STIM-TR-A-02-05

SIIM Technical Report

Private Computation —
k-connected versus 1-connected Networks

by

MARKUS BLASER, ANDREAS JAKOBY,
MACIEJ LISKIEWICZ, BODO SIEBERT

Schriftenreihe der Institute fiir
Informatik /Mathematik
Serie A
May 10, 2002

Technisch-Naturwissenschaftliche Fakultat

Email: jakoby@informatik.mu-luebeck.de =~ Phone: +49-451-7030-413
Fax: +49-451-7030-438

Private Computation —
k-connected versus 1-connected Networks

Markus Blaser, Andreas Jakoby,
Maciej Liskiewicz, Bodo Siebert*

May 10, 2002

Abstract

We study the role of connectivity of communication networks in private
computations under information theoretic settings. It will be shown that some
functions can be computed by private protocols even if the underlying net-
work is 1-connected but not 2-connected. Then a complete characterisation of
non-degenerate functions that can be computed by private protocols on non-2-
connected networks will be given.

Furthermore, a general simulation technique for simulating private protocols
for arbitrary networks will be presented. Using this technique every private
protocol can be simulated on a arbitrary k-connected networks using only a
small number of additional random bits. The consideration of k-connected
networks seems to be quite realistic for practical applications.

Finally, a sharp lower bound is given for the number of random bits needed
to compute the parity function on all 2-connected networks.

1 Introduction

Private computation can be defined as follows: Consider a set of players, where each
player knows an individual secret. The goal is to compute a function depending on
these secrets such that after the computation none of the players knows something
of the secrets that cannot be derived from the result of the function. An example
for such a computation is the secret voting problem. Assume that the members of
a committee wish to decide on a yes-no action on the majority of the private yes-no
opinion of each member. But the ballot should be proprietary, i.e. after the vote
nobody should know anything about the opinion of the other committee members
or about the exact number of yes- or no-votes. The only thing known after the
computation is whether the majority votes for yes or no. To exchange data we allow
that the committee member can talk to each other in private.

*supported by DFG research grant Re 672/3

2 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

More formally, the players exchange messages to compute the value of the function.
But no player learns anything about the concrete input values of the other players.
Depending on the computational power of the players we distinguish between crypto-
graphically secure privacy and privacy in information theoretic sense. In the first case
we assume that no player is able to recompute any information of the input within
polynomial time (see e.g. [21, 22, 15, 5]). In the second case we do not restrict the
computational power of the players (see e.g. [3, 6]). Hence, this notion of privacy
is much stronger than in the cryptographic setting. In this paper the information
theoretic approach will be used.

Private computation has been the subject of a considerable amount of research.
Traditionally, one investigates the number of rounds and random bits as complexity
measures for private protocols. Chor and Kushilevitz [10] have studied the number
of rounds necessary to compute the sum modulo an integer. This function was also
investigated by Blundo et al. [4] and Chor et al. [8]. The number of random bits
needed to count modulo 2 (i.e. the parity function) was examined in [19, 17]. Gal
and Rosén [14] have shown that the parity function cannot be computed by a pri-
vate protocol in o(logn/logd) rounds using d random bits. They have also given
an almost tight randomness-round-tradeoff in private computation for an arbitrary
Boolean function depending on its sensitivity. Bounds on the maximum number of
rounds needed in the worst-case to compute a function by a private protocol are given
by Bar-Ilan and Beaver [2] and Kushilevitz [16].

The number of random bits needed to compute a Boolean function is closely related
to the size of an adequate circuit. Kushilevitz, Ostrovsky, and Rosén [18] have shown
that every function that can be computed with a circuit of a linear size can also be
computed by a private protocol with only a constant number of random bits. Using
this result one can show that the majority function can be computed by a private
protocol using a constant number of random bits and simultaneously a linear number
of exchanged bits between players (for the circuit complexity of majority see [20]).

Depending on the way players attempt to acquire information about the input
of the other players we distinguish between Byzantine faults, dishonest players, and
players that can work in teams (e.g. [3, 6, 12, 5]). The goal in this approach is to
investigate the number of dishonest players or players in a team that are necessary to
learn anything of the input of the remaining players. Chor and Kushilevitz [9] have
shown that Boolean functions with one bit output can either be computed with teams
of size at most | (n — 1)/2] or of any size up to n. For extensions, see [7, 8].

All papers mentioned above do not restrict the communication capabilities of the
players. In other words, they use the complete graph as the underlying communication
network. However, most realistic parallel architectures have a restricted connectivity
and nodes of bounded degree. Franklin and Yung were the first who studied the
role of connectivity in private computations [13]. They have presented a protocol for
k-connected bus networks which can simulate one communication step of a private
protocol that was originally written for a complete graph. Their protocol uses O(n)

Private Computation — k-connected versus 1-connected Networks 3

additional random bits to simulate such a communication step.

In this paper we investigate the number of random bits needed to compute functions
by private protocols on k-connected networks. We present a new simulation technique
that allows us to reduce the number of random bits by taking the connectivity of the
network into account. Using our simulation strategy we show that the parity function
can be computed by a private protocol on every k-connected network with H;‘—:f —1]
random bits. On the other hand, we will present k-connected networks where [2=2—1]
random bits are necessary.

Furthermore, we investigate networks that are not 2-connected. We show that
there are non-trivial functions that can be computed by private protocols on such
networks. We introduce the notion of a dominated function and prove that a function
can be computed by a private protocol on a network that is not 2-connected if and
only if the function is dominated. This result can be generalised to the case where
the players can work in teams. Note that such a computation is not possible if some
of the players are dishonest.

The paper is organised as follows. In the next section we define some notations
and give a formal definition of private computation. In Section 3 we present a new
technique to simulate private protocols on k-connected networks. Furthermore, we
present a simple non-trivial function that can be computed by a private protocol on a
network that is not 2-connected. In Section 4 we investigate the number of random bits
needed to compute the parity-function on arbitrary k-connected networks. Finally, in
Section 5 we investigate non-2-connected networks and give a property for deciding
whether a function can be computed on a non-2-connected network.

2 Preliminaries

2.1 Notations

For 4,j € IN define [i] :== {1,...,i} and [i..j] :== {4,...,j}. Let x = 2[1]z[2]... z[n] €
{0,1}" be a string of length n. Throughout the paper we will often use the string
operation z[7._ that is defined as follows: For 2 € {0,1}*, I C [n] and a € {0, 1}/"!

x[i] ifigl
2 = @rea = Vi€ [n] : z[i] = ¢ afj] ifielandiisthe jth smallest

element in I .

