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8 Chern Classes of Tautological Sheaves on
Hilbert Schemes of Points on Surfaces

Manfred Lehn

Abstract

We give an algorithmic description of the action of the Chernclasses of tautologi-
cal bundles on the cohomology of Hilbert schemes of points ona smooth surface
within the framework of Nakajima’s oscillator algebra. This leads to an iden-
tification of the cohomology ring ofHilbn(A2) with a ring of explicitly given
differential operators on a Fock space. We end with the computation of the top
Segre classes of tautological bundles associated to line bundles onHilbn up to
n = 7, extending computations of Severi, LeBarz, Tikhomirov andTroshina and
give a conjecture for the generating series.

Introduction

Hilbert schemesX [n] of n-tuples of points on a complex projective manifoldX are
natural compactifications of the configuration spaces of unordered distinctn-tuples
of points onX. Their geometry is determined by the geometry ofX itself and the
geometry of the ‘punctual’ Hilbert schemes of all zero-dimensional subschemes in
affine space that are supported at the origin. Thus one is naturally led to the following
problem:

Determine explicitly the geometric or topological invariants of the Hilbert schemes
X [n] such as the Betti numbers, the Hodge numbers, the Chern numbers, the cohomol-
ogy ring, from the corresponding data of the manifoldX itself.

This problem is most attractive whenX is a surface, since then the Hilbert schemes
are themselves irreducible projective manifolds, by a result of Fogarty [11], whereas
for higher dimensional varieties the Hilbert schemes are ingeneral neither irreducible
nor smooth nor pure of expected dimension.

The answer to the problem above for the Betti numbers was given for P2 and
rational ruled surfaces by Ellingsrud and Strømme [6] and for general surfaces by
Göttsche in [13]. The answer turns out to be particularly beautiful (cf. Theorem 2.2
below). The problem for the Hodge numbers was solved by Sörgel and Göttsche [14].
For a different approach to both results see [3]. A partial answer for the Chern classes
will be given in a forthcoming paper by Ellingsrud, Göttsche and the author [5].

The question for the ring structure of the cohomology is moredifficult. In general,
X [2] is the quotient of the blow-up ofX × X along the diagonal by the canonical
involution that exchanges the factors. Thus the case of interest isH∗(X [n]), n ≥ 3.
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The ring structure forH∗(X [3]), X smooth projective of arbitrary dimension, was
found by Fantechi and Göttsche [10]. In another direction,Ellingsrud and Strømme
[7] gave generators forH∗((P2)[n],Z), n arbitrary, and an implicit description of the
relations.

Vafa and Witten [29] remarked that Göttsche’s Formula for the Betti numbers is
identical with the Poincaré series of a Fock space modelledon the cohomology of
X. Nakajima [23] succeeded in giving a geometric construction of such a Fock space
structure on the cohomology of the Hilbert schemes, leadingto a natural ‘explanation’
of Göttsche’s result. Similar results have been announcedby Grojnowski [15].

Following the presentation of Grojnowski, this can be made more precise as fol-
lows: sending a pair(ξ′, ξ′′) of subschemes of lengthn′ andn′′, respectively, and of
disjoint support to their unionξ′ ∪ ξ′′ defines a rational map

m : X [n′] ×X [n′′]−− →X [n′+n′′].

This map induces linear maps on the rational cohomology

mn′,n′′ : H∗(X [n′]; Q)⊗H∗(X [n′′]; Q) −→ H∗(X [n′+n′′]; Q)

and
mn′,n′′

: H∗(X [n′+n′′]; Q) −→ H∗(X [n′]; Q)⊗H∗(X [n′′]; Q).

If we let H := ⊕nH
∗(X [n]; Q), then these maps define a multiplication and a comul-

tiplication
m∗ : H⊗H −→ H, m∗ : H −→ H⊗H,

which makeH a commutative and cocommutative bigraded Hopf algebra. Theresult
of Nakajima and Grojnowski says that this Hopf algebra is isomorphic to the graded
symmetric algebra of the vector spaceH∗(X; Q)⊗ tQ[t].

More explicitly, Nakajima constructed linear maps1

qn : H∗(X; Q) −→ EndQ(H), n ∈ Z,

and proved that they satisfy the ‘oscillator’ or ‘Heisenberg’ relations

[qn(α), qm(β)] = n · δn+m ·

∫

X
αβ · idH.

Here the commutator is to be taken in a graded sense.
The multiplication and the comultiplication ofH are not obviously related to the

quite different ring structure ofH, which is given by the usual cup product on each
direct summandH∗(X [n]; Q). (Strictly speaking,H contains a countable number of
idempotents1X[n] ∈ H0(X [n]; Q) but not a unit unless we pass to some completion).

This paper attempts to relate the Hopf algebra structure andthe cup product struc-
ture. More precisely:

1Our presentation differs in notations and conventions slightly from Nakajima’s.
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Let F be locally free sheaf of rankr onX. Attaching to a pointξ ∈ X [n], i.e.
a zero-dimensional subschemeξ ⊂ X, theC-vector spaceF ⊗ Oξ defines a locally
free sheafF [n] of rank rn onX [n]. The Chern classes of all sheaves onX [n] of this
type generate a subalgebraA ⊂ H. We will describe a purely algebraic algorithm to
determine the action ofA on H in terms of theQ-basis ofH provided by Nakajima’s
results. We collect the Chern classes of all sheavesF [n] for a given sheafF into
operators

ch(F ) : H→ H, c(F ) : H→ H

and geometrically compute the commutators of these operators with the oscillator op-
erators defined by Nakajima.

A central rôle is played by the operatord := c1(OX), which — up to a factor
(−1/2) — can also be interpreted as the intersection with the ‘boundaries’ of the
Hilbert schemes, i.e. the divisors∂X [n] ⊂ X [n] of all tuplesξ which have a multiple
point somewhere. The derivative of any operatorf ∈ End(H) is defined byf′ := [d, f].
Our main technical result then says that forn > 0

q′n(α) =
n

2

∑

ν

qνqn−νδ(α) +

(

n

2

)

qn(Kα), (1)

whereδ : H∗(X; Q) → H∗(X; Q) ⊗H∗(X; Q) is the map induced by the diagonal
embedding andK is the canonical class ofX. An immediate algebraic consequence
of this relation is

[q′n(α), qm(β)] = −nm · qn+m(αβ) (2)

for n,m > 0. By induction one concludes that the operatorsq1 and d suffice to
generate allqn, n ≥ 1.

The commutator of the Chern character operatorch(F ) with the standard operator
q1 can be expressed in terms of higher derivatives ofq1:

[ch(F ), q1(α)] =
∑

n≥0

1

n!
q
(n)
1 (ch(F )α). (3)

Equations (1), (2) and (3) together give a complete description of the action ofA on
H. Here are some applications:

1. We prove the following formula conjectured by Göttsche:If L is a line bundle
onX then

∑

n≥0

c(L[n])zn = exp





∑

m≥1

(−1)m−1

m
qm(c(L))zm



 .

2. We give a general algebraic solution to Donaldson’s question for the integral
Nn of the top Segre class of the bundlesL[n] associated to a line bundleL for anyn
and explicitly computeNn for n ≤ 7. From an analysis of this computational material
we derive a conjecture for the generating function for allNn.
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3. We identify the Chow ring of the Hilbert scheme of the affineplane with an
algebra of explicitly given differential operators on the polynomial ringQ[q1, q2, . . . ]
of countably many variables.

This paper is organised as follows: In Section 1 we recall thebasic geometric
notions used in the later parts. Section 2 provides an introduction to Nakajima’s results.
Section 3 contains the core of this paper: we first define Virasoro operatorsLn in
analogy to the standard construction and show how these arise geometrically. We then
introduce the operatord and compute the derivative ofqn. Finally, in Section 4 we
apply these results to compute the action of the Chern classes of tautological bundles.

Discussions with A. King were important to me in clarifying and understanding
the picture that Nakajima draws in his very inspiring article. I am very grateful to
G. Ellingsrud for all the things I learned from his talks and conversations with him
about Hilbert schemes. To some extend the results in this article are a reflection on
an induction method entirely due to him. I thank W. Nahm for pointing out a missing
factor in Theorem 3.3 and D. Zagier for a very instructive correspondence on power
series.

Most of the research for this paper was carried out during my stay at the SFB 343
of the University of Bielefeld. I owe special thanks to S. Bauer for his continuous
encouragement, interest and support.

1 Preliminaries

In this section we introduce the basic notations that will beused throughout the paper
and collect some results from the literature without proof.All varieties and schemes
are of finite type over the complex numbers.X will always denote a smooth irreducible
projective surface. Iff : S → S′ is a morphism of schemes, I will writefX :=
(f × idX) : S ×X → S′ ×X.

1.1 Hilbert schemes of points

For any smooth projective surfaceX let SnX denote the symmetric product, i.e.
the quotient ofXn by the action of the symmetric groupSn, and letX [n] be the
Hilbert scheme of zero-dimensional closed subschemes of length n. By a result of
Grothendieck [16]X [n] is again a projective scheme. There is a natural morphism
ρ : X [n] → SnX, theHilbert-Chowmorphism, which maps a point[ξ] ∈ X [n] to the
cycle

∑

x ℓ(Oξ,x) · x (cf. Iversen [19]).
The basic geometry of the Hilbert schemes of points on surfaces is governed by

two theorems due to Fogarty [11] and Briançon [1].

Theorem 1.1 (Fogarty) — X [n] is a2n-dimensional irreducible smooth variety.

Remark 1.2 — If C is a curve, its Hilbert schemeC [n] is smooth and the mapρ :
C [n] → SnC is an isomorphism. Computing the dimension of the tangent spaces one
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can show thatY [3] is smooth for a smooth varietyY of any dimension. On the other
hand,Y [n] is singular ifdim(Y ) > 2 andn > 3. �

Fix a pointp ∈ X and letX [n]
p ⊂ X [n] denote the closed subset of all subschemes

ξ ⊂ X with Supp(ξ) = {p} (with the reduced induced subscheme structure). This is
indeed a closed subset, as it is the fibreρ−1(np) of the Hilbert-Chow morphism over
the pointnp ∈ SnX.

Let (O,m) denote the local ring ofX at p. Since any pointξ ∈ X
[n]
p may be

considered as a subscheme ofSpec(O/mn), and sinceO/mn ∼= C[x, y]/(x, y)n, all

schemesX [n]
p — for varyingX andp — are (non-canonically) isomorphic. Clearly,

X
[1]
p = {p} andX [2]

p = P(TpX
∨), moreover it is not too difficult to see thatX [3]

p is
isomorphic to the projective cone over the twisted cubicC3 ⊂ P3, the vertex of the
cone corresponding to the subschemeSpec(O/m2). It is not accidental that in these

examples the dimension ofX [n]
p increases by one in each step:

Theorem 1.3 (Briançon) — For alln ≥ 1,X [n]
p is an irreducible variety of dimension

n− 1. �

For a proof see [1]. A new proof with a more geometric and conceptual argument
was recently given by Ellingsrud and Strømme [9].

Briançon’s Theorem emphasises the importance of curvilinear schemes: recall that
a zero-dimensional subschemeξ ⊂ X is calledcurvilinearatx ∈ X, if ξx is contained
in some smooth curveC ⊂ X. Equivalently, one might say thatOξ,x is isomorphic to
theC-algebraC[z]/(zℓ), whereℓ = ℓ(ξx). Henceξ is curvilinear atx if ξx is either
empty, a reduced point, or ifdimTxξ = 1. From this criterion it is clear, that in any flat
family of zero-dimensional subschemes the points in the base space which correspond
to curvilinear subschemes form an open subset.

In particular, we may consider the open subsetX
[n]
p,curv ⊂ X

[n]
p . This set has a very

nice structure:

Lemma 1.4 — If n ≥ 2, then the morphism

t : X [n]
p,curv −→ P(TpX

∨), [ξ] 7→ [Tpξ]

is a bundle morphism with affine fibresAn−2. In particular,X [n]
p,curv is an irreducible

smooth variety of dimensionn− 1.

Proof. Let x, y ∈ OX,p be local coordinates and consider the open subsetU =
{〈y + α1x〉|α1 ∈ C} ⊂ P(TpX

∨). Then there is an isomorphismAn−1 → t−1(U)
sending the(n − 1)-tuple (α1, . . . , αn−1) to the subsheaf corresponding to the ideal
(y + α1x+ . . .+ αn−1x

n−1) + Inp . �

As a consequence of this lemma we see that Briançon’s Theorem is equivalent
to saying thatX [n]

p,curv is dense inX [n]
p . This is a very important information: curvi-

linear subschemes are far easier to handle than any of the others. They contain only
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one subscheme for any given smaller length, any small deformation of a curvilinear
subscheme is again locally curvilinear etc.

