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Abstract. Historically, the polylogarithm has attracted specialists and non-specialists
alike with its lovely evaluations. Much the same can be said for Euler sums (or multi-
ple harmonic sums), which, within the past decade, have arisen in combinatorics, knot
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theory and high-energy physics. More recently, we have been forced to consider mul-
tidimensional extensions encompassing the classical polylogarithm, Euler sums, and
the Riemann zeta function. Here, we provide a general framework within which previ-
ously isolated results can now be properly understood. Applying the theory developed
herein, we prove several previously conjectured evaluations, including a longstanding
conjecture of Don Zagier.

1 Introduction

We are going to study a class of multiply nested sums of the form
51 “ee Sk; k e —U; k -
A(bl,...,bk> ::Hij ’ Zyz ) (1)
Jj=lvj=1 1=J

and which we shall refer to as multidimensional polylogarithms. When k = 0, the usual
convention on empty products gives A({}) := 1, where {} denotes the empty string.

When k£ = 1, note that
s = 1 1
A = =Lis | = 2
(b) ;y%” ' <b> @)

is the usual polylogarithm [36, 37] when s is a positive integer and |b| > 1. Of course,
the polylogarithm (2) reduces to the classical Riemann zeta function [19, 31, 43]

)=~ R(s)>1, (3)

when b = 1. More generally, for any k£ > 0 write

k J
n]:ZyZ and bj:Ha’i? ]:1,2,,k

Then .
Slye-ey S s —m
)\<b17 7bk> _ Z Hnj SJaj " (4)
1y--.50k ny>-->np>0 j=1
These latter sums, with each a; = 1 (sometimes called “Euler sums”), have been

studied previously at various levels of generality [2, 4, 5, 7, 9, 11, 12, 13, 24, 28, 29,
30, 38, 39], the case k = 2 going back to Euler [20]. Recently, such sums have arisen
in combinatorics (analysis of quad-trees [23, 34] and of lattice reduction algorithms
[16]), knot theory [11, 12, 13, 35], and high-energy particle physics [9] (quantum field
theory).



In view of these recent applications and the well-known fact that the polylogarithm (2)
often arises in physical problems via the multiple integration of rational forms, one
might expect that the more general multidimensional polylogarithm (1) would likewise
find application in a wide variety of physical contexts. Nevertheless, lest it be suspected
that the authors have embarked on a program of generalization for its own sake, let
the reader be assured that it was only with the greatest reluctance that we arrived
at the definition (1). On the one hand, the polylogarithm (2) has traditionally been
studied as a function of b with the positive integer s fixed; while on the other hand,
the Riemann zeta function (3) and its nested-sum generalization (4) have typically
been studied as functions of the s;, with the a; and b; specialized to £1. However, we
have found, in the course of our investigations, that a great deal of insight is lost by
ignoring the interplay between these related sums when both sequences of parameters
sj and b; are permitted to vary. Indeed, it is our view that it is impossible to fully
understand the sums (2-4) without viewing them as members of a broader class of
multidimensional polylogarithms (1).

Don Zagier (see eg. [44]) has argued persuasively in favour of studying special values
of zeta functions at integer arguments, as these values “often seem to dictate the most
important properties of the objects to which the zeta functions are associated.” It
seems appropriate, therefore, to focus on the values the multidimensional polyloga-
rithms (1) take when the s; are restricted to the set of positive integers, despite the
fact that the sums (1) and their special cases have a rich structure as analytic functions
of the complex variables s;. However, we allow the parameters b; to take on complex
values, with each |bj| > 1 and (b1,51) # (1,1) to ensure convergence.

Their importance notwithstanding, we feel obliged to confess that our interest in spe-
cial values extends beyond mere utilitarian concerns. Lewin [36] (p. xi) writes of
a “school-boy fascination” with certain numerical results, an attitude which we whole-
heartedly share. In the hope that the reader might also be convinced of the intrinsic
beauty of the subject, we offer two modest examples. The first [28, 35],

1 7T2k

ko
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generalizes Euler’s celebrated result

X1 2

and is extended to all even positive integer arguments in [5]. The second (see Corol-
lary 1 of Section 8),
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can be viewed as a multidimensional extension of the elementary “dual” Maclaurin
series evaluations - . -

Z ¢ = 1 =log?2,

v=1 v v=1 v2Y
and leads to deeper questions of duality (Section 6) and computational issues related
to series acceleration (Section 7). We state additional results in the next section and
outline connections to combinatorics and ¢-series. In Section 4, we develop several dif-
ferent integral representations, which are then used in subsequent sections to classify
various types of identities that multidimensional polylogarithms satisfy. Sections 8
through 12 conclude the paper with proofs of previously conjectured evaluations, in-
cluding a longstanding conjecture of Zagier [44] and its generalization.

2 Definitions and Additional Examples

A useful specialization of the general multidimensional polylogarithm (1), which is at
the same time an extension of the polylogarithm (2), is the case in which each b; = b.
Under these circumstances, we write

koo k 8
SlyeeeyS .
Ab(815-- -5 Sk) 22)‘( 1b bk> =1 > v (ZW) ’ (6)
ey =

j=1vj=1
and distinguish the cases b = 1 and b = 2 with special symbols:
C:: )\1 and 0 := )\2. (7)

The latter d-function represents an iterated sum extension of the polylogarithm (2)
with argument one-half, and will play a crucial role in computational issues (Section 7)
and “duality” identities such as (5). The former coincides with (4) when & > 0 and
each a; = 1, and hence can be viewed as a multidimensional unsigned Euler sum. We
will follow Zagier [44] in referring to these as “multiple zeta values” or MZ Vs for short.
By specifying each b; = £1 in (1), alternating Euler sums [5] are recovered, and in
this case, it is convenient to combine the strings of exponents and signs into a single
string with s; in the jth position when b; = +1, and s;— in the jth position when
bj = —1. To avoid confusion, it should be also noted that in [5] the alternating Euler
sums were studied using the notation

k
C(s1y...,8k) == Z Hn;‘sj‘ajnj

ni>ng>..>ng j:l

where s1,..., s, are non-zero integers and o := signum(s;).



Additionally, n repetitions of a substring U will be denoted by U". Thus, for example,

A{2—,1}") = A( 21 > (—1)v2i-t |
_1’ 1, o Jl_Il 1/2]21: 11/;1 (El 2j—1 Vz>2 (Ei?:% Vi)

Unit Euler sums, that is those sums (1) in which each s; = 1, are also important
enough to be given a distinctive notation. Accordingly, we define

u(bl,...,b)—A<b17”7> HZb (Zyl>l. (8)

Jj=1lvj=1

To entice the reader, we offer a small but representative sample of evaluations below.

ExaMPLE 2.1. Euler showed that
i L
n—1 TL

and more generally [20, 39], that

||M\

=1
5=

2¢(m, 1) = m¢(m+ 1) ZCm E)C(k+1), m=23,4,....

The continued interest in Euler sums is evidenced by the fact that a recent American
Mathematical Monthly problem [21] effectively asks for the proof of ((2,1) = ((3).

Examples of arbitrary depth evaluations for all nonnegative integers n are provided
by

EXAMPLE 2.2.
27T.4n
3,11") =4 "C({4}") = ———
CBLY) = 47 = gy
previously conjectured by Don Zagier [44] and proved herein (see Section 12); and

ExAMPLE 2.3.
n k

¢(2,{1,3}") 47" Z(—l)’%({zl}"’“){(4k+1><(4k+2)—42<(4j—1)<(4k—4j+3)},

k=0 j=1
conjectured in [5], and which remains unproved.

EXAMPLE 2.4. An intriguing evaluation involving alternations, conjectured in [5] and
proved herein (see Section 8), is

PP = )Y (”Z’“) Agsns1 P

k=0

il o= [mt+k
+ (-1) HZ( m )Zk-i-m-l—an—ku (9)

k=0



where

log 2)" ”
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The formula (9) is valid for all nonnegative integers m and n if the divergent m = 0
case is interpreted appropriately.