For a sequence of sets Iy, I, ..., I C [n] and a sequence of strings ay,as,...,qp €
{0,1}* with |a;| = |I;| we define

xlrfl,fg,...,ka—oq,ag Qe = (:EIVIl(—Oél) |712,...,Ik.<—a2,...,ak .

Let T denote the bitwise negation of x: V1 < i < |z| : Z[i] = z[i]. For a function
f:{0,1}" — {0,1}, a set of indices I C [n], and a string a € {0,1}!!! define the

4 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

partially restricted function f[;. . : {0,1}* 1l — {0,1} as the function obtained
from f by specialising the positions in I to the values given by «, i.e.

Yz € {0,1}"_‘1‘ D flrea(z) = f0"1ycan)

where J = [n] \ I. Finally, for a string z € {0,1}" and a set I C [n] define z[I] €
{0, 1} as follows:

Vi <|I| : (z[I])[j] = z[i] :<= ¢ is the jth smallest element in I .

Finally, let us recall that a graph G = (V, E) is k-connected if, after deleting an
arbitrary subset of at most £ — 1 nodes, the resulting node-induced graph remains
connected.

2.2 Private Computation

We consider the computation of Boolean functions f, : {0,1}" — {0, 1} on a network
of n players. At the beginning each player knows a single bit of the input x. The
players can send messages to other players via point-to-point communication using
secure links where the link topology is given by an undirected graph G = (V, E).
When the computation stops, all papers know the value f(z). The goal is to compute
f(z) such that no player learns anything about the other input bits in an information
theoretic sense except for the information it can deduce from its own bit and the
result. Such a protocol is called private.

Definition 1 Let C; be a random variable of the communication string seen by player
P;, and let ¢; be a particular string seen by P;. A protocol A for computing a function
f is private with respect to player P; if for any pair of input vectors x and y with
f(z) = f(y) and z[i] = y[i], for every c;, and for every random string R; provided to
P,
Pr[C; =¢; | Ri,x] = Pr[Ci=¢; | Ry, y],

where the probability is taken over the random strings of all other players. A protocol
A is private if it is private with respect to every player P;.

We call a protocol synchronous if the communication takes place in rounds and
each message consists of a single bit. We call a synchronous protocol oblivious if the
number of bits that player P; sends to P; in round ¢ depends only on 4, j, and ¢ but
not on the input. Furthermore, we do not bound computational resources of players
and we assume that all of them are honest, i.e. the computation and the interactions
between players are determined only by the common protocol.

For a synchronous oblivious protocol A let T'(A) be the number of rounds per-
formed by A, L(P;, P;, A) be the number of bits send from P; to P; in A and

L(P, A) ZLB, and L(A) = > L(P,A).

Private Computation — k-connected versus 1-connected Networks 5

We distribute the given input bits among the nodes of the graph. For convenience, we
call the node which gets the bit x[¢] player ;. The players P; and P; can communicate
directly, if and only if they are connected by an edge in the graph.

3 Private Computation on k-connected Networks

Most known private protocols are written for specific networks. A simulation of such
a private protocol on a different network can be done in such way that each player of
the new network simulates a player of the original network step-by-step. Hence, we
have to find a way to realize the communication steps between all players that are not
directly connected. In [13] Franklin and Yung have presented a strategy to simulate a
transmission of one single bit on a hypergraph by using O(n) additional random bits.
Thus, the simulation presented there requires O(m +nL(A)) random bits where m is
the number of random bits used in the original protocol. If we consider 2-connected
graphs we can simulate each communication step between two players F; and P; by
one additional random bit r as follows: Assume P; has to send bit b to P; then P
chooses two disjoint paths to P; and sends r to P; along the one path and r @ b along
the other path. In this way, O(m + L(A)) random bits are sufficient.

To reduce the number of random bits we consider the following embedding problem:

Definition 2 (Max-Neighbour-Embedding) Let G = (V, E) be a graph with edge
weights o : E— IN and G' = (V', E') a graph with |V| = |V'|. Letw : V — V' be a
bijective mapping. Then the performance of m is defined as

o) = Y).
{u,v} € E with
{r(u),7w(v)} € E’

Our aim is to find a bijection w: V — V' that maximizes p(m) over all bijections.

By a reduction from the 3-Dimensional-Matching-Problem, it can be shown that
the optimisation problem of finding an optimal bijection is NP-hard. The Max-
Neighbour-Embedding-problem is N"P-hard even if both graphs have maximum degree
4.

In the following lemma we give an estimation of the performance for the case that
G' is k-connected.

Lemma 1 Let G = (V, E) be an undirected graph with n nodes and edge weights o.
Let G' = (V', E') be a k-connected graph with |V'| = n nodes. Then we have

max p(m) > b Za(e).

m:V =V n—1
w s bijective e€E

6 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

Proof: Due to the definition above, there is no difference between edges with weight 0
and non-existent edges. Therefore, we treat non-existent edges like edges with weight
0 and restrict ourselves to the case that GG is a complete graph.

The graph G’ is k-connected. Thus, every node in V' has degree at least k.

Let II be a random bijection from V to V'. Since every node in V' has degree at
least k, the probability that two arbitrary nodes u and v are neighbours under II, i.e.
{I1(u),II(v)} € E', is at least —*+. Thus, the edge e = {u,v} € E yields weight o(e)
with probability at least ﬁ and its expected weight is at least % -o(e). Hence, the
expected performance p(II) fulfils

E(p(I1) > 30— ofe) = o).

n—1 n—1
ecFE eckE

Therefore, there exists a bijection with performance at least 52 -5 o (e). |

A bijection that fulfils the requirements of the above lemma can be computed in
polynomial time using the method of conditional expectation (see e.g. Alon et al. [1]).
We compute the mapping iteratively. First we choose one arbitrary node v; € V.
Then, for any v; € V', we compute the expected performance of the bijection under
the restriction that v; is mapped to v;. Let m(vy) € V' be the node such that
mapping v, to m(v;) maximizes the expectation. We continue iteratively. If we have
already chosen 7(vy),...,m(v;), we choose a new node vj,;. Then, for every v7 , €
V'\ {m(v1),...,m(v;)}, we compute the expected performance under the restrictions
that v; is mapped to m(v;) for i < j and vj;, is mapped to v}, and choose 7(vj.1)
such that the expected performance is maximized.