Generalising the definition ofX [n]
p slightly, let∆ ⊂ SnX denote the diagonal, and

let X [n]
0 := ρ−1(∆), endowed with the reduced induced subscheme structure. Thus

X
[n]
0 consists of all subschemesξ ⊂ X of lengthn which are supported atsomepoint

in X. The fibres of the surjective morphismρ : X
[n]
0 → X are the schemesX [n]

p

considered above. In fact, a choice of regular parameters near a pointp leads to a
trivialisation of the morphismρ : X [n] → X nearp, i.e. ρ is a fibre bundle for the
Zariski topology.

As an immediate consequence of Briançon’s Theorem we get

Corollary 1.5 — X
[n]
0 is an irreducible variety of dimensionn+ 1. �

Note thatX [n]
p andX [n]

0 have complementary dimensions as subvarieties inX [n].
Their homological intersection is therefore zero-dimensional. However, the inclusion
X

[n]
p ⊂ X

[n]
0 complicates the computation of the intersection product. The following

result was obtained by Ellingsrud and Strømme [9] by an inductive geometric argu-
ment:

Theorem 1.6 (Ellingsrud, Strømme) — deg([X
[n]
p ] · [X

[n]
0 ) = (−1)n−1 · n. �

1.2 Incidence schemes

SinceX [n] in facts represents the functorHilbn(X) of flat families of subschemes of
relative dimension 0 and lengthn, there is auniversal familyof subschemes

Ξn ⊂ X
[n] ×X.

Again, for small values ofn there are explicit descriptions:Ξ0 is empty,Ξ1 is the
diagonal inX×X, andΞ2 is the blow-upBl∆(X ×X) of the diagonal inX×X. The
identification is given by the quotient mapBl∆(X ×X)→ X [2] = Bl∆(X ×X)/S2

and any of the two projectionsBl∆(X ×X)→ X.
Assume thatn′ > n > 0. Then there is a uniquely determined closed subscheme

X [n′,n] ⊂ X [n′] ×X [n] with the property that any morphism

f = (f1, f2) : T → X [n′] ×X [n]

factors throughX [n′,n] if and only if f−1
2,X(Ξn) ⊂ f−1

1,X(Ξn′). Closed points inX [n′,n]

correspond to pairs(ξ′, ξ) of subschemes withξ ⊂ ξ′. Let

X [n′] p1
←− X [n′,n] p2

−→ X [n]

denote the two projections. ThenX [n′,n] parametrises two flat families

p−1
2,X(Ξn) ⊂ p

−1
1,X(Ξn′).
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Consider the corresponding exact sequence

0→ In′,n → p∗1,XOΞn′
→ p∗2,XOΞn → 0. (4)

The ideal sheafIn′,n is a coherent sheaf onX [n′,n] ×X which is flat overX [n′,n]

and fibrewise zero-dimensional of lengthn′−n. It therefore induces a classifying mor-
phism to the symmetric product, analogously to the Hilbert-Chow morphism, which
we will also denote by

ρ : X [n′,n] → Sn
′−nX.

As before letX [n′,n]
0 := ρ−1(∆), where∆ ⊂ Sn

′−nX is the small diagonal. A point

in X [n′,n]
0 is a triple(ξ′, x, ξ) with ξ ⊂ ξ′ andSupp(Iξ/ξ′) = {x}.

We may decomposeX [n′,n]
0 into locally closed subsetsZℓ, ℓ ≥ 0, with

Zℓ := {(ξ′, x, ξ)|ℓ(ξx) = ℓ}.

Lemma 1.7 — Z0 andZ1 are irreducible of dimensionn+n′ +1 andn+n′, respec-
tively, anddim(Zℓ) < n + n′ for all ℓ > 1. Moreover,Z1 is contained in the closure
of Z0.

Proof. If ℓ = 0 or 1, the map(ξ′, x, ξ) 7→ (ξ − ξx, ξ
′
x) is an open immersion

Zℓ −→ X [n−ℓ] ×X
[n′−n+ℓ]
0 .

It follows from Briançon’s Theorem thatZℓ is irreducible and

dim(Zℓ) = 2(n − ℓ) + (n′ − n+ ℓ+ 1) = n+ n′ + 1− ℓ.

For ℓ ≥ 2 consider the embedding

Zℓ −→ X [n−ℓ] × (X
[ℓ]
0 ×X X

[n′−n+ℓ]
0 ), (ξ′, x, ξ) 7→ (ξ − ξx, ξx, ξ

′
x).

In fact, the image ofZℓ is contained in aproperclosed subset of the target variety: For
either ξ′x is curvilinear, in which case there is only a unique subscheme ξx ⊂ ξ′x of
lengthℓ, or ξ′x is not curvilinear and therefore contained in a proper closed subset of

X
[n′−n+ℓ]
0 . Now, the variety on the right hand side has dimension

2(n − ℓ) + (ℓ+ 1) + (n′ − n+ ℓ+ 1)− 2 = n+ n′.

Finally, a general point inZ1 is of the form (ζ ∪ η, x, ζ ∪ {x}) whereη is a
curvilinear subscheme supported atx and disjoint fromζ. Now it is easy to deformη
to a subscheme{x} ∪ η′ with η′ supported at a pointx′ 6= x. Hence a general point of
Z1 deforms intoZ0. �

7



Definition 1.8 — For any pair of nonnegative integers define subvarieties

E[n′,n], Q[n′,n] ⊂ X [n′] ×X ×X [n]

as follows: ifn′ > n > 0 letQ[n′,n] andE[n′,n] be the closure ofZ0 andZ1, respec-

tively. Moreover,Q[n′,0] := X
[n′]
0 , E[n′,0] := ∅ andQ[n,n] := ∅, whereasE[n,n] :=

{(ξ, x, ξ)|x ∈ ξ} ∼= Ξn. On the other hand, ifn ≥ n′, letQ[n′,n] = T (Q[n,n′]) and
E[n′,n] = T (E[n,n′]) under the twist

T : X [n] ×X ×X [n′] → X [n′] ×X ×X [n].

By constructionQ[n,n′] andE[n,n′] are empty or irreducible varieties of dimension
n+ n′ + 1 andn+ n′, respectively.

Let us return to the particular casen′ − n = 1, the most basic of all incidence
situations: consider the projectivisationσ : P(IΞn)→ X [n]×X. It is an easy exercise
to see that there is a natural isomorphismP(IΞn) ∼= X [n+1,n] such that the diagram

P(IΞn)
∼=

−−−−−−−−→ X [n+1,n]

σ ց (p2,ρ)ւ

X [n] ×X

commutes.
The following theorem has independently been proved by Cheah [4], Ellingsrud,

and Tikhomirov (unpublished).

Theorem 1.9 — The incidence schemeX [n+1,n] is a smooth irreducible variety.

An immediate corollary is the following: there is a natural closed immersion
BlΞn(X [n] ×X) → P(IΞn); since both are irreducible varieties, this must be an iso-
morphism. The exceptional divisorE is precisely the varietyE[n+1,n] defined above.
Hence in this situation we may write the sequence (4) as

0→ (id, ρ)∗OX[n+1,n](−E)→ p∗1,XOΞn+1 → p∗2,XOΞn → 0. (5)

2 The structure of the cohomology

The motivating problem in this study is to understand the cohomology ringsH∗(X [n])
in terms of the cohomology ringH∗(X). For the symmetric product Grothendieck
[17] showed that the natural map

π∗ : H∗(SnX; Q) −→ H∗(Xn; Q) ∼= H∗(X; Q)⊗n

is an isomorphism onto the subring of invariant elements under the action ofSn. From
this Macdonald [22] computed the following formula for the Betti numbers ofSnX
by a purely algebraic argument:

8



Theorem 2.1 (Macdonald) — The Betti numbers of the symmetric products are given
by the formula

∑

n≥0

∑

i≥0

bi(S
nX)tiqn =

2dim(Y )
∏

i=0

(1− (−1)itiq)−(−1)ibi(X).

�

For the Hilbert schemes the corresponding question for the Betti numbers is much
more difficult. This problem was solved by Göttsche [13]:

Theorem 2.2 (G̈ottsche) — The Betti numbersbi(X [n]) are determined by the Betti
numbersbj(X). More precisely, the following formula holds:

∑

n≥0

∑

i≥0

bi(X
[n])tiqn =

∏

m>0

∏

j≥0

(1− (−1)jt2m−2+jqm)−(−1)jbj(X)

Göttsches original proof uses the Weil Conjectures [13]. For a different approach
see [3].

Among other things one learns from this formula that it is a good idea to consider
all Hilbert schemes simultaneously. This will become even more striking through
Nakajima’s method which we will review in the next sections.As a preparation we
collect a few definitions:

Definition 2.3 — Let H :=
⊕

n,i≥0 Hn,i denote the double graded vector space with

componentsHn,i = H i(X [n]; Q). SinceX [0] is a point,H0,0 = Q. The unit in
H0(X [0]; Q) is called the ‘vacuum vector’ and denoted by1.

A linear mapf : H → H is homogeneous of bidegree(ν, ι) if f(Hn,i) ⊂ Hn+ν,i+ι

for all n andi. If f, f′ ∈ End(H) are homogeneous linear maps of bidegree(ν, ι) and
(ν ′, ι′), respectively, their commutator is defined by

[f, f′] = f ◦ f′ − (−1)ι·ι
′

f′ ◦ f.

We use the notation|α|, |f| etc. to denote the cohomological degree of homogeneous
cohomology classes, homogeneous linear maps etc.

Setting

(α, β) :=

∫

X[n]

αβ

for anyα, β ∈ H∗(X [n]; Q) defines a non-degenerate (anti)symmetric bilinear form
onH∗(X [n]; Q) and hence onH. For any homogeneous linear mapf : H → H its
adjoint f† is characterised by the relation

(f(α), β) = (−1)|f|·|α|(α, f†(β)).

Clearly,(f ◦ g)† = g† ◦ f†.

9



2.1 Correspondences

Let Y1 andY2 be smooth projective varieties, and letu be a class in the Chow group
An(Y1 × Y2). (We tacitly assume rational coefficients. This will not always be neces-
sary. On the other hand, we are not interested in integralityquestions for the moment,
and hence will not pay attention to this problem). The image of u in H2n(Y1 × Y2)
will be denoted by the same symbol.u induces a homogeneous linear map

u∗ : H i(Y2)→ H i+2(dim Y1−n)(Y1), y 7→ PD−1p1∗(u ∩ p
∗
2y),

wherePD : H∗(Y1)→ H∗(Y1) is the Poincaré duality map.
Assume thatY3 is another smooth projective variety, andv ∈ Am(Y2 × Y3). Let

pij be the projection fromY1×Y2×Y3 to the factorsYi×Yj, and consider the element

w := p13∗(p
∗
12u · p

∗
23v) ∈ An+m−dimY2(Y1 × Y3).

Then
w∗ = u∗ ◦ v∗.

See [12, Ch. 16] for details.
SupposeU ⊂ Y1 × Y2 andV ⊂ Y2 × Y3 are closed subschemes such thatu ∈

A∗(U) andv ∈ A∗(V ). Let

W := p13(p
−1
12 (U) ∩ p−1

23 (V ))

Then the classw defined above is already defined inA∗(W ).
The following type of arguments will often show up in the sequel: one shows that

the dimension ofW is smaller than the degree ofw, which forcesw to be zero; or
that there is at most one irreducible componentW0 of W of maximal dimension with
‘correct’ dimensiondim(W0) = deg(w). In this case one must havew = µ · [W0] and
it suffices to determine the multiplicityµ.

Let T : Y1 × Y2 → Y2 × Y1 exchange the factors. Then a Chow cycleu induces
two maps

u∗ : H∗(Y2)→ H∗(Y1) and (Tu)∗ : H∗(Y1)→ H∗(Y2)

which are related by the formula
∫

Y1

u∗(α) · β =

∫

Y2

α · (Tu)∗(β).

This follows directly from the projection formula. Thus(Tu)∗ = u†∗.
The following operators were introduced by Nakajima [23]. The study of their

properties is the major theme of this article. We take the liberty to change the notations
and sign conventions.