ExAMPLE 2.5. If the s; are all nonpositive integers, then

k -85 k d —Sj
Z v = Dj exXp —Uj Z vy, Dj = <_d—>
i=j i=j g

Consequently,

i 1
= D : . 10
jl;[l ! {bj exp (Zgzl uz) -1 } (10

In particular, (10) implies

0,....0 koo
AT ) = . (11)
(bl,...,bk> ]Hlbj—l

Despite its utter simplicity, (11) points the way to deeper waters. For example, if we
put b; = ¢/ for each 7 =1,2,...,k and note that

0,0,...,0 e
A( e k>: > [Ia%, k>0,
q ~q9 ..., q ni>ng>->np>0 j=1
then (11) implies the generating function equality

Xk 0,0,...,0 il 0 LERN
Zz A(ql —2 k) Hl 1+ 2q") Z '1_[11
n : =

k=0 q Ty g

which experts in the field of basic hypergeometric series will recognize as a g-analogue
of the exponential function and a special case of the g-binomial theorem, usually
expressed in the more familiar form [25] as

o k(k+1)/2

q k

—2¢;q) 00 = E —_—2z".
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The case k =1, by =2, s; = —n of (10) yields the numbers [41] (A000629)

5(on) = da(-m) = 3 ’;—: —Lisa(d), n>o0, (12)
k=1

which enumerate [33] the combinations of a simplex lock having n buttons, and which
satisfy the recurrence

s " er 2

5 — _— = = — 1
Z_ (=n) n!' 2—e¥ 2—¢t ’
n=0

we infer [26, 42] that for n > 1, $6(—n) also counts

i) the number of ways of writing a sum on n indices;

ii) the number of functions f : {1,2,...,n} — {1,2,...,n} such that if j is in the
range of f, then so is each value less than or equal to j;

iii) the number of asymmetric generalized weak orders on {1,2,...,n};

iv) the number of ordered partitions (preferential arrangements) of {1,2,...,n}.

The numbers 16(—n) also arise [17] in connection with certain constants related to the
Laurent coefficients of the Riemann zeta function. See [41] (A000670) for additional
references.

3 Reductions

Given the multidimensional polylogarithm (1), we define the depth to be k, and the
weight to be s := s1 + -+ + s;. We would like to know which sums can be expressed
in terms of lower depth sums. When a sum can be so expressed, we say it reduces.
Especially interesting are the sums which completely reduce, i.e. can be expressed
in terms of depth-1 sums. We say such sums evaluate. The concept of weight is
significant, as all our reductions preserve it. More specifically, we’ll see that all our
reductions take the form of a polynomial expression which is homogeneous with respect
to weight.

There are certain sums which cannot be expressed (polynomially) in terms of lower
depth sums. Such sums are called #rreducible. Proving irreducibility is currently
beyond the reach of number theory. In particular, proving the irrationality of ((5)
remains an open problem.



3.1 Examples of Reductions at Specific Depths

The functional equation (an example of a “stuffle” — see Sections 5.1 through 5.3)

C(s)C(#) = C(s,8) + C(t, ) + (s + 1)

reduces ((s, ).

Broadhurst, using high-precision arithmetic and integer relations finding algorithms,
has found many conjectured? reductions. One example is

C(4,1,3) = =C(5,3) + F5¢(8) — 3C(5)C(3) + 3¢(3)%¢(2), (13)

expressing a multiple zeta value of depth three and weight eight in terms of lower depth
MZVs. Observe that the combined weight of each term in the reduction is preserved.
Broadhurst also noted that although ((4,2,4,2) is apparently irreducible in terms of
lower depth MZVs, we have the conjectured weight-12 reduction

€(4,2,4,2) = —1928)(9—,3) — 2190 (12) — 1040¢(9, 3) — BB¢(9)¢(3)
—00(7)¢(5) + 2¢(6)¢(3)* + 14¢(5, 3)¢(4)
+70¢(5)¢(4)¢(3) — £¢(3)* (14)

in terms of lower depth MZVs and the alternating Euler sum A\(9—,3). Thus, alter-
nating Euler sums enter quite naturally into the analysis. And once the alternating
sums are admitted, we shall see that more general polylogarithmic sums are required.

We remark that the depth-two sums in (14), namely A(9—,3), ¢(9,3), and ((5, 3),
are almost certainly irreducible. For example, if there are integers cy,cy,c3,c4 (nOt
all equal to 0) such that ¢1¢(5,3) + com® + ¢3¢ (3)%¢(2) + c4¢(5)¢(3) = 0, then the
Euclidean norm of the vector (c1,cz,c3,cq) is greater than 10°°. This result can be
proved computationally in a mere 0.2 seconds on a DEC Alpha workstation using
D. Bailey’s fast implementation of the integer relation algorithm PSLQ [22], once we
know the four input values at the precision of 200 decimal digits. Such evaluation poses
no obstacle to our fast method of evaluating polylogs using the Holder convolution (see
Section 7).

3.2 An Arbitrary Depth Reduction

In contrast to the specific numerical results provided by (13) and (14), reducibility
results for arbitrary sets of arguments can be obtained if one is prepared to consider
certain specific combinations of MZVs. The following result is typical in this respect.
It states that, depending on the parity of the depth, either the sum or the difference of

*Both (13) and (14) hold to at least 7900 significant figures.



an MZV with its reversed-string counterpart always reduces. Additional reductions,
such as those alluded to in Sections 1 and 2, must await the development of the theory
provided in Sections 4-7.

Theorem 1 Let k be a positive integer and let s1,sa,...,S; be positive integers with
s1 and s greater than 1. Then the expression

C(Sl, 82y .. ,Sk) + (—l)kC(Sk, .oy 82, 81)
reduces to lower depth MZVs.

Remark. The condition on s; and s is imposed only to ensure convergence of the
requisite sums.

Proof.  To fix ideas, suppose k = 3. Let N := (Z1)® = ZT x Z* x Z* denote
the Cartesian product of three copies of the positive integers. Define an additive
weight-function w : 2 — R by

w(d):= > niny®ng%.

(nl 7n2;n3)€A

Now if
P1 = {(n17n27n3) eEN: ny < n2}’
PQ = {(n17n27n3) eEN: ng < n3}’
then
PiNPy={fi€ N:ny <ny<ny}
and

(N\P)N(N\ P) ={ii€N:ny>ny>ns}.
By the Inclusion-Exclusion Principle,
w((N\ P)N(N\ P))=w(N)—w(P) —wP)+wPNP),

which is to say that

((s1,52,83) = ((51)¢(52)C(s3) —((83)[¢(52,81) + ((s2 + 51)]
— ((s1)[C(s3,82) + ((s3 + s2)] + ((s3 + 52, 51)
+ ((s3,82 +51) +((s3 + 52+ s1) + ((s3,52,51),

ie. ((s1,89,53) — ((s3,52,51) reduces.



In general, let k be a positive integer and let N := (ZJ“)/IC denote the Cartesian product
of k copies of the positive integers. Our additive weight-function w : 2V — R is now
given by

k .
=2 I~
neA j=1
For each 1 < j <k — 1, define the subset P; of N by
= {’f_i €EN: U7 < ’nj_|_1}.
The Inclusion-Exclusion Principle states that
E—1
w|lN\P|= > DTw | N P (15)
j=1 Tg{1,2,...,k—1} jeT

We remark that the term on the right-hand side of (15) arising from the subset T = {}
is C(s1)((s2) - - - ((sk) by the usual convention for intersection over an empty set. Next,
note that the left-hand side of (15) is simply ((s1,s2,...,s,). Finally, observe that
all terms on the right-hand side of (15) have depth strictly less than & — except when
T ={1,2,...,k— 1}, which gives

(—1)k-t Z Hn = (=1)*"Y¢(sp,...,52,51) + lower depth MZVs.
n1<ne<--<np j=1

This latter observation completes the proof of Theorem 1. O

4 Integral Representations

Writing the definition of the gamma function [39] in the form
o0
r—°T(s) = / (logz)*~tz7"tdz, r>0, s>0,
1

it follows that if each s; > 0 and each |b;| > 1, then

k k %
51 [ Sk —U;
)\( ) ) > — H J Zyi
bi,...,b o J (i:j
00 1 k k %
-V -1 _—vi—1 —V;
5y [ ot [l (0
V1= 7j=2 =]
_ 1 /°° (logm)“’l)\ 89y .., Sk d_a:7 (16)
[(s1) J1 bz —1 box,...,bpx | x

10
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a representation vaguely remindful of the integral recurrence for the polylogarithm.
Repeated application of (16) yields the k-dimensional integral representation

k s;—1
Slye--ySk 1 /OO (log ;)% ~'dx;
A = . , 17
(bla"'abk> H r ) 1 ( ( )

j=1 (sj bj ngl €T; — 1) Tj
which generalizes Crandall’s integral [15] for {(s1,...,sk). An equivalent formulation
of (17) is
k s;—1
. 1 o0 u?  duj
)\<313 38k> _ H / J J : (18)
bi,..., bk =1 I'(sj) Jo b, exp(z _u)—1

the integral transforms in (18) replacing the derivatives in (10).