Let G' be a k-regular k-connected graph and G be the complete graph where all

nk

edges have weight one. Note that the number of edges in G' is 7. Hence, for any

bijection 7 from G to G’ it holds p(r) < &,

Proposition 1 For every k > 2, there are graphs G = (V,E) and G' = (V' E')
where G' is k-connected and weight functions o such that for any mapping © holds
o) < 5 X g o(e).

Theorem 1 Fvery oblivious private protocol using m random bits can be simulated
on any k-connected graph by using m+ (1 — -*5) -min{L(A), n® + %} random bits.

Proof: To simulate a protocol A we first choose a bijection between the players in
the original protocol and the players in the protocol A’ for the k-connected network
G' = (V',E"). Let G = (V, E) be the network used in protocol A. For every edge
{P;, P;} € E define o({P;, P;}) :== L(P,, P;, A) + L(P;, P;, A). In Lemma 1 we have
seen that there exists a bijection 7 : V' — V' with performance p(r) > -E-L(A).
Using this bijection, at least %L(A) bits of the total communication in A are sent
between players that are also neighbours in G'. Thus, this part of the communication

can be simulated directly and without any additional random bit.

Private Computation — k-connected versus 1-connected Networks 7

For the remaining (1 — -*7)L(A) bits we proceed as follows: Let P; and P; two
players that are not directly connected in G'. Then P; partitions the bits it will send
to P; into blocks By,. .., Bir(p,p;,4)/(k-1)] of size at most £ — 1. Furthermore, P,
chooses k node-disjoint paths from P; to P;. P; uses a separate random bit r[¢] for
each block By. It sends r[¢] along the first path and b & r[¢] for each b € B, along the
remaining paths, each bit on a separate path. [

We have seen that every function that can be computed by a private protocol on
some network can also be computed by a private protocol on an arbitrary 2-connected
network. On the other hand, there exist functions that cannot be computed by a
private protocol, if the underlying network is not 2-connected.

Proposition 2 The parity function over n > 2 bits cannot be computed by a private
protocol on a network that is not 2-connected.

The above theorem can be generalised to a large class of non-degenerate functions.
This will be done in Section 5. There we give a characterisation for the class of non-
degenerate functions that can be computed by private protocols on networks that are
not 2-connected.

Definition 3 A function f: {0,1}" — {0, 1} is called non-degenerate if for every
i € [n] we have

fliyeo # flyer -

In other words, a non-degenerate function depends on all of its input bits. It turns
out that there are functions that can be computed by a private protocol, even if the
underlying network is not 2-connected.

Proposition 3 There are non-degenerate functions which can be computed by a pri-
vate protocol on networks that are not 2-connected.

Consider the following simple function f : {0,1}*"** — {0,1} for n > 2:

f(Z, z, y) = (Z A /\?:1 LE[Z]) \% (E A /\:b:ly[z]))

where 2 is a single bit and both x and y are bits strings of length n. Note that f is non-
degenerate. We construct a communication network G for f as follows: Let G, and
G, be complete networks with n players each. Then connect another player P, with
all players in both G, and G,. Obviously, the obtained network is not 2-connected.
Using a slight modification of the protocol presented in [18] one can compute the
subfunctions

fe(z,2) = zA A, z[i] and
fy(Z,y) = 2/\/\?:1 y[l]v

8 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

by a private protocol on the network G, with P, and G, with P,, respectively. After
the computation has been completed, P, is the only player who knows the results
of both subfunctions. Due to symmetry we consider the case that z = 1. Then
fy(2z,y) = 0 and therefore, since f, has been computed by a private protocol, P, does
not learn anything about y. Furthermore, P, does not learn anything about x what
he has not already known before the computation started.

The general theorem will be proved in Section 5 and contains the above result as
a special case.

4 Computing Parity on k-connected Networks

It is well known that the parity function of n bits can be computed on a cycle by
using only one random bit. On the other hand, using our simulation result discussed in
Section 3 one gets an upper bound of n random bits for general 2-connected networks.
The aim of this section is to close this gap, i.e. we present a private protocol for parity
that uses ﬁ;‘—:f — ﬂ random bits and show that there are k-connected networks on
which parity cannot be computed with less than ﬁ;‘—:f — 1] random bits.

For the lower bound, we analyze the complete bipartite network K .

Lemma 2 There exist k-connected networks with n > 2k on which the parity function
n—2

cannot be computed by a private protocol with less than (ﬁ - 1] random bits.

Proof: 'To show that Z—:f — 1, with n > 2k, random bits are necessary we consider a
family of bipartite graphs Ky, (which are k-connected) and show that each private
protocol on those networks needs at least these number of random bits to compute
the parity function. Let {P;, P,,..., P} and {Pgy1, Prto, ..., Py} be the two sets of
nodes of Ky, ,,—,. Recall that foreachs=1,...,kand 7 = k+1,...,n we have an edge
{P;, P;} in K} ,_j and that there are no other edges. Now assume to the contrary
that there exists a private protocol A on K}, using less than Z—:f — 1 random bits.

Let R = (Ry,..., R,) be the contents Ry,..., R, of all random tapes. For a string
z € {0,1}" and i € [n], let C;(z, R) be a full description of the communication received
by P; during the computation of A with R on the input x. Moreover let

C(x) ={{c1,ca,...,cx) | ARVi € [k] ¢; = Ci(z, R)}.
We consider computations of A on the inputs
X ={z|z[l]=22]=... =2z[k] =0 and P;_,z[i] = 0}.
Then for any x € X and any communication ¢; we define

Cler,x) ={{cay...,cp) | {c1,¢0,...,c) € C(x)}.

Private Computation — k-connected versus 1-connected Networks 9

From the fact that A is private it follows:
Claim Jc; Ve € X C(c,x) # 0.

Indeed, because z is a valid input for the protocol A, there exists at least one tuple
(c1,...,cp) in C(z). Hence, there exists at least one ¢; with C(cq,) # (0. On the other
hand, if for some y € X the set C(cy, y) is empty then one can conclude that A is not
private.

Note that |X| = 2" %1 and that for every x,y € X and i € [k] we have

UrCi(z,R) = UgCi(y, R). Furthermore, using a bound of the number of differ-
ent communication strings from [19] it follows that | |J, Ci(z, R)| < 92"%eT Hence, it
holds |, cx Cler, z)| < 277F71, because A uses less than %=1 random bits. There-
fore, by the pigeon hole principle and the above claim we obtain

dey,coy. oy A,y € X x#yand (e, ...,) € C(cr,x) NC(cr,y).