Recall that we defined (1.8) subvarieties

Q[n1,n2] ⊂ X [n1] ×X ×X [n2]
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of dimensionn1 + n2 + 1. Their fundamental classes are cycles

[Q[n1,n2]] ∈ An1+n2+1(X
[n1] ×X ×X [n2]).

Let the projections to the factors be denoted byp1, ρ andp2.

Definition 2.4 (Nakajima) — Define linear maps

qℓ : H∗(X; Q) −→ End(H), ℓ ∈ Z,

as follows: assume first thatℓ ≥ 0. Forα ∈ H∗(X; Q) andy ∈ H∗(X [n]; Q) let

qℓ(α)(y) := [Q[n+ℓ,n]]∗(α⊗ y) = PD−1p1∗([Q
[n+ℓ,n]] ∩ (ρ∗α · p∗2y)).

The operators for negative indices then are determined by the relation

q−ℓ(α) := (−1)ℓqℓ(α)†.

By definition, qℓ(α) is a homogeneous linear map of bidegree(ℓ, 2ℓ − 2 + |α|).
Moreover,q0 = 0, and if ℓ > 0, the operatorqℓ(α)† is induced by the subvarieties
Q[n,n+ℓ], n ≥ 0.

2.2 Nakajima’s Main Theorem

In this section we review the main result of [23] and some of the immediate conse-
quences. Similar results have been announced by Grojnowski[15].

Theorem 2.5 (Nakajima) — For any integersn andm and cohomology classesα
andβ, the operatorsqn(α) andqm(β) satisfy the following ‘oscillator relations’:

[qn(α), qm(β)] = n · δn+m ·

∫

X
αβ · idH.

�

Here and in the following we adopt the convention thatδν equals1 if ν = 0 and is
zero else, and that any integral

∫

Z α is zero ifdeg(α) 6= dimR(Z).
In [23] Nakajima only showed that the commutator relation holds with some uni-

versal nonzero constant instead of the coefficientn. The correct value was computed
directly by Ellingsrud and Strømme [9]: up to a sign factor, which depends on our con-
vention, this number is the intersection number of Theorem 1.6. There is a different
proof due to Grojnowski [15] and Nakajima [24] using ‘vertexoperators’.

Consider the vector spaces

W+ := H∗(X; Q)⊗ tQ[t] and W− := H∗(X; Q) ⊗ t−1Q[t−1].

11



Define a non-degenerate skew-symmetric pairing on the vector spaceW := W−⊕W+

by

{α⊗ tn, β ⊗ tm} := n · δn+m ·

∫

X
αβ.

Note that we are taking the expression ‘skew-symmetric’ in agraded sense:

{α⊗ tn, β ⊗ tm} = −(−1)|α|·|β|{β ⊗ tm, α⊗ tn}.

Theoscillator algebrais the quotient of the tensor algebraTW by the two-sided ideal
I generated by the expressions[v,w] − {v,w} · 1 with v,w ∈W :

H := TW/I.

H is the (restricted) tensor product of countably many copiesof Clifford algebras
arising fromHodd(X; Q) and countably many copies of Weyl algebras arising from
Heven(X; Q). AsW+ is isotropic with respect to the skew-form{ , }, the subalgebra
in H generated byW+ is the symmetric algebraS∗W+ (taken again in aZ/2-graded
sense). This becomes a double graded vector space if we definethe bidegree ofα⊗ tn

as(n, 2n − 2 + |α|).
Using these notations, Nakajima’s Theorem can be rephrasedby saying:

Sendingα⊗ tn ∈W to qn(α) ∈ End(H) defines a representation ofH onH.
The subspaceW− of monomials of negative degree annihilates the vacuum vector

1 ∈ H for obvious degree reasons. Hence there is an embedding

S∗W+
∼= H/H ·W−

·1
−→ H · 1 ⊂ H.

It is not difficult to check that the Poincaré series ofS∗W+ equals the right hand side
of Göttsche’s formula. This implies:

Corollary 2.6 (Nakajima) — The action ofH on H induces a module isomorphism
S∗W+ → H. In particular,H is irreducible and generated by the vacuum vector.�

3 The boundary operator

The key to our solution of the Chern class problem is the introduction of the boundary
operatord ∈ End(H). This is done in 3.2. We begin with the discussion of related
topics and ingredients for later proofs.

3.1 Virasoro generators

Starting from the basic generatorsqn and the fundamental oscillator relations we will
define the corresponding Virasoro generatorsLn in analogy to the procedure in con-
formal field theory. We will then give concrete geometric interpretations for these
generators.

12



Let δ : H∗(X) → H∗(X × X) = H∗(X) ⊗ H∗(X) be the push-forward
map associated to the diagonal embedding. Equivalently, this is the linear map ad-
joint to the cup-product map. Ifδ(α) =

∑

i α
′
i ⊗ α′′

i , we will write qnqmδ(α) for
∑

i qn(α
′
i)qm(α′′

i ).

Definition 3.1 — Define operatorsLn : H∗(X; Q)→ End(H), n ∈ Z, as follows:

Ln :=
1

2

∑

ν∈Z

qνqn−νδ, if n 6= 0

and
L0 :=

∑

ν>0

qνq−νδ.

Remark 3.2 — i) The sums that appear in the definition are formally infinite. How-
ever, as operators on any fixed vector inH, only finitely many of them are nonzero.
Hence the sums are locally finite and the operatorsLn are well-defined.Ln(α) is
homogeneous of bidegree(n, 2n+ |α|)

ii) Using the physicists’ normal order convention

: qnqm : :=

{

qnqm if n ≥ m,
qmqn if n ≤ m,

the operatorsLn can be uniformly expressed as

Ln =
1

2

∑

ν∈Z

: qνqn−ν : δ.

Theorem 3.3 — The operatorsLn andqm satisfy the following commutation rela-
tions:

1. [Ln(α), qm(β)] = −m · qn+m(αβ).

2. [Ln(α),Lm(β)] = (n−m) · Ln+m(αβ)− n3−n
12 δn+m ·

∫

X c2(X)αβ · idH.

Taking only the operatorsLn(1), n ∈ IZ, we see that the Virasoro algebra acts on
H with central charge equal to the Euler number ofX.

Proof. Assume first thatn 6= 0. For any classesα andβ with

δ(α) =
∑

i

α′
i ⊗ α

′′
i

we have

[qν(α
′
i)qn−ν(α

′′
i ), qm(β)] = qν(α

′
i)[qn−ν(α

′′
i ), qm(β)]

+(−1)|β|·|α
′′

i |[qν(α
′
i), qm(β)]qn−ν(α

′′
i )

= (−m)δn+m−ν · qn+m(α′
i) ·

∫

X
α′′
i β

+(−1)|β|·|α|(−m)δν+m ·

∫

X
βα′

i · qn+m(α′′
i ).

13



If we sum up over allν andi, we get

2[Ln(α), qm(β)] =
∑

ν

[qνqn−νδ(α), qm(β)] = (−m) · qn+m(γ)

with

γ = pr1∗(δ(α) · pr∗2(β)) + (−1)|β|·|α| · pr2∗(pr
∗
1(β) · δ(α)) = 2 · αβ.

Similarly, for ν > 0,

[qνq−νδ(α), qm(β)] = −m · qm(αβ) · (δm−ν + δm+ν).

Thus summing up over allν > 0 we find again

[L0(α), qm(β)] = −m · qm(αβ).

This proves the first part of the theorem.
As for the second part, assume first thatn ≥ 0. In order to avoid case considera-

tions let us agree thatqN
2

is zero ifN is odd. Then we may write:

Lm =
1

2
q2

m
2
δ +

∑

µ>m
2

qµqm−µδ.

By the first part of the theorem we have

[Ln(α), qµqm−µδ(β)] =
(

− µqn+µqm−µ + (µ−m)qµqn+m−µ

)

δ(αβ).

In the following calculation we suppressα, β andδ up to the very end. Summing up
over allµ ≥ 0, we get:

[Ln,Lm] = −
m

4
(qn+ m

2
qm

2
+ qm

2
qn+ m

2
)

+
∑

µ>m
2

(µ−m)qµqn+m−µ +
∑

µ>m
2

(−µ)qn+µqm−µ

= −
m

4
(qn+ m

2
qm

2
+ qm

2
qn+ m

2
)

+
∑

µ>m
2

(µ−m)qµqn+m−µ +
∑

µ>n+ m
2

(n− µ)qµqn+m−µ

Hence

[Ln,Lm]− (n−m)
∑

µ>n+m
2

qµqn+m−µ = −
m

4
(qn+ m

2
qm

2
+ qm

2
qn+ m

2
)

+
∑

m
2
<µ≤m+n

2

(µ−m)qµqm+n−µ

−
∑

n+m
2

<µ≤n+ m
2

(n − µ)qµqn+m−µ

14



Now split off the summands corresponding to the indicesµ = m+n
2 andµ = n + m

2
from the sums. Substitutingn+m−µ for µ in the second sum on the right hand side,
we are left with the expression:

[Ln,Lm]− (n−m)Ln+m = −
m

4
[qm

2
, qn+ m

2
] +

∑

m
2
<µ<n+m

2

(µ−m)[qµ, qn+m−µ]

The right hand side is zero unlessn+m = 0. In this case, observe that the composition

H∗(X)
δ
−→ H∗(X) ⊗H∗(X)

∪
−→ H∗(X)

is multiplication withc2(X). Hence we see that

[Ln(α),Lm(β)] = (n−m)Ln+m(αβ) + δn+m ·

∫

X
c2(X)αβ ·N,

whereN is the number

N =
∑

0<ν<n
2

ν(ν − n) if n is odd,

and

N =
∑

0<ν<n
2

ν(ν − n)−
n2

8
if n is even.

An easy computation shows that in both casesN equals(n− n3)/12. �

Recall the definition of the varietiesE[n,n′] ⊂ X [n] ×X ×X [n′] in (1.8).

Definition 3.4 — Let ℓ be a nonnegative integer and let

eℓ : H∗(X)→ End(H)

be the linear map

eℓ(α)(y) = [E[n+ℓ,n]]∗(α⊗ y) = PD−1p1∗([E
[n+ℓ,n]] ∩ (ρ∗α · p∗2y))

for α ∈ H∗(X; Q) andy ∈ H∗(X [n]; Q).

The following theorem gives a ‘finite’ geometric interpretation of the infinite sums
which define the Virasoro operators.

Theorem 3.5 — Let n be a nonnegative integer.

1.

[en(α), qm(β)] =

{

m · qn+m(αβ) if m > 0 orm < −n.
0 else.

15



2.

en + Ln =
1

2

∑

0<ν<n

qνqn−νδ.

Proof. Ad 1: Assume first thatm ≥ 1. To simplify the notations we introduce the
short-hand

X [n1],[n2],... ,[nk] := X [n1] ×X [n2] × . . . ×X [nk]

Supposeℓ ≥ 0, and consider the following diagram

X [ℓ+n+m],[1],[ℓ+m] p123
←−−−− X [ℓ+n+m],[1],[ℓ+m],[1],[ℓ] p345

−−−−→ X [ℓ+m],[1],[ℓ]






y

p1245

X [ℓ+n+m],[1],[1],[ℓ]

The product operatorenqm is induced by the class

z := p1245∗(p
∗
123[E

[ℓ+m+n,ℓ+m]] · p∗345[Q
[ℓ+m,ℓ]]) ∈ A2ℓ+n+m+1(Z

′)

where

Z ′ := p1245(p
−1
123(E

[ℓ+m+n,ℓ+m]) ∩ p−1
345(Q

[ℓ+m,ℓ]))

⊂ Z := {(ξ′, x, y, ξ)|∃η : ξ′ − η = nx, η − ξ = my, x ∈ η}

Here the notationη − ξ = my should comprise the conditions:ξ is a subscheme ofη,
and the ideal sheaf ofξ in η is of lengthm and is supported aty etc.

Similarly, the operatorqnem is induced by a classv ∈ A2ℓ+m+n+1(V
′) with

V ′ ⊂ V := {(ξ′, x, y, ξ)|∃η′ : ξ′ − η′ = mx, η′ − ξ = ny, y ∈ ξ}.

Moreover, ifT : X [ℓ+m+n],[1],[1],[ℓ] −→ X [ℓ+m+n],[1],[1],[ℓ] exchanges the two copies
of X in the middle, then the commutator[en, qm] is induced byz − T (v).

