 32 · 577 ζ(5) ζ(7) (63)

is offered, as the finding of MPPSLQ for the Feynman diagram of Fig. 2.

Fig. 2: A diagram from cutting an 8-loop bubble that skeins to 12-crossing 3-braids.
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The evaluation (63) was accomplished by using 4-dimensional Chebyshev-polynomial
expansions, derived in [36], for the iteratively-defined coordinate-space constructs

Pn+1(x, y) =
∫

d4z

π2z2
Pn(x, z) P0(z, y) ; P0(x, y) = 1/(x − y)2 , (64)

which are then combined by REDUCE to perform a radial integration in

M(a1, a2, a3, a4) = x4
∫

d4y

π2

∏

i

Pai
(x, y) =

∑

ni

A ({ni}) R ({ai}; {ni}) , (65)

giving [15] a 4-fold sum, whose radial term, R, is a huge expression involving inverse
powers of ni and h = 1

2

∑

i ni, while the angular term, A, vanishes unless h is an integer
greater than any ni, in which case A is the smallest of the 8 values ni and h− ni. Taking
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the REDUCE result, TRANSMP produces MPFUN code that implements the brute-
force accelerator (25), with demon-number d = 2, yielding enough significant figures for
MPPSLQ to discover (63). It would be very hard to obtain such results analytically. As
so often, in field theory, the whole is much simpler than the parts: thousands of 4-fold
non-Euler sums produce a one-line, π-free result, in terms of the alternating double-sum
knot-number N9,3, which cannot be expressed in terms of non-alternating sums. This led
me to seek and find such things as (26), which in turn led to the enumeration (9).

Clearly there is a pressing need for a more developed knot/number/field theory, which
might tell one which Euler (or other) sums in counterterms to associate with which knots,
without need of laborious calculations of Feynman diagrams. In particular I would dearly
like to know whether the two undetermined knot-numbers at level 10 are irreducible
alternating 4-fold Euler sums, residing in S10,4. Analytical assistance is ardently sought;
without it, additional numerical work is likely to add little understanding.

Eventually, it may prove possible to relate Euler sums to positive knots, directly, in
a way that is consistent with the field-theory route, yet does not oblige one to follow it.
That is, I suggest, a substantial task, since it is notoriously difficult to derive non-trivial
statements that apply to all members of a well-defined class of knot. For example, the
enumeration, by REDUCE, of positive knots up to 17 crossings, is insecure against the
possibility that two distinct positive knots might have the same HOMFLY polynomial,
though no example of positive mutation has come to light.

It may be that the calculational complexities of field-theory counterterms, and the clas-
sificational complexities of knot theory, are mutual echoes, with which the now-apparent
combinatoric simplicity of the enumeration of irreducible Euler sums eventually fails to
resonate. For the present, however, the following correspondences, from computations to
13 loops, are rather impressive, to my mind.

1. Barring cancellations between diagrams, associated with dynamical symmetries,
such as local gauge invariance [6] or supersymmetry [8], the Euler sum ζ(2L − 3),
corresponding [4] to the 2-braid torus knot (2L−3, 2), first appears in anomalous di-
mensions at L loops. No other irreducible results from subdivergence-free diagrams
with less than 6 loops, because no other positive knot has less than 8 crossings.

2. At 6 loops, 3-braids start to appear. The first of these is 819 ≃ N5,3. The irreducibil-
ity of its knot-number was confirmed in [1], with no knowledge of prior developments
in field theory [16, 17].

3. At 7 loops, 4-braids start to appear. The first of these is σ2
1σ

2
2σ1σ3σ

3
2σ

2
3 ≃ N3,5,3.

The irreducibility of its knot-number was confirmed in [2], following communication
of its appearance in field theory [5]. The 3-braid 10124 ≃ N7,3 is also encountered
at 7 loops [5], in accord with the tally of [1].

