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Abstract

A closed plane meander of order n is a closed self-avoiding loop intersecting an infi-
nite line 2n times. Meanders are considered distinct up to any smooth deformation
leaving the line fixed. We have developed an improved algorithm, based on transfer
matrix methods, for the enumeration of plane meanders. This allows us to calculate
the number of closed meanders up to n = 24. The algorithm is easily modified to
enumerate various systems of closed meanders, semi-meanders or open meanders.
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1 Introduction

Meanders form a set of combinatorial problems concerned with the enumer-
ation of self-avoiding loops crossing a line through a given number of points.
Meanders are considered distinct up to any smooth deformation leaving the
line fixed. This problem seems to date back at least to the work of Poincaré
on differential geometry. More recently it has been related to enumerations of
ovals in planar algebraic curves [1] and the classification of 3-manifolds [2].
During the last decade or so it has received considerable attention in other
areas of science. In computer science meanders are related to the sorting of
Jordan sequences [3]. In physics meanders are relevant to the study of compact
foldings of polymers [4,5], properties of the Temperley-Lieb algebra [6,7], and
defects in liquid crystals and 2 + 1 dimensional gravity [8].

The difficulty in the enumeration of most interesting combinatorial problems
is that, computationally, they are of exponential complexity. Initial efforts
at computer enumeration of meanders have been based on direct counting.
Lando and Zvonkin [9] studied closed meanders, open meanders and systems
of closed meanders, while Di Francesco et al. [5] studied semi-meanders. In this
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paper we describe a new and improved algorithm, based on transfer matrix
methods, for the enumeration of closed plane meanders. While the algorithm
still has exponential complexity, the growth in computer time is much slower
than that experienced with direct counting, and consequently the calculation
can be carried much further. The algorithm is easily modified to enumerate
systems of closed meanders, semi-meanders or open meanders.

2 Definitions of meanders

A closed meander of order n is a closed self-avoiding curve crossing an infinite
line 2n times. Fig. 1 shows some meanders. The meandric number Mn is
simply the number of such meanders distinct up to smooth transformations.
We define the generating function

M(x) =
∞∑

n=1

Mnxn. (1)

n = 2 n = 3 n = 3
Fig. 1. A few examples of closed meanders of order 2 and 3, respectively.

We can extend the definition to systems of closed meanders, by allowing con-
figurations with disconnected closed meanders. The meandric numbers M (k)

n

are the number of meanders with 2n crossings and k components. An open

meander of order n is a self-avoiding curve running from west to east while
crossing an infinite line n times. The number of such curves is mn. It should be
noted [9] that Mn = m2n−1. Finally, we could consider a semi-infinite line and
allow the curve to wind around the end-point of the line. A semi-meander of
order n is a closed self-avoiding loop crossing the semi-infinite line 2n times.
The number of semi-meanders of order n is denoted by Mn. In this case a
further interesting generalisation is to study the number of semi-meanders
Mn(w), which wind around the end-point of the line w times.

3 Enumeration of meanders

The method used to enumerate meanders is similar to the transfer matrix
technique devised by Enting [10] in his pioneering work on the enumeration
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of self-avoiding polygons. The first terms in the series for the meander gen-
erating function can be calculated using transfer matrix techniques. This in-
volves drawing a boundary perpendicular to the infinite line. Meanders are
enumerated by successive moves of the boundary, so that one crossing at a
time is added to the meanders as illustrated in Fig. 2. At each position of the
boundary we have a configuration of loop-ends closed to the left, and for each
configuration we count all the possible meanders that could give rise to that
particular configuration of loop-ends. Since the curve making up a meander is
self-avoiding each configuration can be represented by an ordered set of edge
states {xi} = 0 (1) indicates the lower (upper) part of loop closed to the left of
the boundary. In addition we need to know where the infinite line is situated
within the loop-ends. This can be done simply by specifying how many loop-
ends lie beneath the infinite line. Configurations are read from the bottom to
the top. As an example we note that the configuration along the boundary of
the meander in Fig. 2 at position 4 is {2; 001011}.

1 2 3 4 5 6 7 8 9 10 111 2 1 2 3 2 3 2 1 0 101 00
11

0
011

00
1011

001
011

00
11

000
111

000
111 00

11 01 01
Fig. 2. Positions of the boundarys (dashed lines) during the transfer matrix calcu-
lation. Numbers along the boundarys give the encoding of the loop structure in the
partially completed meander to the left of the boundary.