Now observe that off the diagonal{x = y} ⊂ X [ℓ+m+n],[1],[1],[ℓ] the subsetsZ
andT (V ) are equal. Moreover, there is only one component of (maximalpossible)
dimension2ℓ+n+m+1. It is easy to see that this component has multiplicity1 both
in z andT (v): the intersection

p−1
123(E

[ℓ+m+n,ℓ+m]) ∩ p−1
345(Q

[ℓ+m,ℓ])

is transversal over a general point in this component ofZ, and maps injectively into
Z. Thus the only contributions toz − T (v) may arise from the diagonal part. Now

V ∩ {x = y} = {(ξ′, x, x, ξ)|ξ′ − ξ = (n+m)x, x ∈ ξ}.

We have seen earlier (1.7) that this set has dimension≤ 2ℓ+n+m and hence may be
disregarded. On the other hand

Z ∩ {x = y} = {(ξ′, x, x, ξ)|ξ′ − ξ = (n+m)x}.
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Again using 1.7 we see that this set has only one componentD of (maximal) dimension
2ℓ+ n+m+ 1. Moreover, this component is the image of the embedding

ι : Q[ℓ+n+m,ℓ] → X [ℓ+n+m],[1],[1],[ℓ], (ξ′, x, ξ) 7→ (ξ′, x, x, ξ).

Let α, β ∈ H∗(X; Q) andy ∈ H∗(X [ℓ]; Q). Then we have

p1∗([D] ∩ p∗23(α⊗ β) · p∗4y)

= p1∗(ι∗[Q
[ℓ+n+m,ℓ]] ∩ p∗23(α⊗ β) · p∗4y)

= p1∗([Q
[ℓ+n+m,ℓ]] ∩ ι∗(p∗23(α⊗ β) · p∗4y))

= p1∗([Q
[ℓ+n+m,ℓ]] ∩ p∗2(αβ) · p∗3y)

This shows that
[en(α), qm(β)] = µ · qn+m(αβ)

for some integerµ. Hence it remains to compute the multiplicityµ of [D] in z. To this
end we pick a general pointd ∈ D and inspect the intersection ofp−1

123(E
[ℓ+n+m,ℓ])

andp−1
345(Q

[ℓ+m,ℓ]) along the fibrep−1
1245(d).

A general point inD is of the form

d = (ξ′, x, x, ξ) with ξ′ = ξ ∪ ζ,

whereζ is a curvilinear subscheme ofX of lengthn+m, supported in a single point
x which is disjoint fromξ. Sinceζ is curvilinear, there is a unique subschemeη ⊂ ζ
of lengthm, and hencep−1

1245(d) consists of the single point

d′ = (ξ ∪ ζ, x, ξ ∪ η, x, ξ)

Neard′ the varietiesX [ℓ+m+n],[1],[ℓ+m],[1],[ℓ] andX [ℓ],[ℓ],[ℓ] × X [m+n],[1],[m],[1] are lo-
cally isomorphic in the étale topology; and similarlyE[ℓ+m+n,ℓ+m] toX [ℓ]×E[m+n,m]

andQ[ℓ+m,ℓ] toX [ℓ] ×X
[m]
0 . Thus we may split off the factorsX [ℓ] from the geomet-

ric picture. In the end this amounts to saying that we may assume without loss of
generality thatℓ = 0.

Moreover, the calculation is local (in the étale topology)in X, so that we may
assume thatX = A2 = SpecC[z,w] andIζ = (w, zn+m), Iη = (w, zm) andIx =
(w, z). Thend′ has an affine neighbourhood∼= A4m+2n+4 in X [n+m],[1],[m],[1] with
coordinate functions

a0, . . . , an+m−1, b0, . . . , bn+m−1, w1, z1, c0, . . . , cm−1, d0, . . . , dm−1, w2, z2,

which parametrises quadruples(ζ, x, η, y) of subschemes inX given by the ideals

(w − g1(z), f1(z)), (w − w1, z − z1), (w − g2(z), f2(z)), (w − w2, z − z2),

where

f1(z) =
n+m−1
∑

i=0

aiz
i + zn+m, g1(z) =

n+m−1
∑

i=0

biz
i
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and

f2(z) =

m−1
∑

i=0

ciz
i + zm, g2(z) =

m−1
∑

i=0

diz
i.

Now (η, y) belongs toX [m]
0 , i.e.Supp(η) = {y}, if and only if

f2(z) = (z − z2)
m andw2 = g2(z2). (6)

And (ζ, x, η) belongs toQ[n+m,m] if and only if the following three conditions are
satisfied:η ⊂ ζ, i.e.

g1(z) = g2(z) + f2(z) · h(z) and f1(z) = f2(z) · k(z) (7)

with polynomialsh andk of degreen − 1 andn, respectively; the ideal sheafIη/ζ is
supported atx, i.e.

k(z) = (z − z1)
m andw1 = g1(z1) (8)

and finally,x must be contained inη, which imposes the condition

f2(z1) = 0 (9)

One easily checks that the equations (6) - (8) cut out a smoothsubvariety which
projects isomorphically to the affine spaceSpecC[z1, z2, b0, . . . , bn+m−1]. Moreover,
in these coordinates the last condition (9) simply reads(z1 − z2)

m = 0. Hence the
multiplicity µ equals the exponentm.

Next, we consider the case[en, q−m] with 0 ≤ m ≤ n. There is nothing to prove
if m = 0. Hence assume thatm > 0. Dimension arguments similar to the ones above
show that the cyclev which induces the commutator[q−m, en] must be supported on
the closed subsets

V := {(ξ, x, x, ζ)|ξ ⊃ ζ ∋ x, ξ − ζ = (n+m)x} ⊂ X [ℓ+n−m],[1],[1],[ℓ], ℓ ≥ 0.

The cyclev has degree2ℓ + n − m + 1, so that it suffices to show thatdim(V ) ≤
2ℓ+ n−m. This follows from Lemma 1.7.

It remains to consider the case[en, qm] with m < −n. A dimension check of the
set-theoretic support of the intersection cycle shows thatwe must have

[en(α), q−m(β)] = µ · qn−m(αβ)

for some integerµ, independently ofα andβ. To determineµ, we proceed alge-
braically and take the commutator withqm−n(1):

[ [en(α), q−m(β)], qm−n(1)] = µ · [qn−m(αβ), qm−n(1)] = µ(n−m)

∫

X
αβ · idH.
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On the other hand, combining the Jacobi identity, the oscillator relations and the first
part of the proof yields

[ [en(α), q−m(β)], qm−n(1)] = [ [en(α), qm−n(1)], q−m(α)]

= (m− n)[qm(α), q−m(β)]

= m(m− n)

∫

X
αβ · idH.

It follows thatµ = −m.

Ad 2: Consider the differencey := en(α) + Ln(α)− 1
2

∑n−1
ν=1 qνqn−νδ(α). Com-

paring the expressions in 3.3 and part 1 of the theorem we see thaty commutes with
all operatorsqm , m ∈ Z. SinceH is a simpleN -module,y must be a scalar (in
some algebraic extension ofQ), which is impossible: ifn > 0, theny has non-trivial
bidegree(n, 2n + |α|), and ifn = 0, it is easy to see directly thaty · 1 = 0. �

Remark 3.6 — In particular, the operatorL0(α) has the following geometric inter-
pretation: the universal familyΞn ⊂ X [n] ×X induces a homomorphism

[Ξn]∗ : H∗(X; Q) −→ H∗(X [n]; Q),

and
L0(α)(y) = −[Ξn]∗(α) · y for all y ∈ H∗(X [n]; Q).

If we insertα = −1X , we getL0(−1X)(y) = n · y for all y ∈ H∗(X [n]; Q). Thus
L0(−1X) is the ‘number’ operator, that counts with how many points weare dealing.
This can, of course, also be deduced directly from the definition of L0.

3.2 The boundary of the Hilbert scheme

For any partitionλ = (λ1 ≥ λ2 ≥ . . . ≥ λs > 0) of n the tuples
∑

1≤i≤s λixi,

xi ∈ X, form a locally closed subsetSnλX in SnX. LetX [n]
λ = ρ−1(SnλX). It follows

from Briançon’s Theorem thatX [n]
λ is irreducible and

dim(X
[n]
λ ) =

∑

1≤i≤s

(λi + 1) = n+ s.

The generic open stratum isX [n]
(1,1,... ,1). It corresponds to the configuration space of

unorderedn-tuples of pairwise distinct points. Furthermore, there isprecisely one
stratum of codimension 1, namelyX [n]

(2,1,... ,1).

If λ = (λ1, . . . , λs) andµ = (µ1, . . . , µs′) are partitions ofn, thenX [n]
µ is con-

tained in the closure ofX [n]
λ if and only if there is a surjection

ϕ : {1, . . . , s} → {1, . . . , s′}
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such thatµj =
∑

i∈ϕ−1(j) λi for all j. It follows that

∂X [n] :=
⋃

λ6=(1,... ,1)

X
[n]
λ = X

[n]
(2,1,... ,1)

is an irreducible divisor inX [n]. As it is the complement of the configuration space in
X [n] we might and will call it theboundaryof X [n].

We will need a different description of the divisor∂X [n] in sheaf theoretic terms.
Let p : Ξn → X [n] be the projection, and define sheaves

O
[n]
X := p∗(OΞn) ∈ Coh(X [n]).

As p is flat and finite of degreen,O[n]
X is locally free of rankn.

Lemma 3.7 — We have
[

∂X [n]
]

= −2 c1(O
[n]
X )

Moreover, letE ⊂ X [n+1,n] be the exceptional divisor. Then

p∗1∂X
[n+1] − p∗2∂X

[n] = 2 ·E.

Proof. ∂X [n] is the branching divisor of the finite flat morphismΞn → X [n]. The
assertion holds true in a more general setting: ifY is a smooth variety andπ : Y ′ → Y
is a finite flat map, so thatA := π∗OY ′ is a locally freeOY –sheaf, the branching
divisor is given by the discriminant of theOY -bilinear form

A⊗OY
A

·
−→ A

tr
−→ OY ,

or, equivalently, by the determinant of the adjoint linear mapA → A∨, so that indeed
the branching divisor is given by−2 c1(A).

Applying p∗ to the short exact sequence (5) we get an exact sequence

0→ OX[n+1,n](−E)→ p∗1O
[n+1]
X → p∗2O

[n]
X → 0,

from which one deduces the second assertion. �

This proof was communicated to me by S. A. Strømme and replaces a slightly
longer one in an earlier version.

Definition 3.8 — Let d : H → H be the homogeneous linear map of bidegree(0, 2)
given by

d(x) := c1(O
[n]
X ) · x = −

1

2

[

∂X [n]
]

· x for all x ∈ H∗(X [n]).

For any endomorphismf ∈ End(H) its derivative isf′ := [d, f]. As usual, we write
f(n) := (ad d)n(f) for the higher derivatives.
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It follows directly from the Jacobi identity thatf 7→ f′ is a derivation, i.e. for any
two operatorsa, b ∈ End(H) the ‘Leibniz rule’ holds:

(ab)′ = a′b + ab′ and [a, b]′ = [a′, b] + [a, b′].

Moreover, if f : H∗(X [ℓ]) → H∗(X [n]) is a homogeneous linear map, then|f′| =
|f|+ 2, so thatf andf′ have the same parity. Furthermore,

(f′)† = −(f†)′.

Indeed, this follows formally from the obvious fact thatd† = d.
Let n′ > n be nonnegative integers, and consider the incidence variety X [n′,n] ⊂

X [n′] ×X [n]. Recall the definition of the ideal sheafIn′,n and the exact sequence

0→ In′,n → p∗1,XOΞn′
→ p∗2,XOΞn → 0.

Thenp∗(In′,n) is a locally free sheaf of rankn′ − n onX [n′,n].

Lemma 3.9 — Let u∗ : H∗(X [n]; Q) → H∗(X [n′]; Q) be the induced linear map
associated to a classu ∈ A∗(X

[n′,n]). Then

(u∗)
′ = (c1(p∗(In′,n)) · u)∗.

Proof. Let y ∈ H∗(X [n]; Q). Then

(u∗)
′(y) = d(u∗(y))− u∗(d(y))

= c1(p∗OΞn′
) · PD−1p1∗(u · p

∗
2y)

−PD−1p1∗(u · p
∗
2(c1(p∗OΞn) · y))

= PD−1p1∗((p
∗
1c1(p∗OΞn′

)− p∗2c1(p∗OΞn)) · u · p∗2y)

= v∗(y)

with v = (p∗1c1(p∗OΞn′
)− p∗2c1(p∗OΞn)) · u, and

p∗1c1(p∗OΞn′
)− p∗2c1(p∗OΞn) = c1(p∗p

∗
1,XOΞx′

)− c1(p∗p
∗
2,XOXn)

= c1(p∗In′,n).

