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Abstract

The structure of satisfiability problems is used to improve search algorithms
for quantum computers and reduce their required coherence times by using only
a single coherent evaluation of problem properties. The structure of random
k-SAT allows determining the asymptotic average behavior of these algorithms,
showing they improve on quantum algorithms, such as amplitude amplification,
that ignore detailed problem structure but remain exponential for hard prob-
lem instances. Compared to good classical methods, the algorithm performs
better, on average, for weakly and highly constrained problems but worse for
hard cases. The analytic techniques introduced here also apply to other quan-
tum algorithms, supplementing the limited evaluation possible with classical
simulations and showing how quantum computing can use ensemble properties
of NP search problems.

1 Introduction

Quantum computers [3, 5, 17, 18, 19, 20, 39, 43] offer the possibility of faster combina-
torial search by operating simultaneously on all search states. For instance, quantum
computers can factor integers in polynomial time [47], a problem thought to be in-
tractable for classical machines.

At first sight, quantum computers seem particularly well-suited for NP search
problems [22] due to their efficiently-computable test of whether a given search state
is a solution. Quantum computers can apply this test to exponentially many search
states in about the same time as a conventional (“classical”) computer tests just one
and a variety of search algorithms have been proposed [8, 9, 10, 11, 27, 26, 30, 49].
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However, extracting a definite answer from this simultaneous evaluation appears to
still give an exponentially growing search cost in the worst case [4].

For general NP searches, amplitude amplification [27], using a test of whether a
search state is a solution, quadratically improves performance of heuristics consisting
of many independent trials [9]. This is the best possible improvement for “unstruc-
tured” quantum methods, i.e., those using only such a test [4]. Moreover, this tech-
nique does not apply to more complex heuristics, e.g., those involving backtracking,
tabu lists, parameters adjusted based on unsuccessful trials, cached nogoods or other
forms of learning, abstraction or extensive preprocessing. Such heuristics often pro-
vide the best known performance, at least on average, for a variety of combinatorial
searches. A focus on typical behavior of large problems is important because often
the worst cases are far harder than most instances encountered in practice.

Thus, as a practical matter, there remain the questions of whether using problem
structure in quantum algorithms can give more than quadratic improvement for the
heuristics consisting of independent trials, any improvement at all for other types of
heuristics, and less than exponential cost for at least some typical problems arising in
practice. As one example, further improvement is possible for a quantum algorithm
using detailed information on the distance of search states to solutions [28], but in
practice, such information is not readily available for most searches.

Addressing these questions requires developing algorithms using problem struc-
ture and determining their behavior for large problems. As with classical heuristics,
such algorithms are often difficult to analyze theoretically due to complicated depen-
dencies among successive search choices. Thus one is often forced to use empirical
evaluation with a sample of problems. While quite common for evaluating classi-
cal heuristics, this approach is limited to small problems for quantum algorithms on
current machines due to the exponential increase in time and memory required for
the classical simulation. Another approach, applied in this paper, evaluates average
behavior over a simple ensemble of problems. Such ensemble-based analyses provide
insight into typical behavior for large problems [51].

An extreme case is single-step quantum search, i.e., algorithms using only a single
evaluation of structure associated with a problem. Single-step search is very effec-
tive for highly constrained problems [31], outperforming both unstructured quantum
search and classical heuristics in these cases. Can the technique used for highly con-
strained problems be extended to the more challenging case of hard search problems
with an intermediate number of constraints [12, 33]? Conversely, to what extent does
the restriction to a single step limit the extent to which the capabilities of quantum
computers can be used?

Single-step search is particularly well-suited for an ensemble-based analysis, since
it avoids the dependencies found in multistep quantum algorithms or classical heuris-
tics. Furthermore, single-step methods require far less coherence time than the un-
structured algorithm with its exponentially many steps, and hence should be easier
to implement. This is because maintaining coherence over many computational steps
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is difficult [38, 50, 29, 40]. While this difficulty is unlikely to be a fundamental limi-
tation [6, 46, 37] and small quantum computations have been implemented [14, 13],
algorithms that minimize the required coherence time simplify hardware implemen-
tation.

This paper gives an ensemble analysis for a single-step algorithm using the number
of conflicts in each search state. We evaluate the asymptotic average scaling behavior
directly, rather than relying on simulations. This result allows optimizing the algo-
rithm, and also demonstrates a general technique for studying the average behavior
of quantum search algorithms. We compare the asymptotic predictions to evaluations
of small cases accessible to simulation, showing good correspondence even for small
problems.

In the remainder of this paper, we first summarize the NP-complete satisfiability
search problem and then describe a class of one-step quantum algorithms for it. This
class includes both the previous unstructured and highly constrained methods as
special cases. We identify the best performing algorithms for satisfiability problems
with differing degrees of constraint in the following two sections. We then present
some additional behaviors of the algorithm and briefly consider extensions to more
complex algorithms suggested by these results. Details of the derivation are in the
appendices.

As a note on notation, to compare the growth rates of various functions we use [25]
f = O (g) to indicate that f grows no faster than g as a function of n when n→ ∞.
Conversely, f = Ω (g) means f grows at least as fast as g, and f = Θ (g) means both
functions grow at the same rate.

2 Satisfiability

Satisfiability (SAT) is a combinatorial search problem [22] consisting of a logical
propositional formula in n variables V1, . . . , Vn and the requirement to find a value
(true or false) for each variable that makes the formula true. This problem has
N = 2n assignments. For k-SAT, the formula consists of a conjunction of clauses
and each clause is a disjunction of k variables, any of which may be negated. For
k ≥ 3 these problems are NP-complete. A clause with k variables is false for exactly
one assignment to those variables, and true for the other 2k − 1 choices. An example
of such a clause for k = 3, with the third variable negated, is V1 OR V2 OR (NOT
V3), which is false for {V1 = false, V2 = false, V3 = true}. Since the formula is a
conjunction of clauses, a solution must satisfy every clause. We say an assignment
conflicts with a clause when the values the assignment gives to the variables in the
clause make the clause false. For example, in a four variable problem, the assignment

{V1 = false, V2 = false, V3 = true, V4 = true}
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conflicts with the k = 3 clause given above, while

{V1 = false, V2 = false, V3 = false, V4 = true}

does not. Thus each clause is a constraint that adds one conflict to all assignments
that conflict with it. The number of distinct clauses m is then the number of con-
straints in the problem.

The assignments for SAT can also be viewed as bit-strings with the correspon-
dence that the ith bit is 0 or 1 according to whether Vi is assigned the value false or
true, respectively. In turn, these bit-strings are the binary representation of integers,
ranging from 0 to 2n − 1. For definiteness, we arbitrarily order the bits so the values
of V1 and Vn correspond, respectively, to the least and most significant bits of the
integer. For example, the assignment

{V1 = false, V2 = false, V3 = true, V4 = false}

corresponds to the integer whose binary representation is 0100, i.e., the number 4.
For bit-strings r and s, let |s| be the number of 1-bits in s and r ∧ s the bitwise

AND operation on r and s. Thus |r ∧ s| counts the number of 1-bits both assignments
have in common. We also use d(r, s) as the Hamming distance between r and s, i.e.,
the number of positions at which they have different values. These quantities are
related by

d(r, s) = |r| + |s| − 2|r ∧ s| (1)

Let c(s) be the number of conflicts for assignment s in a given SAT problem.
An example 1-SAT problem with n = 2 is the propositional formula (NOT V1)

AND (NOT V2). This problem has a unique solution: {V1 = false, V2 = false},
an assignment with the bit representation 00. The remaining assignments for this
problem have bit representations 01, 10, and 11.

Theoretically, search algorithms are often evaluated for the worst possible case.
However, in practice, search problems are often found to be considerably easier than
suggested by these worst case analyses [33]. This observation leads to examining
the typical behavior of search algorithms with respect to a specified ensemble of
problems, i.e., a class of problems and a probability for each to occur. A useful
ensemble is random k-SAT, specified by the number of variables n, the size of the
clauses k and the number of distinct clauses m. A problem instance is created by
randomly selecting m distinct clauses from the set of all possible clauses [41]. When
n is large, the typical behavior of random k-SAT is determined by µ = m/n, the ratio
of clauses to variables. In particular, for each k there is a threshold value µcrit on µ
below which most random k-SAT problems are soluble and above which most have
no solutions [15, 44]. For k = 3, this value is approximately µcrit = 4.2.

The quantum searches considered here are incomplete methods, i.e., they can find
a solution if one exists but can never guarantee no solution exists. For studying such
algorithms, the ensembles would ideally contain only instances with a solution. For
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example, we could consider the ensemble of random soluble k-SAT, in which each
instance with at least one solution is equally likely to appear. Unfortunately, this
ensemble does not have a simple expression for the number of problems as required
for the analytic performance evaluation given below. Instead, for µ < µcrit, most
random problems indeed have a solution so random k-SAT is useful for studying
incomplete search methods for underconstrained problems.

