
ar
X

iv
:c

on
d-

m
at

/9
91

04
22

 v
1

 2
6

O
ct

 1
99

9

IC/99/154

United Nations Educational, Scientific and Cultural Organization

and the

International Atomic Energy Agency

ABDUS SALAM

INTERNATIONAL CENTRE

FOR

THEORETICAL PHYSICS

Fractals from Genomes
— Exact Solutions of a Biology-Inspired

Problem

Bai-lin Hao

MIRAMARE–TRIESTE

October 1999

Fractals from Genomes

— Exact Solutions of a Biology-Inspired

Problem

Bai-lin Hao∗

Abdus Salam International Centre for Theoretical Physics, Trieste 34100, Italy

Abstract

This is a review of a set of recent papers with some new data added. After a
brief biological introduction a visualization scheme of the string composition of long
DNA sequences, in particular, of bacterial complete genomes, will be described.
This scheme leads to a class of self-similar and self-overlapping fractals in the limit
of infinitely long constituent strings. The calculation of their exact dimensions and
the counting of true and redundant avoided strings at different string lengths turn
out to be one and the same problem. We give exact solution of the problem using
two independent methods: the Goulden-Jackson cluster method in combinatorics
and the method of formal language theory.

∗On leave from the Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China. E-mail:
hao@itp.ac.cn

1

The new paradigm, now emerging, is that all “genes” will be known (in the
sense of being resident in databases available electronically), and that the start-
ing point of a biological investigation will be theoretical.

— Walter Gilbert (1991)

The above statement made by a biologist wet-experimentalist, the 1980 Nobel laureate
Walter Gilbert in a Nature column entitled “Towards a paradigm shift in biology” sounds
very encouraging for us physicists-theorists. Indeed, the rapid accumulation of huge
amount of biological data, in the first place, the DNA and protein sequence data, makes
it clear that further breakthrough in understanding living matter and life phenomenon
would be impossible without an interdisciplinary effort of scientists of all walks. The
horizon is so broad that physicists with any background may quickly find some point
to cut in. With our experience in symbolic dynamics[1] we naturally choose the long
symbolic sequences of DNA to start with.

1 Introduction

The genetic information of all organisms except for so-called RNA-viruses is encoded in
thier DNA sequences. A DNA sequence is a long unbranched polymer made of four differ-
ent kinds of monomers — nucleotides. As long as the encoded information is concerned
we can ignore the fact that DNA exists as a double helix of two “conjugated” strands and
treat it as a one-dimensional symbolic sequence made of four letters a, c, g, and t, repre-
senting the nucleotides adenine, cytosine, guanine, and thymine, respectively. Since the
first complete genome of a free-living organism, Mycoplasma genitalium, was sequenced
in 1995 the number of available complete genomes has been growing steadily. As of 15
October 1999 there are in total 4 864 570 sequences containing 3 841 163 011 letters in
the GenBank[2]. Among these sequences there are more and more complete genomes,
including 23 bacteria and a few eukaryotes.

The availability of complete genomes of organisms allows one to ask many questions
of global nature. For example, a biochemist might look at all enzymes that catalyze the
thousands of biochemical reactions in a cell that make life going and to infer the whole
network of metabolic pathways. Perhaps the simplest global question one can imagine
consists in whether there exist short strings made of the four letters that do not appear in
a genome. First of all, this is a question that can be asked only nowadays when complete
genomes are at our hands, as it does not make sense when dealing with small pieces of
DNA segments. Secondly, as it will become clearer when we introduce some notions from
language theory, there is a deeper reason to ask this question since in a sense a complete
genome defines a language which is entirely specified by a minimal set of “forbidden
words”.

The visualization scheme of the string composition of long DNA sequences described
early in [3] inspires a few neat mathematical problems which can be solved precisely by
using at least two different approaches. Brief accounts of these solutions are scheduled
to appear in two conference proceedings[4, 5]. The data collected in Tables 1 and 3 are
presented for the first time. As language theory approach and the combinatorial technique
used in the work may be quite instructive for other problems we think it appropriate to

2

g a t gg g g ga gt a tag a tg taa at ta tt ggg gg gg g gg g g gga ggt ga gt ga gt a tgag ga gtg gt ag a tg tgaa gat gta gtt aa at ta ttagg ag ag a tgg tg tg taga agt aa at tga tgt ta ttaag aa atg at tag ta ttg ttaaa aat ata att taa tat tta ttt
Figure 1: Allocation of counters for string length K = 1, 2, and 3.

present them in more details in this review in order to enable more physicists to make
acquaintance with these methods.

2 The Visualization Scheme and

Self-Overlapping Fractals

Given a bacterial complete genome of length N , i.e., a linear or circular DNA sequence
made of N letters from the alphabet Σ = {a, c, g, t}, we are interested in the frequency of
appearance of various strings of length K. There are 4K possible different K-strings so
we need that many counters to do the counting. We display the counters in a fixed-size
square frame on a computer screen. The frames for K = 1, 2, and 3 would look like what
are shown in Fig. 1.

If we present the K = 1 frame as a 2 × 2 matrix

M =

[

g c
a t

]

,

then the K = 2 frame is just a direct product of two copies of M :

M (2) = M ⊗ M =

gg gc cg cc
ga gt ca ct
ag ac ta tc
aa at ta tt

.

In general, a K-frame is given by

M (K) = M ⊗ M ⊗ · · · ⊗ M,

whose element is expressed via the elements of the 2 × 2 matrices as

M
(K)
(i1i2···iK),(j1j2···jK) = Mi1j1Mi2j2 · · ·MiKjK

.