Although depth-dimensional integrals such as (17) and (18) are attractive, they are
not particularly useful. As mentioned previously, we are interested in reducing the
depth whenever this is possible. However, since the weight is an invariant of all
known reductions, we seek integral representations which respect weight invariance.
As we next show, this can be accomplished by selectively removing logarithms from
the integrand of (17), at the expense of increasing the number of integrations. At
the extreme, the representation (17) is replaced by a weight-dimensional integral of
a rational function.

4.1 The Partition Integral

We begin with the parameters in (1). Let Ry, Ro, ..., R, be a (disjoint) set partition
of {1,2,...,k}. Put
= Z si, 1<m<n.
1ERm
If dy,da,...,dy, are real numbers satisfying |d,| > 1 for all m and rid; # 1, then
- r n o) n T
)\ sl n — d—[jm i
() = I a2

m=1v,=1

Bigen (2

m=1v,=1 tERm =
i—1
= H Z d_Um H / (logx)sz dx
[L‘1+Vm+"'+’/n :
m=1v,=1 1ERm

Now collect bases with like exponents and note that “[T7,_ [[;cr,, = H§:1 . It follows
that

() = I s i S e 1

m=1lvy=1 Jj=lieR;
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{H/ e }H( ani_l)_ (19

= Jj=li€eR;
on summing the n geometric series.

EXAMPLE 4.1.1. Taking n = k, we have R,, = {m}, and r,, = s, for all 1 <m < n.
In this case, (19) reduces to the depth-dimensional integral representation (17).

EXAMPLE 4.1.2. Taking n = 1, we have Ry = {1,2,...,k} and ri = s = Y 5_; 5.

If we also put d := H§:1 dj, then (19) yields the seemingly wasteful k-dimensional
integral

()=o) i e (fas )

for a polylogarithm of depth one.

EXAMPLE 4.1.3. Let s1 = s9 = ... = s, =1, 719 = 0 and for 1 < m < n, put

Ry = {1 ) + LS ) + 2,00, (S i) + v}, where 71,79, 7y, are
arbitrary posmve integers with >0 _, rp, = k. In this case, (19) yields a weight-
dimensional integral of a rational function in k£ variables:

r1+-+rn n ritrm -1
Tlyeee,Th ' /Oodxj
A - e d 1) . 20
(dh...,dn) { ]:1_[1 1 T ngl m z:l_Il v (20)

An interesting specialization of (20) is

00 [0 [0 dxdydz dxdydz
2,1) = = ((3).
‘21 /1 /1 /1 zyz(zy — 1)(zyz — 1) / / / zyz(zyz — 1) =G

Although it may seem wasteful, as in Example 4.1.2 above, to use more integrations
than are required, nevertheless such a technique allows an easy comparison of multi-
dimensional polylogarithms having a common weight but possessing widely differing
depths. For example, from the four equations

N s+t) 1 / / (log z)*~Y(log y)!~! dz dy
ab T D(s)(f) (abzy — 1)zy ’
1 / / (log z)*~!(log y)!~! dz dy

L(s)I(f) (ax — 1)(abzy — 1)zy

N t,s B 1 / / logm Llog y)t=t dz dy
bab) —  T(s)I(f) (by — 1)(abzy — 1)zy ’
t—1
>\<3>>\<Z> _ 1 / / logm Llogy)! ' dz dy
a

L(s)I(f)

A

=]

(az —1)(by — D)zy ’ (21)
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and the rational function identity

: S— < SRR 1) (22)
(ax —1)(by —1)  abzy —1\az—1 by—1 ’
the “stuffle” identity (see Section 5.1)

QL))o (s)

follows immediately. The connection between “stuffle” identities and rational functions
will be explained and explored more fully in Section 5.3.

4.2 The Iterated Integral

A second approach to removing the logarithms from (17) yields a weight-dimensional
iterated integral. The advantage here is that the rational function comprising the
integrand is particularly simple.

We use the notation of Kassel [32] for iterated integrals. For j = 1,2,...,n, let
fjla,c) = R and Q; := f;(y;) dy;. Then

n Yj— 1
/ Q19 - H/ y] dy], Yo :=¢C

_ fa 1(y1)f(?192"'9ndy1 ifn>0
1 if n=0.

For each real number b, define a differential 1-form
dz
T—0b
With this definition, the change of variable y — 1 — y generates an involution w(b) —
w(1 — b). By repeated application of the self-evident representation

wp = w(b) :=

b
b"m :/0 wgflymfl dy, m=123,...

one derives from (1) that



Letting s := s1 + s2 + - -+ + s denote the weight, one observes that the representa-
tion (24) is an s-dimensional iterated integral over the simplex 1 > y; > yo > -+ >
ys > 0. Scaling by g at each level yields the following version of the linear change of
variable formula for iterated integrals:

k
S1,---,5k . S1y,---55k . k/l/q sj—1
A = A = (-1 w w(b; 25
"(bl,...,bk> (qbl,...,qbk> =07, ].Hl o wlbs) ()
for any real number ¢q # 0.

Having seen that every multidimensional polylogarithm can be represented (24) by a
weight-dimensional iterated integral, it is natural to ask whether the converse holds.
In fact, any convergent iterated integral of the form

1 s
alr 26
/Orle() (26)

can always (by collecting adjacent wy factors — note that for convergence, a(s) # 0)
be written in the form

1 k
c—1 S1y+++.585k
| L w(bj>=<—1>kx<b b), (27)
0 5 1y bk
where

J
O;ébj:a (ZSZ> . (28)
=1

We remark that the iterated integral representation (24) and the weight-dimensional
non-iterated integral representation (20) of Example 4.1.3 are equivalent under the
change of variable z; = y;_1/y;, 7 = 1,2,...,s, yo := 1. In fact, every integral
representation of Section 4.1 has a corresponding iterated integral representation under
the aforementioned transformation. For example, Crandall’s integral (17) becomes

NEZERE AW ﬁ /yﬂ'*1 (log(y;—1/y;))* " dy;
bi,--osbi) o [(s7)(bj = yj)
The explicit observation that MZVs are values of iterated integrals is apparently due
to Maxim Kontsevich [44]. Less formally, such representations go as far back as Euler.

5 Shuflles and Stuffles

Although it is natural to study multidimensional polylogarithmic sums as analytic
objects, a good deal can be learned from the combinatorics of how they behave with
respect to their argument strings.

14



5.1 The Stuffle Algebra

Given two argument strings § = (si,...,s;) and ¢ = (t1,...,1,), we define the set
stuffle(5, %) as the smallest set of strings over the alphabet

{517 s 7Sk7t17 v 7t7‘7 “+”7 “7”7 “(”7 “)”}
satisfying
(1) (S15-++, 5k, t1,...,1,) € stuffle(5, 1),

(ii) If a string of the form (U, sp,tm,, V) is in stuffle(5,¢), then so are the strings
(U,tm, sn, V) and (U, sy, + tpy, V).

Let @ = (ay,...,ar) and b= (by,...,by) be two strings of the same length as 5 and ¢,

respectively. We now define
3.t
ST := ST (f’ :) (29)
a,b

to be the set of all pairs (g) with @ € stuffle(5,f) and & = (c1,cy,...,cp) defined as
follows:

i) h is the number of components of ,
ii) ¢p 1= ag := by := 1,
iii) for 1 < j <h, if ¢j_1 = ap—1by—1, then
anbm, if uj = s, +tp,

cj =1 apbp 1, ifuj;=sy,,
an—1bm, if uj = tp,.

5.2 Stuflle Identities

A class of identities which we call “depth-length shuffles” or “stuffle identities” is
generated by a formula for the product of two A-functions. Consider

(O-{15 (5) Hirgee (L) }

If we put

k
nj =i Vi, my =i &y

aj =TIl @i, bj =TTy v,

15



then it follows that
i k
“nj - e —
A( ))\(6): Z l_lej n; Hy ’m] .
J:

nyg>--->n, >0
Rewriting the previous expression in terms of A-functions yields the stuffle formula

-2

where the sum is over all pairs of strings (gﬁ) eST( )

)

S)

L &y

[

s
o

8oy
o H'l

ExaMPLE 5.2.1.