This means that there are two different input string z,y € X such that on both
strings the players Py, ..., P receive cq,...,ck, respectively. Let i, with 3 <7 < n,
be a position where z and y differ, i.e. z[i] # y[i]. Let R = (Ry,...,R,) and R =
(Ry,...,R]) be the contents of the random tapes such that ¢; = C;(z, R) = C1(y, R')
forall 1 < <k.

It is easy to see that during a computation of A with random string R" =
(Ri,...,Ri_1,Ri,Ri1,... R,) on the input x|y, the players Py, P, ..., P re-
ceive again communication strings ¢, co, .. ., ¢, respectively, and hence for this input
they give the same result as for x — a contradiction. |

Now we show that this bound is the best possible. To obtain a private protocol
that computes the parity function with m—:f — ﬂ random bits we use the result from
Egawa, Glas, and Locke [11] that every k-connected graph G with minimum degree
at least d and with at least 2d vertices has a cycle of length at least 2d through any
specified set of £ vertices. From this result we get the following observations:

Proposition 4 Let G = (V, E) be a k-connected graph with k < |V| — 1. Then for
any subset V! CV with |V'| =k + 1 there ezists a simple path containing all nodes
in V',

Proposition 5 Let G = (V, E) be a k-connected graph with k < |V|. Then for every
subset V! C V with |V'| = k there exists a simple cycle containing all nodes in V'.

Proposition 6 Let G = (V, E) be a k-connected graph. Then G has a simple path of
length at least min{2k + 1,|V|}.

To compute the parity function by a private protocol on an arbitrary k-connected
network GG, we proceed as follows:

10

. We repeat the following step [

MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

1. Mark all nodes in G red. For each player P; set z[i] := z[i].

2. Choose a path in G of length 2k 4+ 1. According to Proposition 6 such a path

always exists. The first player P; in the path chooses a random bit . Then F;
computes r @ z[i] and sends the result to the next player in the path. Finally
P; sets z[i] :=r.

Each internal player of the path P; receives a bit b from its predecessor in the
path, computes b @ z[j], sends this bit to its successor and changes its colour to
black.

The last player on the path P, receives a bit b from its predecessor and computes
z[l] := z[(] ® b.

After this step 2k — 1 players have changed the colour.

n—3k+1
k—1

| times.

Choose k41 red nodes and a path in G containing all of these nodes. According
to Proposition 4 such a path always exists. We can assume that the start and
the end node of the path are among the k£ + 1 given node, hence both are red.
Then the first player P; in this paths chooses a random bit . Then P; computes
r @ z[i] and sends the result to the next player in the path. Finally P; sets

z[i] == .
Each internal player of the path P; receives a bit b from its predecessor in the

path. If P; is a black player it sends b to its successor. If P; is a red player it
computes b z[j], sends this bit to its successor, and changes its colour to black.

The last player on the path P, receives a bit b from its predecessor and computes
z[l] := z[l] ® b.

After this step & — 1 players have changed their colour. Hence, after [%72£+1]

k-1
iterations of this step
[n —3k+1

P -‘-(k—1)+2k—1 € [n—Fk,n—2]

player are black. Thus, at most k are red.

. Choose a cycle in G containing all red nodes. According to Proposition 5 such

a cycle always exists. Let v; be a red node. Then player P; chooses a random
bit 7, computes r & z[1] and sends the result to the next player in the cycle.

Each other player of the cycle P; receives a bit b from its predecessor. If P; is a
black player it sends b to its successor. If P; is a red player it computes b z[j],
sends this bit to its successor and changes its colour to black.

If P, receives a bit b it computes b @ r. The result of this step is the result of
the parity function.

Private Computation — k-connected versus 1-connected Networks 11

Let us now count the number of random bits used in the protocol above. In the

n—3k+1‘|

second and in the last step we use one random bit. In the third step we need |77

random bits. Hence, the total number of random bits is

n—3k+1 n—2
[7,6_1 -‘+2 _ L{_l-‘—l.

It remains to show that the protocol is private and computes the parity function. The

correctness follows from the fact, that each input bit z[i] is stored by exactly one red
player and each random bit is stored by either none player or two players that are red
after each step. By storing a bit b we mean that a player P; knows a value z[i] that
depends on b. Since P is the last red player it knows the result of the parity function.

Every bit a player receives in the second and third step is masked by a separate
random bit. Hence, none of these players can learn anything from these bits. The
same holds for all players except for player P in the last step. So we have to analyse
the bits sent and received by P; more carefully. Note that in the last step z[1] is either
z[1], a random bit, or the parity of a subset of input bits masked by a random bit.
Note that in neither case P; can learn anything about the other input bits from the
bit it receives and the value of z[1] except for what can be derived from the result of
the function and z[1].

Theorem 2 Let G be an arbitrary k-connected network. Then the parity function of

n bits can be computed by a private protocol on G using at most [Z—:f} — 1 random

bits. Moreover, there exist networks for which this bound is best possible.

For 2-connected networks, we obtain the following corollary.

Corollary 1 Let G be an arbitrary 2-connected network of n players (n > 4). Then
the parity function over n bits can be computed by a private protocol on the network
G using n — 3 random bits. Moreover, there exists networks for which this bound is
the best possible.

5 Private Computation on Non-2-connected Net-
works

In Section 3 we have claimed that the parity function cannot be computed by a private
protocol on a network that is not 2-connected. On the other hand, we have presented
a non-degenerate function that can be computed on a network that is not 2-connected.
In this section, we study this phenomenon to a greater extend.

Throughout this section, f : {0,1}" — {0,1} denotes the function we want to
compute. Furthermore, I, I5, Ji, Jo denote both subsets of input positions and indices
of players.

12 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

We say that a pair (Jy, J>) of two disjoint subsets J;, Jo C [n] has the flip-property
if there exists an input z € {0,1}" and two strings a € {0,1}/”1/ and g € {0, 1}
f(x [J17J2<—0475) # f(x [hJ%—aﬂ) = f(x [Jl,h(—a,ﬁ) .
We call the strings a and (3 flip-witnesses for (J, J5).
Lemma 3 A function f : {0,1}" — {0,1} is non-degenerate iff for any partition

I, I, C[n| and anyi € I; and j € Iy it holds: There exist subsets J; C I and Jy C I
with i € Jy,j € Jy such that (Jy, J3) has the flip-property.

Loosely speaking, this lemma says that each non-degenerate function behaves on

subsets of input positions in some sense like the parity function.