In order to facilitate the computation, it is better to use binary indices for the matrix M ,
i.e., let

M00 = g, M01 = c, M10 = a, M11 = t.

The indices (i1j1) · · · (iKjK) follow from the input sequences

s1s2s3 · · · sKsK+1 · · · .

3

By sliding a window of width K along the genome we get N or N − K + 1 total
counts for a circular or linear sequence. Every segment of length K in the input sequence,
taken as a number in base 4, points to the array element of its own counter. In order to
implement this we introduce a mapping

α : {g, c, a, t} 7→ {00, 01, 10, 11}

for each letter in the input sequence. For the first K-string s1s2 · · · sK of the input
sequence we get a number

index =
K−1
∑

i=0

4K−i−1α(si),

which is nothing but the index used to locate its counter. In order to get the new index
index′ for the next K-string, it is enough to discard the contribution of the first letter
in the previous string and take into account the next new letter. This is easily done by
using binary operations:

index′ = 4 × (index(mod 4K−1)) + α(sK+1).

We display the 4K counters as a 2K × 2K square on the screen. The counter for the
first K-string is centered at (x, y):

x =
K−1
∑

i=0

2K−i−1 (α(si) &E),

y =
K−1
∑

i=0

2K−i−1 (α(si) > > 1),

where &E means logical and with the base-4 unit E = 01 and > > 1 means left shift by
one. Again, for the location (x′, y′) of the next K-string one needs only to correct for the
new input letter:

x′ = 2 × (x(mod 2K−1)) + α(sK+1) & E,
y′ = 2 × (y(mod 2K−1)) + α(sK+1) > > 1.

We note that this leads to a counting algorithm that depends only on the total length N
of the genome but not on the string length K. This saves some computer time when K
gets large.

Applying the above algorithm to the K = 8 strings in the 4 693 221-letter long genome
of E. coli, we get the picture shown in Fig. 1.1

We have used a very crude color code of 16 colors, including black and white. As our at-
tention is concentrated on those strings that do not appear or that are under-represented,
we allocate most of the bright colors to small counts with white color representing avoided
strings. This is a kind of coarse-graining which makes some features of the figure more
prominent. In particular, the presence of some seemingly regular patterns in Fig. 1 may be
understood as caused by under-representation of strings that contain ctag as a substring.
In Fig. 1 we show the counting frames for K = 6, 7, 8, and 9 in which the locations
of strings that contain ctag, or in short, ctag-tagged strings, are marked with a small

1The reader may download the original Figs. 1 and 4 or the PostScript file of this preprint to see
colors.

4

Figure 2: Frequency of 8-strings in the complete genome of E. coli. The characteristic
patterns are caused primarily by the under-representation of ctag-tagged strings.

rhombic. We see that the basic features remain unchanged while more and more fine
patterns appear with K increasing. The most clearly seen patterns in the E. coli portrait
are indeed given by these ctag-tagged strings.

Fig. 1 is to be compared with the “portrait” of a sequence (not shown), obtained by
randomizing the E. coli genome, i.e., a sequence with the same number of nucleotides of
each kind but with their positions shuffled at random. In such a figure all the characteristic
patterns disappear, only some hardly perceptible contrast due to the c + g to a + t ratio
not being equal may be noticed under a careful scrutiny.

E. coli is not the only bacterium that does not like the ctag substring. Now 9 bacteria
are known to have a tendency of having under-represented ctag-tagged strings. Other
bacteria may avoid some other substrings and some may not show any apparent patterns of
avoided substrings. For example, Fig. 4 shows the “portrait” of Methanococcus jannaschii.
Using templates of various tetranucletides similar to those shown in Fig. 1, one can identify
at least five sets of under-represented strings tagged by ctag, cgcg, gcgc, gtac, and gatc.

A summary of what has been seen in “portraits” of all available bacterial complete

5

K=6 K=7

K=8 K=9

Figure 3: Templates of ctag-tagged strings in the K = 6, 7, 8, and 9 frames.

genomes is given in Table 12. The fact that most of the under-represented tetranucleotides
are palindromes, i.e., words that happen to be the same when read in both direct and
reversed directions with the Watson-Crick conjugation being performed at reverse reading,
may hints on their relation with the recognition sites of some restriction enzymes. This
has been known to the biologists for some time, see, e.g., [6]. Our observation shows its
a quite common phenomenon in many bacterial complete genomes.

It is appropriate to mention the relation of the above visualization scheme to the
“chaos game representation” (CGR[7]) of DNA sequences. In CGR the final picture can
only be drawn in black/white and may look quite similar to what one would obtain in
the above visualization scheme after xeroxing the color figures on a black/white copying
machine. There are, however, several essential differences. First, the resolution is not
entirely under control in CGR, as different neighboring nucleotides may be resolved to
a different precision, depending, say, on the direction of the line joining the nucleotides.
Our method works at a fixed resolution — the string length. Second, the algorithm of

2The abbreviations of bacterial names are those of the corresponding subdirectory names in GenBank,
see [2].

6

M. jannaschii (K=8)

Figure 4: Frequency of 8-strings in the complete genome of Methanococcus jannaschii.
One can identify at least five sets of under-represented strings tagged by ctag, cgcg, gcgc,
gtac, and gatc.

7

CGR looks a bit more complicated: put a, c, g, and t at the four corners of a square;
staring from the center of the square plot the middle point of the straight line connecting
two consecutive nucleotides one by one. The results turn out to be much the same as
simple counting with fixed string length. Third, if one wish to introduce color in order to
add more information one should calculate the density of points in CGR — an operation
that requires big memory and that cannot be realized in a single pass. Therefore, it seems
to us that the proposed visualization scheme makes CGR obsolete.