Randomly selected overconstrained problems usually have no solutions so random
SAT is not a useful ensemble when µ > µcrit. An alternative with simple analytic
properties is the ensemble with a prespecified solution. In this case, a particular as-
signment is selected to be a solution. Then the m clauses are selected from among
those that do not conflict with the prespecified solution. Compared to random se-
lection among soluble problems, using a prespecified solution is more likely to pick
problems with many solutions, resulting in somewhat easier search problems, on av-
erage.

Each clause in a k-SAT formula conflicts with exactly one of the 2k possible
assignments for the variables that appear in the clause. Thus the average number
of conflicts in an assignment is cavg = m/2k. While this average is the same for all
SAT problems with given m and k, the variance in the number of conflicts varies from
problem to problem. As described in Appendix A, the the variance for random k-SAT
is cavg(1 − 2−k). Thus when m ≫ 1, the relative deviation decreases as O (1/

√
m)

and hence the number of conflicts in most assignments is very close to the average.
For random k-SAT, the expected number of solutions is [51]

〈S〉 = 2n(1 − 2−k)m = 2n exp(µn log(1 − 2−k)) (2)

3 Quantum Search Algorithms

Quantum computers use physical devices whose full quantum state can be controlled.
For example [19], an atom in its ground state could represent a bit set to 0, and
an excited state for 1. The atom can be switched between these states and also be
placed in a uniquely quantum mechanical superposition of these values, which can be

denoted as a vector
(
ψ0

ψ1

)

, with a component (called an amplitude) for each of the

corresponding classical states for the system. These amplitudes are complex numbers.
A quantum machine with n quantum bits exists in a superposition of the 2n

classical states for n bits. The amplitudes have a physical interpretation: when
the computer’s state is measured, the superposition randomly changes to one of the
classical states with |ψs|2 being the probability to obtain the state s. Thus amplitudes
satisfy the normalization condition

∑

s |ψs|2 = 1. This measurement operation is used
to obtain definite results from a quantum computation.

Quantum algorithms manipulate the amplitudes in a superposition. Because
quantum mechanics is linear and the normalization condition must always be sat-
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isfied, these operations are limited to unitary linear operators. That is, a state vector
ψ can only change to a new vector ψ′ related to the original one by a unitary trans-
formation, i.e., ψ′ = Uψ where U is a unitary matrix1 of dimension 2n × 2n. In spite
of the exponential size of the matrix, in many cases the operation can be performed
in a time that grows only as a polynomial in n by quantum computers [8, 35, 34].
Importantly, the quantum computer does not explicitly form, or store, the matrix U .
Rather it performs a series of elementary operations whose net effect is to produce the
new state vector ψ′. The components of the new vector are not directly accessible:
rather they determine the probabilities of obtaining various results when the state is
measured.

Search algorithms for SAT problems use efficiently computed properties of indi-
vidual assignments, e.g., a test of whether a given assignment is a solution. With
quantum computers, these properties can be evaluated simultaneously for all assign-
ments. In this paper we focus on algorithms that make use of this simultaneous
evaluation just once.

3.1 Single-Step Search

Single-step methods could be implemented in a variety of ways. One simple approach
starts with an equal superposition of all the assignments, adjusts the phases based on
the number of conflicts in each of the assignments, and then mixes the amplitudes from
different assignments. This algorithm requires only a single testing of the assignments,
corresponding to a single classical search step.

For a k-SAT problem with n variables and m clauses, the algorithm takes the fol-
lowing form. The initial state has amplitude ψs = 2−n/2 for each of the 2n assignments
s, and the final state vector is φ = UPψ where the matrices P and U are defined
as follows. The matrix P is diagonal with Pss = pc(s) depending on the number of
conflicts c in the assignment s, ranging from 0 to m. Because the number of conflicts
in a given assignment is efficiently computable for SAT problems, these phase choices
can be efficiently implemented [34].

The mixing matrix is defined in terms of two simpler operations: U = WTW .
The Walsh transform W has entries

Wrs = 2−n/2(−1)|r∧s| (3)

for assignments r and s and can be implemented efficiently [8, 27]. The matrix T
is diagonal with elements Trr = t|r| depending only on the number of 1-bits in each
assignment, ranging from 0 to n. These definitions for W and T lead to a mixing
matrix U whose elements Urs = ud(r,s) depend only on the Hamming distance between

1A complex matrix U is unitary when U †U = I, where U † is the transpose of U with all elements
changed to their complex conjugates. Examples include permutations, rotations and multiplication
by phases (complex numbers whose magnitude is one).
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the assignments r and s, with [32]

ud = 2−n
d∑

z=0

n−d+z∑

h=z

(−1)z

(

d

z

)(

n− d

h− z

)

th (4)

Unlike previous algorithms, where phase choices are often just ±1, this algorithm
potentially uses a different phase choice for each number of conflicts and each number
of 1-bits in an assignment.

This procedure defines a class of algorithms. A particular choice of the phases
pc and th completes the algorithm’s specification. For example, the choices p0 = 1,
t0 = 1 and the remaining phases set to −1 gives a single step of the unstructured
search algorithm [27]. Another example is pc = ic and th = ih, appropriate for
maximally constrained 1-SAT problems [31].

3.2 Selecting Phase Values

To determine appropriate choices for pc and th, we can evaluate the algorithm, via
classical simulation, for samples of random SAT problems with small n using a variety
of choices for pc and th. Numerical optimization of average performance with respect
to these choices then identifies values giving high performance for random k-SAT.
These optimal values show log pc and log th vary nearly linearly with c and h over
most of their range. This observation suggests that restricting consideration to such
linear variation is likely to give a reasonable idea of the best such algorithms can
perform, while simplifying the analysis.

To further understand why such choices are appropriate for large k-SAT problems,
note that the number of assignments with h 1-bits is

(
n
h

)

. So for large n, most have h

close to n/2. Similarly, for the phases pc, provided the number of clauses is large, i.e.,
m ≫ 1, most assignments have nearly the average number of conflicts cavg = m/2k.
For large problems, we can expect the behavior of the phases near the average values
will be the only important choices influencing the algorithm’s behavior. Thus we
consider an expansion around the dominant values of the form

th = exp

(

iπ

(

τ (0) + τ (1)
(

h− n

2

)

+ τ (2)
(

h− n

2

)2

+ . . .

))

(5)

where the τ (i) are constants, and similarly for pc. The first term in such an expansion
just gives a constant overall phase factor for the amplitudes, which has no effect on
the probability to find a solution, and so can arbitrarily be set equal to zero. The
next term in the expansion, giving linear variation in phases, affects the solution
probability. For assignments close to the average, this linear variation dominates the
behavior.

From both the empirical observations on optimal phase values for small problems
and the increasing concentration of values for h and c and n increases, we are led
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to consider a linear variation in the phase values. If, in spite of these motivating
arguments, including some nonlinearity in the phase values improves the leading
asymptotic behavior, a restriction to linear variation would still provide a lower bound
on the possible performance of single-step algorithms. Thus we restrict consideration
to phase choices described by two constants ρ and τ with

pc = eiπρ(c−cavg) (6)

and
th = eiπτ(h−n/2) (7)

The terms cavg and n/2 in these expressions just give an irrelevant overall phase to the
amplitudes, but slightly simplify the analysis. As shown in Appendix B this choice
for th gives

ud = cosn
(
πτ

2

)

tand
(
πτ

2

)

(−i)d (8)

For example, when τ = 1/2, ud = 2−n/2(−i)d as used for solving 1-SAT problems [31].
Because c and h are integers, it is sufficient to consider values for ρ and τ in

the range −1 to 1. Since changing the sign of both ρ and τ simply conjugates the
amplitudes, we can further restrict consideration to τ in the range 0 to 1.

Completing the algorithm requires particular choices for ρ and τ . The asymptotic
analysis given below identifies optimal choices for these parameters based on the
values of k and m/n.

3.3 Asymptotic Behavior for Random k-SAT

When the phase choices are particularly simple, as with the unstructured search al-
gorithm [27], or the problem has a simple relation between Hamming distance from
a solution and number of conflicts, as in 1-SAT problems [31], the probability to ob-
tain a solution, Psoln, has a simple analytic form. In more general cases, the solution
probability can only be evaluated with a classical simulation, limiting the study of
more complex algorithms or problem structures to relatively small sizes. A third ap-
proach to evaluating Psoln is to average over an ensemble of problems. This approach,
developed in Appendix C, uses the structure of search problem ensembles to analyze
the asymptotic behavior of the algorithm, and hence to select the best values for ρ
and τ . Specifically, for random k-SAT, the average of Psoln scales as

〈Psoln〉 ∝ e−nA(k,µ,ρ,τ) (9)

where the decay rate A can be evaluated numerically for given choices of k, µ, ρ and
τ .

Given the ability to numerically compute A, we can then optimize the performance
of the algorithm, measured in terms of the average probability to find a solution, i.e.,
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minimizing A. This numerical optimization gives values for ρ and τ appropriate to
random k-SAT with a given value of µ.

In practice, implementation limitations will introduce some errors in the parame-
ters. Fortunately, the precision required is not particularly strict because the param-
eters appear in the exponents. In particular, an error of ǫ in ρ or τ will give error
O (ǫ2) in the exponent. Thus only a square root precision in the implementation of
the values of ρ and τ is required. While by no means trivial, this shows the algorithm
does not require exponentially precise parameter values to achieve the scaling.