�

3.3 The derivative ofqn

In order to understand the intersection behaviour of the boundary∂X [n] we need to
know how the operatord commutes with the basic operatorsqn, in other words: we
need to compute the derivative ofqn.

The following theorem describes the derivative of the operator qn in two ways: By
its action on any of the other basic operators, and as a polynomial expression in the
basic operators.

LetK denote the canonical class of the surfaceX.
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Theorem 3.10 — For alln,m ∈ Z andα, β ∈ H∗(X; Q) the following holds:

1. [q′n(α), qm(β)] = −nm ·
{

qn+m(αβ) + |n|−1
2 δn+m ·

∫

X Kαβ · idH

}

.

2. q′n(α) = n · Ln(α) + n(|n|−1)
2 qn(Kα).

Corollary 3.11 — The operatorsd andq1(α), α ∈ H∗(X), suffice to generateH
from the vacuum1. �

Proof of the theorem. The second assertion is an immediate consequence of the
first: by Nakajima’s relations 2.5 and the relations 3.3 we see that

[n · Ln(α) +
n(|n| − 1)

2
qn(Kα), qm(β)] =

−nm · qn+m(αβ) + δn+m
n2(|n| − 1)

2

∫

X
Kαβ · idH.

Hence the difference ofq′n and the expression on the right hand side in the theorem
commutes with all operatorsqm, m ∈ Z. SinceH is an irreducibleN -module, it
follows from Schur’s Lemma that this difference is given by multiplication with a
scalar (say, after passage to some algebraic closure ofQ). But this is impossible for
degree reasons: the bidegree ofq′n(α) is (n, 2n + |α|). (The casen = 0 being trivial
anyhow.)

The proof of the first assertion has two parts of quite different nature: We need to
distinguish the casesn+m 6= 0 andn+m = 0 and deal with them separately.

Proposition 3.12 — [q′n(α), qm(β)] = −nm · qn+m(αβ) for any two integersn,m
with n+m 6= 0 and cohomology classesα, β ∈ H∗(X).

Proof. Step 1:Assume thatn andm are positive. We proceed as in the proof of
Theorem 3.5. Letℓ be nonnegative, and consider the diagram

X [ℓ+n+m],[1],[ℓ+m] p123
←−−−− X [ℓ+n+m],[1],[ℓ+m],[1],[ℓ] p345

−−−−→ X [ℓ+m],[1],[ℓ]






y

p1245

X [ℓ+n+m],[1],[1],[ℓ].

Let
v := p∗123[Q

[ℓ+m+n,ℓ+m]] · p∗345[Q
[ℓ+m,ℓ]] ∈ A2ℓ+m+n+2(V ),

V := p−1
123(Q

[ℓ+m+n,ℓ+m]) ∩ p−1
345(Q

[ℓ+m,ℓ]).

According to Lemma 3.9, the operatorq′nqm is induced by the class

w = p1245∗(p
∗
123c1(Iℓ+m+n,ℓ+m) · v) ∈ A2ℓ+m+n+1(W ),W := p1245(V ).
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Let V ′ ⊂ V andW ′ ⊂ W denote the open subsets of those tuples(ξ, x, σ, y, ζ) and
(ξ, x, y, ζ), respectively, where eitherx 6= y or x = y but ξx is curvilinear. Certainly,
V ′ = p−1

1245(W
′), but in fact we even have thatp1245 : V ′ → W ′ is an isomorphism:

for the conditions imposed onV ′ imply thatσ is already determined by the remaining
data(ξ, x, y, ζ).

Claim: V ′ is irreducible of dimension2ℓ+ n+m+ 2.
For it follows from Briançon’s Theorem that the open partV ′ \ {x = y} is ir-

reducible of dimension2ℓ + (n + 1) + (m + 1), and tuples of the second kind, i.e.
(ξ, x, x, ζ) with ξx curvilinear, are easily seen to deform into this open subset.

Claim: dim(W \W ′) < 2ℓ+m+ n+ 1. In particular, the complement ofW ′ in
W cannot support any contribution tow.

Indeed, the setT = {(ξ, x, x, ζ)|ξ − ζ = (n + m)x} has a stratificationT =
∐

i≥0 Ti, where the stratumTi is the locally closed set of all tuples withlength(ζx) =
i. Let T ′

0 ⊂ T0 be the closed subset that consists of tuples whereξx is not curvilinear.
ThenW \W ′ ⊂ T ′

0∪T1∪T2 . . . . NowT0 is irreducible of dimension2ℓ+(n+m+1),
andT ′

0 is a proper closed subset and therefore has strictly smallerdimension. The
assertion now follows from Lemma 1.7.

Claim: The intersection ofp∗123[Q
[ℓ+m+n]] and p∗345[Q

[ℓ+m,m]] is transversal at
general points ofV ′.

In fact, the intersection is transversal at all points withx 6= y andξ curvilinear.
We conclude, that the intersection cyclev equals[V ′] + r, wherer is a cycle

supported onp−1
1245(W \W

′) and therefore irrelevant for our further computations for
dimension reasons. Let us return to the definition of the cyclew.

Identifying V ′ andW ′ we see that the varietyW ′ parametrises three families

Z ⊂ Σ ⊂ Ξ ⊂W ′ ×X

of subschemes inX. In terms of these we can summarise the discussion above by
stating thatq′nqm is induced by the cycle

c1(p∗IΣ/Ξ) · [W ′] ∈ A∗(W
′).

Having reached this point we pause to reflect what changes in this picture if we
exchange the order of the operatorsqn andqm. Up to the usual twistT that flips the
factorsX in X [ℓ+m+n],[1],[1],[ℓ], not a iota is changed inW ′. Indeed,W ′ parametrises
not only three but rather four families of subschemes

Σ′

ր ց
Z Ξ
ց ր

Σ′′

whereΣ′ andΣ′′ are characterised by the property that at a points = (Ξs, x, y, Zs) ∈
W ′ the subschemesΣ′

s,Σ
′′
s ⊂ Ξs are the unique ones with

Σ′
s − Zs = mx , Ξs − Σ′

s = ny
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and
Σ′′
s − Zs = ny , Ξs − Σ′′

s = mx.

This means: the commutator[q′n, qm] is induced by the cycle

(

c1(p∗IΣ′/Ξ)− c1(p∗IZ/Σ′′)
)

· [W ′] ∈ A2ℓ+n+m+1(X
[ℓ+n+m],[1],[1],[ℓ]).

The ideal sheaves corresponding to the various inclusions between the families
Z, Σ′, Σ′′ and Ξ are related by the following commutative diagram of short exact
sequences

0 −→ IΣ′/Ξ −→ IZ/Ξ −→ IZ/Σ′ −→ 0

ϕ




y

∥

∥

∥

x





0 ←− IZ/Σ′′ ←− IZ/Ξ ←− IΣ′′/Ξ ←− 0

.

The homomorphism
p∗ϕ : p∗IΣ′/Ξ → p∗IZ/Σ′′

is an isomorphism off the diagonal{x = y} ⊂ W ′. On the other hand the clo-
sure ofW ′ ∩ {x = y} equals the image of the ‘diagonal’ embeddingQ[ℓ+m+n,ℓ] →
X [ℓ+m+n],[1],[1],[ℓ]. It follows that

(

c1(p∗IΣ′/Ξ)− c1(p∗IZ/Σ′′)
)

· [W ′] = −µ · [Q[ℓ+m+n,ℓ]]

whereµ is the length of coker(p∗ϕ) at the generic point of the varietyQ[ℓ+m+n,ℓ]. This
proves

[q′n(α), qm(β)] = −µ · qn+m(αβ),

and it remains to show that
µ = nm.

A general pointd = (ξ, x, y, ζ) of Q[ℓ+m+n,ℓ] is of the form(ζ ∪ η, x, x, ζ) where
η ∩ ζ = ∅ and η is a curvilinear subscheme supported atx. As the computation
is local inX we may apply the same reduction process as in the proof of Theorem
3.5: we may assume thatℓ = 0, thatX = A2 = SpecC[z,w], x = (0, 0) and
Iζ = (w, zn). Then there is an open neighbourhood of this pointd in W ′ which
isomorphic toAn+m+2 = SpecC[a0, . . . , an+m−1, s, t] such that the familiesΞ,Σ′

andΣ′′ are given by the ideals

IΞ = (w − f(z), (z − t)n(z − s)m), IΣ′ = (w − f(z), (z − s)m)

and
IΣ′′ = (w − f(z), (z − t)n),

wheref(z) = a0 + a1z + . . .+ an+m−1z
n+m−1. We find

p∗OΣ′′ = C[a, s, t][z]/(z − t)n
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and
p∗IΣ′/Ξ = (z − s)m · C[a, s, t][z]/(z − s)m(z − t)n.

The cokernel of

p∗ϕ : (z − s)m · C[a, s, t][z]/(z − s)m(z − t)n −→ C[a, s, t][z]/(z − t)n

is isomorphic to theC[a, s, t]-module

C[a, s, t][z]/((z − s)m, (z − t)n) ∼= C[a, s + t][z − s, z − t]/((z − s)m, (z − t)n).

This module is supported along the diagonal{s = t} (as we expected), and its stalk at
the generic point of the diagonal has lengthnm (as we had to prove).

Step 2:Assume thatm is positive and−m < n < 0. First one shows as above
that the commutator[q′n, qm] is induced by cycles inA2ℓ+n+m+1(X

[ℓ+m+n],[1],[1],[ℓ])
for eachℓ ≥ 0, which are supported on the diagonally embedded varietiesQ[ℓ+m+n,ℓ],
so that

[q′n(α), qm(β)] = −cn,m · qn+m(αβ)

for certain constantscn,m. In order to determine these constants we apply the commu-
tator [ . , q−n−m(1)]. Then the oscillator relations yield for the right hand side

−cn,m(n+m)

∫

X
αβ · idH.

On the other hand

[ [q′n(α), qm(β)], q−n−m(1)] = [ [q′n(α), q−n−m(1)], qm(β)]

Now

[q′n(α), q−n−m(1)] = (−1)m[(q†−n)
′(α), q†n+m(1)]

= −(−1)m[qn+m(1), q′−n(α)]†,

which by Step 1 equals(−1)mn(n+m)qm(α)† = n(n+m)q−m(α). Hence

[ [q′n(α), qm(β)], q−n−m(1)] = n(n+m)[q−m(α), qm(β)]

= n(n+m)(−m)

∫

X
αβ · idH.

Choose classesα, β with
∫

X αβ 6= 0. It follows thatcn,m = nm.
Step 3:The general case can now be reduced formally to the cases already treated.

The assertion is certainly trivial if eithern = 0 orm = 0. If the assertion is known to
be true for some pair(n,m), we may apply the operation† to both sides and find:

[q′−n(α), q−m(β)] = (−1)n+m[(q†n)
′(α), q†m(β)]

= −(−1)n+m[(q′n)
†(α), q†m(β)]

= (−1)n+m[q′n(α), qm(β)]† = −nm · (−1)n+mq
†
n+m(αβ)

= (−n)(−m) · q−n−m(αβ).
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This and the identity

[q′n(α), qm(β)] = (−1)|α|·|β|[q′m(β), qn(α)]

allow us to reduce anything to cases checked in Step 1 and Step2. �

In order to prove part 1 of Theorem 3.10, it remains to treat the casen + m =
0. This will be done in two steps. First, we prove a qualitativestatement about the
structure of the ‘correction term’, and afterwards we determine the precise value of the
‘coefficient’Kn:

Proposition 3.13 — There exist rational divisorsKn ∈ Pic(X) ⊗ Q, n ∈ Z, with
K0 = 0 andK−n = Kn and such that

[q′n(α), q−n(β)] = n2 ·

∫

X
Knαβ · idH (10)

for all α, β ∈ H∗(X).

Proof. There is nothing to prove forn = 0. Moreover,

[q′n(α), q−n(β)] = (−1)|α|·|β| · [q′−n(β), qn(α)].

It follows that if there is a divisorKn so that (10) holds forn, then (10) also holds for
−n with the choiceK−n = Kn. Hence it suffices to prove the proposition for positive
integersn.