3 Fractals Derived from Bacterial “Portraits”

In genomes of organisms there are no fractals in the rigorous mathematical sense. How-
ever, in our visualization scheme fractals may be well defined in the non-biological K → ∞
limit. These fractals may have some suggestion in the portraits of genomes of real or-
ganisms. Just look at the templates shown in Fig. 1, one naturally sees what left in the
original framework after deleting all small squares at finer and finer scales that represent
all possible ctag-tagged strings does lead to a fractal. What is the fractal dimension of the
complementary pattern defined by one or more given tags? This is not a trivial question
as besides obvious self-similarity one has to deal with self-overlappings of the excluded
patterns at different levels.

Let us look at two simple examples.
The first example is the case of a one-letter tag, e.g., g-tagged strings. Denote by aK

the number of strings of length K that do not contain the letter g. At the zeroth level the
linear size is δ0 = 1, that is the size of the whole square. Since there is only one empty
string which by definition does not contain g we have a0 = 1. At the next K = 1 level, the
linear size is δ1 = 1/2 and among the four squares of that size three do not contain g, see
the leftmost square in Fig. 1. Therefore, we have a1 = 3. In general, we have δK = 1/2K

and aK = 3K . The fractal dimension is

D = − lim
K→∞

log aK

log δK
=

log 3

log 2
. (1)

In this simple example, we might have defined a trivial recursion relation for aK , namely,

a0 = 1,
aK = 3aK−1.

Using the recursion relation one may derive a generating function f(s) for all aK :

f(s) =
∞
∑

K=0

aKsK =
1

1 − 3s
,

where s is an auxiliary variable. In fact, one-letter-tagged strings exclude the largest
number of K-strings, leaving a set of strings over an alphabet of three letters. This is
the meaning of aK = 3K and this tells us that for any possible tags the dimensions are
included in between the limits:

log 3

log 2
≤ Dtag ≤ 2.

Next, look at cg-tagged strings. We first note that it is an known fact that in many
human genes the dinucleotide cg is less represented than, e.g., the dinucleotide gc. This

8

Figure 5: A template for gc-tagged strings showing the overlaps at different lavels.

leads to a characteristic pattern in the portrait of the DNA sequence that contain the
gene. As seen from the template for the cg-tag, shown in Fig. 5, the exclusion starts at
the level K = 2: among the 16 possible dinucleotides only cg is avoided. At K = 3 level,
among the 64 trinucleotides the four combinations xcg, x = {a, c, g, t} are excluded in
addition to the four cgx, x = {a, c, g, t} which have already been excluded at the K = 2
level. So far, no overlap of exclusions has taken place. However, at the next K = 4 level,
one of the 16 xycg type squares, where x, y = {a, c, g, t}, namely, cgcg, is immersed in the
K = 2 excluded square and should not be doubly counted. There are 8 such overlaps at
K = 5, 47 at K = 6 (not shown in Fig. 5), etc. The question is how to take into account
these overlaps automatically. Suppose we know how to calculate the generating function

f(s) =
∞
∑

K=0

aKsK , (2)

then the fractal dimension is given by

D = − lim
K→∞

log aK

log δK
= lim

K→∞

log a
1/K
K

log 2
, (3)

where we have used the fact that δK = 1/2K. According to the Cauchy criterion the
radius of convergence of the series (2) defining the generating function is determined by

lim
K→∞

a
1/K
K =

1

s0
,

where s0 being the minimal module zero of f−1(s). Thus if we know the generating

9

Bacteria Avoided Strings
Ecoli ctag
Tmar ctag
Bsub ctag
pNGR ctag
Aful ctag gcgc cgcg
Mthe ctag gcgc cgcg
Tpal ctag ggcc
Aquae ctag tcga gcgc ggcc
Mjan ctag gatc gtac gcgc cgcg
Cpneu ccgg
Hpyl acgt gtac tcga
Hpyl99 acgt gtac tcga
Hinf ggcc ccgg
Bbur cgcg
Synecho gcgc cgcg
Pyro gcgc cgcg
Pabyssi gcgc cgcg
Aero None seen clearly
Mgen None seen clearly
Mpneu None seen clearly
Ctra None seen clearly
Mtub None seen clearly
Rpxx None seen clearly

Table 1: Under-represented tetranucleotides seen in the bacterial genomes.

function, the fractal dimension is given by

D = − log |s0|
log 2

. (4)

Therefore, the problem of calculating the fractal dimensions reduces to that of finding
the generating functions. This will be treated in Sections 5 and 6 by using two different
methods.

We shall see that for the cg-tagged strings the generating function is

f(s) =
1

1 − 4s + s2
,

see Table 3. Consequently, s0 = 1/2 −
√

3 and D = 1.8999686.

4 Number of True and Redundant Avoided

Strings by Direct Counting

Once we know that there might be avoided and under-represented strings from the vi-
sualization scheme, we can perform a direct identification of avoided strings. The direct

10

counting has the merit that the string length K is not seriously limited by the screen reso-
lution. While the maximal K is 9 without scrolling the figure behind the screen, in direct
counting one can go to longer K. In addition, direct counting does not miss any avoided
strings while naked-eyes could only notice the most prominent ones. We show some of the
results of direct counting in Table 33. It is a remarkable fact that the first avoided strings
appear at length K0 = 6, 7, or 8 in all bacterial genomes, while statistically significant
avoidance can only occur at much longer length in a random sequence.