] t 7, 8,1 7,8+t r,t,8 r+1t,s t,r,s
)\ ? )\ — )\ ? 3 )\ ? )\ Y )\ ? )\ ) .
(a,b) (c) (a, b, bc) + ( a, bc ) + (a,ac, bc) + ( ac, bc ) + <c, ac, bc)
When specialized to MZVs, this example produces the identity

C(rys)C(t) = C(rys,t) + ((rys +t) + ((r,t,s) + ((r+t,8) + (L7, s).

The term “stuffle” derives from the manner in which the two (upper) strings are
combined. The relative order of the two strings is preserved (shuffles), but elements
of the two strings may also be shoved together into a common slot (stuffing), thereby
reducing the depth.

5.3 Stuflles and Partition Integrals

In Section 4.1, an example was given in which a stuffle identity (23) was seen to arise
from a corresponding rational function identity (22) and certain partition integral
representations (21). This is by no means an isolated phenomenon. In fact, we shall
show that every stuffle identity is a consequence of the partition integral (19) applied
to a corresponding rational function identity.

Theorem 2 FEwvery stuffle identity is equivalent to a rational function identity, via the
partition integral.

Before proving Theorem 2, we define a class of rational functions, and prove they

satisfy a certain rational function identity. Let § = (s1,...,s;), @ = (a1,...,qk),
t=(t1,...,t;), and = (Bi,..., ) be vectors of indeterminates. As in (29), put

t
ST =ST( .~
(07 ﬁ)
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and define
L 3 L (4
=T(a,p):={7: (’7) € ST}.

Let f: T — Q[y1,72,--.] be defined by

h
Foyeecom) = [T G (31)

J=1

Then we have the following lemma.

Lemma 1 Let f be defined as in (31). Then

f@rB = fA.
=

€r(a,p)

Proof of Lemma 1. Apply (30) with @ = & and b= ﬁ In view of (11), the lemma
follows on taking § and £ to be zero vectors of the appropriate lengths. a

Proof of Theorem 2. Let 3, %, @ and b be as in (30). Let @ and 3 be given by

oz]'—a]Hxl, Bj —bjl_[yZ

Applying Lemma 1 and the partition integral representation (19) to Crandall’s inte-
gral (17) yields

AN °°logx j %) logy Ldy =
Q) - =)o o

k
_ > (log x] dx] (log yJ dyj )
__{HA T }{H/ o } ng

_ ﬁ/oo (logac] dac] H/ logy] dy]
a5 U 1 IN{ s] Z; 3] Yj

L ®y

S

as required. a
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5.4 The Shuffle Algebra

As opposed to depth-length shuffles, or stuffles, which arise from the definition (1) in
terms of sums, the iterated integral representation (24) gives rise to what are called
em “weight-length shuffles”, or simply “shuffles”. Weight-length shuffles take the form

1 1 1
/0 2 Q.- Qy /0 Qn-}—IQn—l—2 T Qn-i—m = Z/O Q(r(l)er(2) e Qa(n+m)a (32)
where the sum is over all ("‘;m) permutations o of the set {1,2,...,n + m} which
satisfy o71(i) < o7 l(j) forall 1 <i < j<mandn+1<i <j<n+m. Inother
words, the sum is over all (n 4+ m)-dimensional iterated integrals in which the relative
orders of the two strings of 1-forms 2y,...,Q, and Q,41,..., Q1 are preserved.

ExaMPLE 5.4.1.

c21K@) = - [ wowt [

1
= —6/ w0w1—3/ wgwlwgwl /Owgw%wowl

= 6¢(3,1,1) +3¢(2,2,1) +¢(2,1,2).

In contrast, the stuffle formula gives
¢(2,1)¢(2) =2¢(2,2,1) +¢(4,1) +¢(2,3) +¢(2,1,2).

Note that weight-length shuffles preserve both depth and weight. In other words, the
depth (weight) of each term which occurs in the sum over shuffles is equal to the
combined depth (weight) of the two multidimensional polylogarithms comprising the
product.

6 Duality

In [28], Hoffman defines an involution on strings si,...,s,. The involution coincides
with a notion we refer to as duality. The duality principle states that two MZVs
coincide whenever their argument strings are dual to each other, and (as noted by
Zagier [44]) follows readily from the iterated integral representation. In [10], Broad-
hurst generalized the notion of duality to include relations between iterated integrals
involving the sixth root of unity; here we allow arbitrary complex values of b;. Thus,
we find that the duality principle easily extends to multidimensional polylogarithms,
and in this more general setting, has far-reaching implications.

18



6.1 Duality for Multidimensional Polylogarithms
We begin with the iterated integral representation (24) of Section 4.2. Reversing the

order of the omegas and replacing each integration variable y by its complement 1 —y
yields the dual iterated integral representation

51,...75 o S+k 5] 1
= (1—
’\<b1,...,b> / Hw b (82)

where again s = s1 4 - - - + s, is the weight.
EXAMPLE 6.1.1. Using (1), (24), and (33), we have

A(l?’—l1> - /Olw(O)w(l)w(—l) = _/Olw(Q)w(O)w(l) = _>\<;:i>7

which is to say that

00 1 — 00 1 n—1 2k
> 3 Z 2 2
n=1 k=1 n=1 n2 k=1 k

a result that would doubtless be difficult to prove by naive series manipulations alone.

When b, = by = ... = by = b, the two dual iterated integral representations (24)
and (33) simplify as follows:

M50, 55 /stf Lo(b) = s+k/ le—b Sl (34)

A somewhat more symmetric version of (34) is

1 m
(™M1 + 2 A s+ 2411 = (-1 [ TLwpep™
0 =

where r:= ) ;r; and, as usual, s :=}_; s;.

6.2 Duality for Unsigned Euler Sums
Taking b =1 in (35), we deduce the MZV duality formula (cf. [32] p. 483)

Cls1+2, {1}, . sm +2,{1}™) = ((rm + 2, {1}, ..., +2,{1}°) (36)
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for multidimensional unsigned Euler sums.

EXAMPLE 6.2.1. MZV duality (36) gives Euler’s evaluation ((2,1) = ¢(3), as well
as the generalizations (({2,1}") = ¢({3}"), and ((2,{1}") = ((n + 2), valid for all
nonnegative integers n.

In [40] a beautiful extension of MZV duality (36) is given, which also subsumes the
so-called sum formula
Z C(n17n27"'7nk):C(N)7
n;j >5j,1
N=X;n;
conjectured independently by C. Moen [28] and M. Schmidt [38], and subsequently
proved by A. Granville [27]. We refer the reader to Dr. Ohno’s preprint for details.

The duality principle has an enticing converse, namely that two MZVs with distinct
argument strings are equal only if the argument strings are dual to each other. Unfor-
tunately, although the numerical (and symbolic) evidence in support of this converse
statement is overwhelming, it still remains to be proved. In the case of self-dual strings,
the conjectured converse of the duality principle implies that such a MZV can equal
no other MZV; moreover we find that certain of these completely reduce, i.e. evaluate
entirely in terms of (depth-one) Riemann zeta functions.

EXAMPLE 6.2.2. The following self-dual evaluation, previously conjectured by Don
Zagier [44]
271.477,

C{3,1}") =47"C({4}") = e > 0,

is proved herein (see Section 12).
CONJECTURE: The self-dual two-parameter generalization of the previous example

? 2(m+1)7r4(m+1)n+2m - -
T @mtDEnr) 0 =T mED

C{23™, 3, {21, 1, {2™}")

remains to be proved. Example 2.3 of Section 2 is also a conjectured self-dual evalua-
tion.

We conclude this section with the following result, since the special case p = 1 has
some bearing on the MZV duality formula (36).