As an example, for the weakly constrained case in §5, such errors in parameter
values gives exponential decay of exp(O (ǫ2)m). To maintain Θ (1) behavior, ǫ must
be small enough that ǫ2m = Θ (1), i.e., the precision requirement is ǫ = O (1/

√
m).

The precise scaling due to errors depends on the size of the second derivatives of
A around the optimal ρ and τ values. For k = 3, a root-mean-square combined
error of ǫ in ρ and τ introduces at worst a factor exp(−3.18ǫ2m). This is greater
than 1/2 provided ǫ < 0.46/

√
m. For example, weakly constrained problems with

m = 2
√
n satisfy this requirement for a 10,000 variable problem provided ǫ < 0.033,

which allows, roughly, a 10% error in the parameter values. Similarly, form≫ n, such
parameter errors give exponential decay of exp(O (ǫ2)n), so the precision requirement
is ǫ = O (1/

√
n).

3.4 Unstructured Search

As a point of comparison with the one-step algorithm based on the number of conflicts
in assignments, the unstructured search algorithm [27] applies amplitude amplification
to random selection, giving a quadratic speedup after an exponentially large number
of steps. Specifically, for a problem with n variables and S solutions, the probability

in solutions after j steps is [8] sin2((2j + 1)θ) with sin(θ) =
√

S/2n.

From Eq. (2), for random k-SAT with fixed µ the fraction of assignments that are
solutions, S/2n, is exponentially small, and θ ≈ eµn log(1−2−k)/2. Thus for any fixed

number of steps, j, the scaling of 〈Psoln〉 is Θ
(

eµn log(1−2−k)
)

, the same as random

selection. This scaling is independent of the number of steps (provided j is constant).
When j increases exponentially with n, specifically j = Θ (θ−1), then the probability
of a solution with this unstructured algorithm is Θ (1).

More generally, given a classical or quantum method consisting of independent
trials, each of which produces a solution with probability p, amplitude amplification
produces the quadratic improvement [9] with sin(θ) =

√
p. Thus the cost is Θ

(

1/
√
p
)

times the cost for a single trial. This general result means quantum computers can
improve on many classical methods. However this quadratic improvement is also the
best possible for quantum methods based only on testing whether assignments are
solutions [4]. Moreover, some classical heuristics use information from unsuccessful
trials to improve future ones, i.e., trials are not independent. Others spend most of
their effort in preprocessing followed by rapid identification of the solution. In these
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Figure 1: Smallest exponential decay rate A for 〈Psoln〉 as a function of µ = m/n for random
3-SAT. For comparison, the gray curve shows the scaling for random selection. The points
indicate empirical estimates of the decay rate for the fraction of soluble problems, a lower
bound on the decay rate for Psoln. For large µ, these estimates are difficult to obtain. A
weaker lower bound, shown as the upper edge of the filled region, is given by the Markov
bound using expected number of solutions for random 3-SAT.

cases, even this quadratic improvement does not apply.

4 Solving Hard Problems

For random k-SAT, the hardest problem instances are concentrated near a threshold
value of µ = m/n depending on k. For 3-SAT, this threshold is at µ = 4.2 [15].
Thus we examine the behavior of the single step algorithm when µ is constant. In
this case, the minimum decay rate A is shown in Fig. 1. The corresponding best
choices for ρ and τ are shown in Fig. 2. Note that the τ values are less than 1/2
which, from Eq. (8), means the ud matrix elements are largest for small d, hence
emphasizing the mixing at distances less than n/2 allowing the algorithm to exploit
the clustering of assignments with relatively few conflicts in k-SAT. These values,
obtained by numerical minimization of A with respect to ρ and τ , could be local
minima. If so, other choices for ρ and τ would give even better performance than the
values reported here. For comparison, Fig. 1 shows the scaling of random selection,
〈S〉 /2n, where S is the number of solutions, using Eq. (2).

An important observation from these results is even the best use of problem struc-
ture based only on the number of conflicts cannot remove the exponential search cost
with a single step algorithm of the type described here.

The unstructured search algorithm [27] consists of applying amplitude amplifica-
tion to random selection. Thus a second observation from Fig. 1 is, for µ less than
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random prespecified
µ τ ρ A τ ρ A
1 0.238 0.348 0.027 0.239 0.344 0.026
2 0.260 0.291 0.094 0.262 0.286 0.088
3 0.275 0.249 0.181 0.278 0.242 0.162
4 0.286 0.218 0.280 0.293 0.211 0.231
5 0.295 0.195 0.386 0.304 0.188 0.281
6 0.303 0.176 0.497 0.311 0.172 0.309

Table 1: Best parameter values and scaling behavior for single-step search of 3-SAT prob-
lems for random and prespecified solution ensembles.

1 2 3 4 5 6 7
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0.35

0.4

p
a
r
a
m
e
t
e
r

Figure 2: Optimal choices of τ (black) and ρ (gray) as a function of µ = m/n. Solid curves
are for the random 3-SAT ensemble and the dashed curves are for the ensemble with a
prespecified solution.

about 3.5 (where A < − 1
2n

log(〈S〉 /2n)), a single step with the optimal choices of
ρ and τ gives exponentially better performance, on average, than the unstructured
search algorithm, which also requires coherence extending over multiple steps. Thus
this analysis demonstrates how the structure of search ensembles can be exploited
to improve quantum search performance and simultaneously reduce the required co-
herence time. Moreover, by giving the actual asymptotic scaling this result is more
definitive than prior empirical studies of algorithms based on classical simulations of
small problems [30].

Furthermore, the one-step algorithm can be combined with amplitude amplifica-
tion [9] to achieve an additional quadratic improvement, corresponding to dividing
the decay rate by a factor of 2 for soluble problems. This combination requires ex-
tending coherence time beyond just one step, but because the reduced decay rate is
then below that of the unstructured algorithm over the whole range of µ, not only is
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performance better but the coherence time is still less than that of the unstructured
algorithm. Thus this new algorithm improves on the unstructured one, on average,
over the whole range of µ.

As another comparison, the cost of a good classical heuristic method is empirically
observed [15] to scale as 2n/19.5 for random 3-SAT problems near µ = 4.2, correspond-
ing to A equal to log(2)/19.5 = 0.036. This scaling is better than the single-step
quantum algorithm, which has A = 0.30 for µ = 4.2. Even combined with amplitude
amplification, reducing the decay rate to 0.15, the classical heuristic remains better.

Beyond µ = 4.2, the fraction of soluble problems, Psoluble, drops to zero as n
increases for random 3-SAT. The performance of this algorithm for soluble problems
is given instead by 〈Psoln〉 /Psoluble. Thus if Psoluble scales as e−ωn, the algorithm’s
decay rate for random soluble problems is A − ω, and A is always at least as large
as ω. Unfortunately, the random k-SAT ensemble does not have a simple expression
for Psoluble, or even just its leading exponential scaling rate ω, precluding an exact
evaluation of the behavior with respect to overconstrained soluble problems.

One approach to estimate this behavior uses empirical classical search to evaluate
Psoluble for a range of problem sizes for a given value of µ. The behavior of these
values as a function of n then estimates ω. For instance, a study [44] using samples
of 104 problems for n from 50 to 250 shows close to exponential decrease of Psoluble for
µ values somewhat above the transition. The resulting estimates of the actual decay
rates for Psoluble are 0.011, 0.025 and 0.045 for µ equal to 4.5, 4.7 and 4.9, respectively.
These values are considerably smaller than the value of A for the one-step algorithm
for these values of µ, as shown in Fig. 1. Nevertheless, the increase in ω accounts for
most of the increase in A over this range of µ values, i.e., the soluble problems are
not continuing to get much harder for this one-step algorithm above the transition.

This empirical technique is increasingly difficult to apply as µ increases due to
the rapidly decreasing fraction of soluble problems in the ensemble [44]. For larger µ
we can instead obtain a lower bound on the decay rate for Psoluble using the Markov
inequality: Psoluble ≤ 〈S〉. That is, this analysis averages over all problems in the
ensemble, so 〈Psoln〉 ≤ Psoluble. Thus, 〈Psoln〉 ≤ Psoluble ≤ 〈S〉, corresponding to
A ≥ ω ≥ − 1

n
log 〈S〉. When µ > − log(2)/ log(1 − 2−k) (equal to 5.19 for k = 3),

Eq. (2) gives 〈S〉 → 0 as n → ∞ so this becomes a nontrivial bound as shown
in Fig. 1. However, as a lower bound, this inequality cannot be used to determine
whether overconstrained soluble problems indeed become easier to solve with the
one-step algorithm as µ increases.