The direct counting poses another question, namely, how to count the number of true
and redundant avoided strings. For example, in the genome of E. coli the first avoided
string gcctagg is identified at K = 7 in contrast to a random sequence of the same length
and nucleotide composition which would have each type of 7-strings appearing about 283
times. At the next length K = 8 a total of 173 strings are found absent. However,
among these 173 strings 8 must be the consequence of the lacking of gcctagg. Thus there
are 165 true avoided strings at K = 8. Among the 5595 avoided 9-strings 48 are the
consequence of gcctagg being absent, 1166 are redundant being the consequence of the
165 true avoided 8-strings, only 4381 are true avoided ones at K = 9. Among these 4381
strings 2041 do contain the palindromic tetranulcleotide ctag. At K = 10 there are 114808
true avoided strings among the total of 150409, while 256, 6531, and 28814 are redundant
strings caused by the absence of true avoided strings at length 7, 8, and 9. How to count
the number of redundant strings at each K? A simple-minded estimate shows that a true
avoided K-string takes away

E(i) = 4i(i + 1) (5)

(K + i)-strings. We list the first E(i) below for later comparison:

i 0 1 2 3 4 5 6 7
E(i) 1 8 48 256 1280 6144 28672 131072

This is obtained as follows. At the K+1 level one can add one letter from the alphabet
either in front or at the end of the avoided K-string, thus there are 4+4 redundant avoided
strings at length K +1. At the next length K +2 there are three ways to add 2 letters to
the avoided K-string to get avoided (K + 2)-strings, each way having 4× 4 combinations
of letters. Continuation of the argument leads to Eq. 5. However, this is usually an over-
estimation, as it does not take into account the overlaps of letters at the begining and the
end of a string. A simple counter-example being the 4-string gggg: there are only 7 new
5-strings as adding a g to the head or the tail yields the same string ggggg.

A little reflection shows that the calculation of the generating function for given tags
and the counting of the true and redundant avoided strings are one and the same problem.
Indeed, both problems need to take into account the overlap of substrings in making
longer strings. The fractals provide a geometric representation of the problem as each
small square corresponds to a well-defined type of K-string.

5 Combinatorial Solution

We first formulate the problem in terms of combinatorics. Let Σ be an alphabet, e.g.,
Σ = {a, c, g, t}. Denote by Σ∗ the set of all possible finite strings made of letters from the

3Detailed results on avoided strings by direct counting will be published elsewhere[8].

11

Bacteria K0 NK0
First Avoided Strings

Ecoli 7 1 gCCTAGG
Synecho 7 1 aCGCGCG
Tmar 7 2 CCTAGGg tacCTAG
Hpyl99 6 1 GTCGAC
Hpyl 6 2 GTCGAC TCGAca
Mjan 6 3 GCGCGC GTCGAC CGATCG
Mtub 7 3 TATAatg tatgtta taaaata
Pabyssi 7 3 GCGCGCg CGCGCGa tGCGCGC
Aquae 7 4 GCGCGCg GCGCGCc cGCGCGC tGCGCGC
Aful 7 4 GCGCGCg cGCGCGC gcaCTAG cACTAGT
Pyro 7 4 GCGCgta tGCGCcg ccgtgcg cgtgcga
Bsub 8 4 ggacCTAG cTCGAccc gcgaccta cgtagggg
Mthe 7 5 gCTAGtc acgCTAG tCTAGcg gCGCGCG

aCGCGCG
Mpneu 7 7 cCGaCGa cgtaggc cgatagg GCCGTCg

aGGGCCC acgaggg taGGCCg
NGR234 7 10 CTAGtag CTAGtat gACTAGT catacta tacacta

tagttag taagtgg ttagtaa tatttag ttattta
Hinf 7 12 gGCCGGC GCCGGCc cggCCGG CCGGggg

CCCGGGg GGGaCCC gGGtCCg GGGtCCC
GGaCCcg gGTCGAC GTCGACg tGTCGAC

Mgen 6 14 GGCCgg GGCCtc tcGGCC cgGCGC ccGGCC
cCCGGc CGCGCG gccgtc ggacgc ggtcgg
cctcgg ctcgga tcggcg tccgag

Rpxx 7 71 36 contain GCGC, CGCG, GGCC, CCGG
Tpal 8 118 54 contain CTAG, 15 contain AGCT
Aero 8 137 30 contain AATT
Bbur 7 232 96 contain GCGC, CGCG, GGCC, CCGG
Ctra 8 562 264 contain GCGC, CGCG, GGCC, CCGG

Table 2: The first avoided strings in bacterial complete genomes by direct counting. K0

is the minimal string length at which the first avoided strings are identified. NK0
is the

number of avoided strings at length K0. Palindromic substrings are capitalized.

12

alphabet Σ, including the empty string. Given a set B ∈ Σ∗ of “bad” words that we wish
to avoid in all words we are going to use. Let A ∈ Σ∗ be the set of all “clean” words that
do not contain any member of B as substrings. Denote by aK the number of clean words
of length K.

Problem: Given Σ∗, B, calculate aK or even better calculate the generating func-
tion (2) that gives aK for all K.

5.1 The Goulden-Jackson Cluster Method

In combinatorics there exists a powerfull method to deal with this kind of problems — the
Goulden-Jackson cluster method[9]. This method has been well-described by Noonan an
Zeilberger[10]. However, we explain its basic idea and derivation in our specific context.
First, we assign a weight to each word ω: it is an auxiliary variable s raised to the power
|ω| where |ω| is the length of the word ω:

weight(ω) = s|ω|.

If we can calculate the sum of weights over all clean words and reorder the terms
according to the word length:

f(s) =
∑

ω∈A

weight(ω) =
∞
∑

K=0

aKsK ,

our task would be accomplished. Let us extend the summation over clean words to that
over all words

∑

ω∈A

⇒
∑

ω∈Σ∗

and at the same time multiply each weight(ω) by a zero raised to the power of the number
of “bad” factors in ω:

weight(ω) ⇒ weight(ω) × 0number of factors of ω that∈B,

where by definition
00 = 1,
0m = 0, m ≥ 1.