Let ℓ be a nonnegative integer and consider the diagram

X [ℓ],[1],[ℓ+n] p123
←−−−− X [ℓ],[1],[ℓ+n],[1],[ℓ] p345

−−−−→ X [ℓ+n],[1],[ℓ]






y

p1245

X [ℓ],[1],[1],[ℓ].

Let
v := p∗123[Q

[ℓ,ℓ+n]] · p∗345[Q
[ℓ+n,ℓ]] ∈ A2ℓ+2(V ),

V := p−1
123(Q

[ℓ,ℓ+n]) ∩ p−1
345(Q

[ℓ+n,ℓ]).

According to Lemma 3.9, the operatorq′−nqn is induced by the class

w = (−1)np1245∗(p
∗
123c1(Iℓ,ℓ+n) · v) ∈ A2ℓ+1(W ),W := p1245(V ).

Consider the diagonal partW ∩ {x = y} first. It is contained in
⋃

i≥0 Ti, where

Ti = {(ξ, x, x, ζ)|ℓ(ξx) = ℓ(ζx) = i}. The closure ofT0 is the diagonal∆ ∼= X [ℓ] ×
X ⊂ X [ℓ],[1],[1],[ℓ] and is therefore irreducible of dimension2ℓ+ 2. Whereas fori ≥ 1,
the setTi embeds into the irreducible varietyX [ℓ−i] × (X

[i]
0 ×X X

[i]
0 ) of dimension

2(ℓ− i) + (i+ 1) + (i+ 1)− 2 = 2ℓ.

26



The off-diagonal partW ∩ {x 6= y} is empty if ℓ < n. If ℓ ≥ n it has precisely
one irreducible componentW ′ of maximal dimension2ℓ + 2: it contains as a dense
subset the image of the embedding

{(η, ξ′, ζ ′) ∈ X [ℓ−n] ×X
[n]
0 ×X

[n]
0 |η, ξ

′ andζ ′ are pairwise disjoint} −→W,

(σ, ξ′, ζ ′) 7→ (σ ∪ ξ, ρ(ξ′), ρ(ζ ′), σ ∪ ζ ′).

Since the function(ξ, x, y, ζ) 7→ ℓ(ξx) is semicontinuous and is at leastn on W ′,
it follows thatW ′ ∩ ∆ is contained in

⋃

ν≥n Tn. In particular, this intersection has
dimension≤ 2ℓ. As we want to compute a cycle of degree2ℓ+ 1, we may restrict our
attention to the open partW ′ and may disregard the complement ofW ′ in its closure.

p1245 : p−1
1245(W

′)→ W ′ is an isomorphism, which we use to identifyW ′ and the
off-diagonal part ofV . NowW ′ parametrises four flat families of subschemes onX:
besides the familiesΞ andZ of fibrewise lengthℓ, these are the familiesΞ ∩ Z and
Ξ ∪ Z of fibrewise lengthℓ− n andℓ+ n. The contribution ofW ′ tow is the class

(−1)nc1(p∗IΞ/Ξ∪Z) · [W ′] ∈ A2ℓ+1(W
′).

Reversing the order of the operatorsq′−n andqn shows that the part of the cycleu
inducing the commutator[q′−n, qn], that is supported onW ′, is the class

(−1)n
(

c1(p∗IΞ/Ξ∪Z)− c1(p∗IΞ∩Z/Ξ)
)

· [W ′].

Since the ideal sheavesIΞ/Ξ∪Z andIΞ∩Z/Ξ are isomorphic, this class is zero.
Thus we may fully concentrate on the contribution of the diagonal part∆. (Also

note that for the reversed orderqnq
′
−n any diagonal parts must be contained in

⋃

ν≥n Tν
and are therefore too small and irrelevant.)

The complement of the open subsetT0
∼= X [ℓ] × X \ Ξℓ in ∆0 has codimension

≥ 2. Locally nearp−1
1245(T0) there are isomorphisms betweenX [ℓ+n,ℓ] andX [ℓ] ×

X [n], and similarly betweenQ[ℓ+n,ℓ] andX [ℓ] × X
[n]
0 . Hence ifw̄ ∈ A1(X) is the

intersection cycle for the special caseℓ = 0, then the general cycle is simply given by
w = [X [ℓ]]× w̄ ∈ A2ℓ+1(X

[ℓ] ×X). But that was all we had to prove: a cycle of this
form induces the linear map

α⊗ β ⊗ y 7→

∫

w̄
αβ · y, α, β ∈ H∗(X; Q), y ∈ H.

�

Corollary 3.14 — For all positive integersn one has

q′n(α) = nLn(α) + nqn(Knα).
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Proof. Use the same argument as in the first paragraph of the proof ofthe main
theorem after Corollary 3.11. �

To finish the proof of Theorem 3.10 it remains to show:

Proposition 3.15 — For all positive integersn the rational divisor defined by Propo-
sition 3.13 is given by

Kn =
n− 1

2
K,

whereK is the canonical class of the surfaceX.

This will be done in the next section.

3.4 The vertex operator, completion of the proof

Definition 3.16 — Let γ ∈ H∗(X) be an element which is of even degree though not
necessarily homogeneous, and lett be a formal parameter. Define operatorsSm(γ),
m ≥ 0, by

S(γ, t) :=
∑

m≥0

Sm(γ)tm := exp

(

∑

n>0

(−1)n−1

n
qn(γ) · t

n

)

.

Sinceγ is of even degree by assumption, any two operatorsqn(γ) and qn′(γ)
commute in the ordinary, i.e. ‘ungraded’ sense. In particular, there is no ambiguity in
the meaning of the expression on the right hand side in the definition.

The geometric meaning of the operatorsSm is explained by the following theorem:
letC be a smooth curve inX. There is an induced closed embeddingSnC = C [n] →
X [n]. Let [C] ∈ H∗(X) and [C [n]] ∈ H∗(X [n]) be the corresponding cohomology
classes, i.e., the Poincaré dual classes of the fundamental classes of these varieties.

Theorem 3.17 (Nakajima, Grojnowski) — The following relation holds for all non-
negative integersn:

[C [n]] = Sn([C]) · 1.

For proofs see [24] and [15]. �

Lemma 3.18 — Let γ ∈ H∗(X) be an element of even degree. Then

S′(γ, t) = S(γ, t) ·
∑

n>0

(−1)n−1tn
{

Ln(γ) + qn

(

γKn + γ2n− 1

2

)

}

.
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Proof. Assume first thata is an operator of even degree, and that[a′, a] commutes
with a. Then

(

∞
∑

n=0

an

n!

)′

=
∞
∑

n=1

1

n!

n
∑

i=1

ai−1 · a′ · an−i

=

∞
∑

n=1

1

n!
·

{

nan−1a′ +

n
∑

i=1

an−2 · (n− i) · [a′, a]

}

=
∞
∑

n=0

an

n!
· a′ +

∞
∑

n=1

an−2

n!

(

n

2

)

[a′, a]

= exp(a) ·

{

a′ +
1

2
[a′, a]

}

.

Next, let aν be a family of commuting operators of even degree such that any
[a′ν , aµ] commutes with everyaξ. Then it follows from Step 1 and

[a′µ, exp(aν)] = exp(aν) · [a
′
µ, aν ]

that
(

exp
(

∑

ν

aν

)

)′

= exp
(

∑

ν

aν

)

·

{

∑

ν

a′ν +
1

2

∑

ν,µ

[a′ν , aµ]

}

.

Now apply this formula to the familyaν = (−1)ν−1

ν qν(γ)t
ν and use our previous

resultsa′ν = (−1)ν−1tν(Ln(γ) + qν(Kνγ)) and[a′ν , aµ] = −(−t)ν+µqν+µ(γ
2). One

getsS′(γ, t) = S(γ, t) · (∗) with

(∗) =
∑

n>0

(−1)n−1tn(Ln(γ) + qn(Knγ))−
1

2

∑

ν,µ>0

(−t)ν+µqν+µ(γ
2)

=
∑

n>0

(−1)n−1tn ·

{

Ln(γ) + qn(Knγ +
1

2
Nnγ

2)

}

whereNn is the number of pairs of positive integersν andµ that add up ton, i.e.,
Nn = n− 1. �

Let C ⊂ X be a smooth projective curve. The boundary∂X [n] intersectsC [n]

generically transversely in the boundary∂C [n] of C [n], i.e. in the set of all tuples with
multiple points. The subvarietiesX [n]

0 and ∂C [n] have complementary dimensions
n+ 1 andn− 1 in X [n] and we may compute the intersection number

I :=

∫

X[n]
[X

[n]
0 ] ∪ [∂C [n]].

We will do this first using our algorithmic language, and afterwards using a geometric
argument. The comparison of the two results will lead to the identification of the
divisorsKn.
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Lemma 3.19 — [X
[n]
0 ] = qn(1X) · 1 and[∂C [n]] = −2 · S′

n([C]) · 1.

Proof. The first assertion follows from the definition of the operators qn. By
Nakajima’s Theorem,Sn([C]) · 1 is the class of the submanifoldC [n] ⊂ X [n], and
hence according to Lemma 3.7:

S′
n([C]) · 1 = d · Sn([C]) · 1 = −

1

2
[∂X [n]] · [C [n]] = −

1

2
[∂C [n]].

�

Lemma 3.20 —
∫

X[n]
(qn(1X) · 1) · (S′

n([C]) · 1) =

∫

X

{

nKnC +

(

n

2

)

C2

}

.

Proof. Indeed,
∫

X[n]

(qn(1X ) · 1) · (S′
n([C]) · 1) = (−1)n

∫

X[0]

q−n(1X)S′
n([C]) · 1

= (−1)n
∫

X[0]

[ q−n(1X), S′
n([C]) ] · 1,

sinceq−n(1X)·1 = 0. Nowq−n commutes with any productqi1 ·. . .·qis if s ≥ 2, ij >
0 and

∑

j ij = n. Thus the only summand inS′
n that contributes to the commutator

with q−n is (−1)n−1qn(C(Kn + C(n− 1)/2)). Hence

[q−n(1X), S′
n([C])] = (−1)nn

∫

X
C

(

Kn +
n− 1

2
C

)

· idH

This proves the lemma. �

Next, we give the geometric computation ofI:

Lemma 3.21 —
∫

X[n]

[X
[n]
0 ] · [∂C [n]] = −n(n− 1) · C(C +K).

Proof. We have[X [n]
0 ]·[∂C [n]] = [∂X [n]]·([X

[n]
0 ]·[C [n]]). The intersection ofX [n]

andC [n] is transversal and is equal to the image of the closed immersion∆ : C → C [n]

sending a pointc to the unique subscheme ofC of lengthn that is supported inc. Thus

I = deg(OX[n](∂X [n])|∆(C) = deg(OC[n](∂C [n])|∆(C).

The embedding∆ factors through the diagonal embeddingC → Cn and the quotient
mapπ : Cn → C [n]. Moreover, ifprij : Cn → C2 denotes the projection to the
product of thei-th andj-th factor,

π∗(OC[n](∂C [n])) ∼=





n
⊗

i<j

pr∗ijOC×C(∆C)





⊗2

.
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From this we conclude:

I = deg(∆∗OC[n](∂C [n])) = 2 ·

(

n

2

)

deg(OC×C(∆C)|∆C
))

= −n(n− 1) · C(C +K).

�

Proof of Proposition 3.15. From Lemma 3.19 and Lemma 3.20 we conclude

I = (−2) · C(nKn +

(

n

2

)

C).

Comparison with Lemma 3.21 shows thatKn = n−1
2 K. �

This finishes the proof of Theorem 3.10.

4 Towards the ring structure of H

4.1 Tautological sheaves

There is a natural way to associate to a given vector bundle onX a series of tauto-
logical’ vector bundles on the Hilbert schemesX [n], n ≥ 0. The Chern classes of the
tautological bundles may be grouped together to form operators onH.

Consider the standard diagram

Ξn ⊂ X [n] ×X
q
−→ X

p





y

X [n]

LetF be a locally free sheaf onX. For eachn ≥ 0 the associatedtautological bundle
onX [n] is defined as

F [n] := p∗(OΞn ⊗ q
∗F ).

Sincep is a flat finite morphism of degreen, F [n] is locally free with

rk(F [n]) = n · rk(F ).

