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ABSTRACT

The coordination sequence fS
n�g of a lattice or net gives the number of nodes that are

n bonds away from a given node� S
�� is the familiar coordination number� Extending work

of OKee�e and others� we give explicit formulae for the coordination sequences of the root

lattices Ad� Dd� E�� E�� E� and their duals� Proofs are given for many of the formulae� and for

the fact that in every case S
n� is a polynomial in n� although some of the individual formulae

are conjectural� In the majority of cases the set of nodes that are at most n bonds away from

a given node form a polytopal cluster whose shape is the same as that of the contact polytope

for the lattice� It is also shown that among all the Barlow packings in three dimensions the

hexagonal close packing has the greatest coordination sequence� and the face�centered cubic

lattice the smallest� as conjectured by OKee�e�



�� Introduction

The coordination sequence of an in�nite vertex�transitive graph G is the sequence

fS
��� S
��� S
��� � � �g� where S
n� is the number of vertices at distance n from some �xed

vertex of G� The partial sums G
n� � S
���S
��� � � ��S
n� are called the crystal ball num�

bers� As in the work of Brunner and Laves ���� OKee�e ����� ����� Grosse�Kunstleve ���� and

others� in our examples G will usually be the contact graph of a d�dimensional lattice packing

�	� or net ����� formed by taking the vertices to be the points of the lattice or net and joining

each point to its closest neighbors�

Although we will not study it here� there is another way to construct a graph from a

lattice that has some advantages over the contact graph� This is the Voronoi graph� again the

vertices represent lattice points� but now two vertices are joined if the corresponding Voronoi

cells �	� p� ��� are adjacent� The contact graph is always a subgraph� The chief advantage

of the Voronoi graph is that it is meaningful for any lattice� whereas the contact graph is

of little use for general lattices 
consider for instance a two�dimensional lattice in which the

generating vectors have di�erent lengths�� The Voronoi graph may also provide a better model

for crystal growth� Consider the body�centered cubic 
b�c�c�� lattice D�
�� for example� in which

the Voronoi cells are truncated octahedra� The vertices within distance n of a given vertex in

the Voronoi graph are the lattice points that can be reached by stacking truncated octahedra

to depth n around a �xed truncated octahedron� These points form a roughly spherical cluster�

whereas as we shall see in Section � the vertices at distance n from a given vertex in the contact

graph form a cluster with the shape of a cube�

The contact graph has been used by the authors cited above as a way of de�ning the density

of a lattice or net� It is worth mentioning that the theta series ����� ����� �	� may be more

appropriate for that purpose� since it exactly gives the numbers of points in ever�increasing

spheres about a particular point�

Nevertheless� for lattices and nets that are related to the root lattices Ad� Dd� Ed� the

contact graphs and the associated coordination sequences are of considerable interest in their

own right� and we shall investigate their properties in this paper� extending the work of OKee�e

����� �����

Throughout this paper� if G is a distance�transitive graph with some �xed choice of origin�

and u is a vertex of G� the height of u� ht
u�� is the number of edges in the shortest path from



u to the origin� Also� for n � �� �� �� � � �� we set

G
n� � �fu � G � ht
u� � ng �
I
n� � �fu � G � ht
u� � ng �
S
n� � �fu � G � ht
u� � ng � G
n�� I
n� �

Then S
��� S
��� � � � is the coordination sequence of G�
The paper is arranged as follows� In Section � we study the contact graphs of lattices� and

introduce the notion of the fractional height of a lattice point u� This measures by how much

the contact polytope of the lattice must be magni�ed before it contains u� The fractional height

never exceeds the height 
Theorem �� and di�ers from it by a bounded amount 
Theorem ���

A lattice is called well�coordinated if the fractional heights are the same as the heights�

Well�coordinated lattices have many desirable properties that make them easier to analyze�

Although the root lattices Ad andDd are well�coordinated 
Theorems � and ��� lattices that are

not well�coordinated exist in all dimensions above � 
Theorem 	 and subsequent paragraphs��

In particular� the lattices E�� E
�
� and E� are not well�coordinated 
Theorems �������

An extreme example of a lattice that is not well�coordinated is the ���dimensional �an�

abasic� lattice described in Section �� this contains vectors u with the property that ht
�u� �

ht
u��

Section � studies the coordination sequences of the lattices Ad� Dd� E�� E�� E�� their duals

and some related nets� It is worth remarking that in this section we will see graphs in which

the crystal ball numbers G
n� are equinumerous with centered simplices 
the sodalite net��

centered cubes 
the generalized b�c�c� net�� and centered orthoplexes 
Zd�� representing all the

regular polytopes in high dimensions 
cf� �����

In Section � it is shown that among all Barlow packings� that is� those formed from layers of

the hexagonal lattice� the hexagonal close packing 
or h�c�p�� has both the highest coordination

sequence and the highest crystal ball sequence� while the face�centered cubic 
or f�c�c�� lattice

has the lowest� This establishes a conjecture made in �����

The highest crystal ball numbers for packings in dimensions d � � have a concise description

in terms of the function

�k
n� � 
n� ��k � nk �

�



as follows�

d � � � for Z� G
n� � ��
n� � �n� � �

d � � � for A�� G
n� � ��
n� � �n� � �n� � �

d � � � for h�c�p�� G
n� �
�

�
��
n� � 
���n �

�
� nearest integer to

�

�
��
n� �

d � � � for D�� G
n� �
�

�
��
n� �

�

�
� nearest integer to

�

�
��
n� �


��

However� in higher dimensions this notation is not especially useful� The formula 
��� for E��

for example� does not simplify when expressed in terms of �k
n��

The following symbols will be used� b c for integer part or �oor� d e for ceiling� Zfor the

integers� Q for the rationals� R for the reals� For unde�ned terms from lattice theory see �	��

and for the de�nition of less familiar polytopes 
see as the �ambo�simplex�� see ���� This paper