Theorem 3 Let |p| > 1. The double generating function equality

o0 o0
, — &
1= > 2™y I (m+2,{1}") =2/ ( 31/_

X
m=0n=0

)

holds.
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Proof. By definition (6) of A,

0o 0 o0 o0 1 k—1
Z Z xm+1yn+1>\p(m + 27{1}71) = y Z xm+1 Z km+2pk H (1 + g)

m=0n=0 m=0 k=1

o0 o0
— xm—l—l (y)k
k
m=0 = R R
_ i () ( @ )
= ok \k —z
_ i )k (=)
= klpk(1 — )y,
1
= 1—2F1<y’ v —>
l—x |p
as claimed. O

Remarks. In [5] it was noted that the p = 1 case of Theorem 4 is equivalent to the
m =1 case of MZV duality (36) via the invariance of

2k ( 31/__,?6 1) = F(;(_l f)g(_l ;)y) — exp {i (xk +yF = (z+ y)k) %} (37)
k=2

with respect to the interchange of « and y. However, it appears that this observation
can be traced back to Drinfeld [18]. In connection with his work on series of Lie
brackets, Drinfeld encountered a scaled version of the exponential series above, and
showed that the coefficients of the double generating function satisfy ¢y, = cpm and
Cmo = Com evaluates to ((m 4+ 2), up to a so-called Oppenheimer factor which we omit
([32], p. 468). In our notation, this is essentially the statement that {(m + 2,{1}") =
¢(n+2,{1}™).

Note that Theorem 4 in conjunction with (37) shows that {(m + 2, {1}"™) completely
reduces (i.e. is expressible solely in terms of depth-1 Riemann zeta values) for all
nonnegative integers m and n. In particular, the coefficient of ™ !y? gives Euler’s
formula (Example 2.1), while the coefficient of 2™ 'y® gives Markett’s formula [38]
for ((m,1,1), mm > 2. Thus, the complete reducibility of {(m + 2,{1}") is a simple
consequence of Gauss’s o F hypergeometric summation theorem (37).

It would be interesting to know if there’s a generating function formulation of MZV
duality at full strength (36). Presumably, it would involve an analogue of Drinfeld’s
associator in 2m non-commuting variables.
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6.3 Duality for Unit Euler Sums

Recall the d-function was defined (7) as the nested sum extension of the polylogarithm
at one-half:

8(81y---,Sk) :>\<S;::2> H Z 2 Vi (Zul) . (38)

j=lv;=1

Due to its geometric rate of convergence, d-values can be computed to high precision
relatively quickly. On the other hand, the unit Euler py-sums (8) converge extremely
slowly when the b; all lie on the unit circle. In particular, the slow convergence of the
unit (£1) argument p-sums initially confounded our efforts to create a data-base of
numerical evaluations from which to form viable conjectures. Nevertheless, there is
a close relationship between the J-sums and the p-sums, as we shall presently see.

Taking b = 2 in (35), we deduce the “delta-to-unit-mu” duality formula

O(s1+2,{1}", ... sm +2,{1}™)
= (=) ({ S T e LIRSty (39)

Thus, every convergent unit (+1) argument p-sum can be expressed as a (rapidly
convergent) 0-sum. The converse follows from the more general, but less symmetric
formula, arising from (34):

8(s1,.vnysk) = (=) Fpu(=1, {1} .., —1,{1}%71), (40)

ExXAMPLE 6.3.1.

and more generally, for all nonnegative integers n, we have

5 +1) = Y e = Lina(3) = —u(-1,{1}").
v=1
EXAMPLE 6.3.2.
S = (—)"u({—1)") = (log2)"/nl, n >0, (41)
02,{1}") = (-D""u({-1}"*"1), n>0, (42)

and more generally,

01, 2,{1}") = (=)™ (-1 L {-11"), m >0, n>0.

22



ExXAMPLE 6.3.3.
5(17'”_'—1) :/1’(_17{1}”7_1)7 nZOJ

and in particular,

§(1,0) = 1-—1log2,
5(1,1) = 3(log2)?

: . . . 3
5(1,2) = Fi(HLu() - 2is(h) + & L),

5(1,3) zlggmug—%@maf.

Integer relation searches (see [8] or [5] for details) have failed to find a similar formula
for 6(1,4). However,

5(1,—n) = zn: (”)M7 n>1,

v=0 v v+1

where the §(—v) are the simplex lock numbers (12) and the B, are the Bernoulli num-
bers [1]. More generally, if n; is a positive integer and ng, ns, ..., n, are all nonnegative
integers, then

T Tj
d(s,—Npy...,—ng,—nq1) = H Z A(vj) pd(s —vp —1), seC,
j=1v,=0
where
— A —— 1 Tj _
Tj = nj+Vj_1+1, (I/j) = I/j—i-l I/j BTj_,,j, 140 =1

7 The Holder Convolution

We have seen how multidimensional polylogarithms with unit arguments can be ex-
pressed in terms of rapidly convergent §-sums. What if the arguments are not necessar-
ily units? In the iterated integral representation (24) the domain 1 > y; > yj41 > 0
in s = ) ;s; variables splits into s + 1 parts. Each part is a product of regions
1 > y; > yj41 > 1/p for the first r variables, and 1/p > y; > y;41 > 0 for the remain-
ing s — r variables. Next, y; — 1 — y; replaces an integral of the former type by one
of the latter type, with 1/p replaced by 1/q:=1—1/p.

Motivated by these observations, we consider the string of differential 1-forms which
occurs in the integrand of the iterated integral representation (24) and define

aﬂz{% ifr=%7_ s

0, otherwise.

23



Then
S1y.-.45Sk o _\k 18 wla
() = et [ e
R VI /g 1 e 1/p 8 .
= Xey {/ I«0 a»}{/o j111w<ag>}-(43>

Thus, by means of (26), (27), and (28), we have expressed the general multidimen-
sional polylogarithm as a convolution of A, with A\, for any p, ¢ such that the Holder
condition 1/p + 1/q = 1 is satisfied. For this reason, we refer to (43) as the Holder
convolution. Note that the Holder convolution generalizes duality (33) for multidimen-
sional polylogarithms, as can be seen by letting p tend to infinity so that (25) A, — 0,
and ¢ — 1.

MZV ExAMPLE. For any p >0, ¢ >0 with 1/p+1/q =1,

€(2,1,2,1,1,1) = X(2,1,2,1,1,1) + Xp(1,1,2,1,1, 1) A, (1) + A\p(1,2,1,1,1) A4 (2)
+Ap(2, 1,1, )N, (3) + Ap(1,1,1, 1) Ay (1,3) + Ap(1,1,1)A4(2,3)
+25(1, 1)Aq(3,3) + Ap(1)Ag(4,3) + Ay(5,3)

= ((5,3).

The pattern should be clear. For 1 < j < m, define the concatenation products

m
@ = [[{si+2, {1} ={s; +2,{1}7,...,sm + 2, {1}""},
i=j

by = ﬁ{m + 2, {1} ={r; +2,{1}%, ..., +2,{1}"},
i=j
and @41 1= by := {}. Then the Holder convolution for the general MZV case is given
m ((si+1
C(am) = le { ; Ap(sj+2 = 6 {1}, @) Ag ({1}, Bj-1)
+ i {1, @j41) A (rj +2 - v, {1}5%5]'1)} + Ag(bm)  (44)
v=1

= C(Em)

Of course, @, and by, are the dual strings in the MZV duality formula (36). Since the
sums ), converge geometrically, whereas MZV sums converge only polynomially, (44)
provides an excellent method of computing general MZVs to high precision with the
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optimal parameter choice p = ¢ = 2. For rapid computation of general multidi-
mensional polylogarithms, it is simplest to use the Holder convolution (43) directly,
translating the iterated integrals into geometrically convergent sums on a case by case
basis, using (24).

ALTERNATING EXAMPLE.

A2, 1-) = /Olw(O)w(l)w(—l)

1/p 1/q 1/p
— /0 w(0)w(1)w(—1) —/0 w(l)/0 w(l)w(-1)
1/q 1/p 1/q
+/0 w(O)w(l)/0 w(—1) —/0 w(2)w(0)w(1)

= M2 12) A (L 1A (1) + Ap(1-)Ag(2) — A (“)

2,1
1,2
= A7),

Although we could now work out the explicit form of the analogue to (44) in the
alternating case, the resulting formula is too complicated in relation to its importance
to justify including here.

In addition to the impressive computational implications already outlined, the Holder
convolution (43) gives new relationships between multidimensional polylogarithms,
providing a path to understanding certain previously mysterious evaluations. For
example, taking p = ¢ = 2 shows that every MZV of weight s can be written as
a weight-homogeneous convolution sum involving 2s J-functions. Furthermore, em-
ploying the weight-length shuffle formula (32) to each product shows that every MZV
of weight s is a sum of 2° (not necessarily distinct) d-values, each of weight s, and each
appearing with unit (41) coefficient. In particular, this shows that the vector space
of rational linear combinations of MZVs is spanned by the set of all J-values. Thus,

1/2 1/2 1/2 1/2 1/2 1/2
C(3) = —/ wowow1 + / w1 / wow1 — / wiwi / w1 + / wWowiwi
0 0 0 0 0 0
1/2
= 5(3)4—/0 (wl-wowl +w0-w1-w1+w0w1-w1)

1/2
—/ (wlwl-wl +w1-w1-w1+w1-w1w1)+5(2,1)
0
= §(3)+6(1,2) +6(2,1) +68(2,1) +6(1,1,1) +6(1,1,1) +6(1,1,1) 4 6(2,1).