Note thatF [0] = 0 andF [1] = F .
Furthermore, if0→ F1 → F → F2 → 0 is a short exact sequence of locally free

sheaves onX, the corresponding sequence0 → F
[n]
1 → F [n] → F

[n]
2 → 0 is again

exact. Hence sending the class[F ] of a locally free sheafF to [F [n]] gives a group
homomorphism

−[n] : K(X) −→ K(X [n]).
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Definition 4.1 — Let u be a class inK(X). Define operators

c(u) ∈ End(H) and ch(u) ∈ End(H)

as follows: For eachn ≥ 0, the action onH∗(X [n]; Q) is given by multiplication with
the total Chern classc(u[n]) and the Chern characterch(u[n]), respectively.

Let
c(u) =

∑

k≥0

ck(u) and ch(u) =
∑

k≥0

chk(u)

be the decompositions into homogeneous components of bidegree (0, 2k). Since all
of these operators are of even degree and only act ‘vertically’ on H by multiplication,
they commute with each other and in particular with the previously defined boundary
operatord = c1(OX).

Moreover, we have

c(u+ v) = c(u) · c(v) and ch(u+ v) = ch(u) + ch(v)

for all u, v ∈ K(X).

Theorem 4.2 — Let u be a class inK(X) of rankr and letα ∈ H∗(X). Then

[ch(u), q1(α)] = exp(ad d)(q1(ch(u)α)),

or, more explicitly,

[chn(u), q1(α)] =

n
∑

ν=0

1

ν!
q
(ν)
1 (chn−ν(u)α).

Similarly,

c(u) · q1(α) · c(u)−1 =
∑

ν,k≥0

(

r − k

ν

)

q
(ν)
1 (ck(u)α).

Proof. We may assume thatu is the class of a locally free sheafF . Recall the
standard diagram for the incidence varietyX [ℓ,ℓ+1]:

X
ρ
←− X [ℓ,ℓ+1] ψ

−→ X [ℓ+1]

ϕ





y

X [ℓ]

The varietyX [ℓ,ℓ+1] parametrises two families of subschemes ofX. Their structure
sheaves fit into an exact sequence

0→ ρ∗XO∆X
⊗ p∗OX[ℓ,ℓ+1](−E)→ ψ∗

X(OΞℓ+1
)→ ϕ∗

X(OΞℓ
)→ 0,
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wherep : X [ℓ,ℓ+1] ×X → X [ℓ,ℓ+1] is the projection andE is the exceptional divisor.
Applying the functorp∗( · ⊗ q∗F ) to this exact sequence yields

0→ ρ∗F ⊗OX[ℓ,ℓ+1](−E)→ ψ∗F [ℓ+1] → ϕ∗F [ℓ] → 0. (11)

Let λ = c1(OX[ℓ,ℓ+1](−E)). Then

ψ∗ch(F [ℓ+1]) = ϕ∗ch(F [ℓ]) + ρ∗ch(F ) · exp(λ)

and

ψ∗c(F [ℓ+1]) = ϕ∗c(F [ℓ]) ·
∑

ν,k≥0

(

r − k

ν

)

λνρ∗ck(F ).

It follows for anyx ∈ H∗(X [ℓ]; Q):

ch(F )q1(α)(x) = ch(F [ℓ+1]) · PD−1ψ∗([X
[ℓ,ℓ+1]] ∩ ρ∗(α)ϕ∗(x))

= PD−1ψ∗([X
[ℓ,ℓ+1]] ∩ ψ∗(ch(F [ℓ+1]))ρ∗(α)ϕ∗(x))

= PD−1ψ∗([X
[ℓ,ℓ+1]] ∩ ρ∗(α)ϕ∗(ch(F [ℓ])x))

+
∑

ν≥0

1

ν!
PD−1ψ∗(λ

ν · [X [ℓ,ℓ+1]] ∩ ρ∗(ch(F )α)ϕ∗(x))

= q1(α)(ch(F )x) +
∑

ν≥0

1

ν!
q(ν)(ch(F )α)(x).

Here we used Lemma 3.9 which says that the cycleλν · [X [ℓ,ℓ+1]] induces the operator

q
(ν)
1 . This is the equation for the Chern character. The equation for the total Chern

class is proved analogously. �

Corollary 4.3 — For anyu ∈ K(X) let C(u) be the operator

C(u) = c(u) · q1(1X ) · c(u)−1 =
∑

ν,k≥0

(

rk(u)− k

ν

)

q
(ν)
1 (ck(u)α).

Then
∑

n≥0

c(u[n]) = exp(C(u)) · 1.

Note that the right hand side can be explicitly expressed in terms of the basic
operatorsqn by applying Theorem 3.10.

Proof. We have
∑

n≥0

c(u[n]) = c(u)
∑

n≥0

1X[n]

= c(u) exp(q1(1X)) · 1

= c(u) exp(q1(1X))c(u)−1 · 1

= exp(c(u)q1(1X ))c(u)−1) · 1

= exp(C(u)) · 1.
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Remark 4.4 — The sequence (11) was used by Ellingsrud in a recursive method to
determine Chern classes and Segre classes of tautological bundles (unpublished, but
see [27],[5]). He expresses the classes(ϕ, ρ)∗c(E) in terms of the Segre classes of the
universal familyΞ[n] ⊂ X × X [n]. Thus one needs to control the behaviour of these
Segre classes under the induction procedure. This method yields qualitative results
on thestructureof certain classes and integrals, but all attempts to get numbers have
ended so far in unsurmountable combinatorial difficulties. �

Remark 4.5 — The results of the present and the previous section providean algo-
rithmic description of the multiplicative action of the subalgebraA ⊂ H which is
generated by the Chern classes of all tautological bundles:The elementsqi1(α1) ·
. . . qis(αs) · 1 generateH as aQ-vector space. By Corollary 3.11, each such element
can be written as a linear combination of expressionw · 1, wherew is a word in an
alphabet consisting ofd and operatorsq1(α), α ∈ H∗(X; Q). By Theorem 4.2 the
commutator ofch(F ) with any of these is again a word in this alphabet. And finally,
Theorem 3.10 shows how such a word can be expressed in terms ofthe basic oper-
atorsqn. Admittedly, without a further understanding of the algebraic structure this
description is useful for computations inH∗(X [ℓ]; Q) only for small values ofℓ or if
one implements it in some computer algebra system. The following sections deal with
special situations where one can say more.

4.2 The line bundle case

The results of the previous section suffice to compute the Chern classes of the tauto-
logical bundlesL[n] associated to a line bundleL in terms of the basic operators.

Theorem 4.6 — LetL be a line bundle onX. Then

∑

n≥0

c(L[n]) = exp





∑

m≥1

(−1)m−1

m
qm(c(L))



 · 1.

Remark 4.7 — Expanding the term on the right hand side, one realises thatthe coho-
mological degree of any summand contained inH∗(X [n]; Q) is≤ 2n, and, moreover,
the maximal degree2n can only be attained if the arguments of all operatorsqν in-
volved have degree 2. In other words, considering elements of top degree only, the
equation of the theorem specialises to

∑

n≥0

cn(L
[n]) = exp





∑

m≥1

(−1)m−1

m
qm(c1(L))



 · 1. (12)
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This is Nakajima’s result 3.17: for supposeC ⊂ X is a smooth curve andL = OX(C).
If ξ ∈ X [n], the natural homomorphismOX → Oξ(C) vanishes if and only ifξ ⊂ C.
Hence the vanishing locus of the global vector bundle homomorphism

OX[n] −→ (OX(C))[n] = L[n]

is the subvarietyC [n]. Therefore[C [n]] = cn(L
[n]). Inserting this into (12), we recover

Nakajima’s formula 3.17

∑

n≥0

[C [n]] = exp





∑

m≥1

(−1)m−1

m
qm([C])



 · 1

Based on this observation, the theorem was conjectured by L.Göttsche in a letter to
G. Ellingsrud and the author.

Proof of the theorem. We shall give two variants of the proof which differ slightly
in flavour. We have seen that the left hand side in the theorem equalsexp(C(L)) · 1,
where in this case because ofr = 1 we have

C(L) = q1(c(L)) + q′1(1X).

Variant 1. Expanding the right hand side of

exp(C(L)) · 1 =
∑

n≥0

1

n!
(q1(c(L)) + q′1(1X))n · 1

yields summands which are words in the two symbolsq1(c(L)) andq′1(1X). Mov-
ing all factorsq′1(1X) within a given word as far to the right as possible using the
commutation relations of the main theorem we can write

∑

n≥0

1

n!
(q1(c(L)) + q′1(1X))n · 1 = A · 1 + B · q′1(1X ) · 1 = A · 1,

whereA is a sum of expressions of the form

ν1! · . . . · νs! ·
(−1)ν1−1qν1(c(L))

ν1
· · ·

(−1)νs−1qνs(c(L))

νs
.

Let α = (1α12α23α3 . . . ) denote a partition and let|α| :=
∑

i≥1 iαi, andα! :=
∏

i(i!)
αi . We get

∑

n≥0

1

n!
(q1(c(L)) + q′1(1X))n · 1 =

∑

α

Nα
α!

|α|!

∏

i≥1

(

(−1)i−1qi(c(L))

i

)αi

· 1, (13)

where the natural numberNα counts how often the operator

α!
∏

i≥1

(

(−1)i−1qi(c(L))

i

)αi
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arises from a word inq′1(1X ) andq1(c(L)) of length|α|. It is not difficult to see that
Nα equals the number of possibilities to partition a set of|α| elements into subsets in
such a way that there areαi subsets of cardinalityi. Hence

Nα :=
1

α1!α2! · · ·
·
|α|!

α!
.

Inserting this into equation (13) above one gets

∑

n≥0

1

n!
(q1(c(L)) + q′1(1X))n · 1 =

∑

α

∏

i≥1

1

αi!

(

(−1)i−1qi(c(L))

i

)αi

· 1

=
∏

i≥1

∑

αi≥0

1

αi!

(

(−1)i−1qi(c(L))

i

)αi

· 1

=
∏

i≥1

exp

(

(−1)i−1qi(c(L))

i

)

· 1

= exp





∑

i≥1

(−1)i−1

i
qi(c(L))



 · 1.

In fact, being a little more careful, one gets

exp(C(L)) = exp





∑

i≥1

(−1)i−1

i
qi(c(L))



 · exp(q′1(1X )).

Variant 2. Starting again from the sequence

c(L) · q1(1X) = C(L) · c(L),

we multiply by 1
n!q1(1X)ntn from the right and sum up over alln ≥ 0:

d

dt



c(L) ·
∑

n≥0

1

n!
q1(1X)ntn



 · 1 = c(L) ·
∑

n≥0

1

n!
q1(1X)n+1tn · 1

= C(L) ·



c(L) ·
∑

n≥0

1

n!
q1(1X )ntn



 · 1.

This means that the series
∑

n≥0

c(L[n])tn = c(L) · exp(q1(1X)t) · 1

satisfies the linear differential equation

d

dt
X = C(L) · X (14)
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with initial condition

X(0) = 1. (15)

On the other hand, consider the operator

S(c(L), t) = exp





∑

m≥1

(−1)m−1

m
qm(c(L))tm



 .

We find

d

dt
S(c(L), t) = S(c(L), t) ·





∑

m≥0

(−1)mqm+1(c(L))tm



 ,

and
[

{q1(1X + c1(L)) + q′1(1X)}, S(c(L), t)
]

= S(c(L), t) ·





∑

m≥1

(−1)m−1

m

[

q′1(1X), qm(c(L))
]

tm





= S(c(L), t) ·





∑

m≥1

(−1)mqm+1(c(L))tm



 .

This shows

{q1(1X + c1(L)) + q′1(1X)} · S(c(L), t) · 1

= S(c(L), t) ·





∑

m≥1

(−1)mqm+1(c(L))tm



 · 1

+S(c(L), t) · q1(c(L)) · 1

= S(c(L), t) ·





∑

m≥0

(−1)mqm+1(c(L))tm



 · 1

HenceS(c(L), t) · 1 satisfies the system (14) and (15) as well and therefore equals
c(L) · exp(q1(1X)t) · 1. This proves the theorem. �

4.3 Top Segre classes

The following problem was posed by Donaldson in connection with the computation
of instanton invariants: letn be an integer≥ 1, and consider a linear system|H| of
dimension3n − 2 inducing a mapX−− →P3n−2. A zero-dimensional subscheme

37



ξ ∈ X [n] does not impose independent conditions on the linear system|H| if the
natural homomorphism

H0(P3n−2,OP(1)) −→ H0(ξ,Oξ(H))

fails to be surjective. The subscheme of all suchξ ∈ X [n] has virtual dimension zero,
and its class is given byc2n(W∨), whereW is the virtual vector bundle

H0(P3n−2,OP(H)) ⊗OX[n] −O(H)[n].