Now let us manipulate the power of zero. Suppose we have a set of 3 objects, say,
S = {a1, a2, a3} and we multiply three zeros

∏

ai∈S 0. We reorganize the elements of S into
subsets:

{σi} = {ǫ; a1, a2, a3; a1a2, a2a3, a3a1; a1a2a3},
where ǫ denotes an empty subset. There are 23 = 8 subsets. The product of three zeros
may be rewritten as a sum over these 8 subsets:

∏

ai∈S

0 =
∏

ai∈S

[0 + (−1)] =
∑

{σi}

(−1)|σ|,

where |σ| is the cardinality of the subset σi, i.e., the number of elements in σi. This is a
particular case of so-called Sylvester principle of inclusion-exclusion.

13

Now we can write
f(s) =

∑

ω∈Σ∗

∑

σ∈Bad(ω)

(−1)|σ|s|ω|,

where Bad(ω) denotes the set of bad factors of ω. In fact, we have got a new counting
problem for a collection of new subjects (ω, σ) with a new weight function (−1)|σ|s|ω|.
These (ω, σ) may be called tagged words, i.e., a word ω tagged by a factor σ ∈ Bad(ω).
Note that a tag σ may be a combination of none or several bad factors of ω. When the
tag is empty, σ = ǫ, the word is clean.

Denote the set of all tagged words as M = {(ω, σ)}. The weight of set M remains
f(s). Without loss of generality we can examine all words in M starting from their right
end. The set M contains an empty word. There are words in M that contain a single
letter from the alphabet that does not form a part of any member of B. There are words
in M that contain a cluster of bad members from B. Thus in set-theoretical notation we
may write

M = {empty word} ∩MΣ ∩MC,

where C denotes clusters of bad words.
Written in terms of weight functions, we have

f(s) = 1 + f(s)ds + f(s)weight(C).

Therefore, we have

f(s) =
1

q − ds − weight(C)
. (6)

In the above formulas d = |Σ| is the cardinality of the alphabet Σ. In our case of
nucleotides d = 4. When the set B is empty, i.e., no bad words at all, we have the trivial
result

f(s) =
1

1 − 4s
. (7)

This is just a pedantic way to say that there are 4K words of length K.
When the set B contains only one word u that cannot make clusters with itself, e.g.,

u = gct, one simply has weight(C) = s|u| and the problem is solved:

f(s) =
1

1 − 4s − s|u|
. (8)

When the bad word can make clusters with itself, e.g., u = gcg and a cluster being
gcgcg, the situation is more complex and requires the technique described in the next
subsection. Anticipating a few such results, we list all possible single-tag generating
functions in Table 3 up to tag length K = 4.

A related question is the number G(n) of different types of generating functions for
a given tag length n. These numbers turn out to be independent upon the size of the
alphabet Σ as long as there are more than two letters in Σ[11]:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
G(n) 1 2 3 4 6 8 10 13 17 21 27 30 37 47

In fact, these G(n) are so-called correlations of n as given by the integer sequence
M0555 in [12], see also [11].

14

Tag f(s) D Tag f(s) D

g 1
1−3s

log 3
log 2

ggg 1+s+s2

1−3s−3s2−3s3 1.98235

gc 1
1−4s+s2 1.89997 ctag 1

1−4s+s4 1.99429

gg 1+s
1−3s−3s2 1.92269 ggcg 1+s3

1−4s+s3−3s4 1.99438

gct 1
1−4s+s3 1.97652 gcgc 1+s2

1−4s+s2−4s3+s4 1.99463

gcg 1+s2

1−4s+s2−3s3 1.978 gggg 1+s+s2+s3

1−3s−3s2−3s3−3s4 1.99572

Table 3: Generating function and dimension for some single tags.

Applying the Goulden-Jackson cluster method to the case of only one “bad word”
gcctagg in the case of E. coli leads to the following generating function:

f(s) =
1 + s6

1 − 4s + s6 − 3s7
.

The number of redundant avoided strings are obtained by subtracting the above f(s) from
that of the “no-bad-words” case (7):

1

1 − 4s
−f(s) = s7 +8s8 +48s9 +256s10 +1280s11 +6144s12 +28671s13 +131063s14 + · · · .

These coefficients are to be compared with the naive estimates given below Eq. (5) As
expected, the deviation appears from the term s13.

5.2 Weight Function for Clusters

In order to continue with the full representation of the Goulden-Jackson method we
take the newly published complete genome of the hyperthermophilic bacterium Aquifex
aeolicus[13] as a non-trivial example. For this 155 1335-letter sequence four avoided strings
are identified at string length K = 7:

B = {gcgcgcg, gcgcgca, cgcgcgc, tgcgcgc}. (9)

Since there are significant overlaps among the avoided strings, the naive estimate of
redundant avoided words can hardly work. To treat clusters of bad words we introduce a
few notations. Suppose that there are two bad words u, v ∈ B. Define

Head[v] = {proper prefixes of v},
Tail[u] = {proper suffixes of u},

Overlap(u, v) = Tail[u] ∩ Head[v].