An alternate approach uses an ensemble where all problems are soluble and that
is analytically simple, e.g., the ensemble with a prespecified solution described in §2.
The evaluation of 〈Psoln〉 proceeds as described in Appendix C, with the addition of
needing to keep track of the distances of the assignments r, s and s′ to the prespecified
solution (which affects the available number of clauses that can be selected to produce
the required numbers of conflicts). The resulting optimal behavior is shown in Fig. 3,
with the corresponding best values for ρ and τ given in Fig. 2. The decay rate
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Figure 3: Smallest exponential decay rate A for 〈Psoln〉 as a function of µ = m/n for 3-SAT
with prespecified solution. For comparison, the gray curve shows the scaling for random
selection.

decreases as µ increases past 7, i.e., problems become easier as the number of clauses
increases. Presumably a similar behavior would be seen for the soluble cases in
the random ensemble as well because these two ensembles are fairly similar when
µ is large. This observation of problems becoming easier as µ increases past the
transtion corresponds to behavior seen with many classical methods. On the other
hand, random selection and the unstructured algorithm do not improve as µ increases:
they do not take advantage of the structure of highly constrained problems.

Since classical simulations of quantum algorithms are limited to few variables, this
asymptotic analysis can also indicate the extent to which these simulations match the
asymptotic behavior. An example is Fig. 4 showing that the behavior matches that
from Table 1 for µ = 2 and µ = 4 even with a small number of variables. This
suggests the limited sizes accessible with classical simulation may nevertheless be
sufficient to indicate asymptotic behavior, as is also seen in some studies of classical
heuristics [15].

5 Solving Weakly and Highly Constrained Prob-

lems

The behavior of the minimum decay rate shown in Fig. 1 and 3 suggests that A
decreases toward zero for small and large values of µ for soluble problems. This is
confirmed in Fig. 5 which shows the behavior of both ensembles over a larger range
of values.

As µ → 0, the figure shows the minimum decay rate is nearly a straight line with
slope 2 on this log-log plot, indicating A = Θ (µ2) in this limit. With this limiting
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Figure 4: Optimal asymptotic behavior of 〈Psoln〉 for 3-SAT with µ = 2 (gray) and 4 (black)
on a log-scale vs. n. The points show the exact values of 〈Psoln〉.
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Figure 5: Limiting behaviors, on a log-log plot, for exponential decay rate A. Behavior
for random 3-SAT (black curve, up to µ = 6), prespecified solution 3-SAT (gray curve, for
µ between 0.1 and 40) and the upper bound based on probability to find the prespecified
solution (black curve, for µ ≥ 20). For comparison the dashed lines show the limiting
behaviors for small and large µ, which correspond very closely to the exact values for
µ < 0.3 and µ > 1000.

behavior 〈Psoln〉 ∝ e−An with An = Θ (m2/n). In particular, if m grows no faster
than

√
n, 〈Psoln〉 will remain Θ (1) as n increases.

Similarly, as µ → ∞, Fig. 5 shows A decreasing in a straight line with slope −1,
indicating A = Θ (1/µ). Correspondingly, An = Θ (n2/m). So if m grows at least
as fast as n2, the probability to find a solution, on average, will remain Θ (1) as n
increases.
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Appendix C confirms these observations. While such weakly and highly con-
strained problems are fairly easy, the single-step algorithm outperforms classical
heuristic methods for these cases, which require evaluating Θ (n) assignments on
average.

n m 〈Psoln〉 〈S〉 /2n

4 4 0.908 0.569
9 6 0.897 0.447
16 8 0.894 0.343
25 10 0.893 0.263
36 12 0.892 0.201

Table 2: Scaling of 〈Psoln〉 from Eq. (23) and 〈S〉 /2n for weakly constrained random 3-SAT
with m = 2

√
n.

As an example, when k = 3, A = αweakµ
2 with αweak = 0.029405, shown as

the dashed line in Fig. 5 for the µ → 0 limit. For µ = 2/
√
n, Table 2 shows the

approach to the asymptotic limit e−An = exp(−4αweak) = 0.889. This behavior
compares with the still rapid decrease in expected fraction of solutions which scales
as 〈S〉 /2n = (1 − 2−k)m or (7/8)m for k = 3. Thus the unstructured search scaling
for this example is (7/8)

√
n which still decreases faster than polynomially.

At the other extreme, Appendix C.4 shows that as µ→ ∞, A ∼ (2k−1)3π2/(16k2µ),
shown in Fig. 5. Hence, when m = Ω (n2), we have Θ (1) performance. This anal-
ysis also improves on previous work based on a lower bound estimate [32] showing
Θ (1) behavior for highly constrained problems, but only when m grew faster than a
particular multiple of n2 (equal to 17.3 for k = 3).

6 Problem Search Costs

The ensemble average leading to Eq. (9) provides a direct analysis of 〈Psoln〉. This
technique generalizes to quantities involving positive integer powers of Psoln, such as
the variance discussed in §7.1. Unfortunately the technique does not apply to quanti-
ties such as the expected solution cost which, for any particular problem, is 1/Psoln for

independent trials, or Θ
(

1/
√
Psoln

)

when combined with amplitude amplification [9].

Thus an important question is the extent to which an analysis based on 〈Psoln〉 pro-
vides insight into actual search costs, and hence is useful in selecting appropriate
phase parameters.

We can approach this question through an empirical evaluation of a sample of
problems. However, for characterizing the typical behavior of problems, it is impor-
tant to keep in mind that ensembles with even one problem with no solutions have
〈1/Psoln〉 = ∞. Even restricting consideration just to soluble problems, this ensemble
average can be dominated by the exceptionally high costs of just a few instances,
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does not usefully characterize typical search behaviors. A more useful quantity is the
median of 1/Psoln, whose properties are even more difficult to determine theoretically
than the mean. Instead Table 3 compares these quantities based on classical sim-
ulation. We see that 1

〈Psoln〉 underestimates the median search cost, but is a better

estimate than 〈1/Psoln〉 even when restricted to soluble problems.

µ = 2 µ = 4

n 1
〈Psoln〉 median

(
1

Psoln

) 〈
1

Psoln

〉
1

〈Psoln〉 median
(

1
Psoln

) 〈
1

Psoln

〉

10 2.6 2.6 2.8 15 17 25
20 6.6 6.8 7.4 228 352 705

Table 3: Comparison of search cost estimates based on 1000 soluble random 3-SAT prob-
lems using optimal parameter values from Table 1.

More generally we can examine the full distribution of problem search costs. For
instance, Fig. 6 compares the unstructured method with the combination of amplitude
amplification with the one-step algorithm. This shows a reduction in cost from using
problem structure, corresponding with the above discussion of the relative costs,
in conjunction with Fig. 1, based on the analysis of 〈Psoln〉. The behavior of the
unstructured search depends only on the number of solutions, leading to the vertical
groups of points in the figure. By contrast, the structured method shows considerable
variation in costs even among problems with the same number of solutions.

The full distribution of costs available from empirical evaluation of a sample of
random k-SAT problems can address questions beyond those possible by an analysis
of average behavior. For example, to what extent do classical and quantum methods
find the same problems particularly difficult? Fig. 7 compares the expected costs
using the single-step quantum search with a classical heuristic when combined with
amplitude amplification. Specifically, the expected quantum search cost for a single
instance is given by 1/Psoln. When used with amplitude amplification, the expected

cost is π
4

√

1/Psoln provided Psoln is known, and otherwise is up to 4 times larger [8].
For a classical comparison, each problem was solved repeatedly with the GSAT local
search method [45] using a limit of 2n steps for each trial: if a solution was not found
after that many steps, a new trial was started. Classically, the expected search cost
is the ratio of the total number of GSAT steps to the number of solutions found by
these repeated searches. But when used with amplitude amplification, trials cannot
end early just because a solution is found, instead they must run to completion (i.e.,
the full 2n steps in this case). While this makes little difference for large problems,
where most of the cost is due to the many unsuccessful trials typically required before
a successful trial, it does limit GSAT’s benefit from amplitude amplification for the
smaller problems treated here. The cost of GSAT with amplitude amplification is
π
4
2n
√

1/Psoln where here Psoln is the probability a GSAT trial finds a solution and the
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Figure 6: Comparison of search costs for the one-step quantum method combined with
amplitude amplification and unstructured amplitude amplification. Each point shows the
expected search cost for a single problem instance of random 3-SAT with n = 20 and
m = 80, assuming the number of solutions and Psoln are known a priori. In practice these
values will not be known a priori, increasing the costs by up to a factor of 4 [8].

factor 2n counts the number of steps for each trial. The one-step method exploits
amplitude amplification more effectively than GSAT, giving somewhat smaller costs
shown in Fig. 7.

Without combining with amplitude amplification, the absolute number of steps
required for the one-step quantum method is larger than the classical heuristic for
these problems. This contrasts with sufficiently weakly or highly constrained problems
where the quantum method requires Θ (1) steps while the classical search uses Θ (n).

The figure also shows a general correlation between search difficulty for the two
methods, largely reflecting the variation in number of solutions, i.e., both methods
tend to have higher costs for problems with fewer solutions. Examining just problems
with the same number of solutions shows little correlation between the two methods.
This indicates different aspects of problems (beyond their number of solutions) ac-
count for particularly hard cases for the quantum and classical methods. Identifying
these different aspects, and hence classes of problems for which quantum methods
may be particularly well suited, is an interesting direction for future work. Further-
more, this observation suggests a combination of techniques may be a particularly
robust approach to combinatorial search, as has been studied for combinations of
classical methods [16, 36, 24].