Proof: Proof by contradiction. Assume that the lemma does not hold for a particular
partition Iy, Iy C [n] and two indices ¢ € [; and j € I5. From the definition of a non-
degenerate function f it follows that for every ¢ € I; and j € I, there exist input
strings y, z € {0, 1}" such that

fWlineo # fyl@per and f(2[greo # f(2[grer

If the lemma does not hold, we can conclude that
Flangreoo = flangreor # fWlangrero = flanges
Otherwise, at least one of the following cases hold:

o f(yluireo1) # fWlprgyert) and f(ylpypyeo1) = F(y[g1e10). Choos-
ing J; = {i}, Jo ={j}, and a = B = 1 satisfy the claim of the lemma.

o [yl gyeo0) # FWly o) and f(y[y yeo0) = [yl re1.1) Choos-
ing J; = {i}, Jo ={j}, « =0 and =1 satisfy the claim of the lemma.

Analogously, one can show that

FGElre00) = FElangero) 7 fElageo) = FElage) -
W.lo.g. assume that y[i] # z[i] and y[j] # z[j]. If f(y) = f(z) then we flip the bits
y[7] and z[j]. Since f(y) does not depend on y[j] we have f(y) # f(z). We choose

Yi = {kel,|ykl#zkl} andYs := {kely|y[k]#z[kl }.
Let Y] = {’6.1,...,’6.|y1‘} with 31 < 31 < --- < Z"yl‘ and Y, = {jl,...,j‘yﬂ} with
j1 < ji <+ < Define p € {0,1}M and o € {0,1}*2 such that
vee L, = pllf:==ylie] and - VEE[LYa]] : olf] = yli] .
Note that
yvivers = 2.

Recall that f(y) # f(z). To prove the claim we have to distinguish between the

following three cases: f(y) # f(y[ves) = f(2), f(y) = f(yInip) # f(2), and
f(y) # f(y[viep) = f(2). The last case can be reduced to the first case by exchanging
y and z with each other.

Private Computation — k-connected versus 1-connected Networks 13

L I £(4) # F(ulvse) = £(2) then we choose
a:=yli], p:=0, J:={i}, Jo:=Ys, and z:=y.

From the definition of non-degenerate functions and the observation above we
conclude that

Yy = x[Jl,Jﬂ—a,ﬁ and J; = {Z} — f($ [Jl,h(—a,ﬁ) # f(x [Jl,m—a,ﬁ))
y[m—a = $[J1,J2%aﬁ = f(x [th—a,ﬁ) # f(«” [Jl,Jzea,B) .

2 1 (y) = fuTsrer) = F(2lriep) # F(2) then we choose
a:=p, p:=z[j], J1:=Y1, J:={j}, and z:==z.

It follows

z=x[n neapand o ={j} = f(x[n.ncas) # (@[5 1 ab)
2lnep=2(nneas = [@lnneas) # (@] 0,063 -

Hence, we can always find subsets J; C I; and J, C [, fulfilling the claim — a
contradiction. [

For a given subset I; of input positions define the flip-witness-set for I;

f-set(l1) = {(a,J1)| Ji C I1,a € {0,1}71]
and there exists J, C [n] \ I, 3 € {0, 1}
such that «, 8 are flip-witnesses for Jy, Jo} .

A set I is dominated by an input position & € I if the following holds: For each
pair of subsets J; C I; and J, C [n]\ I1, such that (J;, Jo) fulfils the flip-property, we
have k£ € J;. A function is -dominated if there exists a set I; C [n] of size ¢ that
is dominated by some k € I;. A function f is called dominated if there exists an
¢ € IN such that f is /-dominated. Otherwise, f is called non-dominated.

Theorem 3 Let f be a non-degenerate function and G be a network that can be
separated into two networks G and Go of size ny and ns, respectively, by removing
one bridge node from G. If f can be computed by a private protocol on G, then f is
(n1 +1)- or (ng + 1)-dominated.

Theorem 3 follows directly from the lemma below. Recall that for all i € [n] player
P; initially knows x[i]. We can obtain every possible allocation of players and input
bits by permuting the enumeration of the players.

Lemma 4 (Fooling private protocols) Let G be a network with n nodes. Assume
that there exist Iy, Iy C [n] and k € [n], such that the following conditions hold:

14 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

1. 11,12750) and k g[lu.[g, Ilmlgzw,
2. for any path W; ; from P; to P, with i € Iy and 5 € I, P, € W;;, and

3. (I1, I3) has the flip-property.

Then f cannot be computed on G by a private protocol.

Proof: Assume that there exists such a protocol. Let M} be a message sent by player
P; in round ¢. Obviously M/ is a function of the input string z and the random tapes
R. Player P; receives in round t < T'(A) the messages

Ci(z,R) := M} (2,R),..., M} (z,R) ,

where P, , ..., P;, are all the players incident to the player P;. We denote the sequence
C}# R), C3(2,R),...,CT" (2, R) by Ci(z,R).

)

Now let k, I, I, fulfil conditions 1, 2, and 3 of the lemma and choose z, a, and 3
such that

f(CC [11,1'2%6!75) 7£ f(CC [1171%—04,3) = f(CC [11712%5,5) :

Keep R fixed. Then consider Ci(z[;, 1, o7
received by the player k£ during the computation on x[h’]%_aﬁ with random bits R.
Since the protocol is private and k ¢ I; U Iy, there exists R' = (RY,...,R}), with
Ry, = R}, such that

R), which is the sequence of messages

Ck(x [1171%—@,[37 R,) = Ck(x [Il,lgeaﬁv R) . (1)
Let
Y := {¢| there is a path W,; from ¢ to a node i € I; such that k ¢ W,; }.

Obviously we have I; CY and IoNY = (. Now let R” = (RY,..., R") be a content of
random tapes defined as follows: for every £ € Y let R/ := Ry and for every j € [n]\Y
let R} := R}. Note that R} = R = R;. From Equation (1) it follows that on input
z[1,.1,a,5 and the random tapes R the protocol generates the following messages for
any player i € [n] and any ¢t > 1

Mlt(x |711,12(—C¥,B7 R) lf Z € Y ?

M? ap RB') =
i (@0 eas, BY) { M{(v]1 1w R) ifi€n]\Y .

Hence, given the input string [, 1, the protocol computes the same value as on

the input string =[r, e ap and z[; — a contradiction. |

12<—06,3

Corollary 2 A non-dominated non-degenerate function cannot be computed by a pri-
vate protocol on a network that is not 2-connected.