PoLyLoGc ExXAMPLE. Applying (43) to ((n + 2), with p = ¢ = 2 provides a lovely
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closed form for §(2,{1}"). Indeed,

n+2

((n+2) =0(2,{1}") + Y 6(r)s({1}mt). (45)

r=1

The desired closed form follows after rearranging the previous equation (45) and ap-
plying the definition (38) and the result (41) in the form §(r) = Ll,«( ) and 6({1}") =
(log 2)" /7!, respectively.

EXAMPLE. Putting n =1 in (45) gives [3]

o 1 oo

=Y Y s D (19

In fact, formula (45) is non-trivial even when n = 0. Putting n = 0 in (45) gives the
classical evaluation of the dilogarithm at one-half:

o
. ) 1
2Liz(3) =¢(2) — (log2)* ie. > g = La?— L(log2)”.
n=1

Differentiation of (43) with respect to the parameter p provides another avenue of
pursuit which has not yet been fully explored. We have used this approach to de-
rive 0(0,{1}") = d({1}"), but in fact, removing the initial zero is trivial from first
principles.

7.1 EZ Face

A fast program for evaluating MZVs (as well as arithmetic expressions containing
them) based on the formula (44) has been developed at the CECM?, and is available
for public use via the World Wide Web interface called “EZ Face” (an abbreviation
for Euler Zetas interFace) at the URL

http://www.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi

This publicly accessible interface currently allows one to evaluate the sums

k
z(81,...,8k) = Z Hn;|5j|aj_n]

ni>na>...>ng j=1

for non-zero integers si,...,s; and o; := signum(s;), and

k
Zp(p,31,.,,73k) = Z p*’n,l Hnj—s]
Jj=1

ni>na>...>ng

3Centre for Experimental and Constructive Mathematics, Simon Fraser University.
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for real p > 1 and positive integers si, ..., Sk.
The precision of the evaluation can be set anywhere between 10 and 100 digits.

Progress is currently underway to improve the implementation of alternating sums,
(which are currently much less efficiently and accurately evaluated), and to extend
the scope of sums that can be evaluated. The exact status of the EZ Face is at any
moment documented at its “Definitions” and “Implementation Details” pages.

Additionally to the functions z and zp, the 1lindep function can be called to discover
integer relations [8] between different polylog values (under the assumption that these
values are known to sufficient precision). An integer relation for a vector of real
numbers (z1,...,Z,) is a non-zero integer vector (ci,...,c,) such that > ;' ¢;z; = 0.
The required syntax is lindep([z1,...,%y]), where z1,...,z, is the vector of values
for which the relation is sought.

EZ FACE EXAMPLES.

The left-aligned lines represent the input to EZ Face, while the centered lines represent
the output of EZ Face. All computations are done with the precision of 50 digits.

Pi~6/z(6)

945.00000000000000000000000000000000000000000000000

lindep([z(4,1,3), z(5,3), z(8), z(5)*z(3), z(3)"2xz(2)])

36., 3., -71., 90., -18.

lindep([ z(3), Pi~2xlog(2), zp(2,2,1), zp(2,3) 1)

12., -1., -12., -12.

The first example is a simple instance of Euler’s formula for ((2n). The second example
is the discovery of equation (13). The third example confirms formula (46).

8 Evaluations for Unit Euler Sums
As usual, the Hélder conjugates p and ¢ denote real numbers satisfying 1/p+1/q = 1,

and p > 1 or p < —1 for convergence. Our first result is an easy consequence of the
binomial theorem.
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Theorem 4 The generating function equality
o0
L+ a"u({p}") = ¢".
n=1
holds.

Proof. By definition (8) of u,

o0

00 1 m—1 T
LS el = t+a Y — T (145

-3 ()

m=1
= (1-1/p)~°
O
Corollary 1
p({p}") = (logq)"/n!, n =0.
Remarks. Of course, when n = 0, we need to invoke the usual empty product

convention to properly interpret p({}) = 1. Since the mapping p — 1 — p induces the
mapping ¢ — 1/q under the Holder correspondence, duality (34) takes the particularly
appealing form p({p}") = (—=1)"u({1l — p}™) in this context. In particular, p = —1
and d-duality (40), (41) gives

o({1}") = (=1)"n({=1}") = (log 2)"/n!, n =0,

1.e.
)”frl _ (log2)”

n (0.0 n (0.0
szw(uJJr T+ ) :EZ o o =0

which can be viewed as an iterated sum extension of the well-known result

o) U+1

(0.0)
Z 1/2” Z: =log2,

typically obtained by comparing the Maclaurin series for log(1 + z) when z = —% and
z=1.
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We now prove a few results for unit Euler sums that were left as open conjectures
in [5]. It will be convenient to employ the following notation:

l r
Ay = TLig(d) = Z2kkr, = (05!2), Zy = (—1)7C(r).  (47)

Theorem 5 For all positive integers m,

m
p{=13"1) = (=)™ A1 Pk — Zma.
k=0

Proof. (From the case (45) of the Holder convolution, we have
m+1
52, {1y ) =¢(m+1) Z S(ryo({1}ym ).

Now multiply both sides by (—1)™ and apply the case (42) of d-duality. |

Remarks. Theorem 5 appeared as the conjectured formula (67) in [5], and is valid
for all nonnegative integers m if the divergent m = 0 case is interpreted appropriately.
The equivalent generating function identity is

. 12 (1—¢)® — 1\ & 2-(@n)
n —1 1) = -~ 2  dt=log?2 — | =
>ty = | t o5 +Z(Hn - >

correcting the misprinted sign in formula (21) of [5].

The asymmetry which marrs Theorem 5 is recovered in the generalization (9), restated
and proved below.

Theorem 6 For all positive integers m and all nonnegative integers n, we have

P L) = (Y (”;l”“) Atsns Pk

k=0

il = [mt+k
+ (_1) 1 Z ( >Zk+m+1pnk7 (48)
k=o \ T

where Ay, P, and Z, are as in (47).
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Proof. Let m be a positive integer, and let n be a nonnegative integer. We have

P L) = e [ /waz

1
_ (=1t / W™ o / oy
0

1 1 y)/2
— m-l—n-l— / w 1(4)1/ w?
0 1/2

1
= m+"+1/ w™wy (log(1 +1y))" /n!.
0

By duality,
1
minla({=1}", L{=1}") = m! [ (= log(2 = y)" wow'
1 y/2
= ml [ (log@—y)"w [ up

_ /0 '~ log(2 — )" (log(L — y/2))™ dy/y.

Letting t = 1 — y/2 and forming the generating function, it follows that

1} 1 " ' —log(2t))" (1 m_dt
S Y L) = S Y S Clagan)” togh” (2

m=1n=0 m=1n=0 /2

_ /1 (2t)7Y (t* — 1) i
1/2 1—1¢ )

Expanding 1/(1 — ¢) in powers of ¢ and integrating term by term yields

Z Zw {—1}™, 1, {-1}")

m=1n=0
s 1

:2?/2(
pr] k+x

It is now a routine matter to extract the coefficient of z™y"™. For the record, here are
the details: Since m > 1, we may ignore the terms in (49) which are independent of
. Thus

m . n — xm n - 2_y
p({—=13",1,{-1}") [y ]{;k(u(x—y)/k)

= [¢My"] {Z %(—ylog? " Z%

r=0"" k=1"j

1 ©  9—(k+w) ®©  9—k

— D P ——— : 49
-y k—y> ,gz::lker—er,;k—y (49)

M8

9—(k+z)
k(1 + (z —y)/k)}

()

1

Mw

Il
o
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- (= PZ —WAJH} (50)

where we have interchanged order of summation, and used the definitions (47). The
inner sums can start at j = 1 since we are not extracting the (divergent) constant
term from the generating function. We now extract the coefficient of " from the first
double sum in (50) and at the same time extract the coefficient of ™ from the second
double sum in (50). This yields

p({=11" 1L {=1}") = [wm]zn:(— " P kZ( ) Y FCG+ 1)
k=0

- [y"] i(—l)mfkpm—k > <';> YR (-1)F A
k=0 J=1

- Z(—u"—kpnk(m;’“>(—1>m<(m+k+1>
k=0

- Z(—l)mfkpmfk (n _]: k) (—1)* Apyps

k=0

mal o= [n+k
= (-1 HZ( N )Ak+n+1Pmk

k=0

" (m+k
+ (=t Z < )Zk+m+1Pn—k7
k=0 \

as required. O

Remarks. ~ Theorem 6 is an extension of conjectured formula (68) of [5], and is
valid for all nonnegative integers m and n if the divergent m = 0 case is interpreted
appropriately.