We start with the configuration {1;01} with a count of 1, that is one loop
crossing the infinite line. Next we move the boundary one step ahead and add
a new crossing. So we either put in an additional loop or we take an existing
loop-end immediately above or below the infinite line and drag it across the
line. The first possibility is illustrated in Fig. 2 in going to position 2 where we
get the configuration {2;0011}. Additional loops are also inserted while going
to positions 4 and 7. As we cross the infinite line with an existing loop-end
we may be allowed to connect it to the loop-end on the other side. In going
to position 6 we connect a ‘1’ below the line to a ‘0’ above the line and no
further processing is required. In going to position 8 or 9 a ‘0’ below the line
is connected to a ‘0’ above the line. This requires further processing because
in connecting two lower loop-ends an upper loop-end elsewhere in the old
configuration becomes a lower loop-end in the new configuration. In going to
position 8 we see that the configuration {2;000111} before the step forward
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becomes the configuration {1;0011} after the step. That is the upper end of
the third loop before the step becomes the lower end of the second loop after
the step. We refer the reader to [10] for the detailed rules for relabeling of
configurations. Finally, note that connecting a ‘0’ below the line to a ‘1’ above
the line results in a closed loop. So this is only allowed if there are no other
loops cut by the boundary and the result is a valid closed meander. As we
move along and generate a new ‘target’ configuration its count is calculated
by adding up the count for the various ‘source’ configurations which could
generate that target. For example the ‘target’ {2;0011} could be generated
from the ‘sources’ {1;01}, {1;0011}, {3;0011} and {3;001011}, by, respectively,
putting in an additional loop, moving a loop-end below the line, moving a
loop-end above the line and connecting two loop-ends across the line.

The number of configurations, which need be generated in a calculation of Mn,
is restricted by the fact that at each step we change the number of loop-ends
above and/or below the infinite line by at most one. So if we have already
taken k steps then there can be at most 2n − k loop-ends above or below the
line. Any configurations violating this criterion can be discarded. Furthermore
we can reduce the number of distinct configurations by a factor of two by using
the symmetry with respect to reflection in the infinite line.

As we noted above connecting a ‘0’ below the line to a ‘1’ above the line
results in a closed loop. Failure to observe the restriction on this closure would
result in graphs with disconnected components, either one closed meander over
another or one closed meander within another. Obviously these are just the
types of graphs required in order to enumerate systems of closed meanders. So
by noting that each such closure adds one more component it is straightforward
to generalise the algorithm to enumerate systems of closed meanders. Open

meanders are a little more complicated. Suffice to say at this stage that the
main part of the necessary generalisations consists in adding an extra piece
of information. We have to add a free end and specify its position within the
configuration of loop-ends. In order to enumerate semi-meanders all we just
change the initial configuration, and start in a position just before the first
crossing of the semi-infinite line with w loops nested within one another. By
running the algorithm for each w from 0 to n we count semi-meanders with
up to n crossings.

Using the new algorithm we have calculated Mn up to n = 24 as compared to
the previous best of n = 17 obtained by V. R. Pratt [11]. To fully appreciate
the advance it should be noted that the computational complexity grows ex-
ponentially, that is the time required to obtain n term grows asymptotically
as λn. For direct enumerations time is simply proportional to Mn and thus
λ = limn→∞

Mn+1/Mn ≈ 12.26. The transfer matrix method employed in this
paper is far more efficient and the numerical evidence suggests that the compu-
tational complexity is such that λ ≈ 2.5. Another way of gauging the improved
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efficiency is to note that the calculations for semi-meanders carried out in [5]
were “done on the parallel Cray-T3D (128 processors) of the CEA-Grenoble,
with approximately 7500 hours × processors.” Or in total about 100 years of
CPU time. The equivalent calculations can be done with the transfer matrix
algorithm in about 15 minutes on a single processor DEC-Alpha workstation!
The price we have to pay is that unlike for direct enumeration memory use
grows exponentially with growth factor λ.

4 Results and analysis

Table 1
The number, Mn, of connected closed meanders with 2n crossings.

n Mn n Mn n Mn

1 1 9 933458 17 59923200729046

2 2 10 8152860 18 608188709574124

3 8 11 73424650 19 6234277838531806

4 42 12 678390116 20 64477712119584604

5 262 13 6405031050 21 672265814872772972

6 1828 14 61606881612 22 7060941974458061392

7 13820 15 602188541928 23 74661728661167809752

8 110954 16 5969806669034 24 794337831754564188184

The enumerations undertaken thus far are too numerous to detail here. We
thus only give the results for Mn which are listed in Table 1. The series for the
meander generating function is characterised by coefficients which grow expo-
nentially, with sub-dominant term given by a critical exponent. The generating
function behaviour is M(x) =

∑
n Mnxn ∼ A(x)(xc−x)ξ, and hence the coeffi-

cients of the generating function Mn = [xn]M(x) ∼ σn/nξ+1 ∑
i ci/n

f(i), where
σ = 1/xc is the connective constant. We analyzed the series by the numeri-
cal method of differential approximants [12], and obtained the very accurate
estimates xc = 0.08154695(10) and ξ = 2.4206(4), and we thus find that the
connective constant σ = 12.262874(15). Having obtained these accurate esti-
mates we used them to fit the asymptotic form of the coefficient to the formula
above. The results were fully consistent with f(i) = i. There were no signs
of half-integer or other powers, showing that there does not appear to be any
non-analytic correction terms to the generating function.
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5 Conclusion

We have presented an improved algorithm for the enumeration of closed mean-
ders. The computational complexity of the algorithm is estimated to be 2.5n,
much better than direct counting algorithms which have complexity 12.26n.
Implementing this algorithm enabled us to obtain closed meanders up to order
24. From our extended series we obtained precise estimates for the connective
constant and critical exponent. An alternative analysis provides very strong
evidence for the absence of any non-analytic correction terms to the proposed
asymptotic form for the generating function.
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