Private Computation — k-connected versus 1-connected Networks 15

Examples of non-dominated non-degenerate functions are the parity function, the
or function, and the majority function. Hence, these functions cannot be computed
by private protocols on networks that are not 2-connected.

Let us now focus on dominated functions. In the remainder of this section, we
show that for each dominated function f there is a network that is not 2-connected
but f can be computed by a private protocol on this network.

Lemma 5 Assume that a set Iy with |I;| > 2 is dominated by an input position
k € I,. Then every pair (a,J;) € f-set(ly) assigns the same value to z[k].

Proof: Proof by contradiction. Assume that there are two pairs (aq, I1 1), (a2, I12) €
f-set(I;) such that «; and «s assign different values to input position k& € I, i.e.
T[11 a0 [k] # @[1000, [k] for all z € {0,1}". Furthermore, let (3, I51) and (B2, I52)
be counterparts of (ay, I;1) and (o, I1 2), respectively, i.e. there exist wy, ws € {0,1}"
with

f(wl [11,1,12,1H041,51) 7é f(wl (11,1,12,1ea_1,51) = f(wl (11,1,12,1ea1,ﬁ)
and

f(wZ [11,2,12,2F062752) 7£ f(wZ (11,2,1'2,2%672,52) = f(w2 (11,2712,%—0427@) :

Choose an input position ¢ € I; \ {k} and w; € {0,1}" such that

flws[yo) # flws[iyer) -

Note that either wi [, 1, a8 [F] = wslk] or wal1, 4155 00,8,[k] = ws[k]. W.Lo.g. we
assume that wy (1,1, a5 k] = wslk].

Furthermore, choose 7,0 € {0,1}* such that for all i € [n]

Lig = {i € Llwi|n, nyeanmli]l # wslgeolt},
v = wsllig],

Ly = {i€[n]\ Llwi[n, ncamli] # ws[ggolt]}, and
0 = wsl[las].

Note that w; (11,171'2,1%%,51 (11,3,12,39%5 = ws [{€}<—0'

W.lLo.g. we assume that ¢ € I3, i.e. w1, 1 ca1,8[¢] = W3] 1p0[f] = 0. Other-
wise, we consider ws[(s} 1.

Now we have to distinguish the following two cases:

L. f(wl [11,1,12,1<—a1751) - f(w3 IV{Z}%U) 7£ f(wl []1,1712,“—041,31) - f(w3 [{Z}%l)'

Consider ws[{¢y1(y, ,o5/1m1s- Note that we only change values in ws[sy
of some positions in [n] \ [;. Again, we have to consider two cases:

16 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

(@) If flwslqpetlr,eslmicn) = flws[o) then

f(w3 [{Z}%l [12,3<—3 [12,1<—51) = f(w3 |7{£}<—0) 7£ f(w3 [{é}el)

and therefore (1,{¢}) € f-set(/;) and I; is not dominated by k — a contra-
diction.

(b) If flwsl eyl ses5lmien) # f(ws[(o) then
f(w3 [{f}%l [Ig,3<—3 [12,1<—[31) = f(wl [11,1,12,1<—a1,31) 7£ f(wl [11,1,12,1<—041ﬂ1) .

Note that ws[(sye1(7, 5[nies = wilgperlnyeq[n,—s and therefore
(7, [13 U {l}) € f-set([;) where ~" assigns 1 to the input position ¢ and
the same values as 7 to all positions in I3 3. Since ws[k] = ws[k] we have
k & I, 3 and therefore I; is not dominated by k — a contradiction.

2. fwilnybaeans) = flwslgyer) # Fwiln, nicas) = Fwsligeo)

Consider w3[(pye1[,,.5l1,,.5, Note that we only change values in ws[s
of some positions in [n] \ I;. Again, we have to consider two cases:

(a) If fwsliepilr,,5l0,08,) = f(ws[{eo) then

fwslieyerlr,e5ln.05) = flwslgeo) # flws[iger)

and therefore (1,{¢}) € f-set(/;) and I; is not dominated by k — a contra-
diction.

(b) If f(ws[gey1lr,re5lry,c,) # f(ws[{go) then
f(w3 ’V{Z}(*]- |712,3<—3’712,1(—31) = f(w]- ’711,1,12,1(*041761) # f(w]- |711,1,12,1<—041,Bl) ‘

Note that ws[(e1(r,,050r,05, = wilggetlnseylr,, 5, and therefore
(7', 13U {¢}) € f-set(I;) where o assign 1 to the input position ¢ and
the same values as 7 to all positions in [; 3. Since ws[k] = w;[k] we have
k & I, 3 and therefore I; is not dominated by & — a contradiction.

For ¢ € {0,1}, we call a set I; (k,c)-dominated by a variable z[k], if I; is
dominated by k and for each pair (a, J;) € f-set(I1), a assigns ¢ to z[k].

Lemma 6 Assume that a set I} with |I1| > 2 is (k, c)-dominated by a input position
k € I, for some ¢ € {0,1}. Then for every o € {0, 1}/ with afk] # ¢, for every
w e {0,1}", Jo C [n]\ I1, and B € {0,112l we have

f(w (117172%&75) = f(w [Il,hea,ﬁ) :

Private Computation — k-connected versus 1-connected Networks 17

Proof: Assume that there are strings a; € {0, 1}t that do not assign the value ¢ to
the input position & such that for some w; € {0,1}", I; C [n]\ I, and 3, € {0, 1} 21l
it holds

f(wn [11712,1<—041ﬁ1) # flw [11,12,1<—a1731) .
Let I;4 := I;. Choose (a2, 12) € f-set(I;) and (f2, I22) as a counterpart of (aw, I 2),
i.e. there exists ws with

f(’LUg [11,2,12,%—042,52) 7£ f(w2 [11,2,12,%—@2,[32) = f(w2 [11,2,12,2<—a2,32) .

Note that wi[7,, 1,,ca1,8k] # W2l14.00¢a26,[F]. The remainder of the proof is
similar to the proof of the last lemma.

Choose a position ¢ € I \ {k} and w3 € {0,1}" such that

flws[y0) # flws[iyer) -

Note that either wq [11,1712,1<—Ot1,[31 [k] = ws [{Z}%U[k’] or wy [11,2,12,2<—062,[32 [k] = w3 [{E}PO [k]
W.Lo.g. we assume that wy |7, , 1, ,a1,6[F] = W3] {y—olk].

Furthermore, choose 7,0 € {0,1}* such that for all i € [n]

Lig = {i € Llwi|n, nyeanmli] # wslgeolt]},
v = wsllig],

Ly = {i€n]\ Llwiln, 1ncami] # ws[ggolt]}, and
0 = wsl[las].