is part of series dealing with the properties of low�dimensional lattices from various points of

view� the previous part being ����

�� Contact graphs of lattices

Most of this paper will be concerned with the case when G is the contact graph of a d�

dimensional lattice � that is spanned by its minimal vectors� Let P denote the contact polytope

of the lattice� that is� the convex hull of the minimal vectors ����

We de�ne the fractional height of a vector u � � 
or of the corresponding node of G� to be

fht
u� � min
h��

fu � hPg �

where hP � fhx � x � Pg� h � �� Let G�
h� � �fu � � � fht
u� � hg� I �
h� � �fu � � �

fht
u� � hg� and S�
h� � �fu � � � fht
u� � hg � G�
h�� I �
h��

In fact it seems that there are three reasonable ways of measuring height�

� the fractional height� fht
u��

� the fractional height rounded up� dfht
u�e� and

� the height� ht
u��

Obviously we have

fht
u� � dfht
u�e � 
��

and we shall prove in a moment that

dfht
u�e � ht
u� � 
��

�



and so

fht
u� � ht
u� � 
��

A lattice for which equality holds in 
�� is called well�placed� because each point appears on

the boundary of some nP � for n � �� n � Z� A lattice for which equality holds in 
�� is

called well�rounded� because its heights are obtained just by the appropriate rounding of the

fractional heights� Finally� if equality holds in 
��� or equivalently if equality holds in both 
��

and 
��� we call the lattice well�coordinated�

Theorem �� A point u � � has fractional height h if and only if it can be written in the form

u �
dX
i�	

civi � 
��

where ci � Q� ci � ��
P
ci � h� and v	� � � � � vd are distinct minimal vectors of � belonging to a

face of the contact polytope�

Proof� If fht
u� � h� then as we magnify the contact polytope� forming aP for increasing

a� u �rst belongs to aP when a � h� at which point u is on the boundary of hP � Since

the faces of hP are convex 
d � ���dimensional polytopes� by Carath eodorys theorem 
�����

Theorem ������� we can write u as a linear combination of at most d of the vertices of that

face�

u �
dX
i�	

�i
hvi� �

with �i � ��
P
�i � �� from which 
�� follows� The converse is immediate�

On the other hand� the points of height n 
n � Z� n � �� are exactly the points that can

be written as a linear combination of minimal vectors of � with nonnegative coe!cients that

sum to n� If instead we allowed real coe!cients with sum at most n� we would obtain all of

nP � Of course the vertices of nP have height n� Thus we have established�

Theorem �� The points of fractional height at most h 
h � �� are all the lattice points in or

on hP� The points of height at most n 
n �Z� n� �� are a subset � which necessarily includes

the vertices � of the lattice points in or on nP� Furthermore� fht
u� � ht
u� for all u � ��

G�
n� � G
n� for integers n � �� and the lattice is well�rounded if and only if G�
n� � G
n�

for all integers n � ��

�



Theorem �� There is a constant C depending only on the lattice � such that

ht
u� � fht
u� � C� for all u � � � 
	�

Furthermore�

fht
u� � lim
n��

ht
nu�

n
� 
��

Proof� Consider a vector u � � with fractional height n� From Theorem � we can write

u �
Pd

i�	 civi with ci � ��
P
ci � n� If u� �

Pbcicvi� then ht
u�� �Pbcic � fht
u�� However�

u and u� di�er only by a lattice vector in P � of which there are only �nitely many� 
	� follows�

and 
�� is an immediate consequence� Note that the limit in 
�� exists� since height is a

subadditive function�

Theorem � can be interpreted as saying that for large n the clusters of points of fractional

height � n and of height � n look roughly the same� except that the faces of the latter may

be somewhat �pitted�� For well�rounded lattices they are exactly the same�

We shall make frequent use of the following result� which is a immediate consequence of

Ehrharts reciprocity law ����� ����� ����� ���� 
see also Stanley ��	�� ������

Theorem �� For integral n � �� G�
n� and I �
n� are respectively given by polynomials g�
n�

and i�
n� in n of degree d� satisfying

g�
�n� � 
���di�
n�� n �Z� 
��

Furthermore� S�
�� � �� while for n � �� S�
n� is a polynomial s�
n� of degree d� � satisfying

s�
�� � �� 
���d�

Since obviously S
n� � G
n� � G
n � �� for n � �� it follows from Theorem � that for

well�rounded lattices 
for which G
n� � G�
n�� S
n� for n � � is also a polynomial s
n� in n

of degree d� �� If this is so then the generating function

S
x� �
�X
n��

S
n�xn

can be written as

S
x� � Pd
x�


�� x�d
� 
��

for some polynomial Pd
x� which we call the coordinator polynomial� These polynomials usually

provide the most concise speci�cation of the coordination sequences� 
�� implies that the

�



generating function for the crystal ball numbers G
n� is

�X
n��

G
n�xn �
S
x�
�� x

�
Pd
x�


�� x�d
	
�

Note that if a lattice � is the direct product of lattices M and N � then the corresponding

generating functions satisfy S�
x� � SM
x�SN
x�� and the coordinator polynomial for � is the

product of those for M and N �

It follows from the de�nition that G is well�placed if any one of these three equivalent

conditions holds�


a� fht
u� �Z� for all u � G "


b� I �
n� � G�
n� ��� for n � �� �� � � � " 
���


c� S�
n� � G�
n��G�
n� ��� for n � �� �� � � � � 
���

These conditions amount to saying that every point lies on the boundary of nP � for some

integral n � ��

The polynomials g�
n�� s�
n� and i�
n� that give the values of G�
n�� S�
n� and I �
n� for

integral n � � are also interesting for negative n�

Theorem �� G is well�placed if and only if either


d� g�
�n� � 
���dg�
n� ��� for all n �Z� 
���

or


e� s�
�n� � 
���d�	s�
n�� for all n �Z� n �� � 
���

holds�

Equation 
��� asserts that the values of jg�
n�j are symmetric about n � �	#�� and 
���

that s�
n� is an even polynomial in n if d is odd� and an odd polynomial in n if d is even�

Proof� If G is well�placed then g�
�n� � 
���di�
n� 
from Theorem ��� � 
���dg�
n � ��


from 
����� Let �
x� � g�
x� � g�
x � ��� so that s�
n� � �
n� for n � �� �� � � �� Then

�
x� � 
���dfg�
�x � �� � g�
�x�g � 
���d�	�
�x�� so s�
�n� � 
���d�	s�
n�� n �� ��

Conversely� if 
��� holds� then there is an even 
if d is odd� or odd 
if d is even� polynomial

�
x� of degree d � � such that s�
h� � �
h� for h � �� Then g�
h� �
P

t�h �
t� is a sum of

linear combinations of Bernoulli polynomials of degrees d� d � �� d � �� � � �� and 
��� follows

	



from the symmetry property of Bernoulli polynomials 
��� Eq� 
���������� Thus 
��� implies


���� and 
��� and 
�� imply 
���� showing that G is well�placed�

For example� the f�c�c� lattice is well�coordinated� since G�
n� � G
n� � 	#�
�n� ��
�n� �

�n� �� satis�es G�
�n� � �G�
n� ��� its values at

� � � � � � � � � � � � � � � �

being respectively

� � � � �� � �� � � � �� �� ��� � � � �

Also

S�
n� � G�
n�� G�
n� �� � ��n� � � � S
n� �

for n � �� an even polynomial�

Theorem �� Every lattice of dimension d at most � is well�coordinated�

The cases d � � and � are easy� The case d � � follows from Theorem � and the fact 
cf�

����� that for a three�dimensional lattice� S
n� � 
S
��� ��n� � �� n � �� The proof for d � �

is longer and will be given elsewhere�

It follows from Theorem � that the coordination sequence for any four�dimensional lattice

is given by

S
n� �

�
S
��

	
� S
��

�

�
n� �

�
S
��

	
� �S
��

�

�
n � 
���

for n � � 
compare ����� p� ��	��

On the other hand� the following �ve�dimensional lattice is not well�placed� and so not

well�coordinated� We start from the lattice D�
�� generated by the vectors v	 � 
�� �� �� �� ���

� � �� v� � 
�� �� �� �� �� and v� � 
	#�� 	#�� 	#�� 	#�� 	#��� and �squash� it in the v� direction until

v	� � � � � v� all have the same length� The resulting lattice has Gram matrix

�

��

�
������

�� �� �� �� �
�� �� �� �� �
�� �� �� �� �
�� �� �� �� �
� � � � ��

�
������ �

the entries in which are the inner products of the new vectors v	� v�� v�� v�� v�� It is easy to

check that w � v��v	�v� has height � but fractional height ��� 
in fact ht
�w� � ��� showing

�



that the lattice is not well�placed� Further investigation shows that this lattice is well�rounded�

with

G�
n� � G
n� �
�

�
n� �

�

�
n� �

�

�
n� �

��

�
n� �

��

	
n� � �

which is indeed not symmetric about �	#�� and that

S �
n� � S
n� �
��

�
n� � �

�
n� �

��

�
n� �

�

�
n� � 
n � �� �

Thus lattices that are not well�placed 
hence not well�coordinated� exist in all dimensions

above �� As we will see� the lattices E�� E
�
� and E� are also not well�placed�

Remark� Well�coordinated lattices are well�rounded� and it is at �rst tempting to conjecture

that the converse is also true� However� we believe that a counterexample 
a well�placed lattice

that is not well�rounded� will be found in perhaps as low as �ve dimensions� The next example

shows that in general the set of lattice points of height � n need not even be lattice�convex� i�e�

need not have the property that every lattice point in the convex hull of the points of height

n has height � n�

De�nition� A d�dimensional lattice � is anabasic if it has the property that although it

is generated by its minimal vectors� no subset of d of the minimal vectors generates it� A

particular ���dimensional lattice� which we call �the� anabasic lattice B� was described in ����

The anabasic lattice B has precisely �� minimal vectors �u	� � � � ��u�� �v	� � � � ��v�� sat�
isfying �

P�
i�	 ui � �

P�
i�	 vi � 	w 
say�� Then �w �

P
vi � B� �w �

P
ui � B� so w � B�

The heights of the multiples of w are�

vector� w �w �w �w �w 	w �w �w �w � � �
height� �� � � �� �� �� �� �� �� � � �

and fht
w� � ���� The set of points of height � � is not lattice�convex� since it contains �w

but not w�

In this example� fht
w� � ��� while ht
w� � ��� so the anabasic lattice is neither well�

placed nor well�rounded� However� most of the lattices � we consider in this paper are well�

rounded�

Theorem �� If a d�dimensional lattice � is well�rounded� then the set of u � � with ht
u� � n

is lattice�convex� and the crystal balls are magni�ed versions of the contact polytope� For

�



integral n � �� G
n� and I
n� are respectively given by polynomials g
n� and i
n� of degree d�

satisfying

g
�n� � 
���di
n� n �Z�

Furthermore� S
�� � �� while for n � �� S
n� is a polynomial s
n� of degree d � � satisfying

s
�� � �� 
���d�

Proof� The hypothesis implies that the set of points of height � n is convex� and the other

assertions follow from Ehrharts reciprocity law 
cf� Theorem ���

In particular� Theorem � applies if the lattice is well�coordinated�

�� Root lattices and their duals

In this section we discuss the coordination sequences of the root lattices� their duals and

some related nets�

The cubic lattice Zd

The contact polytope forZd is a d�dimensional cube� and a typical point x � 
x	� � � � � xd� �
Zd has

fht
x� � ht
x� �
dX

i�	

jxij � 
���

The coordination sequence for the ��dimensional integer lattice Zis f�� �� �� �� � � �g� with
generating function S
x� � 
� � x��
�� x�� Therefore� for Zd� the direct product of d copies

of Z� we have S
x� � 
� � x�d�
�� x�d�

S
n� �
dX

k��

�
d

k

	�
n � k � d� �

d� �

	
� 
�	�

G
n� �
dX

k��

�
d

k

	�
n � k � d

d

	
� 
���

and Pd
x� � 
� � x�d� From 
���� 
�	� we have the identity

X
�a��a�����

d�
nQ
i��

ai�
�

dX
k��

�
d

k

	�
n� k � d� �

d� �

	