As a final note, the cost measure used here is in terms of number of steps, with a
step corresponding to the evaluation of the conflicts in an assignment. This measure
is commonly used for general comparisons among search algorithms, especially their
scaling behavior. However one should also keep in mind the relation among these
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Figure 7: Comparison of search costs for the one-step quantum method and GSAT, both
combined with amplitude amplification, for random 3-SAT with n = 20 and m = 80 using
the same problems as in Fig. 6. Each point shows the expected search cost for a single
problem instance assuming the probability to find a solution on a single trial of each method
is known. In practice these values will not be known a priori, increasing the costs by up to
a factor of 4 [8]. Those points below the line use more steps for GSAT than the structured
quantum method.

algorithmic steps, more elementary computational operations implemented in hard-
ware and actual computational time [32]. This relation depends on the details of the
hardware, overhead of any necessary error correction, the choice of data structures
and compiler optimizations. For quantum computers, these details are not yet clear
but the number of elementary operations to count the number of conflicts in an as-
signment will be roughly the same for quantum and classical machines. The ratio of
actual times required for each step on quantum and classical machines will instead
be mainly determined by the technologically feasible clock rates.

In summary, the analysis based on 〈Psoln〉 gives a reasonable guide to the typical
search costs, confirming the improvement of the new algorithm over unstructured
search (both in performance and a reduction in the required coherence time). Al-
though comparable with classical heuristics for hard problems, it remains to be seen
how the behavior seen here for n = 20 scales to larger problems. In particular,
n = 20 is small enough to be relatively easy for GSAT, with solutions typically found
in just a few trials thus limiting the extent to which it can benefit from amplitude
amplification.
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7 Extensions

This section describes extensions of the analysis: to compute the variance in Psoln

among problem instances and the asymptotic behavior of algorithms with more than
one step. We then discuss how the analysis can be applied to algorithms incorporating
additional problem structure, specifically the conflicts in partial assignments.

7.1 Variance

The analysis described above gave the asymptotic behavior of the expected value of
Psoln for random k-SAT. The technique can also be applied to determine 〈P 2

soln〉 and
hence the variance of these values among different problems. The result has the same
form as the average, i.e., 〈P 2

soln〉 ∝ e−nB(k,µ,ρ,τ) though the analysis is somewhat more
complicated. Numerical evaluation for a variety of cases gives B slightly smaller than
2A, where A is the decay rate for 〈Psoln〉. Thus the scaling of the variance, 〈P 2

soln〉 −
〈Psoln〉2 is dominated by e−nB and the standard deviation scales as e−nB/2, hence
decreasing slightly slower than the average. This observation leads to a relatively large
spread in the distribution of Psoln values among different problems, corresponding to
the large variations seen in §6.

In addition to indicating how close to the average instances are likely to be, evalu-
ating the variance could be used as an alternate basis for selecting the phase parame-
ters, namely to minimize the variance even at the expense of somewhat worse average
performance. Algorithms with different tradeoffs between variance and average could
then be usefully combined in a portfolio approach [36, 24].

7.2 Multiple Steps

The techniques used in Appendix C extend to algorithms using more than one step,
provided the number of steps remains fixed as n increases. However the detailed
analysis becomes more complicated since j steps requires the relationships among
2j + 1 assignments, generalizing Fig. 12 in Appendix Cto 22j variable groups. Thus
computational time required to evaluate the exact asymptotic behavior grows very
rapidly with j, limiting the practical utility of this technique to relatively small values
of j. For larger j, and in particular when j increases with n, other techniques will
be necessary. Nevertheless, the exact behavior as n → ∞ for a few small values of j
may suggest useful directions for designing improved algorithms.

Multiple steps also introduce additional parameters: different values of ρ and τ
can be used for each step. The simplest approach, taking the same values for all
steps, gives only modest reductions in the decay rates compared to a single step.
On the other hand, allowing independent values gives larger reductions but requires
numerical optimization of the decay rate with respect to 2j parameters ρ(h) and τ (h)

for steps h = 1, . . . , j.
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Figure 8: Minimum decay rates for multiple steps as a function of µ for (from top to
bottom) 1 through 5 steps using linear variation in phase parameters with step number.
The curve for the 1-step case is the same as shown in Fig. 1. The points indicate empirical
estimates of the decay rate for Psoluble, a lower bound on the decay rate for Psoln. The upper
edge of the filled region is, in turn, a lower limit on Psoluble given by the Markov bound.

Evaluating optimal parameters for up to 4 steps gives values whose variation is
nearly linear with the step number. In fact, restricting consideration only to param-
eters with linear variation, i.e., of the form ρ(h) = ρA + hρB and τ (h) = τA + hτB gives
a decay rate very close to that achieved when parameters are optimized individually
for each step. This linear form only requires optimizing over the four values ρA, ρB,
τA and τB no matter how many steps are involved.

As an example, for µ = 4 and j = 4 steps the optimal decay rate is numerically
found to be 0.128. Restricting the parameters to vary linearly, gives only a slightly
larger value: 0.129. However, requiring the same values for each step gives a consid-
erably larger decay rate: 0.211. These values compare with A = 0.280 for the 1-step
method given in Table 1.

By comparison, as described in §3.4 the decay rate of the unstructured search
is unchanged by any fixed number of steps: it decreases only when j grows with n,
reaching 0 when the number of steps grows exponentially with n since in that case it
achieves Psoln ≈ 1.

Fig. 8 shows the behavior of the optimal decay rate, restricted to linear variation
in the phase parameters, for various µ values for j from 1 to 5. As with the 1-step
method, a further quadratic improvement is possible by combining these methods
with amplitude amplification, corresponding to dividing these decay rates by 2 for
soluble cases.

As with the discussion of Fig. 1, for µ above the transition point, removing the
portion of the decay due to the insoluble problems shows most of the increase past
the transition is due to the insoluble problems. In fact, the decay rate corresponding
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Figure 9: Scaling of minimum decay rates vs. number of steps, for µ equals 2 (black), 4
(gray) and 6 (dashed).

to random soluble problems reaches a maximum and then decreases in the range of
µ between 4.5 and 4.9, and this point of maximum difficulty for soluble problems
decreases slightly as more steps are considered. This suggests the quantum method
has maximum difficulty for soluble problems close to the transition point, as is the
case for incomplete classical methods. Significantly, this observation indicates the
quantum method is exploiting the underlying problem structure, as with classical
heuristics, in contrast to the unstructured quantum search.

Fig. 9 is an alternate view of the decrease in decay rates as a function of number
of steps. This figure raises the significant question of whether the decay rates ap-
proach zero as j → ∞ for soluble problems, and if so, how rapidly. On the log-log
plot, straight lines correspond to powerlaw behavior, so this figure suggests the decay
rates decrease as a power of the number of steps. Although this range of j is too
small for definite conclusions, using the number of conflicts in assignments may give
high performance, on average, when the number of steps grows only as a power of n.
This would contrast with the exponential growth in j required by the unstructured
algorithm. At any rate, the reduction in decay rate with j shows again that using
conflict information allows using superpositions more effectively than the unstruc-
tured method where, as described in §3.4, the decay rate is not improved by any fixed
value of j.

7.3 Using Structure in Partial Assignments

The algorithm presented above adjusted phases based on the number of conflicts
in each assignment. Classical heuristics often use additional properties to evaluate
search states. For the quantum algorithm, these properties are readily included by
additional phase adjustments.
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As an example, this section considers the enlarged search space of partial assign-
ments, i.e., states in which only some of the variables have assignments, as used in
classical backtrack searches. In many search problems, including SAT, conflicts can
often be recognized before all variables are assigned, immediately pruning all search
states involving extensions to the partial assignment. This additional pruning often
more than compensates for the larger overall number of search states. However, its
effectiveness depends crucially on the order in which variables are assigned and, for
each variable, the order in which each possible value is tried.

One quantum approach for using the information in partial assignments considers
all possible variable orderings simultaneously [30]. This in turn requires superposi-
tions of all 22n sets of variable-value pairs, including sets with multiple values for some
variables, the so-called necessary nogoods [51]. This larger search space can readily
represent more general constraint satisfaction problems, such as variables with dif-
ferent sized domains. Although proposed as a multi-step algorithm, in analogy with
classical backtrack searches that attempt to build a solution by extending partial
assignments, for simplicity we consider here its behavior with a single step, starting
from an initial superposition with equal amplitude for each set.

With this representation of the problem, the goal is finding a set in which each
variable appears exactly once and which has no conflicts with the clauses of the
SAT problem. The simplest approach modifies the phase matrix P of §3.1 so Pss =
pc(s)e

iπσq(s) where q(s) is the number of variables in each set with a unique assigned
value, ranging from 0 to n, and σ is an additional parameter for the algorithm.
Furthermore, to focus on the information available with partial assignments, c(s) is
defined as the number of conflicts among only the uniquely-assigned variables. A
solution is a set with q(s) = n and c(s) = 0.

The asymptotic analysis proceeds as in Appendix C with two modifications. First
an additional factor of 2−n appears in Psoln due to the increased search space size.
Second, the algorithm distinguishes among sets depending not only on the assigned
values but also on the number of uniquely-assigned variables, giving nine groups of
variables instead of the four used in Fig. 12 of Appendix C. With these changes,
the asymptotic analysis proceeds to give 〈Psoln〉 ∝ e−nA where now the decay rate A
depends also on the additional phase parameter σ.