Note that w; “1,171'2,1%%,51 (11,3,12,39%5 = ws [{4}%0'
W.Lo.g. we assume that wy[7, .1, [¢] = W3] {ey0[¢] = 0 and therefore ¢ & I 3.
Otherwise, we consider ws[s1.

Now we have to distinguish between the following two cases:

L flwilnmyeans) = Fwslgeo) # fwiln, ncans) = f(ws]ger).
Consider ws [{6},123,12 15,5, Note that we only change values in w3 [y of
some positions in [n] \ I;. Again, we have to consider two cases:

(a) If f(w3 ({Z},Iz,3,12,1<—1,3,ﬁ1) = f(w3 ’V{Z}HU) then

f(w3 ({5}712,3,12,1%1,5,&) = f(w3 [{4}%0) # f(w3 [{é}el)

and therefore (1,{¢}) € f-set(/;) and I; is not dominated by k — a contra-
diction.

(b) If f(ws [{z},12,3,12,1<—1,5,51) # f(ws[(ey«0) then

f(w3 IV{K},Ig,;g,Iz,l(—l,S,ﬂl) = f(wl |711,1712,1(—C¥1731) % f(wl |711,17]2,1<_051aﬂ1) °

Note that w3y 1., 1,1 c15,5 = Wil{epn,0101,0,5 and therefore (7', I 3U
{l}) € f-set(I;) where ' assigns 1 to the input position ¢ and the same
values as «y to all positions in [y 3. Since ws[k] = wy[k] we have k & I 5
and therefore I is not dominated by k£ — a contradiction.

18 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

2. f(wilny nyeans) = flwslgyer) # Flwiln, nicas,) = Fwsigeo)
Consider ws [{6},123,12 1155, Note that we only change values in ws [{ey1 of
some positions in [n] \ I;. Again, we have to consider two cases:

(a) If f(ws [{z},12,3,12,1<—1,3,31) = f(ws[(o) then

Fwslinrync1ss) = fwslgeo) # flwsliger)

and therefore (1,{¢}) € f-set(/;) and I; is not dominated by k — a contra-
diction.

(b) TF F(ws[gy 10 1yrr55,) # ([1gyco) then

f(w3 |V{e},12’37[2,1(7173,31) = f(w]- ’711,17[2,1(*041761) # f(w]- |711,1,12,1<—041,Bl) .

Note that ws[¢y 1, 1,015, = Wil{e.n,m1c1,,5, and therefore (7', I; 3U
{l}) € f-set(I;) where 7' assign 1 to the input position ¢ and the same
values as 7 to all positions in Iy 3. Since ws[k] = wy[k] we have k & I 3
and therefore I is not dominated by k£ — a contradiction.

By the above lemma, we can conclude that for each set I; with |I;| > 2 that is (k, ¢)-
dominated by an input position k € I; there exists a function f; : {0, 1}|Il| — {0,1}
such that

flx) = ((elk] = c) A f@) V ((2[k] #) A fr(z[L])) -
This reduces the set of interesting variables to I if z[k] # ¢. Let us now focus on
input strings with z[k] = c.

Lemma 7 Assume that a set Iy with |I;| > 2 is (k, c)-dominated by an input position
ke Iy for a c e {0,1}. Then for every pair wy,wy € {0,1}" with wi[k] = wslk] = ¢
and w [i] = we[i] for all i € [n] \ Iy we have

fwy) = f(wy).

Proof: The proof is similar to the proof of Lemma 6. Assume that there exists a pair
of strings uy, us € {0,1}" with uq[k] = us[k] = ¢ and uy[i] = wus[i] for all i € [n] \ L4
such that
fur) # fluz) .
Choose («, J;) € f-set([1) and (3, J5) as a counterpart of («, J;), i.e. there exists a us
with
f(uslnmeas) # fuslsneas) = fusly geas)

W.lo.g. we assume that f(us|s, s,ca3) = f(u1). Define wy == uy, wy := us|s,cas
Gr =B, Ioqa = Jo, [ty == { i € [n] | wi]i] # usli] }, and oy := uy[l1;]. Then

Uy = Wi[1,,a, and vy = w1 [, 7. Hence,

f(wllrfl,l(*al) = f(w2’7[2,1(*51) 7£ f(wl(ImFEl) = f(wZ[Ig,u—Bl)'

Private Computation — k-connected versus 1-connected Networks 19

Furthermore, choose v, d € {0,1}* such that

Lip = {i€ Liwli] # woli]},
v = walhy],

Ly = {i€[n]\ Li|wii] # w2[i]}, and
6 = wollas].

Note that wy [, 41,67, = Wo.

Consider wy [Note that we only change values of w7, ,«a, at

Ii,Ia2,02,14-a1,0,8,
positions in [n] \ I;. We have to distinguish two cases:

1' If w]- ’711,1712,2,]'2,14—041,(5,31 = f(w]- ’711,1(7041) then
f(wl []1,1,12’2,12’14_(1176731) = f(’LUg [12,1<—[31) 7£ f(’LUz [12,1931) .

Define J; = {i € i | wily, 1,1, ca105, [0 # walp,, 5 }and az € {0, 1}
such that

O{Q = w2|712,1<—31[‘]1] ‘

Hence’ w2 [12,1<—31 = w2 [J1712,1<—042731’ w1 [11,1,12,2,12,1<—04175731 = W2 [J1J2,1<—@2,31’ and
wa [12,1%51 = w2 [J1712,1%a27517 and

f(’LUQ [J17]2,1<—a2,ﬂ1) = f(’LUQ |7J1712,1(—a2,31) 3& f(w2 |7J1,1211<—042,Bl)
and therefore (ag, J;) € f-set(X7) and [; is not dominated by & — a contradiction.
2' If w1 [11,1712,2712,14—041,(5,31 % f(wl [11,14_01) then

f(wl[11,1,12,2,12,“—041,6,31) = f(wl (11,1%51) 7é f(wl[h,l%oél)

and therefore (aq, I11) € f-set(X;). Hence, I; is not dominated by & — a contra-
diction.

Thus, we can conclude that for each set I; with |I;| > 2 that is (&, ¢)-dominated
by an input position & € I;, there exists a function f, : {0, 1}/2l — {0, 1} such that

flx) = ((@[k] # c) A fa(2[l2])) V ((@[k] = ¢) A fi(2[L])) -

Summarising the above three lemmas we get the following result.