9 Other Integral Transformations

In Section 6, we proved the duality principle for multidimensional polylogarithmms by
using the integral transformation y — 1 — z. Similarly, in this section we prove more
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theorems about mutidimensional polylogarithms by using suitable transformations of
variables in their integral representations.

Theorem 7 Let n be a positive integer. Let by,...,bg be arbitrary complex numbers,
and let s1,...,s be positive integers. Then

51,82y...,S8k _ S81y.0.,S8k
)\ na na ) bn — ns k Z )\ b ) ) b 7
19929+ Y €101, ..., €0
where the sum is over all n* cyclotomic sequences

T = {1, e27rz/n’ e4m/n’ o e27rz(n—1)/n} :

and, as usual, s := s; + So + - -+ + Sk

Proof. Write the left-hand side as an iterated integral as in (24):

1 k
L= [ 552 ook :(-1)’6/ T ws ™ wn).
b o 1

1292

Now let y = z™ at each level of integration. This sends wy to nwy and, by partial

fractions,
n—1

w(b") — Z w (be%"/") .

r=0

The change of variable gives

1 k n—1
L= (—l)k/ 1_[(nw0)5f1 Z w (bjezmr/”) .
0 j=1 r=0

Now carefully expand the noncommutative product and reinterpret each resulting
iterated integral as a A-function to complete the proof. a

EXAMPLE. When n =2 and & = 1, Theorem 7 asserts that
= 1+ (=1
C(S):2s IZ (s)
n=1 n

Thus, Theorem 7 can be viewed as a cyclotomic extension of the well-known “sum
over signs” formula for the alternating zeta function:

= (-1

L =1 -2%¢(s), R(s)>0.

s
n=1 n
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Next we prove two broad generalizations of formulae (24), (26) and (28) of [5]. By a
pair of Cat operators we mean nested concatenation (similarly as two ) signs mean

nested summation).

Theorem 8 Let s1,59,...,8, be nonnegative integers. Then
L+ sk, 148k 1+s; k 5 ko Si
) N _ . N N
4 ( B ) > i Cat(~1} Catfess I1I=

where the sum is over all 2517521 TSk sequences of signs (¢; j), with each e; ; € {1, -1}
forall1 <i<sj, 1 <7<k, and Cat denotes string concatenation.

Proof. Let

1
. 1+sk, 1+sg_1, ..., 1+s1\| k/l S

ey

Now let us use duality, and then we let y = 2¢/(1 +¢) at each level of integration. We
get

1 k
L= (—1)’“/0 ] w-i1(w 1 —wi).
7j=1

Now let us carefully expand the noncommutative product. We get

1k 5j
L= (0 S 0Fot [ TLwm [l
j=1 i=1

where the sum is over all sign choices ¢; ; € {1,—1}, 1 <i <s;, 1 <j <k, and where
by #e€;j = a we mean the cardinality of the set {(7,7) | €;; = a}.

Let us now interpret the interated integtrals as A-functions. In this case, they are all
unit Euler p-sums, as we defined in (8). Thus,

L= (1) S )# = -1k o Cap(~1} Calei ).

where, as usual, s := 81 + 83 + -+ + s;. Now if r of the ¢; ; equal +1, then s —r of
them equal —1. Hence,

o k 5
L= Z(—l)#t‘z,;— 1M<(J;a1t{—l} (i:ait{gi’j}> .

Finally, (—1)#¢4="1 is the same as the product over all the signs €i,j, and this latter
observation completes the proof of Theorem 8. O
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Theorem 8 generalizes several identities conjectured in [5]. For example, we get the

conjecture (28) of [5] if we put sp41 = m, s, = sp—1 = ... = $1 = 0 in Theorem 8.
Furthermore, (24) of [5] is the case Spmint1 = Sman = - = Spt2 = 0, Spp1 = 1,
Sp = Sp—1 = ... = 81 = 0, and (26) of [5] is a special case of Theorem 8 as well.

Thus every multidimensional polylogarithm with all alternations (or, equivalently, ev-
ery Euler sum with first position alternating and all the others non-alternating) is a
signed sum over unit Euler sums. The representation of the sign coefficients used in
Theorem 8 is much simpler than the cumbersome form of (28) in [5].

Below we present a dual to Theorem 8, which gives any unit Euler py-value in terms
of A-values with all alternations (equivalently, Euler sums with only first position
alternating):

Theorem 9 Let sy, S9,..., S be nonnegative integers. Then
Cat{—1}{1}% A( Cat Catft
— c=J = e
p( Cap(-1){1p= ) = S0 Cat Cat{ti,—)
where the sum is over all 25175275k positive integer compositions

t17j+t27j+...+tqj,j:Sj-l—l, 1§q]'§8j+1, 1§j§k

Proof. Let

k—1 ok Lk

M= u(CaOt{—l}{l}s’“j> — (-1 5<Ca1t{1 +sj}> :/ I] wiiws.
J= j= 0 ;
J=1
Again, let us make the change of variable y = 2t/(1 + t) at each level. Then
1 k
M= / T] (wo — w_1)¥ (—w_1).
0 i

Again, let us carefully expand the noncommutative product. We get

1k 13
M= nFet ] [H w(eiy)

j=1 Li=1

(_wfl)v

where this time, the sum is over all €; ; € {0, -1} with 1 <i<s;, 1 <j <k,

Note that each w_; in the integrand contributes —1 to the sign and +1 to the depth.
Since

1
(_l)depth/ weight-length string = A(depth-length string),
0
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it follows that M is a sum of A-values with all +1 coefficients. That is,

M- Z/\<t1’ 1)

where the sum is over all vectors
b=ty otgy)  1<a <1+,

and such that 0
J
dtij=1+s;, 1<j<k

In other words, the sum is over all 2° independent positive integer compositions (in

the technical sense of combinatorics) of the numbers 1 +s;, 1 < j < k.

10 Landen’s Cousins

Landen’s beautiful formulae (see the list (61) below) evidently exhaust the set of
polylog evaluations at weight two, depth one in terms of elementary functions [36]
(p. 7). In a similar vein, we present here some lovely “weight=depth=2" evaluations,
which appear to belong to the same family as Landen’s (cf. Coxeter’s “ladders” [14]

for an alternative extension.)
Theorem 10 We have the 10 evaluations

ST

> ( )

m=1 k=1
i 1 3—\/5>mm L
=m 2 Pt k2
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:——log2 \/52_ )—(logZ)log <\/__1>—76T—;, (54)
= () (f "
nlzl mooiDk —5(10g2)2—12, (59)
© 1 (1-v5)" L (—1)F (1+5)"
S0 55
:10g<\/5+3>log<\/5+1>—10g2<\/5_1>—7r—2 (56)
2 2 2 15’
1 3—¢5>mm1<—1>k<1+¢3>’“
mZ:1m< 4 ok 2

_ 2
= %(logZ)2 — log? (%) + log <\/52+ 3> log <\/34—|- 1> + 50’ (57)

m=1 m -k
5—1 1 2
= (log 2) log(\/g -1+ log? L — = (log 2)2 — 7r_’ (58)
2 2 60
2 (Vo -2 (—
m=1 m k=1
1 1
= log? <\/5 + (log 2) log(3 — \/5) — §(log 2)% + 60 (59)
i 1 (3=VE\"E( 1+v5)"
m=1"" 2 k=1 2
Vh—1 \/_ 5+ 3 72
= log ( 5 log 5 + 30" (60)
Proof. We require the following
tion 1

Proposi

o0

(_1)m+1$m m—1 (_1)k+1 k

> — = log(L +2) log(L +y) — Lis(4) + Lix(B),
m=1 k=1
where A:= (1 +z)y/(1 +y) and B :=y/(1 +y).