���

the sum being over all 
a�� a	� � � � � an� �Zn
	 satisfying P ai � d�
P
iai � n�

The crystal balls are orthoplexes 
cf� ����� and the G
n� are centered orthoplex numbers�

�



The structure of the coordinator polynomials both here and in subsequent examples be�

comes clearer if the coe!cients of the successive polynomials Pd
x� for d � �� �� �� � � � are

displayed in a triangular array 
with coe!cients of highest powers on the right�� We call this

the coordinator triangle�
�

� �
� � �

� � � �
� � 	 � �

� � �
In this case of course the coordinator triangle is simply Pascals triangle of binomial coe!cients
d
k

�
� OKee�e ����� Table 	� gave the coordination sequences for d � ��� but the present

description is both simpler and holds for all d� It follows from 
�	� that the coe!cient of nd�	

in S
n� is �d�
d� ���� as conjectured in �����

The root lattice Ad

The contact polytopes of the lattices An� Dn� E�� E�� E� and their duals were described in

����

We de�ne Ad to consist of the points x � 
x�� x	� � � � � xd� � Zd
	 with
P
xi � �� The

contact polytope has d
d� �� vertices� of the form 
����� �d�	�� These are at the midpoints

of the shorter edges of the diplo�simplex formed by the vectors 
from coset ��� of Ad in A�d�

�
��

�

d� �

�d
�

� �d
d� �

�		
�

The contact polytope was incorrectly described as an �ambo�diplo�simplex� in ���" a better

name would be �shorter ambo�diplo�simplex��

A fundamental simplex for the Weyl groupW 
An� of order 
n���� is described in Figs� ����

and ���	 of �	�� It consists of the points satisfying

x� � x	 � � � � � xd�
X

xi � � � 
���

This simplex is an in�nite cone which meets the contact polytope in d faces� one for each

nonzero glue vector of Ad 
cf� �	�� Chapters � and ���� The face corresponding to the glue

vector

�i� �

�
BBB i

d� �
� � � � �

i

d� �� �z �
d
	�i

� �d � �� i

d� �
� � � � ��d� �� i

d� �� �z �
i

�
CCCA �

��



for � � i � d� has equation

�

�
�i� � x �

i

�
d� ��

x� � � � �� xd�i�� 
d� �� i�

�
d� ��

xd�i
	 � � � �� xd� � � � 
���

This face contains i
d� i� vertices of the contact polytope� those with a single �� in any of

the �rst d� �� i coordinates and a single �� in any of the last i coordinates�

Consider a point x � Ad lying in the fundamental simplex� in the cone above the face

de�ned by 
���� The re�ecting planes of the a!ne 
in�nite� Weyl group of type An partition

the whole space into simplices� The height of x� and also its fractional height� is given by the

number of re�ecting planes between x and the origin� which is 	
� �i� � x�

For an arbitrary point x � Ad in the fundamental simplex 
���� the height is

max
i�	�����d

�

�
�i� � x �

which is simply 	
�

P jxij� Thus a point such as 
�� �� ��������� A� can be written as the sum

of 	
�

P jxij � �� minimal vectors� and no fewer� From collecting these results and applying

Theorem �� we obtain�

Theorem 	� Any point x � 
x�� � � � � xd� � Ad is equivalent under the Weyl group to one with

coordinates satisfying ���	� For such a point we have

fht
x� � ht
x� �
�

�

X
jxij �

The number of points in Ad equivalent to this point is 
d � ����
Qn
i��n ai�� where ai is the

number of components xj that are equal to i� for �n � i � n� n � ht
x�� The lattice is

well�coordinated� and G
n�� S
n� 
n � �� are polynomials in n of degrees d� d� � respectively�

The crystal balls are shorter ambo�diplo�simplices�

OKee�e ���� empirically determined the coordination sequences for Ad for d � �� in each

case �nding that S
n� is a polynomial in n of degree d��� The correctness of these expressions

is now justi�ed� Using Theorem �� we have extended OKee�es results to d � ��� and �nd

that the coordinator triangle is

�
� �

� � �
� � � �

� �	 �	 �	 �
� �� ��� ��� �� �

� � �

��



where the k�th entry in the d�th row appears to be

d
k

��

for k � �� �� � � ��� This is certainly

true for d � ��� Assuming it holds in general we have

S
x� �
Pd

k��



d
k

��
xk


�� x�d
� 
���

and hence

S
n� �
dX

k��

�
d

k

	��
n � k � d� �

d� �

	
� 
���

with a similar expression for G
n�� A general proof of 
��� would be equivalent to establishing

the identity X
a


d� ���Qn
i��n ai�

�
dX

k��

�
d

k

	��
n� k � d� �

d� �

	
� 
���

where the sum on the left extends over all a � 
a�n� � � � � an� satisfying

nX
i��n

ai � d� ��
X
i��

iai �
X
i��

ia�i � n �

At present we have only veri�ed 
��� and 
��� for d � ���

It is curious	 that Eq� 
��� is the expansion of Ld

� � x��
�� x�� in powers of x� where

Ld is the d�th order Legendre polynomial 
see ����� p� �	�� We are not aware of any other

connections between the root system Ad and the Legendre polynomial Ld�

The dual lattice A�d

The contact polytope for A�d is a diplo�simplex 
���� p� ���� with �d � � vertices �vi�
� � i � d� where

vi �

��
�

d� �

�d
�

� �d
d� �

�		
�

with the �d�
d��� entry in the ith coordinate� A typical face of the contact polytope contains

d

�
�vis and

d

�
�vis �

if d is even� and either
d� �

�
�vis and

d� �

�
�vis �

or
d� �

�
�vis and

d� �

�
�vis

if d is odd�
�We are grateful to Herb Wilf for this remark�

��



We will now show that A�d is well�coordinated� We use A�� as an illustration� the general

case being precisely similar� The face de�ned by � �x � �� where � � 
�� �� ��������� contains
the vertices v�� v	� �v� and �v�� All faces of the contact polytope are of this type�

Consider a point x � 
x�� x	� x�� x�� x�� � A�� in the cone from the origin that contains this

face� Let x have fractional height h� so that � �x � h� We claim that ht
x� � h� By Theorem ��

x � c�v� � c	v	 � c�v� � c�v� � 
���

where ci � Q� ci � ��
P
ci � h� Since x � A�� and v�� v	� v�� v� span A��� x can also be written

as

x � m�v� �m	v	 �m�v� �m�v� � 
���

where the mi are integers� Since v�� v	� v�� v� are linearly independent� the representation

of x is unique� and 
��� and 
��� agree� Therefore h �
P
mi is an integer� and since 
���

displays x as a sum of h minimal vectors� ht
x� � fht
x� � h� showing that this lattice is

well�coordinated�

OKee�e ���� gave polynomials for the coordination sequences for d � �� and the preceding

argument now justi�es these formulae� Using OKee�es results� we �nd that the coordinator

triangle is
�

� �
� � �

� � � �
� 	 �	 	 �

� � �� �� � �
� � �� 	� �� � �

� � �� �� �� �� � �
� �� �	 ��� ��	 ��� �	 �� �

� �� �	 ��	 ��	 ��	 ��	 �	 �� �
� � �

The last two rows� corresponding to d � � and �� were obtained by extrapolating the pattern

of the earlier rows� which appears to be

P�m
x� �
mX
k��

�
�k

k

	
xk
� � x��m��k � 
�	�

P�m
	
x� � 
� � x�P�m
x� � 
���

Assuming these expressions hold in general� then by expanding 
�� we �nd that

S
n� �
dX

k��

�
n� k � d� �

d� �

	
kX
i��

�
�i

i

	�
d� �i

k � i

	
� 
���

This agrees with OKeefes empirical results for d � �� but for higher d is only a conjecture�

��



The root lattice Dn

We take Dd to consist of the points x � 
x	� � � � � xd� � Zd with
P
xi even� The con�

tact polytope is an �ambo�orthoplex� 
���� p� ���� having �d
d � �� vertices� all of the form


���� �d���� The Weyl group W 
Dd� has order �d�	d� and contains all permutations and all

even sign changes of the coordinates�

Any point x � Dd is equivalent under this group to one satisfying

x	 � x� � � � � � xd�	 � jxdj �

these inequalities de�ning the fundamental simplex� As in the case of Ad� the intersection of

this simplex with the contact polytope has a face for each nonzero glue vector of Dd� There

are three faces� de�ned by
x	 � � �

	
�
x	 � � � �� xd�	 � xd� � � �

	
�
x	 � � � �� xd�	 � xd� � � �


���

The expressions x	�
	
�
x	 � � � � � xd��

	
�
x	 � � � � � xd� then give the fractional heights of

points in the cones above these three faces� and the fractional height of a general point in the

fundamental simplex is the maximum of these three expressions� which is always an integer�

Furthermore� it is easy to show that a point with fractional height n can actually be written

as a sum of n minimal vectors� and so the lattice is well�coordinated�

Finally� the last two faces in 
��� are equivalent under the full automorphism group of Dd�

since this includes all sign changes of the coordinates�

We collect these results in the following theorem�

Theorem 
� Any point x � 
x	� � � � � xd� � Dd is equivalent to one satisfying

x	 � x� � � � � � xd �

For such a point we have

fht
x� � ht
x� � max

�
x	�

�

�

X
xi

�
�

The number of points in Dd equivalent to x is

�d�a�
d�

nQ
i�	

ai�
� 
���

��



where ai is the number of components xj that are equal to i� for � � i � n � ht
x�� The lattice

is well�coordinated� G
n� and S
n� 
n � �� are polynomials of degrees d and d� � respectively�

and the crystal balls are ambo�orthoplexes�

We had already determined the coordination sequence for D� some years ago 
see Sequence

M���� of ������ and also 
���� and it was given independently by OKee�e ����� who also found

the coordination sequences for D� and D�� We have extended this work to D	�� �nding that

the coordinator triangle is

�
� �

� � �
� � � �

� �� �� �� �
� �� ��� ��� �� �

� �� ��� ��� ��� �� �
� �� ��� ��	� ��	� ��� �� �

� � �

The rows of this triangle suggest that�

Pd
x� �
�

�

n

� �

p
x��d � 
��p

x��d
o
� �dx
� � x�d�� � 
���

an expression which is certainly valid for d � ��� Assuming 
��� holds in general� we �nd from


�� that

S
n� �
dX

k��

��
�d

�k

	
� �d

�
d� �

k � �

	��
n� k � d� �

d� �

	
� 
���

Again an equivalent combinatorial identity could be written down using 
��� 
compare 
�����

The dual lattice D�
d and the generalized b�c�c� net

As was pointed out in ����� the contact graph for D�
d� for d � �� is simply the union of two

disjoint copies of the contact graph for Zd�

However� a more interesting graph is obtained if $ using the standard coordinates for D�
d�

see �	�� Section ��� of Chap� � $ each point is joined to those points that di�er from it by the

vectors 
�	
� ��	

� � � � � ��	
��� This generalizes the contact graph for the b�c�c� lattice D�

�� and we

shall refer to it as the generalized b�c�c� net� The coordination number is �d� and the crystal