Note that the definition of Overlap(u, v) is not symmetric. Take for example, u = gcgcgcg
and v = gcgcgca, we have

Head[u] = Head[v] = {g, gc, gcg, gcgc, gcgcg, gcgcgc},

15

Tail[u] = {g, cg, gcg, cgcg, gcgcg, cgcgcg},
Tail[v] = {a, ca, gca, cgca, gcgca, cgcgca},

Overlap(u, u) = {g, gcg, gcgcg},
Overlap(u, v) = {g, gcg, gcgcg},
Overlap(v, u) = { } = Φ,
Overlap(v, v) = { } = Φ,

where Φ denotes an empty set. If v = xx′ we write v/x = x′. Thus v/gcg = cgca. The
weight of Overlap(U, v) is denoted as

(u : v) =
∑

x∈Overlap(u,v)

weight(v/x).

Using the two above u, v as example, we have

(u : v) =
∑

x∈{g,gcg,gcgcg}

weight(gcgcgca/x)

= weight(cgcgca) + weight(cgca) + weight(ca)
= s6 + s4 + s2.

In general, we may have B = {u1, u2, · · ·uL}. A cluster C may contain a different bad
word at the rightmost end. We write

C =
∑

ui∈B

C[ui],

where C[u] is a cluster with u being the rightmost part.
As C[v] may consist of either a single v or several entangled bad words, we again have

a set-theoretical relation:

C[v] ⇔ {v} ∪u∈B C[u]Overlap(u, v).

In terms of weight functions we have

weight(C[v]) = −weight(v) −
∑

u∈B

(u : v)weight(C[u]).

This is a system of L linear equations, L being the cardinality of the set B, i.e., L = |B|.
The minus sign in the equation comes from the weight (−1)|σ| as |σ| = 1.

In the case of Aquifex aeolicus L = 4, see (9). The Overlap matrix is:

Overlap(ui, uj) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g
gcg

gcgcg

g
gcg

gcgcg

cg
cgcg

cgcgcg

Φ

Φ Φ Φ Φ

g
gcg

gcgcg

g
gcg

gcgcg

c
cgc

cgcgc

Φ

g
gcg

gcgcg

g
gcg

gcgcg

c
cgc

cgcgc

Φ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

16

We have further

(ui : uj) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

p p q 0
0 0 0 0
q q p 0
q q p 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where
p = s2 + s4 + s6,
q = s + s3 + s5.

Therefore, the application of th Goulden-Jackson cluster method requires the solution
of a system of four linear equations and leads to the following generating function:

f(s) =
1 + s2 + s4 + s6 + s8 + s10 + s12

1 − 4s + s2 − 4s3 + s4 − 4s5 + s6 − 4s8 − 4s10 − 4s12
.

The numbers of redundant avoided strings are given by:

1

1 − 4s
− f(s) = 4s7 + 27s8 + 152s9 + 784s10 + 3840s11 + 18176s12 + 83968s13 + · · · . (10)

The coefficients coincide with the negative numbers in the last row of Table 5.

6 Language Theory Solution

Language theory is not just a formal object. Properly applied to the right problem it
may provide computational frameworks and useful constructions to yield quite practical
results. We will make use of a special class of languages, namely, so-called factorizable
language. However, we start with a brief summary of language theory in general.

6.1 Elements of Language Theory

One again begins with a finite alphabet, e.g., Σ = {a, c, g, t} and collects all possible strings
made of these letters into an infinite set Σ∗, including the empty string ǫ, i.e., a string
that does not contain any letter.

Any subset L ∈ Σ∗ is said to be a language over the alphabet Σ. With such a general
definition one cannot get very far. One has to specify how the subset L is formed. This
may be done in many ways. For example,

1. If the subset L is finite, one can simply enumerate its elements.

2. One can devise some production rules and by applying these rules repetitively to
some initial letters one generates the language. This is by far the most important
and well-studied way of defining languages. If the rules are to be applied sequentially
it leads to the generative grammar of N. Chomsky. If applied in parallel this leads to
the Lindenmayer or L-systems. Referring the interested readers to [14] and literature
cited therein, we will not go into details of these generative grammars.

3. For a special class of languages, namely, the factorizable languages, one can define a
language by indicating its set of forbidden words. This is the approach we are going
to follow in this paper.

17

However, before turning to the factorizable language we formulate a few more notions
which will be needed later.

According to the Chomsky classification the simplest language is called regular lan-
guage which may be accepted or recognized by a finite automaton without any memory.
A finite automaton has a finite number of states and it makes transition from one state to
another by looking at an input symbol and a table of transition rules. In fact, the table of
rules defines a discrete transfer function. For finite automata the set of input symbols is
also finite. There are two kinds of finite automata: deterministic and non-deterministic.
In a deterministic automaton there is a starting state and the transition rule from one
state to another upon seeing a certain input symbol is unique. In a non-deterministic
automaton one has the freedom to choose the start state and to decide which rule to use
at a transition as there might be more than one rule for one and the same input symbol.
To avoid any confusion we emphasize that deterministic and non-deterministic automata
are entirely equivalent in their capability to define a regular language. There may be
more than one automata that define one and the same language. Among deterministic
automata defining a language there is a minimal one, namely, one with a minimal number
of states. This is called a minimal deterministic finite automaton of the language and is
denoted as minDFA(L).

To determine whether a language is regular or not, sometimes the following
Equivalence Relation is quite helpful. Any language L ∈ Σ∗ introduces an equiva-

lence relation RL in Σ∗ with respect to L: any two elements x, y ∈ Σ∗ are equivalent and
denoted as xRLy if and only if for every z ∈ Σ∗ both xz and yz either belong to L or not
belong to L. As usual, the index of RL is the number of equivalence classes in Σ∗ with
respect to L. An equivalence class may be represented by any element of that class, say,
x ∈ L, we will denote its equivalence class by [x].