Thus the number of thoseξ that impose dependent conditions is given by

Nn :=

∫

X[n]
c2n(−O(H)[n]) =

∫

X[n]
c(−O(H)) ·

q1(1X)n

n!
· 1.

More explicitly, N1 is the degree of the linear system,N2 is the number of double
points,N3 is the number of trisecants to a surface inP7 andN4 is the number of
quadruples of points on a surface inP10 that span a plane.

Problem: ExpressNn in terms of intrinsic invariants ofX such as the degree
d := H.H, the intersectionπ := H.K and κ := K.K and the topological Euler
characteristice = c2(X).

Note that even the fact that such an expression in terms of thegiven invariants
exists is not evidenta priori. This has been proved by Tikhomirov [27]. It also follows
immediately from our approach.

Using our algorithm, we can attack this problem as follows. Theorem 4.2 yields
for F = −O(H) andr = −1 the formula:

C(−O(H)) =
∑

ν,k≥0

(

−1− k

ν

)

q
(ν)
1 (ck(−H))

=
∑

ν≥0

(−1)νq
(ν)
1

(

2
∑

k=0

(

ν + k

k

)

(−H)k

)

=
∑

ν≥0

(−1)νq
(ν)
1 ((1 −H +H2)ν+1).

It follows as in the proof of Theorem 4.6 thatc(−O(H))·exp(q1(1X)t)·1 satisfies
the following differential equation and initial value condition:

d

dt
X = C(−O(H))X and X(0) = 1.

As long as no explicit generating function is available we must be content with the
following semi-explicit solution to the problem:

Nn =
1

n!

∫

X[n]

C(−O(H))n · 1.
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Example 4.8 — As a special case, let us computeN2. This is the number of secant
lines to an embedded surface inP5 that pass through a fixed but general pointx ∈ P5.
Hence we should find Severi’s double point formula [25] (see also [2]). Let α =
1−H +H2. Then

2 ·N2 =

∫

X[2]
C(−O(H))2 · 1 with C(−O(H)) =

∑

n≥0

(−1)nq
(n)
1 (αν+1).

Sinceq
(n)
1 · 1 = 0 for all n > 0 and for all parameters, we haveC(−O(H)) · 1 =

q1(α) · 1. Moreover, for degree reasons the infinite sum reduces to

C(−O(H))2 · 1 = (q1(α)− q′1(α
2) + q′′1(α

3)− q′′′1 (α4) + q′′′′1 (α5))q1(α) · 1.

Usingq
(ν)
1 (x)q1(y) · 1 = −q

(ν−1)
2 (xy) · 1 this becomes

C(−O(H))2 · 1 = (q1(α)q1(α) + q2(α
3)− q′2(α

4) + q′′2(α
5) + q′′′2 (α6)) · 1.

For the higher derivativesq(n)
2 , n ≥ 2, there is the following recursion formula:

q
(n)
2 (x) · 1 = (q2

1(δ(x)) + q2(Kx))
(n−1) · 1

= (− q
(n−2)
2 (c2(X)x) + q

(n−1)
2 (Kx)) · 1.

(Recall that the composite mapH∗(X)
δ
−→ H∗(X) ⊗ H∗(X)

∪
−→ H∗(X) is the

multiplication with the self intersection of the diagonal,i.e. the second Chern class
c2(X) of X.) Using this formula repeatedly and keeping in mind thatK.e = K3 =
e2 = 0 andK2.αν = K2, e.αν = e, we finally arrive at

C(−O(H))2 ·1 = (q1(α)2+q2
1δ(−α

4 +Kα5−K2+e)+q2(α
3−Kα4+K2−e)) ·1.

Only the first two summands contribute to the integral. Hence

2 ·

∫

X[2]

C(−O(H))2 · 1 =

(∫

X
α

)2

−

∫

X
(α4 −Kα4 +K2 − e)

= d2 − 10d − 5π − κ+ e.

�

For highern, the practical calculation ofNn quickly becomes rather difficult. Al-
ready the case ofN3 surpassed my personal calculation skills. Using MAPLE, I com-
putedNn for n ≤ 7. One obtains for example:

3! ·N3 = d3 − 30d2 + 224d − 3d(5π + κ− e)

+192π + 56κ− 40e,
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4! ·N4 = d4 − 60d3 + d2(1196 − 30π + 6e− 6κ)

−d(7920 − 1068π + 220e− 284κ) + 3e2 + 1944e − 6eκ

−30eπ + 75π2 + 3κ2 + 30κπ − 9042π − 3300κ,

5! ·N5 = d5 − 100d4 + d3(3740 + 10e − 50π − 10κ)

−d2(62000 − 3420π + 700e − 860κ) + d(384384 + 15e2

+15960e − 30eκ − 150πe + 15κ2 + 150κπ − 75610π

−24340κ + 375π2)− 400e2 − 117120e + 3920πe + 960κe

+226560κ − 4720κπ − 560κ2 + 530880π − 9600π2.

These calculations verify LeBarz’ trisecant formula forN3 [20, Théorème 8] and
the computation ofN4 by Tikhomirov and Troshina [28]. The formula forN5 seems
to be new. I omit the presentation ofN6 andN7: the information is contained in the
following analysis of these numerical data. ForX = P2 andOX(H) = OP2(m) these
tally with the polynomials computed by Ellingsrud and Strømme using a torus action
on P2 and the Bott formula [8].

Taking the logarithm of the generating function, we may write:

∑

n≥0

Nnz
n = exp

(

∑

m>0

(−1)m−1

m
dmz

m

)

where the coefficientsdm a priori are rational polynomials ind = H2, π = HK,
κ = K2 ande. One can show that these polynomials are in fact linear (cf. [5]). The
explicit calculation yields

d1 = d
d2 = 10d+ 5π − e+ κ

d3 = 112d + 96π − 20e + 28κ
d4 = 1320d + 1507π − 324e + 550κ

d5 = 16016d + 22120π − 4880e + 9440κ
d6 = 198016d + 314738π − 70976e + 151260κ

d7 = 2480640d + 4402720π − 1012032e + 2326192κ.

From this one can attempt to guess the generating functions.Let

k = z − 9z2 + 94z3 − . . . ∈ Q[[z]]

be the inverse power series of the rational function

z =
k(1− k)(1 − 2k)4

(1− 6k + 6k2)3
.

This is a solution of the differential equation

dz

z
=

dk

k(1− k)(1 − 2k)(1 − 6k + 6k2)
.
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Conjecture 4.9 — Using the notations above the following formula holds:

∑

n≥0

Nnz
n =

(1− k)a · (1− 2k)b

(1− 6k + 6k2)c

with a = HK − 2K2, b = (H −K)2 + 3χ(OX), andc = 1
2H(H −K) + χ(OX).

We thank Don Zagier for pointing out to us the existence of Sloane’s ‘Encyclopedia
of Integer Sequences’ [26]. Intensive use of the on-line version of the Encyclopedia,
numerous numerological experiments and some inspiring help from Don Zagier al-
lowed me to guess the generating functions. He also found a simple substitution to
turn my still awkward version of the generating function into the smooth form pre-
sented above.

4.4 The cohomology ring of(A2)[n]

In this section we will describe an identification of the cohomology ring of (A2)[n]

with the ring of certain explicitly given differential operators on the polynomial ring
in countably many variables.

Of course, the affine planeA2 is not projective, so that we cannot directly apply
the methods of the previous sections. On the other hand, in [23] Nakajima does work
with non-projective surfaces, the only difference being that the operatorsqn, n < 0,
must be modelled on cohomology classes with compact supportrather than ordinary
cohomology classes. The reason for this is that, in the notations of Definition 2.4, the
morphismp1 is proper, so that push-forward is defined, whereasp2 is proper only if
the varietyX is proper. With this modification Nakajima’s main theorem holds for the
affine plane as well.

As H∗(A2; Q) = Q, we simplify notations by puttingqm := qm(1A2). Then
H =

⊕

n,iH
i((A2)[n]; Q) ∼= Q[q1, q2, . . . ], the polynomial ring in countably infinitely

many variables, and ifqm is given degreem, thenHn := H∗((A2)[n]; Q) is the ho-
mogeneous component ofH of degreen. As any vector bundle onA2 is trivial, there
is essentially only one tautological bundleO[n] on (A2)[n]. Let chi : H → H be the
components of the associated Chern character operator, andlet d = ch1 as before. The
inclusionA2 ⊂ P2 induces an open embedding(A2)[n] ⊂ (P2)[n] which in turn gives
rise to an epimorphism of ringsH∗((P2)[n]; Q) → H∗((A2)[n]; Q). This implies that
all commutation relations for theqm andchi hold in H as well. In fact they become
much simpler as the pull-back both ofc1(P2) andc2(P2) is zero. To describe these
relations in the given special setting, let∂m := m ∂

∂qm
.

Theorem 4.10 — The Chern character of the tautological bundle acts onH as follows:

chν =
(−1)ν

(ν + 1)!

∑

n0,...nν>0

qn0+...+nν∂n0 · . . . · ∂nν .
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For eachn, the cohomology ringHn is generated as aQ–algebra bychν(O[n]), and the
relations between these generators are those of the restriction of the given differential
operators toHn.

That Hn is generated by the chern classes of the tautological bundlehad earlier
been proved by Ellingsrud and Strømme [7].

In order to prove the theorem we consider a larger class of differential operators
on H defined by

Dn,ν :=
∑

n1,... ,nν>0

qn+
∑

i ni

ν
∏

i=1

∂ni

for nonnegative integersn andν, with the usual conventionsDn,0 = qn for n > 0
andD0,0 = 0. The key observation is thatd = −1

2D0,2. This follows directly from
Theorem 3.10 and the fact that in the present situationH∗(A2; Q) = Q. It is easy to
check by explicit calculation that these operators satisfythe following commutation
relations

[Dn,ν ,Dm,µ] = (νm− µn) ·Dn+m,ν+µ−1.

In particular,q′n = −1
2 [D0,2,Dn,0] = −n ·Dn,1, or more generally, by induction:

q(ν)n = (−n)ν ·Dn,ν .

We can now easily generalise Theorem 4.2:

[chn, qm] =
(−1)n

n!
m ·Dm,n.

Form = 1 the assertion follows from the basic relation (Theorem 4.2)

[chn, q1] =
1

n!
q
(n)
1 =

(−1)n

n!
D1,n,

and form > 1 we deduce it by induction using−mqm+1 = [q′1, qm] as well as
q′1 = −D1,1 and[chn, q

′
1] = [chn, q1]

′.

Proof of the theorem. We must first show that

chn = (−1)n
D0,n+1

(n+ 1)!
.

Observe that by the commutation rules for the operatorsD∗,∗ we have

[
(−1)n

(n + 1)!
D0,n+1, qm] = [

(−1)n

(n+ 1)!
D0,n+1,Dm,0] =

(−1)n

n!
m ·Dm,n.

Thuschn and (−1)n

(n+1)!D0,n+1 show the same commutation behaviour with all generators
qm of H and clearly act trivially on the vacuum. Hence they are equal.

It remains to check that the Chern classes of the tautological bundle generateHn.
Let λ = (λ1, λ2, . . . ) be a partition ofn, i.e.n = ‖λ‖ :=

∑

i iλi and letqλ :=
∏

i q
λi

i
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be the associated monomial. The monomialsqλ with ‖λ‖ = n form a Q-basis of
Hn. Let us say thatqλ < qµ if λ > µ in the lexicographical order. We want to
show that the subringH′

n in H generated by the action ofchm, m = 1, . . . , n − 1,
on 1 = qn1 = q(n,0,... ) contains the monomialqλ for all partitionsλ of n. As this is
true for the smallest possible monomialq(n,0,... ), we proceed by induction. Givenλ
we assume thatqµ ∈ H′

n for all qµ < qλ. As λ 6= (n, 0, . . . ), let a be the smallest
index> 1 such thatλa > 0, i.e.λ = (λ1, 0, . . . , 0, λa, λa+1, . . . ). Consider now the
partition

λ′ := (λ1 + a, 0, . . . , 0, λa − 1, λa+1, . . . ).

Thenqλ′ < qλ and hence is contained inH′
n and

cha−1qλ′ = (−1)a−1

(

λ1 + a

a

)

qλ + . . .

where . . . stands for a linear combination of smaller monomials. This finishes the
induction. �
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