�We remark in passing that most of the sequences mentioned in the paper have been added to the electron�
ically accessible version of this table �����

�We are grateful to Colin Mallows for this formula�

��



balls are cubes� with

S
n� � 
n� ��d � 
n� ��d� n � � � 
���

G
n� � 
n� ��d � nd� n � � � 
���

The G
n� are centered cube numbers� The coordinator triangle is

�
� �

� � �
� � � �

� �� �� �� �
� �� �� �� �� �

� � �

�

and

Pd
x� � 
� � x�
d�	X
k��

�
d

k

�
xk � 
���

where the
D
d
k

E
are Eulerian numbers 
���� p� ���" ����� p� ���" ����� p� ����� In Comtets

notation 
��� p� ������ Pd
x� � 
x� ��An
x��x� where An
x� is an Eulerian polynomial�

The root lattices E�� E�� E� and their duals

The coordination sequences for E� and E�� were found experimentally by OKee�e ����� so

for these lattices we give only enough information to justify his results�

E�� The contact polytope for the root lattice E� is the polytope called ��� in Coxeters

notation 
���� p� ���" ���� p� ����� There are �� faces� all ��dimensional hemicubes� If we de�ne

E� to consist of the points in the standard E� 
see below� in which the �rst three coordinates

are equal� then the typical face has equation � � x � �� where � � 
�#�� �#�� �#�� �� �� �� �� ��� The

vertices of E� on this face have coordinates

��
	
�

��
"
�
�	

�

��
�
� the exponent �� indicating

that only even sign combinations are permitted� The fractional height of a point x � E� in the

cone above this face is fht
x� � � � x� This is an integer� so E� is well�placed� and it is also

easy to see that � � x � ht
x�� Thus we have proved�

Theorem ��� E� is well�coordinated�

This establishes the coordination sequence

S
n� �
���

�
n� � �	n� �

	�

�
n� 
n � �� 
�	�

�	



found empirically in ����� Also

G
n� �
��

��
n� �

���

��
n� �

��

�
n� � ��n� �

�	�

��
n� �

	�

��
n � � � 
���

E
�
�
� The contact polytope for the dual lattice E�� is a diplo�Schl%a�i polytope 
���� p� �����

and coincides with the Voronoi polytope for E�� The contact polytope has �� faces� one

for each minimal vector of E�� For example� the face de�ned by the minimal vector � �


	#�� 	#�� 	#���	#���	#���	#���	#���	#�� � � E� has equation � � x � �� This face contains ��

points of E�� � forming a diplo�simplex� All faces are of this type� From this it is easy to obtain�

Theorem ��� E�� is well�coordinated�

This establishes the coordination sequence

S
n� � ��n� � ��n� � 	n 
n � �� 
���

found empirically in ����� Also

G
n� � �n� � �n� � ��n� � ��n� � �n� � �n � � � 
���

The remaining three lattices are not well�placed� although they are well�rounded�

E�� We de�ne E� to consist of the points x � 
x	� � � � � x�� in the standard E� for which the

�rst two coordinates are equal� The contact polytope is the polytope ��	 
���� p� ����� There

are two types of faces� �	 faces that are Schl%a�i polytopes 
also called ��	 polytopes�� and ��	

simplicial faces� We use the extended Coxeter�Dynkin diagram shown in Fig� ��

��j� �����

��j�� ����

��j���� ��

��j��� ���
�

�

�

�

��� �

�
� �

�
� �

�
� �

�
� �

�
� �

�

��j���� ����j������

Figure �� Extended Coxeter�Dynkin diagram for E�� labeled to show walls of fundamental
simplex�

The extending node in Fig� � is shaded� and the other nodes are labeled with the equations

that de�ne the walls of the fundamental simplex 
compare �	�� Fig� ����
b�� where slightly

��



di�erent coordinates were used�� In Fig� �� �� and �� have been abbreviated to � and ��
The left�most node for example de�nes the wall x� � x� � ��

The points in the fundamental simplex therefore satisfy

x	 � x�� x� � x� � x� � x� � x� � jx�j �
x	 � x� � x� � x� � x� � x� � x� � x� �


���

The two faces in which the contact polytope meets this fundamental simplex correspond to

the left and bottom nodes of Fig� �� and have equations

�	 � x � �� �	 �

�
�

�
�
�

�
� �� �� �� �� �� �

�
� 
���

�� � x � �� �� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
���

�
�

�
� 
���

respectively� The face de�ned by 
��� contains �� points of E�� namely ����� ���
��� ��� and
	
�
	
�
	
�
�	

��
�
� forming a Schl%a�i polytope� These �� points span E�� If x is a point of E� in the

cone above this face�

fht
x� � �	 � x � x� � x� �Z�

and ht
x� � fht
x�� On the other hand the face de�ned by 
��� contains seven points of E��

namely ����� 
	��
� and 	

�
	
�
�	

�
	
�
�
�� 	

� � forming a regular simplex� Now however the points on

the face only generate a sublattice A�� of index � in E�� and if x � E� is in the cone above this

face�

fht
x� � �� � x � x� �
x� � x� � x� � x� � x� � x�

�
� �

�
Z�

and ht
x� � dfht
x�e�
For a general point of E� satisfying 
���� we have

fht
x� � max

�
x� � x�� x� �

x� � x� � x� � x� � x� � x�
�

�
� 
���

and

ht
x� � dfht
x�e � 
���

By applying Theorem � we obtain�

Theorem ��� Let E� consist of the points x � 
x	� � � � � x�� of E� in which the �rst two

coordinates are equal� Any such point of E� is equivalent under the Weyl group of E� to one

satisfying ��
	� for which the fractional height is given by ���	 and the height by ���	� E� is

well�rounded but not well�coordinated� G
n� and S
n� 
n � �� are polynomials in n of degrees

� and  respectively�

��



A computer was now used to determine the numbers of points of fractional height up to