So far we have used only general notions of language theory. The importance of the
equivalence relation RL is due to the following

Myhill-Nerode Theorem (see references in [14]):

1. The language L is regular if and only if the index of RL is finite.

2. The language L being regular implies that minDFA(L) is unique up to an isomor-
phism, namely, renaming of the states.

3. The number of states of minDFA(L) is given by the index of RL.

6.2 Factorizable Language

Once a language L ∈ Σ∗ has been defined, its complementary set L′ = Σ∗−L contains all
words that do not appear in L. A language L is called factorizable if any substring of a
word x ∈ L also belongs to L. In this case the complementary set L′ contains a minimal
core L′′ such that although any word x ∈ L′′ is forbidden in L, but any proper substring
of x belongs to L. Sometime we simply call L′′ the set of forbidden words. It is nothing
but what S. Wolfram called Distinct Excluded Blocks (DEBs) in the grammatical analysis

of cellular automata[15]. Owing to the factorizability we can express the complementary
set as L′ = Σ∗L′′Σ∗. This means that L is entirely determined by the minimal set of
forbidden words or DEBs. Written in set theory terms we have

L = Σ∗ − Σ∗L′′Σ∗.

18

There are at least two important classes of factorizable language: dynamical language
and the language defined by a complete genome.

It is a natural consequence of dynamical evolution that symbolic sequences encoun-
tered in symbolic dynamics of dynamical systems come under the definition of factorizable
language, as any small part of a trajectory is also produced by the same dynamics. Fur-
thermore, these languages are prolongable as one can always append at least one letter
from the alphabet to make an admissible word longer. Factorizability and prolongability
together make the class of dynamical languages[14]. However, we will not make use of
prolongability in the context of this work.

A second class of factorizable language may be defined from a complete genome.
Given a complete genome G of an organism, consisting of one or more linear or circular
DNA sequences. One cuts the DNA sequences into all possible subsequences and forms a
language L = sub(G) by collecting these subsequences, including the empty string. This
language is factorizable by definition. It is almost prolongable if one does not extend
it beyond the total length of the genome. The factorizability alone is enough for our
purpose.

6.3 Minimal Deterministic Automaton Accepting

the Aquifex aeolicus Genome

Now we show how language theory works on our familiar example of the Aquifex aeolicus
complete genome. Although there are longer avoided strings we take the set B given by
Eq. (9) to be its set L′′ of forbidden words for the time being. Since B is finite, the
factorizable language defined by B is regular. In order to construct the automaton we
have to know all the equivalence classes of Σ∗ with respect to L. We make use of the
following mathematical result[14].

Let L be a factorizable language and L′′ be its set of all DEBs. Define

V = {v, v is a proper prefix of some y ∈ L′′}.

Then for each word x ∈ L there exists a string v ∈ V such that is equivalent to x, or,
in our notations, xRLv. In other words, all equivalence classes of Σ∗ with respect to L
are represented in the set V . Therefore, in order to find all equivalence classes of Σ∗

with respect to L it is enough to work with L′′. We note in passing that [ǫ] is always an
equivalence class, and the complementary set L′ makes another equivalence class.

From the proper suffixes of the avoided strings in B we get the set

V = {g, gc, gcg, gcgc, gcgcg, gcgcgc, c, cg, cgc, cgcg,
cgcgc, cgcgcg, t, tg, tgc, tgcg, tgcgc, tgcgcg}.

By checking the equivalence relations among these strings only 13 out of 18 are kept
as representatives of each class. Adding the class [L′] ⊂ Σ∗ we get the following 14
equivalence classes of Σ∗:

[ǫ] [g] [gc] [gcg] [gcgc] [gcgcg] [gcgcgc]
[c] [cg] [cgc] [cgcg] [cgcgc] [cgcgcg] [L′].

We note that the task of “checking the equivalence relations” may seem formidable
as the requirement “for every z ∈ Σ∗” concerns an infinite set. However, a little practice
shows that this may be done effectively without too much work.

19

[xi]\s a c g t
[ǫ] [ǫ] [c] [g] [c]
[g] [ǫ] [gc] [g] [c]
[gc] [ǫ] [c] [gcg] [c]
[gcg] [ǫ] [gcgc] [g] [c]
[gcgc] [ǫ] [c] [gcgcg] [c]
[gcgcg] [ǫ] [gcgcgc] [g] [c]
[gcgcgc] [L′] [c] [L′] [c]

[c] [ǫ] [c] [cg] [c]
[cg] [ǫ] [cgc] [g] [c]
[cgc] [ǫ] [c] [cgcg] [c]
[cgcg] [ǫ] [cgcgc] [g] [c]
[cgcgc] [ǫ] [c] [cgcgcg] [c]
[cgcgcg] [ǫ] [L′] [g] [c]

Table 4: The transfer function for the minimal deterministic automaton for Aquifex ae-
olicus.

The transfer function is defined by

δ([xi], s) = [xis] for xi ∈ V and s ∈ Σ.

Therefore, our task is to attribute each [xis] to one of the existing equivalence classes. The
discrete transfer function is listed in Table 4. The particular function relation δ([xi], s) =
[L′] leads to a “dead end”.

One can draw the minimal deterministic automaton according to the above transfer
function. As it is no longer a planar graph we do not show it here. By counting the
number of lines leading from one state to another, we write down an incidence matrix:

M =

1 1 2
1 1 1 1
1 1 2
1 1 1 1
1 1 2
1 1 1 1

2
1 2 1
1 1 1 1
1 2 1
1 1 1 1
1 2 1
1 1 1

The columns and rows of the matrix M are ordered as elements in the first column in
Table 4 of the transfer function.