Now recall [36] the following exhaustive list of dilogarithm evaluations due to Landen:

Liy(0) = 0,
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2
. s
L12(1) = F,
2
™
Liys(—=1) = ——
ip(—1) L
1 ™ 1
Lib (=] = — —=(log2)?
2 2) TR
V5 —1 2 5 (VB —1
L12< 5 = 1——10g 5 ;
. (1—=5 1. (V51 2
Lig = -1 =,
2 2 2 15
3—vb 72 Vh—1
Li = — —log? i 1
(2> - og<2> (61)

It was a simple matter to program Maple to run through Landen’s list (61), thus
producing all values of x and y for which both A and B have dilogarithm evaluations
and for which the double series converges. The 10 evaluations of Theorem 10 resulted.
It now remains only to establish Proposition 1.

Proof of Proposition 1. Interchanging order of summation, we have

i (=1)"z™ mizl (—1)kyP _ i (—1)ky* i (=1)"z™
m=1 -k = kS om
k00

= Z # (_1)m /a: tm—l dt
k=1 m=k+1 0
Yeyk e (—1)kHLEE g
/0 14+t

[a—y

I
|
5
M
~|

m+11 z+1
:/ MWH/ 10g<1_ﬂ>d_u
1 u 1 1+y/) u

Alog(l—t
= log(1+x)log(1+y)+/ Mdt

B t
= log(1 +z)log(1 +y) — Liz(A) + Liz(B),

as claimed. O
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Remarks.  Applying duality to Theorem 10 provides additional insight. We find
that formulae (52) and (58) are dual, i.e. equivalent to each other via the duality
formula (33). Similarly, formulae (57) and (59) are duals of each other, and hence are
equivalent too. Self-dual evaluations are provided by (53) and (60). We have already
seen that (55) dualizes to —d(2) = —Liz(1/2), and similarly, (56) dualizes to

(i) (5

of Landen’s list. Thus, it turns out that only (51) and (54) provide additional evalua-
tions after having taken duality into account. Explicitly they yield

00 i mm—1 ok i N 71'2
Zl<3 4\/5> Z%:élog2<\/52 1>+10g <\/52 1>log <\/52+1>+@7

m=1"" k=1
and
© (2 B)m ™=l S 1 1 2
27( v5) Z— 3+ V5 = —log? V5 + (log 2) log V5 -I-W—,
A Y =LA 2 2 2 60
respectively.

Certainly there must exist analogs to the evaluations of Theorem 10 in the “weight=3"
case. Let us just mention the following curiosity:

Lewin ([36], p. 156) gives the evaluation of Liz((3 — v/5)/2) where (3 — v/5)/2 = 6?
for 0 := 2sin(7/10), and also Landen’s incorrect (presumably mistyped in Edward’s
book) evaluation Liz(6?) = ¢(3). Lewin calls this “a little mystery” since nobody has
even understood what the supposed equation for Liz(6?) intended. In this context it
is interesting to note that Theorem 10 states many evaluations with arguments 6 and
6%. Thus, it could be that the “weight=3" analog of Theorem 10 might shed some
light on Lewin’s “mystery.”

11 Functional Equations

One fruitful strategy for proving identities involving special values of polylogarithms
is to prove more general (functional, differential) identities and instantiate them at
appropriate argument values. In the last two sections of this paper we present examples
of such proofs.

Lemma 2 Let 0 <z <1 and let

_ [® (log(1 —1))*
() ._/0 TR
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Then

4z

J(—z) =—J(z) + +J(z?) + J<x2f1> — %J(m> . (62)

Proof.  If L(z) and R(z) denote the left-hand and the right-hand sides of (62),
respectively, then by elementary manipulations (under the assumption 0 < z < 1) we
can show that dL/dz = dR/dz. The easy observation L(0) = R(0) = 0 then completes
the proof. O

Remarks. The identity (62) can be discovered and proved using a computer. Once
the “ingredients” (the J-terms) of the identity are chosen, the constant coefficients at
them can be determined by evaluating the J-terms at a sufficiently arbitrary value of
z €]0,1[ and using an integer relation algorithm [8]. Once the identity is discovered,
the main part of the proof (namely showing that dL/dz = dR/dz) can be accomplished
in a computer algebra system (e.g., using the simplify() command of Maple).

Theorem 11 We have
A2-,1-) =((2,1)/8. (63)

Proof. Using notation of Lemma 2 let us observe that

W= Y o
J(z) = .
2
n1>n2>0 nyn2
Plugging in = 1 and applying (62) now completes the proof. O

Remarks. Theorem 11 is the n = 1 case of the conjectured identity (23) of [5], namely

A2—,1-,2,1,...) = 87 "C({2,11™), (64)
2n

for which we have overwhelming numerical evidence. This evidence also suggests that
(64) with n > 1 seems to be the only case when two Euler sums that do not evaluate
(in the sense of the definition in Section 3) have a rational quotient, different from 1.
(See also Section 6.2.)

12 Differential Equations and Hypergeometric Series

Here, it is better to work with

L(s1,- -, 8652) = A1 /e (815 -+ 5 Sk),
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since then we have
d

1
EL(S]C, ce, 815T) = ;L(—l + Skye .o, 81;T)

if s > 2; while for s, = 1,

d 1
%L(sk,. .. ,81;1‘) = mL(skfla .- -731§$)'

With the initial conditions
L(sg,...,$1;0) =0, k>1, and L({};z):=1,

the differential equations above determine the L-functions uniquely.

12.1 Periodic Polylogarithms

If §:= (s1,82,...,8¢) and s := 37, s;, then every periodic polylogarithm L({5}") has
an ordinary generating function

o0

Lg(x,t) := ZL({E’ ")t
r=0
which satisfies an algebraic ordinary differential equation in . In the simplest case, k =
1, § reduces to the scalar s, and the differential equation for the ordinary generating
function is Dy — t* = 0, where

D, := ((1 — x)%)l (x%)SI.

The series solution is a generalized hypergeometric function

o] 15 r—1 15
Ly(z,t) = 1+> 2"—1]] (1 + ,—s>
=1 i1 J
—wt, —w3t, ..., —w? 1t
SF.Sfl ( 1 1 1

where w = ¢™/$_ a primitive sth root of —1.

12.2 Proof of Zagier’s Conjecture

Let o F)(a, b; c; z) denote the Gaussian hypergeometric function. Then:
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Theorem 12

i L({3,1}"; z)t'"
n=0
=By (3t(1+0), =81+ ) L) o By (301 =), —34(1 = i); 152) . (65)

Proof. Both sides of the putative identity start

tho, ot g S aut
14+ = Z e
T T RT T 1536

and are annihilated by the differential operator

Dyy = <(1 - @%)2 @%)2 _

Once discovered, this can be checked in Mathematica or Maple. O

Corollary 2 (Zagier’s Conjecture)[44] For all nonnegative integers n,

27r4n
C({3,1}") = n+ o)

Proof. Gauss’s o F] summation theorem gives

1 sin(ma)
Fi(a,—a; 151) = = .
2Fi(a, —a: 13 1) I'l—a)l'(1+4a) ma

Hence, setting x = 1 in the generating function (65), we have

o0

SoCB, M = oF (B4 ), — 5140 151) 9By (1= 4), —5#(1 —i); 151)
n=0

2
= =g sin(2 (1 4 i)mt) sin( (1 — i) 7t)
Vs

cosh(nt) — cos(nt)
m2t?
X gpingin

= 2 (4n +2)!"

n=0

|

Remark. The proof is Zagier’s modification of Broadhurst’s, based on the extensive
empirical work begun in [5].
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12.3 Generalizations of Zagier’s Conjecture

In [6] we give an alternative (combinatorial) proof of Zagier’s conjecture. This proof
is based on combinatorial manipulations of the iterated integral representations of
MZVs (see Section 4.2). Using the same technique, we prove in [6] the “Zagier dressed

with 2”7 identity:
,/T4n+2

ZC(E) = n <t (66)

where § runs over all 2n + 1 possible insertions of the number 2 in the string {3,1}".
Still, (66) is just the beginning of a large family of conjectured identities that we
discuss in [6].

13 Open Conjectures

The reader has probably noticed that many formulae proved in this paper were con-
jectured in [5]. For the sake of completeness, we now list formulae from [5] that are
still open: (18), (44), (23), (25), (27), (29), (63), and (70)—(74). It is possible that
some of these conjectures can be proved using techniques of the present paper.
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