Theorem 4 Assume that a set I} with |I;| > 2 is (k,c)-dominated by a variable
k € Iy for some ¢ € {0,1}. Let Iy = [n]\ I. Then there are two functions fi :
{0,1}11 — {0,1} and fo : {0,1}2l — {0,1} such that

flx) = (k] =) A fi(z[l])) Vv (@] # o) A falaL])) -

20 MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

Note, that k, I;, and I5 are uniquely determined by the function f. Hence, every
dominated function can be described by an if-then-else construction, i.e. it is of the
form if x[k] = ¢ then fi(z[[1]) else fa(x[l2]).

Theorem 4 immediately implies that dominated functions can be computed on
networks that are not 2-connected.

Theorem 5 If f is {-dominated, then f can be computed by a private protocol on a
network that consists of two 2-connected components with one node in common. One
of the components has size £ and the other one size n — ¢+ 1.

Corollary 3 Assume that f is a dominated function. Then there are non-2-connected
networks on which f can be computed by a private protocol.

Theorem 5 can be generalised to the case where we allow teams of players to work
together. Assume that all members of a team belong to the component that computes,
say, fi. Then f is t-private if f; is t-private. If the members are distributed among
both components, then this virtually decreases the team sizes for both components.
If t; and ty are the number of members of the team belonging to the first and second
component, respectively, then the computation is private, if f; is ¢;-private and fs is
to-private.

6 Conclusions and Open Problems

We have investigated the relation between the connectivity of networks and the possi-
bility of computing functions by private protocols on these networks. Special emphasis
has been put on the amount of randomness needed.

We have presented a general simulation technique which allows us to transfer every
oblivious private protocol on an arbitrary network GG into an oblivious private protocol

on a given k-connected network G’ of the same size, where k > 2. The new protocol
needs (1 —-£-)-min{L, n? + 55} random bits more then the original protocol, where

L is the total amount of bits sent in the original protocol. The obvious open question
here is either to further reduce the number of extra random bits or to prove general
lower bounds.

The parity function can be computed on a cycle using only one random bit and only

one message per link. Thus, 1+n—’“—”1 random bits are sufficient to compute the parity

P
function on an arbitrary k-connected graph by a private protocol using our simulation.
We have strengthened this bound by showing that on every k-connected graph, parity
Z:f — ﬂ random

bits. Furthermore, there exist k-connected networks for which this bound is sharp.

can be computed by an oblivious private protocol using at most {

The latter bound even holds for non-oblivious protocols.

Private Computation — k-connected versus 1-connected Networks 21

While every Boolean function can be computed on a 2-connected network by a
private protocol, this is no longer true for 1-connected networks. Starting from this
observation, we have completely characterized the functions that can be computed by
a private protocol on 1-connected networks.

Our simulation results focus on the extra amount of randomness needed. It would
also be interesting to bound the number of rounds of the simulation in terms of the
number of rounds of the original protocol and, say, the diameter of the new network.

References

[1] N. Alon, J. H. Spencer, and P. Erdés. The Probabilistic Method. John Wiley and
Sons, 1992.

(2] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a
constant number of rounds of interaction. In Proc. 8th Ann. Symp. on Principles
of Distributed Comput. (PODC), pages 201-209. ACM, 1989.

(3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Ann. Symp.
on Theory of Comput. (STOC), pages 1-10. ACM, 1988.

[4] C. Blundo, A. de Santis, G. Persiano, and U. Vaccaro. Randomness complexity
of private computation. Comput. Complezity, 8(2):145-168, 1999.

[5] R. Canetti and R. Ostrovsky. Secure computation with honest-looking parties:
What if nobody is truly honest? In Proc. 31st Ann. Symp. on Theory of Comput.
(STOC), pages 255-264. ACM, 1999.

(6] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In Proc. 20th Ann. Symp. on Theory of Comput. (STOC), pages 11—
19. ACM, 1988.

[7] B. Chor, M. Geréb-Graus, and E. Kushilevitz. On the structure of the privacy
hierarchy. J. Cryptology, 7(1):53-60, 1994.

[8] B. Chor, M. Geréb-Graus, and E. Kushilevitz. Private computations over the
integers. SIAM J. Comput., 24(2):376-386, 1995.

[9] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. STAM J. Discrete
Math., 4(1):36-47, 1991.

[10] B. Chor and E. Kushilevitz. A communication-privacy tradeoff for modular ad-
dition. Inform. Process. Lett., 45(4):205-210, 1993.

[11] Y. Egawa, R. Glas, and S. C. Locke. Cycles and paths through specified vertices
in k-connected graphs. J. Combin. Theory Ser. B, 52:20-29, 1991.

22

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

MARKUS BLASER, ANDREAS JAKOBY, MACIEJ LISKIEWICZ, BODO SIEBERT

M. Franklin and R. N. Wright. Secure communication in minimal connectivity
models. J. Cryptology, 13(1):9-30, 2000.

M. Franklin and M. Yung. Secure hypergraphs: Privacy from partial broadcast.
In Proc. 27th Ann. Symp. on Theory of Comput. (STOC), pages 36-44. ACM,
1995.

A. Gal and A. Rosén. A theorem on sensitivity and applications in private
computation. In Proc. 31st Ann. Symp. on Theory of Comput. (STOC), pages
348-357. ACM, 1999.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In Proc. 19th Ann.
Symp. on Theory of Comput. (STOC), pages 218-229. ACM, 1987.

E. Kushilevitz. Privacy and communication complexity. STAM J. Discrete Math.,
5(2):273-284, 1992.

E. Kushilevitz and Y. Mansour. Randomness in private computations. STAM J.
Discrete Math., 10(4):647-661, 1997.

E. Kushilevitz, R. Ostrovsky, and A. Rosén. Characterizing linear size circuits
in terms of privacy. J. Comput. System Sci., 58(1):129-136, 1999.

E. Kushilevitz and A. Rosén. A randomness-rounds tradeoff in private compu-
tation. SIAM J. Discrete Math., 11(1):61-80, 1998.

[. Wegener. The Complezity of Boolean Functions. Wiley-Teubner, 1987.

A. C.-C. Yao. Protocols for secure computations. In Proc. 23rd Ann. Symp. on
Foundations of Comput. Sci. (FOCS), pages 160-164. IEEE, 1982.

A. C.-C. Yao. How to generate and exchange secrets. In Proc. 27th Ann. Symp.
on Foundations of Comput. Sci. (FOCS), pages 162-167. IEEE, 1986.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