To make connection with the generating function (2) we note that the characteristic

20

polynomial of M is related to f(1/λ):

det(λI − M) = λ13f(
1

λ
).

Moreover, the sum of elements in the first row of the K-th power of M is nothing but
aK

[15]:

aK =
13
∑

j=1

(MK)1j

The summation runs over all equivalence classes except for L′. We list the elements of
the first row of MK in columns of Table 5.

K = 1 2 3 4 5 6 7 8 9 10 11
1 4 16 64 256 1024 4095 16378 65501 261960 1047664
1 2 8 32 128 512 2048 8190 32756 131002 523920
0 1 2 8 32 128 512 2048 8190 32756 131002
0 0 1 2 8 32 128 512 2048 8190 32756
0 0 0 1 2 8 32 128 512 2048 8190
0 0 0 0 1 2 8 32 128 512 2048
0 0 0 0 0 1 2 8 32 128 512
2 7 28 112 448 1792 7168 28665 114640 458483 1833624
0 2 7 28 112 448 1792 7168 28665 114640 458483
0 0 2 7 28 112 448 1792 7168 28665 114640
0 0 0 2 7 28 112 448 1792 7168 28665
0 0 0 0 2 7 28 112 448 1792 7168
0 0 0 0 0 2 7 28 112 448 1792

Sum: 4 16 64 256 1024 4096 16380 65509 261992 1047792 4190464
-4 -27 -152 -784 -3840

Table 5: Elements of the first rows of MK (shown as columns) and their sum. The negative
numbers in the last row are the difference between aK and 4K .

The negative numbers in the last row of Table 5 show the difference between aK and
4K . They are precisely the coefficients in the expansion (10) of 1/(1−4s)−f(s), shown at
the end of Section 5.2. We see that the transfer function and the incidence matrix contain
more detailed information on the combinatorial problem than the generating function
alone. The implication of this approach needs to be further elucidated.

In order to avoid any confusion we emphasize that the minimal deterministic automa-
ton defined by the transfer function given in Table 4 accepts a regular language determined
by the set B of four forbidden words. This language is larger than the language sub(G)
obtained from the complete genome of Aquifex aeolicus. By including more and more
avoided strings into the set B the minimal automaton gets larger but the language it
accepts approaches sub(G) gradually. However, the calculation becomes tedious.

21

7 Acknowledgements

The author would like to thank Hoong-Chien Lee, Shu-yu Zhang, Hui-min Xie, Zu-guo Yu,
and Guo-yi Chen, with whom one or another part of this research was carried out. He also
thanks D. Zeilberger for calling his attention to the Goulden-Jackson cluster method. The
hospitality and support of the Abdus Salam International Centre for Theoretical Physics,
Trieste, where the final version of this review was written, is also gratefully acknowledged.
This work was supported in part by the China Natural Science Fondation and the State
Project on Nonlinear Science.

References

[1] Bai-lin Hao and Wei-mou Zheng, Applied Symbolic Dynamics and Chaos, World
Scientific, Singapore, 1998.

[2] All bacterial genomes mentioned in this paper are fetched by anonymous ftp from
http://ncbi.nlm.nih.gov.

[3] Bai-lin Hao, Hoong-Chien Lee, and Shu-yu Zhang, Fractals related to long DNA
sequences and complete genomes, Chaos, Solitons and Fractals 11 (1999), to appear.

[4] B.-L. Hao, H.-M. Xie, Z.-G. Yu, and G.-Y. Chen, “A combinatorical problem related
to avoided and under-represented strings in bacterial complete genomes”, invited
talk at the conference on Combinatorics and Physics ’98, Los Alamos National Lab-
oratory, to appear in the Proceedings as a special issue of Annals of Combinatorics.

[5] B.-L. Hao, H.-M. Xie, Z.-G. Yu, and G.-Y. Chen, “Factorisable language: from
dynamics to complete genomes”, invited talk at Dynamics Days Asia Pacific ’99
— The First International Conference on Nonlinear Science, Hong Kong Baptist
University, to appear in the Proceedings as a special issue of Physica A.

[6] M. S. Gelfand, and E. V. Koonin, “Avoidance of palindromic words in bacterial and
archaeal genomes — a close connection with restriction enzymes”, Nucleic Acids
Res. 25(1997) 2430-2439.

[7] H. J. Jeffrey, Chaos game representation of gene structure, Nucleic Acids Res. 18

(1990) 2163 – 2170.

[8] Bai-lin Hao, and Shu-yu Zhang, Avoided and under-represented strings in bacterial
complete genomes, in preparation.

[9] I. Goulden, and D. M. Jackson, An inversion theorem for cluster decomposition of
sequences with distinguished subsequences, J. London Math. Soc. 20 (1979) 567-
576.

[10] J. Noonan, and D. Zeilberger, The Goulden-Jackson cluster method: extensions,
applications and implementations, downloadable from
http://www.math.temple.edu/̃ zeilberg

22

http://ncbi.nlm.nih.gov
http://www.math.temple.edu/

[11] L. J. Guibas, and A. M. Odlyzko, Periods in strings, J. Combin. Theory A30 (1981)
19-42.

[12] N. J. A. Sloane, and S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, 1995; and
http://akpublic.research.att.com/~njas/sequences

[13] G. Deckert et al., The complete genome of the hyperthermophilic bacterium Aquifex
aeolicus, Nature 392 (1998) 353-358.

[14] Hui-min Xie, Grammatical Complexity and One-Dimensional Dynamical Systems,
World scientific, Singapore, 1996.

[15] S. Wolfram, Computation theory of cellular automata, Commun. Math. Phys. 96

(1984) 15-57.

23

http://akpublic.research.att.com/~njas/sequences