For this algorithm, Fig. 10 shows the minimum decay rate for 〈Psoln〉, and com-
pares it to random selection among complete assignments and the one-step quantum
algorithm on complete assignments of Fig. 1. The resulting behavior is worse than
the complete-assignment algorithm, but by significantly less than the addition of
log(2) = 0.69 that one might expect just based on the increase in search space size by
a factor of 2n. Thus we conclude the information available from partial assignments
helps concentrate amplitudes toward solutions, but not sufficiently to overcome the
handicap of the much larger search space, at least in a single step.

Importantly, the analysis technique introduced here gives a more definitive asymp-
totic characterization of the algorithm than is possible from empirical simulations. In
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Figure 10: Minimum decay rate for a single-step algorithm with partial assignments as a
function of µ (dashed). The solid curve, showing the behavior of the algorithm on complete
assignments, and the gray curve, showing random selection, are the same as shown in Fig. 1.
The points indicate empirical estimates of the decay rate for Psoluble, a lower bound on the
decay rate for Psoln. The upper edge of the filled region is, in turn, a lower limit on Psoluble

given by the Markov bound.

turn, this characterization identifies good parameter choices for the phase adjustments
that would be difficult to estimate from simulations. Moreover, it allows comparing
the benefits of different approaches to using the information available in partial assign-
ment. For example, basing the phase adjustments on the total number of conflicts in
a set of variable-value pairs, including those involving duplicate variables, gives worse
performance than just counting conflicts among uniquely-assigned variables, an ob-
servation not obvious a priori. Similarly, performance is not improved by allowing
the phase adjustments to depend separately on the numbers of doubly-assigned and
unassigned variables, rather than just their sum. On the other hand, generalizing
the matrix T used to form the mixing matrix U in §3.1, so its elements Trr have a
phase adjustment based on the number of duplicate variables in the set r in addition
to the size of the set, gives a slight improvement in performance suggesting a further
study of using the structure in this larger search space may be useful, particularly for
multiple steps.

8 Discussion

We have shown how an analysis based on ensemble averages helps design quantum
search algorithms. The result was evaluated for satisfiability problems in the hard
region as well as the easier weakly and highly constrained cases. Compared to unstruc-
tured search, this gives exponentially better average behavior. Moreover, this perfor-
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mance uses only a single evaluation of the assignment properties rather than the expo-
nentially large number of repeated evaluations required by the unstructured method.
Thus this single-step algorithm requires much less coherence time for the quantum
operations. The algorithm can be combined with amplitude amplification [9], giving
an additional quadratic performance improvement, but then requiring coherence time
extending for the full algorithm rather than just for each trial separately.

Classical heuristics use more problem properties than the algorithm described
here. These properties include the difference between the number of conflicts in an
assignment and those of its neighbors, and the conflicts associated with partial as-
signments. We illustrated how additional phase variation allows incorporating such
information in the quantum algorithm, and how the analyses techniques developed
here can be extended to identify suitable parameters. Thus these techniques can help
evaluate a variety of quantum algorithms that are not easily addressed theoretically
and hence would otherwise require slow classical simulation. This evaluation requires
only that the properties of assignments used by the algorithm and the nature of the
ensemble allow for an explicit determination of the ensemble averages, in analogy
with Eq. (23). Furthermore, in many respects this analysis is simpler than that for
heuristic classical methods. This is because classical searches introduce dependencies
in their path through a search space based on a series of heuristic choices. These
dependencies are difficult to model theoretically. By contrast, the quantum search,
by in effect exploring all search paths simultaneously, avoids this difficulty thereby
giving relatively simple analytic expressions for the average behavior. On the other
hand, this analysis is restricted to simple quantities, such as the average probabil-
ity of finding a solution. How well this reflects typical search costs remains to be
seen, though the discussion of §6 suggests it gives a reasonable estimate, as well as
determining good parameter values.

Classical heuristics often rely on behavior of states near solutions as guides, and
can become stuck in local minima or among large collections of assignments with
the same number of conflicts [21]. For the quantum algorithm, local minima are not
an issue: instead the limited correlation between distance and conflicts for states far
from solutions prevents efficient search. Because of these very different characteristics,
an interesting direction for future work is identifying individual problems or problem
ensembles where the correlations are stronger even though the local minima for states
relatively near solutions remain. In such cases, quantum algorithms could perform
much better than classical heuristics.

An important advantage of basing the algorithm on ensembles is the use of av-
erages rather than requiring detailed knowledge of an individual search problem.
This contrasts with the unstructured search method which requires knowledge of the
number of solutions for a particular problem, or various values must be tried repeat-
edly [8]. An interesting open question is whether the algorithm, e.g., the choice of
ρ and τ , could be improved by adjusting the parameters prior to search based on
readily computed characteristics of an individual problem instance. In effect this
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would amount to using a more specific ensemble whose instances are more likely to
be similar to the given instance than random problems. More generally, the variation
in performance suggests a portfolio approach [36, 24] would be effective for combin-
ing quantum algorithms using different parameter choices along with various classical
methods.

Another possibility is combining this quantum algorithm more directly with clas-
sical heuristics consisting of independent trials, just as is possible for amplitude am-
plification. In this case, the heuristic is described not just by the probability to find
a solution but by the probabilities it finds assignments with various numbers of con-
flicts, enhancing assignments with relatively few conflicts. Then instead of starting
with a uniform superposition of assignments, the initial state for the corresponding
quantum algorithm would have amplitudes proportional to the square root of these
probabilities. If the probabilities have a simple analytic form, the asymptotic anal-
ysis could be repreated, allowing optimal selection of the phase parameters for use
with the classical heuristic. Otherwise samples of the classical heuristic’s behaviors
could be used to estimate the relevant probabilities. While the resulting analysis
will be more complicated than for amplitude amplificiation with nonuniform initial
state [7, 9, 23], using additional information in the quantum operations (namely the
number of conflicts in assignments rather than just whether they are solutions) may
allow for similar improvements as seen here for uniform initial conditions.

These results show the usefulness of ensemble-based analyses for designing quan-
tum algorithms. This is particularly helpful because empirical evaluation, through
classical simulation, is limited to small cases. Because quantum algorithms use prop-
erties of the entire search space, not just a small, carefully selected sample as with
classical heuristics, ensemble averages are likely to be more useful for quantum algo-
rithm development than is the case classically. Thus quantum computing is likely to
benefit from continued study of the properties of search problem ensembles, particu-
larly for developing heuristic methods that work well for typical problems.
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A Random k-SAT

Random k-SAT problems are defined by the number of variables n and the number
of distinct clauses m. Random instances are readily generated [41]. This ensemble
differs somewhat from other studies where the clauses are not required to be dis-
tinct. Asymptotically, when m ≪ nk/2, as is the case for hard random k-SAT where
m = Θ (n), this difference is not important: in such cases, even if duplicate clauses
are allowed, instances are very unlikely to have any duplicates. However, for highly
constrained problems or small problem sizes, these ensembles have different behav-
iors, though qualitatively still fairly similar. In particular, for small sizes, including
duplicate clauses considers essentially the same problem in samples with different
values of m, somewhat increasing the sample variation.

The ensemble of random k-SAT with n variables has M =
(

n
k

)

2k possible clauses
to select from and

Nproblems =

(

M

m

)

(10)

possible problems with m clauses, each of which is equally likely to be selected.
For random k-SAT, the number of conflicts in assignments is increasingly con-

centrated around the average as n increases. To see this, let c(s) be the number of
conflicts in assignment s for a particular problem. The average number of conflicts
in assignments is

c̄ ≡ 2−n
∑

s

c(s) = 2−n
∑

s

∑

α

χ(α, s) (11)

where χ(α, s) is 1 if assignment s conflicts with clause α and the inner sum is over all
m clauses appearing in the problem. Interchanging the order of summation gives an
inner sum

∑

s χ(α, s), i.e., the number of assignments conflicting with a given clause
α, namely 2n−k. Thus c̄ =

∑

α 2−k = m2−k for every k-SAT instance with m clauses.
The variance var(c) = c̄2 − c̄2 characterizes the spread around this average. We

have
c̄2 = 2−n

∑

s

c(s)2 = 2−n
∑

α,α′

∑

s

χ(α, s)χ(α′, s) (12)

The inner sum counts the number of assignments that conflict with both clauses α
and α′, which in turn depends on the number of variables δ these two clauses have in
common. If any common variable is negated in one of the clauses but not the other,
then no assignment can conflict with both so such clause pairs make no contribution to
the sum. Otherwise, the two clauses require a specific value for each of 2k−δ variables
in assignments conflicting with both, giving 2n−2k+δ such assignments. Thus

c̄2 = 2−2k
∑

δ

2δNclause pairs(δ) (13)

where Nclause pairs(δ) is the number of contributing clause pairs with δ variables in
common for the given problem instance. α can be any of the M possible clauses
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but α′ must then be selected from among only
(

k
δ

)(
n−k
k−δ

)

2k−δ to have δ variables in
common with k and contribute to the sum.