4. At 8 loops, there appear: a pair of 13-crossing 4-braids, with knot-numbers N3,7,3

and N5,3,5, in accord with the tally of [2]; and a pair of 12-crossing 3-braids, with
knot-numbers N9,3 and N7,5 modulo π12, in excess of the tally of non-alternating
double sums in [1]. The latter pair led, via (63), to (26), which resolved the apparent
conflict between knot/field theory and number theory and then produced the enu-
merations (9,10), as contributions from mathematical physics to pure mathematics.
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5. Results up to 13 loops confirm the association of the knot-numbers (58,59) with
4-braids, up to 23 crossing.

6. Results on 14-crossing knots, appearing at 9 loops, will be given in detail in [12].
They confirm the appearance of the expected pair of double-sum irreducibles, N11,3

and N9,5 modulo π14. For the first time, a truly irreducible 4-fold Euler sum is
obtained from a Feynman diagram. The associated knot-number is ζ(5, 3, 3, 3) +
ζ(3, 5, 3, 3)− ζ(3) ζ(5, 3, 3) modulo π14.

8.3 Number theory

Mathematicians have only recently, it appears, made significant extensions of Euler’s
original study of double sums [74]. Alternating double sums, familiar in field theory [37]
since [16], were studied in [1]; triple sums, encountered in [17], were studied in [2, 75];
generic non-alternating sums were studied in [27], where the sum rule (23) was obtained.

The extension of these studies into the entire domain of k-fold Euler sums, at all levels
l, with all possible alternations of sign, was undertaken, in this work, in an unashamedly
experimental11 manner, stemming from an urgent need further to develop the connection
between knot theory and quantum field theory.

Mathematics, at its purest, relies on little more than the fertile invention of the human
mind. Mathematical physics often spawns structures of even greater beauty, thanks to
what Einstein called the ‘incomprehensible’ comprehensibility of the natural world. As a
new variation on this oft-repeated theme, field theory has led, from the observation [3]
of the rationality of ladder-diagram counterterms, and the skeining of zeta-rich crossed-
ladder diagrams [4], to a uniquely positive hyperbolic 11-crossing knot in 7-loop [5] coun-
terterms, and in this work to the Feynman diagram of Fig. 2, whose evaluation (63) then
resulted in the purely mathematical discovery that non-alternating Euler sums require
alternating sums for their reduction, as witnessed by (26). Setting field theory aside, for a
brief while, the larger universe of alternating Euler sums proved much easier to enumerate
than its non-alternating restriction, as witnessed by (9).

The validity of the enumeration (9) is provisional: a year of work and 103 CPUhours,
of the most exhaustive tests of which I and the engines at my disposal are capable, fail to
reveal the slightest flaw in it. I invite colleagues with larger numerical appetites to test
it further, in the lively expectation that it will survive.

What is needed now is the closest thing to proof for which it is reasonable to hope:
the establishment by deductive methods of the validity of (9) as an upper bound on the
number of irreducible k-fold Euler sums at level l. The more ambitious aim of proving it
as an identity is unrealistic, until someone develops the machinery for proving, inter alia,
the irrationality of ζ2(137)/ζ(274), and a denumerable infinity of suchlike things. The
more modest proposal of proving that the number of irreducibles is no more than that
given by (9) seems eminently realistic. To anyone disposed to undertake it, I offer the
following informal restatement:

11See [76] for a suggestion of a working definition of experimental mathematics.
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1. For concrete values of l and k, such that l + k is even, and l ≥ k ≥ 1, form all the
partitions of l into precisely k odd integers.

2. For each partition pi, count the distinguishable permutations of these odd integers
and denote the answer by Pi.

3. Let Ai be the number of products of lower-level irreducibles, associated with parti-
tion pi by the generator (12) operating on already established irreducibles.