	��� making use of knowledge of the subgroups of the Weyl group to calculate the number of

lattice points equivalent to a given point� The results are partially shown in Table I�

h S�
h� G�
h�

� � �
��� � �
� ��	 ���
��� � ���
� ���� ����
��� � ����
� ����	 �����
��� ��	 �����
� ������ �	����
��� ���� �		���
� ������ 	�����
� � � � � � � � �

Table I� Numbers of points of fractional height exactly h 
S�
h�� and at most h 
G�
n�� in E�

lattice�

Using Theorem ��� these computed values su!ce to determine S
n� and G
n�� From

S
n� � S�
n� � S�
n� 	#��� 
n � ��� G
n� � G�
n� 
n � ��� n �Z� we �nd

S
n� �
���

�
n� � ��

�
n� � ��n� � ��n� �

���

�
n� � ��

�
n� � � 
n � �� � 
���

G
n� �
���

��
n� �

��

�
n� � ��n� � ��n� �

���

��
n� �

��

�
n� �

	�

��
n� � � 
�	�

E
�
�� The contact polytope for E�� is a Hesse polytope E�	 
���� p� ����� There are two types

of faces� simplices� whose vertices span a sublattice of index � in E�� � and orthoplexes� whose

vertices span a sublattice of index �� We omit the details� and just summarize the result�

Theorem ��� � The dual lattice E�� is well�rounded but not well�coordinated� the fractional

heights are in 	
�Z� and G
n�� S
n� 
n � �� are polynomials in n of degrees � and  respectively�

With the aid of a computer we found su!ciently many values to establish that

S
n� �
	�

�
n� � ��	

�
n� � ���n� � ���n� �

���

�
n� � �	�

�
n � �� 
n � �� � 
���

G
n� �
	�

��
n� � �

�
n� �

��

�
n� � �n� �

�	

�
n� �

��

�
n� �

��

��
n� � � 
���

��



Notice that the formulae 
��� and 
��� for S
n� for these lattices are much more complicated

than the corresponding formula 
�	� and 
��� for E� and E�� � re�ecting the fact that E� and

E�� are not well�coordinated�

E�� The �standard� E� consists of the points x � 
x	� � � � � x�� whose coordinates are either

all integers or all halves of odd integers and whose sum is even� The contact polytope is the

Gosset polytope ��	 
��� p� ����� There are two types of faces� ��	� faces that are orthoplexes

and ����� simplicial faces� We use the extended Coxeter�Dynkin diagram shown in Fig� ��

where we have adopted the same conventions as in Fig� ��

������ ��

������ ��

�

�
� �

�
� �

�
� �

�
� �

�
� �

�
� �

�

�

� � �������

�� ������

��� ����

���� ���

���� ���

Figure �� Extended Coxeter�Dynkin diagram for E�� labeled to show walls of fundamental
simplex�

From the planes de�ned by the nodes in Fig� � we see that the points in the fundamental

simplex satisfy

x� � x� � x� � x� � x� � x� � jx�j �

x	 � x� � x� � x� � x� � x� � x� � x� �

However� these together imply x	 � x�� and so we can conclude that the fundamental simplex

consists of the points satisfying

x	 � x� � � � � � x� � jx�j �
x	 � x� � x� � � � �� x� �


���

The two faces in which the contact polytope meets this fundamental simplex correspond

to the left and bottom nodes of Fig� �� and have equations

�	 � x � �� �	 � 
�� �� �� �� �� �� �� �� � 
���

�� � x � �� �� �

�
�

	
�
�

	
�
�

	
�
�

	
�
�

	
�
�

	
�
�

	
�
�

	

�
� 
���

��



respectively� The face de�ned by 
��� contains �� points of E�� forming an orthoplex� and

spanning a sublattice D� of index � in E�� The face de�ned by 
��� contains eight points�

forming a regular simplex and spanning a sublattice A� of index � in E�� The fractional

heights of points in the cones above these two faces are given by �	 � x and �� � x respectively�

The �nal result of this analysis is the following�

Theorem ��� Any point of E� is equivalent under the Weyl group to one satisfying ���	� for

which the fractional height is

fht
x� � max

�
x	�

�x	 � x� � x� � � � �x�
	

�
�

E� is well�rounded but not well�coordinated� and G
n� and S
n� 
n � �� are polynomials of

degrees � and � respectively�

With the help of a computer we determined the numbers of points of fractional height

� ��� In order to do this we precomputed a list of the ��	 di�erent types of stabilizers of

points satisfying 
���� The results of the enumeration are partially shown in Table II�

h � G�
h� I �
h� S
h�

� � � � �
between � � � �

� ��� ��� � ���
between � � � �

� ���� ��	� ��� ����
between � � � �����

� 	��	�� ������ �		�� ���	��
between � � � �����	�

� ������� ��	��� ������ �	��	�
between � � � �		���	�

� 	��	���� ������� �����	� �������
� � � � � � � � � � � � �

Table II� Numbers of points in E� lattice by fractional height� G�
h� is the number with
fractional height � h� and I �
h� is the number with fractional height � h� The �nal column
gives the coordination sequence�

Using Theorem ��� these values su!ce to determine S
n� and G
n�� We haveG
n� � G�
n��

n � �� n �Z� and S
n� � G
n�� G
n� ��� n � �� n �Z� from which it follows that

S
n� �
��	

�
n� � ���n� � ���n� � ���n� � ��n� � ���n� � 	��

�
n � 
n � �� � 
���

G
n� �
��

�
n� �

���

�
n� � ��n� � ��n� � ��n� � �	n� �

���

�
n� � ��

�
n � � � 
���

��



Besides verifying that these polynomials matched the computer results for n � ��� we also

checked that G
�n� � I
n� for n � �� 
cf� Theorem ��� For n � � our values for the

coordination sequence S
n� do not agree with those given in ����" we believe the latter are

incorrect� Again� the fact that E� is not well�coordinated is responsible for the complicated

formula in 
����

We display the coordinator triangle for E� � A	 �A�� E� � A�� E� � D�� E�� E� and E��

followed by the coordinator polynomials for E�� and E�� 
the row for E� is omitted since that

lattice is not generated by its minimal vectors��

� � �
E� � � � � �
E� � � �	 �	 �	 �
E� � � �� ��� ��� �� �
E� � � 		 	�� ���� 	�� 		 �
E� � � ��� ���� ���� ���� ���� ��� �
E� � � ��� ���� ����� ������ ������ ����� ��� �
E�� � �� �	� ��	� ���� ���� 	�� �
E�� � � �� ��� ���� ��� �� �

In contrast to the An and Dn cases� there is no apparent pattern to these coe!cients�

Note that the last four lines of this table are not palindromic� displaying again the fact

that these lattices are not well�coordinated�

Root lattices in general

Looking back over this section� we observe several properties that hold for all root lattices�

Theorem ��� Let � be one of Ad� Dd or E�� E�� E��

�i	 Consider the faces in which the contact polytope meets the fundamental simplex� These

faces are in one�to�one correspondence with the nodes of the extended Coxeter�Dynkin diagram

���� Figs� ���� to ����	 that are not the extending node and whose removal does not make the

diagram disconnected�

�ii	 The fractional height of a lattice point in the cone above such a face is an integer if and

only if the weight ci associated with that node is � �see ��� p� ��� and Fig� ����� ���� p� ���	�

�iii	 � is well�placed if and only if the vertices on any face of the contact polytope span ��

The explanation for 
ii� is that the cis give the index of the sublattice spanned by the

vertices of the corresponding face�

We suspect that 
iii� may hold for all lattices� but do not have a proof�

��



The d�dimensional sodalite net

OKee�e ���� de�nes the d�dimensional sodalite net to consist of the holes in the A�d lattice�

with each point joined to its d � � nearest neighbors� The case d � � gives the familiar 	�

hexagonal net� From the coordination sequences of these nets for d � 	 given in ����� Grosse�

Kunstleve ���� observed that the coordinator polynomial appears to be � � x� x� � � � �� xd�

If this is true in general it implies

S
n� �

�
n � d

d

	
�
�
n � �

d

	
� 
���

G
n� �

�
n � d� �

d� �

	
�
�

n

d� �

	
� 
���

The expression on the right�hand side of 
��� is the number of points in a d�dimensional

centered simplex� It should therefore be possible to establish the validity of 
��� and 
���

by �nding a bijection between the crystal balls in d�dimensional sodalite and the points of a

d�dimensional centered simplex� This is easy to do for d � �� but for higher d the expressions


��� and 
��� are at present only conjectures� 
Theorems � and � do not apply��

�� The Barlow packings

Let L denote any three�dimensional packing formed by stacking layers of the hexagonal

lattice A�� As in ��� we shall refer to these as the Barlow packings� Let S
N�� G
n� denote the

n�th terms in the coordination and crystal ball sequences with respect to an arbitrary point in

any such L�

Theorem ��� For any Barlow packing L�

��n� � � � S
n� �
�
��n�

�

�
� � 
n � �� � 
�	�

�

	
��
n� �

�

	
��
n� � G
n� � �

�
��
n� � 
���n �

�

n � �� � 
���

For any n � �� the only Barlow packing that achieves either the left�hand value or the right�

hand value for all choices of central sphere is the face�centered cubic lattice or hexagonal close�

packing� respectively�

Remarks� We established 
but did not publish� this result in Dec� ����� It is stated as

a conjecture by OKee�e ����� The assertion on p� ��� of ��	� that any Barlow packing has

G
�� � �� is plainly incorrect� See also Section � of ����

��



Proof� Let H
a� b� denote a hexagonal arrangement of points in which the edges of the

hexagon contain respectively a��� b��� a��� b��� a��� b�� points� For example� H
�� ��

is
� � � �

� � � � �
� � � � � �
� � � � �
� � � �
� � �

The number of points in H
a� b� is P 
a� b� � Ta
b
	�ab� where Tn � n
n����� is a triangular

number� and its perimeter is �
a� b�� The n�th crystal ball with respect to an arbitrary point

of L consists of a stack of �n � � hexagons fH
ai� bi� � �n � i � ng� for some choice of

integers a�n � a�n
	 � � � � � an� b�n � b�n
	 � � � � � bn� Furthermore a� � b� � n�

a	� b	 � a�	� b�	 � �n� �� � � �� an� bn � a�n � b�n � n� At each stage� as we proceed from

H
ai� bi� to H
ai
	� bi
	�� for � � i � n� just one of ai and bi drops by �" a similar assertion

holds for negative values of i� The crystal ball for the f�c�c� is obtained if we always reduce b


say�� and that for the h�c�p� if we alternately reduce a and b� In any case we have

S
n� � P 
a�n � b�n� � �
an
	 � b�n
	� � � � �� �
a� � b�� � � � �
��
an�	 � bn�	� � P 
an� bn�

� �Tn
	 � 	n� �
n�	X
i�	

�
�n� i� � a�nb�n � anbn

� Sfcc
n� � a�nb�n � anbn � 
���

and similarly

G
n� � Gfcc
n� �
nX

i��n

aibi � 
���

The assertions of the theorem follow from 
���� 
��� after some elementary algebra which we

omit�

�� Concluding remarks

Several open questions remain� Is there a well�placed lattice that is not well�coordinated&


See Remark following Theorem 	�� Can the reader �nd a general proof of the formulae for

the coordination sequences of Ad 

���� 
����� A�d 

���� and Dd 

����&

��



The Voronoi graphs 
de�ned at the beginning of Section �� should also be investigated� It

follows from the work of Rajan and Shende 
����" �	� � p� xxviii� that� except for root lattices�

the Voronoi graph always properly contains the contact graph� What are the analogues of the

coordination sequences for the Voronoi graphs of A�d� D
�
d� E

�
�� E

�
� � for example&
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