The value of c̄2 differs among problem instances, so we consider its average value
for random k-SAT. When δ = k, so the two clauses are identical, there are

(
M−1
m−1

)

problems containing that clause. When δ < k, there are
(

M−2
m−2

)

problems containing
the two clauses. Collecting these contributions then gives

〈

c̄2
〉

= m2−k

(

1 + (m− 1)
M2−k − 1

M − 1

)

(14)

For large n, M ≫ 1 so the variance becomes

〈var(c)〉 ∼ m2−k −m2−2k = cavg(1 − 2−k) (15)

B Mixing Matrix

The form for the mixing matrix given in Eq. (8) follows from Eq. (4) with the choice
of Eq. (7). To see this, replacing h′ = h−z in Eq. (4) and using the binomial theorem
gives

ud = 2−ne−iπτn/2
d∑

z=0

(−1)z

(

d

z

)
n−d∑

h′=0

(

n− d

h′

)

eiπτ(h′+z) (16)

= 2−ne−iπτn/2
(

1 − eiπτ
)d (

1 + eiπτ
)n−d

which simplifies to Eq. (8).
The linearized phases allow a particularly simple implementation of the mix-

ing matrix. Specifically, Eq. (7) can be written as an overall phase e−iπτn/2 times
∏n

j=1 e
iπτsj where sj is the value, 0 or 1, of the j-th bit of assignment s (so

∑

j sj = |s|).
Thus these phases can be introduced by operating with

(
1 0
0 eiπτ

)

independently on

each bit.

C Asymptotic Behavior of the Algorithm

After completing the algorithm, the amplitude in assignment r is

φr =
∑

s

UrsPs
1

2n/2
=

1

2n/2

∑

s

ud(r,s)pc(s) (17)

Let χ(s, c) be 1 if the assignment s has c conflicts, and otherwise χ(s, c) = 0. The
probability to find a solution is

Psoln =
∑

{r|r is a solution}
|φr|2 =

∑

r

|φr|2χ(r, 0) (18)
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s s’

Figure 11: Clause selection for counting problems contributing to Nproblems({r, s, s′}, b, b′).
The regions correspond to groups of the M possible clauses based on their conflicts with
r, s and s′. The dark gray region represents clauses that conflict with r and so cannot
be selected. The white regions represent clauses that conflict only with one of s or s′.
Contributing problems consist of m clauses such that b and b′ conflict only with s and s′,
respectively, and the remaining m− b− b′ clauses conflict with both s and s′ or with neither
(light gray region).

This appendix derives the asymptotic scaling behavior of this quantity, averaged
over the ensemble of random k-SAT problems. To do so, we first derive an exact ex-
pression for 〈Psoln〉 in terms of the numbers of problems constrained to have specific
numbers of conflicts with given assignments. This result consists of a sum of quan-
tities involving binomial coefficients. For large problems, the expression simplifies
using Stirling’s formula. Expressing the resulting sum as an integral then gives the
asymptotic scaling behavior.

C.1 Average Behavior

Using Eq. (17) and (18), the average probability of finding a solution is

〈Psoln〉 =
1

2n

∑

r

∑

ss′
ud(r,s)u

∗
d(r,s′)

∑

cc′
pcp

∗
c′ 〈χ(s, c)χ(s′, c′)χ(r, 0)〉 (19)

The expected value 〈χ(s, c)χ(s′, c′)χ(r, 0)〉 is just the fraction of problems for which r
is a solution and s and s′ have, respectively, c and c′ conflicts. Let a be the number of
conflicts s and s′ have in common, and let b = c−a and b′ = c′−a be their respective
numbers of distinct conflicts. With Eq. (6), the inner sum over c and c′ in Eq. (19)
becomes

∑

bb′
eiπρ(b−b′)

∑

a

〈χ(s, b+ a)χ(s′, b′ + a)χ(r, 0)〉 (20)

The sum over a just gives the fraction of problems Nproblems({r, s, s′}, b, b′)/Nproblems

for which r is a solution and s and s′ have, respectively, b and b′ distinct conflicts.
Nproblems({r, s, s′}, b, b′) is the number of ways m clauses can be selected from the M
available to satisfy the conditions on r, s and s′.
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n
︷ ︸︸ ︷

w x y z

r

s

s′

Figure 12: Grouping of variables based on assigned values in r, s and s′, each shown as
a horizontal box schematically indicating values assigned to each of the n variables. In
each assignment, the value given in r to a variable is shown as white, while black indicates
the opposite value. In this diagram, variables are grouped according to the differences in
values they are given in the three assignments. For instance, the first group, consisting of
w variables, has those variables assigned the same value in all three assignments.

The possible clause selection is illustrated in Fig. 11. For given assignments r, s
and s′, group those clauses that do not conflict with r as follows. Let Ns and Ns′ be
the number of clauses that conflict only with s and s′, respectively, and Nother the
number that do not conflict with r and conflict with both or neither of s and s′ (the
light gray region in Fig. 11). Then we have

Nproblems({r, s, s′}, b, b′) =

(

Ns

b

)(

Ns′

b′

)(

Nother

m− b− b′

)

(21)

as the number of problems for which s and s′ have, respectively, b and b′ unique
conflicts, and r is a solution.

C.1.1 Clause Group Sizes

Now consider the n variables in four mutually exclusive groups based on the values
they are assigned in r, s and s′, as illustrated in Fig. 12:

1. the w variables with the same values in all three assignments

2. the x variables with the same value in r and s, but opposite value in s′

3. the y variables with the same value in s and s′, opposite that of r

4. the z variables with the same value in r and s′, but opposite value in s

As an example with n = 5, suppose r = 00000, s = 10011 and s′ = 00111. The first
variable has the same assignment in r and s′, but the opposite value in s, and is the
only such variable, so z = 1. The second variable is the only one with the same value
in all three assignments, so w = 1. Similarly, x = 1 and y = 2.
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Assignment r conflicts with
(

n
k

)

clauses leaving M −
(

n
k

)

clauses available for

selection. The principle of inclusion and exclusion [42] gives the number of available
clauses that conflict with

• both s and s′ is the number that conflict with both s and s′ minus the number
of those that also conflict with r:

Nboth =

(

w + y

k

)

−
(

w

k

)

(22a)

• s only is

Ns =

(

n

k

)

−
(

w + x

k

)

−Nboth (22b)

• s′ only is

Ns′ =

(

n

k

)

−
(

w + z

k

)

−Nboth (22c)

• both s and s′ or with neither is

Nother =

(

n

k

)

(2k − 1) −Ns −Ns′ (22d)

Through the expressions of Eq. (22), Nproblems({r, s, s′}, b, b′) given in Eq. (21)
depends on w, x, y and z, but otherwise is independent of the choice of assignments
r, s and s′. We denote this value as Nproblems(x, y, z; b, b

′) since w = n− x− y − z is
determined by the remaining group sizes. Furthermore, d(r, s) = y + z and d(r, s′) =
x+y. Thus, in Eq. (19) the sum over the assignments s and s′ becomes a sum over x,
y and z times the number of ways to pick s and s′ with assigned values matching each
other and those of r as specified by the values of w, x, y and z. This latter quantity
is just the multinomial coefficient

(
n

w,x,y,z

)

. Finally, because the quantities in the sum
depend on w, x, y and z but not the specific choice of the assignment r, the sums
can be rearranged to move all terms outside of the sum over r. This leaves the inner
sum as

∑

r 1 which just counts the number of assignments, i.e., 2n, and cancels the
factor 2−n appearing in Eq. (19). Thus for the ensemble of random k-SAT, Eq. (19)
becomes

〈Psoln〉 =
∑

xyz

(

n

w, x, y, z

)

uy+zu
∗
x+y

∑

bb′
eiπρ(b−b′)Nproblems(x, y, z; b, b

′)

Nproblems
(23)
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C.1.2 An Example

To illustrate this counting argument, consider n = 3, k = 2 and m = 3. This example
has M = 12 possible clauses and hence Nproblems =

(
12
3

)

= 220. For assignments

r = 000, s = 011 and s′ = 110, how many of these problems have no conflicts
with r, b = 1 conflict only with s and b′ = 2 conflicts only with s′? For these
assignments, w = 0, i.e., there are no variables with the same assigned value in all
three assignments, and x = y = z = 1. From Eq. (22), we then have Nboth = 0 (no
clauses conflict with both s and s′ since they share no pair of variables with the same
values), Ns = Ns′ =

(
3
2

)

= 3 and Nother = 3.

Thus Eq. (21) gives Nproblems({r, s, s′}, 1, 2) = 9. An example is the problem with
the following three clauses: V1 OR (NOT V2), (NOT V1) OR (NOT V2), and (NOT
V1) OR V3. None of these clauses conflict with r. The first clause conflicts only with
s, so b = 1, and the last two conflict only with s′, so b′ = 2.

C.2 Asymptotic Behavior

For random k-SAT, Eq. (23) gives the exact value for 〈Psoln〉. As n → ∞, the
discussion in §3.2 indicates the main contributions are from assignments with close
to the average number of conflicts, cavg = m/2k. That is, terms for which b and b′ are

Θ (m). We thus use the scaled values b̂ = b/m and b̂′ = b′/m to simplify the analysis.
Similarly the main contribution in the outer sum comes from values of d(r, s) = y+ z
and d(r, s′) = x+ y close to n/2. This suggests defining ŵ = w/n,...,ẑ = z/n. As we
will see below, these are indeed the appropriate scaling behaviors for the dominant
contributions to the sum.