4. Summing Ei = Pi − Ai over the odd partitions one arrives at (9).

By way of example, consider S10,4, which admits of the odd partitions p1 = 7 + 1 + 1 + 1,
p2 = 3 + 3 + 3 + 1, and p3 = 5 + 3 + 1 + 1, with P1 = P2 = 4!/3! = 4 and P3 = 4!/2! = 12.
To exemplify the structure, only the argument strings of Section 6 are notated, with (1)
standing for − ln 2. Thus the 3 products

(7)(1)(1)(1), (7, 1)(1)(1), (7, 1, 1)(1), (66)

leave E1 = 4 − 3 = 1 as the number of irreducibles associated with p1. Similarly,

(3)(3)(3)(1), (3, 1)(3)(3), (3, 1, 3)(3), (67)

leave E2 = 4 − 3 = 1 irreducibles. Finally, the 9 products

(5)(3)(1)(1), (5, 3)(1)(1), (5, 1)(3)(1), (3, 1)(5)(1), (3, 1)(5, 1),

(5, 1, 1)(3), (3, 1, 1)(5), (5, 1, 3)(1), (3, 1, 5)(1), (68)

leave E3 = 12 − 9 = 3 irreducibles. The tally E(10, 4) = 1 + 1 + 3 = 5 agrees with (9).
Note that in (66,67,68) the specific choices of Section 6 were made, for irreducibles in
spaces of lesser depth and level. However, that was not necessary: all one needs is the
number of irreducibles, associated with the sub-partition in the smaller space, which is
itself determined by the Aufbau. By the same token, all one needs to carry forward
from S10,4, for later stages of the Aufbau, are the numbers, Ei, of irreducibles associated
with each of the 3 partitions of 10 into 4 odd integers; it is not necessary to specify a
concrete basis by choosing signs or specific orderings of arguments. Note also that the

total number of permutations is merely an element of Pascal’s triangle:
∑

i Pi =
( l+k−2

2

k−1

)

,

in general, with 4 + 4 + 12 =
(

6
3

)

in S10,4. It is, therefore, an elementary exercise to build
up Euler’s triangle of Table 1, by repeated application of Ei = Pi − Ai, which is, so to
speak, the microscopic version of the macroscopic results (9,10,16). To paraphrase:

The number of irreducibles is given, by Euler’s triangle, as the deficit between
the number that Pascal’s triangle generates, by permutation of integers in odd
partitions, and the number of products already given by previous deficits.

In its final form, a proof of (9), as a rigorous upper bound, may appear almost as simple
as the “Euler = Pascal – Already” paraphrase of what is to be proved. It may, however,
require formidable combinatoric intuition to generate and, more importantly, to organize

sufficient permutation and partial-fraction relations, between k-fold Euler sums, with all
possible alternations of sign, as effectively as the authors of [1, 2] organized the relations
between non-alternating sums at depths k = 2 and k = 3. Mindful of what was entailed
by these lesser tasks, I did not attempt the greater.
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8.4 Conclusion

I marvel that the quantum electrodynamics [77] of Dyson, Feynman, Schwinger, and
Tomonaga [78] leads, after 50 years of dedicated calculation and the attainment of equally
impressive experimental accuracy [79], to agreement [14] between theory and experiment
on the eleventh significant figure in the magnetic moment of the electron. That skillful
calculator of double sums, Leonhard Euler [80], would smile, one feels, on seeing nothing
more complicated than

∑

n>m(−1)n+m/n3m in the sixth-order perturbation expansion.
Gauss, too, might be amused to see numbers, from his hypergeometric series [38, 40],
and knots, whose codification [30] he began, walk hand in hand, down the perturbation
expansions of quantum field theory, to all [8] orders in the coupling constant.

Such reassuring order, in the mathematical description of nature, at astonishing levels
of accuracy, reinforced by experience [8, 11, 16, 17, 38, 47, 53, 54] with hypergeometric
series generated by dimensional regularization, and now by the remarkable matches be-
tween Euler sums [1, 2] and Dirk Kreimer’s knot/number/field theory [3, 4, 5, 6, 8], leads
me to believe that the k ≤ 3 sums in (17), and hence in (52), more than suffice for the
electron’s anomaly at eighth order. Certainly, they suffice for the reduction of all Euler
sums with levels l ≤ 7. At any level, one has only to consult (9) for the tally of irreducible
k-fold Euler sums, be they construed as calculational obstacles or mathematical friends.
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