C.2.1 Sum over Conflicts

With w, x, y, z scaling as Θ (n), the number of possible clauses M and each value in

Eq. (22) scale as
(

n
k

)

= Θ
(

nk
)

. This value is much larger than the actual number of

clauses m that appear in hard problems, for which m = Θ (n). We thus consider 1 ≪
m ≪ nk. A convenient scaling for the numbers of available clauses is N̂... = N.../M
so that

N̂both =
(ŵ + ŷ)k − ŵk

2k
(24)

N̂s =
1 − (ŵ + x̂)k

2k
− N̂both

N̂s′ =
1 − (ŵ + ẑ)k

2k
− N̂both

N̂other = 1 − 2−k − N̂s − N̂s′

with corrections of order 1/n.
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When S ≪
√
R,

(
R
S

)

∼ RS/S!. Using Stirling’s formula [1] with this expression

then gives eS+S log(R/S)/
√

2πS. Thus for m ≪ nk/2, Nproblems(x, y, z; b, b
′)/Nproblems ∼

emXm−1Y where

X = b̂ log
N̂s

b̂
+ b̂′ log

N̂s′

b̂′
+ (1 − b̂− b̂′) log

N̂other

1 − b̂− b̂′
(25)

and

Y =
1

2π
√

b̂b̂′(1 − b̂− b̂′)
(26)

For the inner sum of Eq. (23), this quantity is multiplied by exp(iπmρ(b̂− b̂′)) and
summed over b and b′. When m is large, this sum can be approximated by an integral
over the scaled variables b̂ and b̂′. Converting to an integral introduces a power of m
for each variable, so the inner sum is asymptotic to

m
∫

db̂ db̂′ Y exp(m(X + iπρ(b̂− b̂′))) (27)

The asymptotic behavior of this integral as m → ∞ is readily evaluated by the
method of steepest descents [2]. This involves considering complex values for the
integration variables and noting that the value of the integral is dominated by its
behavior around a stationary point, i.e., values for b̂ and b̂′ for which X + iπρ(b̂− b̂′)
has zero derivatives with respect to b̂ and b̂′. Specifically, the integral is asymptotic
to the value of the integrand at the stationary point multiplied by 2πm−1/

√
− detD

where D is the matrix of 2nd derivatives of X+ iπρ(b̂− b̂′) evaluated at the stationary
point, and detD is its determinant. Evaluating these derivatives then shows the inner
sum is asymptotic to exp(mI) with

I = log
(

eiπρN̂s + e−iπρN̂s′ + N̂other

)

(28)

which depends on ŵ, . . . , ẑ through Eq. (24).
This derivation assumed m ≪

√
nk. When m is larger than this, the binomials

give additional contributions. However, if ρ is small, specifically of order n/m, these
additions do not change the final asymptotic result. As described below, this behavior
of ρ is the appropriate choice form≫ n so we use this result over the full set of scaling
behaviors for m.

C.2.2 Sum Over Variable Groupings

For the remaining sum in Eq. (23), over x, y and z, Stirling’s formula gives

(

n

w, x, y, z

)

∼ exp(nH)n−3/2

√

1

(2π)3ŵx̂ŷẑ
(29)
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with the entropy
H = −ŵ log ŵ − . . .− ẑ log ẑ (30)

and ŵ = 1 − x̂− ŷ − ẑ.
The uy+zu

∗
x+y factors are exp(nU) with

U = 2βC + β(x̂+ 2ŷ + ẑ) + iπ(x̂− ẑ)/2 (31)

where, from Eq. (8),

βC = log(cos(πτ/2)) (32)

β = log(tan(πτ/2))

Combining these values with the result from the inner sum again gives a sum that
can be approximated by an integral. After changing to scaled variables this becomes

〈Psoln〉 ∼ n3/2
∫

dx̂ dŷ dẑ

√

1

(2π)3ŵx̂ŷẑ
exp(n(H + U) +mI) (33)

with ŵ = 1−x̂−ŷ−ẑ. The method of steepest descents applies to this integral. Thus,
its asymptotic behavior is determined by the stationary point, namely the values of
x̂, ŷ and ẑ for which the derivatives of n(H + U) + mI with respect to these three
variables are zero. Let ∆ be the corresponding 3 × 3 matrix of 2nd derivatives and
A the value of −(H + U + Im/n), both evaluated at this point. The asymptotic
behavior is then

〈Psoln〉 ∼
√

−1

ŵx̂ŷẑ det ∆
exp(−nA) (34)

evaluated at the stationary point. These quantitites depend on the parameters k,
µ = m/n, ρ and τ .

The stationary point has no simple closed form but is readily evaluated numer-
ically. For example, with µ = 4 and parameters τ = 0.286, ρ = 0.218 used in
Table 1, the stationary point is at ŵ = 0.710, x̂ = 0.101 + 0.158i, ŷ = 0.088 and
ẑ = 0.101 − 0.158i with A = 0.280 and det ∆ = −478.5, so 〈Psoln〉 ∼ 0.98e−0.28n,
corresponding to the µ = 4 curve in Fig. 4.

C.3 Weakly Constrained Problems

When 1 ≪ m≪ n, the decay rate A = −(H+U + Im/n), can be treated through an
expansion in the small quantity µ = m/n. Specifically, the location of the stationary
point for the variables x̂, ŷ and ẑ is determined, to Θ (1), by setting the derivatives
of H + U to zero. The contribution from the sum over conflicts, µI, only introduces
corrections of O (µ).

The expression H + U evaluated at the Θ (1) values for the stationary point is
zero, for any choice of the parameters ρ and τ . The O (µ) values and the contribution
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from µI then give a scaling for 〈Psoln〉 of exp(Θ (m)). However, for an appropriate
choice of τ and ρ, the coefficient of this Θ (m) term can be set to zero, so that the
actual scaling is dominated by the Θ (µ2) correction, i.e., exp(Θ (nµ2)) corresponding
to the behavior seen in Fig. 5.

The parameter values eliminating the Θ (m) decay do not have a simple closed
form. They are determined by trigonometric equations arising from setting to zero
the derivatives of the Θ (m) contribution with respect to τ and ρ. The optimal choice
for τ satisfies

2 cosk
(
πτ

2

)

cos
(

k
πτ

2

)

= 1 (35)

With this value for τ , ρ must then satisfy sin(π(ρ + kτ)) = 0. Among the many
possible solutions for ρ and τ , we select the one in the range 0 to 1 for definiteness.
For k = 3 these equations give τ = 0.201389 and ρ = 0.395832, which correspond to
the limiting values in Fig. 2 as m/n→ 0.

These values of the parameters and the corresponding stationary point in Eq. (34)
give 〈Psoln〉 ∼ e−αweakm2/n, where αweak is determined numerically, with the correspond-
ing decay rate A = αweakµ

2.

C.4 Highly Constrained Problems

Form≫ n, we focus on the ensemble of problems with a prespecified solution. In fact,
with this many clauses, there are relatively few solutions in addition to the prespecified
one. Thus a simpler evaluation considers the probability that the quantum search
finds the prespecified solution, rather than any solution. This quantity is a lower
bound on 〈Psoln〉, and is a tight bound when m≫ n.

This lower bound is given by setting assignment r in Eq. (19) to be the prespecified
solution rather than summing over all possible assignments. The derivation leading
to Eq. (23) proceeds as before except for two changes. First, eliminating the sum
over r gives an additional factor of 2−n. Second, the number of possible problems
Nproblems is replaced by

(

M −
(

n
k

)

m

)

(36)

reflecting the smaller number of problems with a prespecified solution.
The asymptotic analysis gives an additional overall factor of 2−n(1 − 2−k)−m.

The resulting decay rate for 〈Psoln〉 then has an upper bound given by the value of
−(H +U − log 2 + (I − log(1− 2−k))m/n) evaluated at the corresponding stationary
point.

For m ≫ n, we can expand the stationary point evaluation in powers of 1/µ.
Following the behavior for the optimal value of ρ suggested by Fig. 2 and the values
obtained in connection with Fig. 5, we take ρ to be proportional to 1/µ. The Θ (1)
values for the stationary point in this case are simply x̂ = ŷ = ẑ = 1/4. Because
ρ → 0, the leading behavior for I is just log(1 − 2−k) so the exponential scaling
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of Θ (m) is exactly zero. The contributions to the scaling of Θ (n) can be made
equal to zero by selecting τ = 1/2 and ρ = 2k−2(2k − 1)/(kµ). The simple form for
the Θ (1) stationary point values also allows evaluating the overall Θ (1) asymptotic
behavior. Specifically, with these parameters, the scaling of the probability to find
the prespecified solution is

4
√

16 + (k − 1)2π2
exp

(

−(2k − 1)3π2

16k2

n2

m

)

(37)

The corresponding decay rate is A = (2k − 1)3π2/(16k2µ).
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