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Abstract

Graphs are models of communication networks� This paper applies sym	
bolic combinatorial techniques in order to characterize the interplay be	
tween two parameters of a random graph� namely its density �the number
of edges in the graph� and its robustness to link failures� Here� robust	
ness means multiple connectivity by short disjoint paths� a triple �G� s� t��
where G is a graph and s� t are designated vertices� is called �
robust if s
and t are connected via at least two edge	disjoint paths of length at most
�� We determine the expected number of ways to get from s to t via two
edge	disjoint paths of length � in the classical random graph model Gn�p
by means of �symbolic� combinatorial methods� We then derive bounds
on related threshold probabilities as functions of � and n�

Introduction

In recent years the development and use of communication networks has in�
creased drastically� In such networks� basic physical architecture combined
with tra�c congestion or operating system decisions� result in a certain� dy�
namically changing geometry of the graph of interconnections� We adopt the
random graph model of Gn�p �see ��� ��	 to capture link availability in networks

a graph of Gn�p has n nodes and any of the

�
n
�

�
edges is present with probability

p �independently for each edge	� Even in such a simple network model� it is

�This work was partially supported by the EU Project Alcom�FT �project number IST�
����������	
 and the Greek GSRT Project Pened�Alkad
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interesting to investigate the trade�o� between density �the number of edges�
which is p

�
n
�

�
in the mean and close to this value with high probability	 and

robustness to link failures� Indeed� the existence of alternative paths in such
graphs may model desired reliability and e�ciency properties
 an example is
the ability to use alternative routes to guide packet ow in ATM networks or
even improve the e�ciency of searching robots on the World Wide Web� in the
sense of an increased multiconnectivity of its hyperlink structure�

Given a triple �G� s� t	� where G is a Gn�p random graph and s� t are two of
its nodes� a natural notion of robustness is to require at least two edge�disjoint
paths of short length �say� exactly � or at most �	 between s and t� so that
connectivity by short paths survives� even in the event of a link failure�

De�nition � ���robustness� A triple �G� s� t	 with G a graph and s� t two
nodes of G is ��robust when there exist two edge�disjoint paths of length at most
� between s� t in G�

In this work� we investigate the expected number N��n� p	 of such paths
between two vertices of the random graph� as well as lower and upper bounds
PL�n� �	� PU �n� �	 for the threshold probability of the existence of such paths in
the random graph G � Gn�p�

Although Gn�p has been extensively studied ��� �� ���� some questions of
existence of multiple paths� which are vertex� or edge�disjoint between speci�c
vertices have not been investigated till recently� The theory of random graphs
began with the celebrated work of Erd�os and R�enyi ���� in ���� and nowadays
researchers know a lot about the probable structure of these objects �see� e�g��
the birth of the giant connected component in ����	� In this context we remark
that� the question of existence of many vertex�disjoint paths of small length
has been investigated by Nikoletseas et al in ����� however the corresponding
problem of the existence of edge�disjoint paths �which is more di�cult to deal
with� from the technical point of view	 has remained untouched� Even the
enumeration of paths among the vertices � and n that avoid all edges of the line
graph ��� � � � � � n	 but pass through all its vertices� is a non�trivial combinatorial
task� In fact� such an enumeration corresponds to enumerating permutations
���� ��� � � � � �n	 of ��� �� � � � � n	 where certain gaps �i����i are forbidden� In our
case� �i����i must not be in the set f��� �g� and this basic problem resembles
the classical �m�enage problem� of combinatorial analysis ��� ����

In this work� we provide a precise evaluation of the expected number of
unordered pairs of paths in a random graph that connect a common source to
a common destination� and have no edge in common� though they may share
some nodes� In order to achieve this� we devise a �nite�state mechanism that
describes classes of permutations with free places and exceptions� The �nite�
state description allows for a direct construction of a multivariate generating
function� The generating function is then subjected to an integral transform that
implements an inclusion�exclusion argument from which an explicit enumeration
derives� see Theorem � and Proposition �� This enables us to quantify the
trade�o� between ��robustness �as de�ned above	 and the density of the graph
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�i�e�� the number of its edges	� The originality of our approach consists in
introducing in this range of problems methods of analytic combinatorics ���� ���
and recent research in automatic analysis based on symbolic computation ��� ���
��� ���� Additional threshold estimates regarding properties of multiple source�
destination pairs are discussed in the last section of the paper�

Summary of results� From earlier known results ��� ��� and this paper� a
picture of robustness under the Gn�p model emerges� �As is usual in random
graph theory� various regimes for p � p�n	 are considered�	 Start with an
initially totally disconnected graph� corresponding to p � �� As p increases� the
graph becomes connected near the connectivity threshold PC�n	 � �logn	�n�
Any �xed s� t pair �or equivalently a random s� t pair� given the invariance
properties of Gn�p	 is likely to become ��robust when p crosses the value

PM �n� �	 � �
�
�� n���

�
� �

Here �likely� signi�es that the mean number of edge�disjoint pairs is at least �
when n grows to in�nity� cf� Theorem � and Equation ���	� Then� as long as
p � PL�n� �	� where

PL�n� �	 � n���
�
�

�
log

n�

logn

� �
�

we know� with high probability� the existence of s� t pairs that are not connected
by short �of length at most �	 paths� see Theorem ��the function PL�n	 is in
fact a threshold for diameter� However� we can prove that one only needs a tiny
bit more edges� namely p � PU where

PU �n� �	 � �n
��� �

�

�
log
�
n�log n

�� �
�

to ensure that almost all s� t�pairs are ��robust� see Theorem �� In summary�
interesting phase transitions take place when p is near to n������� meaning that
the graph has about n����� edges�

A preliminary presentation of our results has been given at the IFIP In�
ternational Conference on Theoretical Computer Science� see ����� Detailed
supporting computations done with the symbolic manipulation system Maple

are described in ����

� Avoiding permutations

The main problem treated in this paper is that of estimating the expected num�
ber of �avoiding pairs� of length � between a random source and a random
destination in a random graph G obeying the Gn�p model� �An avoiding pair of
length � means an unordered pair of paths� each of length �� that connect a com�
mon source to a common destination� and have no edge in common though they
may share some nodes	� This problem necessitates the solution of enumeration
problems that involve two major steps
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� Enumerate �avoiding permutations� �de�ned below	 of size n � ��� that
can be viewed as hamiltonian paths on the set of nodes f�� � � � � � � �g�
connecting the source � and the destination �� �� and having no edge of
type �i� i� �	 or �i� i� �	�

� Enumerate �avoiding paths�� that are simple paths allowed to contain
outer nodes taken from outside the integer segment ��� ���� and otherwise
satisfy the constraints of avoiding permutations� This situation is close to
the random graph problem since it allows nodes drawn from the pool of
vertices available in the graph G � Gn�p�

The �rst problem is the object of this section� It is of independent combi�
natorial interest as it is equivalent to counting special cyclic permutations with
restrictions on adjacent values� It then serves� in the next section� as a way
to introduce the methods needed for the complete random graph problem that
builds upon the enumeration of avoiding pairs� Both problems rely heavily on
counting by generating functions �GF�s	 on which is grafted an analytic form of
the inclusion�exclusion principle� a familiar tool from combinatorial analysis�

��� Symbolic enumeration methods

We use here a symbolic approach to combinatorial enumeration� according to
which many general set�theoretic constructions have direct translations over
generating functions� A speci�cation language for elementary combinatorial
objects is de�ned for this purpose� The problem of enumerating a class of
combinatorial structures then simply reduces to �nding a proper speci�cation�
a sort of a formal grammar� for the class in terms of basic constructions� The
approach we take follows the exposition in ���� ����

In this framework� classes of combinatorial structures are de�ned either it�
eratively or recursively in terms of simpler classes by means of a collection of
elementary combinatorial constructions� The approach followed resembles the
description of formal languages by means of context�free grammars� as well as
the construction of structured data types in classical programming languages�

A path often taken in the literature consists in decomposing the structures
to be enumerated into smaller structures either of the same type or of simpler
types and then in extracting� from such a decomposition� the corresponding
recurrence relations� The approach developed here is direct and �symbolic�� as
it relies on a precise speci�cation language for combinatorial structures ���� ����
It is based on so�called admissible constructions that have the important feature
of admitting direct translations into generating functions�

Let A be a class of combinatorial objects with an associated notion of size�
We let An denote

� the subset of objects in A that have size n and write An for

�Throughout the paper
 we make use of the convention of denoting a combinatorial class
�A or simply A	
 its counting sequence �fAng	
 and its generating function �A�z		 by similar
groups of letters�
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the corresponding cardinality� The ordinary generating function �OGF	 of the
sequence fAng �or equivalently of the class A	 is then de�ned as

A�z	 �
�X
n��

Anz
n�

Next� consider a binary construction  that associates to two classes of combi�
natorial structures B and C a new class

A �  �B� C	

in some �nite way� The  is admissible i� the counting sequence fAng of A is
a function of the counting sequences fBng and fCng of B and C only 


fAng � !�fBng� fCng��

In that case� there exists a well de�ned operator " relating the corresponding
ordinary generating functions�

A�z	 � "�B�z	� C�z	�

�The notion generalizes to unary� ternary� etc� constructions in an obvious way�	
In this work� we will basically use three important constructions
 union� product
and sequence� which we describe below�

�i	 Union Construction� The disjoint union A of two classes B� C� written
A � B � C� is the union �in the standard set�theoretic sense	 of two disjoint
copies� Bo and Co� of B and C� �Formally� we can introduce two distinct �mark�
ers� �� and ��� each of size zero� and de�ne the �disjoint	 union of B� C by
B � C � �f��g � B	 � �f��g � C	�	 Then one has An � Bn � Cn so that the
ordinary generating function is

A�z	 � B�z	 � C�z	�

�ii� Product Construction� If A is the cartesian product of two classes B and
C � writtenA � B�C� then� considering all possibilities� the counting sequences
corresponding to A�B� C are related by the convolution relation


An �
nX

k��

Bk � Cn�k

and the ordinary generating function satis�es accordingly

A�z	 � B�z	 � C�z	�

�iii	 Sequence Construction� If C is a class of combinatorial structures then
the sequence class A � SfCg is de�ned as the in�nite sum

SfCg � f�g� C � �C � C	 � �C � C � C	 � � � �
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with � being a �null structure�� meaning a structure of size �� �The null structure
plays a r#ole similar to that of the empty word in formal language theory while
the sequence construction is analogous to the Kleene star operation� C��	 By the
two previous rules� the ordinary generating function of the sequences is given
by

A�z	 � � � C�z	 � C��z	 � C��z	 � � � � �
�

�� C�z	
�

where the geometric sum converges in the sense of formal power series provided�

�z��C�z	 � ��

In the sequel� we represent the constructions of disjoint union� product� and
sequence by

Union� Prod� Sequence�

Various combinatorial objects are speci�ed in terms of them� and by the discus�
sion above� each such speci�cation is automatically translated into generating
function equations� Our naming conventions are consistent with those of the
Maple library Combstruct� that itself implements the ideas of ���� ���� As a
matter of fact� Combstruct is used heavily in order to support and check the
necessary calculations� see ����

��� Enumeration of avoiding permutations

In this subsection� we discuss a toy problem of intrinsic combinatorial interest
that shows in the small all the essential features of what is needed for the
complete random graph problem
 In how many ways can a kangaroo jump
from � to n by visiting all the nodes f�� � � � � ng once and only once� while making
jumps 	in number � � n � �� that always avoid nearest neighbours
 A more
serious de�nition is as follows


De�nition � An avoiding permutation of size n is a sequence � � ���� ��� � � � � �n�
that is a permutation of ��� � � � � n� satisfying the conditions� �� � �� �n � n� and
�i�� � �i �� 	� for all i such that � � i � n�

Clearly� such a permutation encodes a simple path from node � to node n �

� � �� 
 �� 
 � � � 
 �n�� 
 �n � n�

that has no edge in common with the line graph � 
 � 
 � � � 
 n� We shall
principally operate with such a graphical interpretation of arrays ���� � � � �n�� In
this graphical representation� for a path� we reserve the term size for its number
of distinct nodes and the term length for the number of its edges� Naturally� in
the case of a simple path �i�e�� there are no repeated nodes	 the length � and
the size n are related by � � n� ��

�We use the well�established notation �znf�z	 to represent the coe�cient of zn in the
power series f�z	�
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There are no avoiding permutations for sizes �� �� �� �� Surprisingly� the
�rst nontrivial con�gurations occur at size �� where the � possibilities are
��� �� �� �� �� �� and ��� �� �� �� �� ��� while for size �� there appear to be �� pos�
sibilities


�� �� �� �� �� �� ��� �� �� �� �� �� �� ��� �� �� �� �� �� �� ��� �� �� �� �� �� �� ��� �� �� �� �� �� �� ���

�� �� �� �� �� �� ��� �� �� �� �� �� �� ��� �� �� �� �� �� �� ��� �� �� �� �� �� �� ��� �� �� �� �� �� �� ���

The goal in this subsection is to determine the number Qn of avoiding permu�
tations of size n� The generating function to be obtained is expressible in terms
of the basic quantity

F�z	 
�
�X
n��

n$ zn�

that is the �divergent	 OGF of permutations and factorial numbers� This di�
vergent series is actually a particular hypergeometric series �corresponding to

�F���� �� z�� see ����	 that was studied analytically already by Euler� and in the
Maple language it is expressed as %hypergeom ���� ��� � �� z	��

Theorem � Avoiding permutations have ordinary generating function

Q�z	 
�
X
n

Qnz
n �

z

� � z
�

z

�� � z	�
F

�
z
�� z

� � z

�
�

where F is the divergent OGF of all permutations� Equivalently� the number of
avoiding permutations Qn is a double binomial sum�

Qn�� � ���	n�� �
nX

k���

n�k�X
k���

���	k��k� �

��n� k� � k�	$

�
n� k� � k�

k�

��
n� �� k�

k�

�
�

Proof� By the inclusion�exclusion principle �see� e�g�� the formulation in ����	�
we need to determine the number of permutations with �at least� j excep�
tions� where an exception is de�ned as a succession of values of the form

�i�� � �i � 	�� More precisely� we let P
hji
n be the number of permutations

��� � �� ��� � � � � �n��� �n � n� with j exceptions distinguished� The number of
permutations with no exception is then� by inclusion�exclusion


Qn �
n��X
j��

���	jP hji
n � ��	

Under the graphical interpretation� a permutation with distinguished excep�
tions can itself be regarded as including a subcollection of �exceptional� edges
that belong to the graph � 
 � 
 � � � 
 n� For instance� one of the elements

counted by P
h�i
�� is �only some of the exceptions need be distinguished	

�
 �
 � 
 �
 �
 � 
 �
 ��
 ��
 �
 � 
 ��
 �� �

�



If we scan the integer line from left to right and group such exceptions into
maximal contiguous blocks� we obtain a template� A template thus represents
a possible pattern of exceptional edges and in general it describes many permu�
tations� For instance� the template of the example permutation is

�
 �
 � � �� �
 � � �� �� �� ��� �� � ��
 �� �

and it will correspond to any permutation that has exceptional edges �in the
cycle traversal order	

��� �	 � ��� �	 � ��� �	 � ��� �	 � ���� �	 � ���� ��	 � ���� ��	�

At this stage� the proof strategy can be enunciated
 �A	 describe symbol�
ically templates� �B	 e�ect the enumeration by GF�s of templates from their
symbolic description� �C	 relate the counting problems for templates and for
permutations with distinguished exceptions �this is achieved by a speci�c trans�
form over GF�s	� �D	 conclude about the enumeration of avoiding permutations�
We now carry out this programme�

A� Symbolic description of templates� From the de�nition� a template
can be de�ned directly as made of blocks that are either
 �i	 isolated points
�P 	� �ii	 maximal blocks of contiguous unit intervals oriented left to right �LR	�
�iii	 maximal blocks of contiguous unit intervals oriented right to left �RL	�
There is the additional constraint that the �rst and last blocks cannot be of
type RL �one starts from � �pointing East� and arrives at n �from the West�	�

First� the three types of blocks in a template are described by the following
rules��

P � Z�

LR � Prod��LR� Z� Sequence�Prod�	� Z	� card � �		�

RL � Prod��RL� Z� Sequence�Prod�	� Z	� card � �		�

corresponding to isolated points �P 	� LR blocks and RL blocks respectively�
By convention� Z represents an �atom� of size � meant to specify an arbitrary
node in the graphical representation of templates and permutations� The sym�
bols �LR� �RL mark the beginning of each LR or RL block� 	 serves as an
additional marker for measuring length �i�e�� the number of edges	 of LR�RL�
blocks� �Clearly� LR and RL are combinatorially isomorphic�	 Here� the mark�
ers are taken to have size � and they will serve in the later application of the
inclusion�exclusion argument�

Next� let fa� bg be a binary alphabet� The collection of strings beginning
and ending with a letter a is speci�ed as follows


S� � Prod�Sequence�Prod�a� Sequence�b			� a	 ��	

�Sequence�A� card � k�	 is a �macro� that denotes sequences with at least k� components�
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�It su�ces to decompose according to each occurrence of the letter a	� Then�
the grammar of templates is completed by substituting into S�

a � Union�P�LR	� b � RL�

B� Template enumeration� Let Tn�k�j be the number of templates with
size n �the number of nodes	� k blocks of type either LR or RL in total� and
j exceptional edges �that is� the cumulated lengths of the LR and RL blocks	�
Here� we determine the trivariate GF�

T �z� u� v	 �
X
n�k��

Tn�k�� z
nukvl�

The generating function equations for templates can be obtained mechani�
cally from the translation rules from constructions to GF�s� as detailed in Sec�
tion ���� �We briey sketch the translation as a pedagogical aside�	 First� the
set of words made of a�s and b�s that start and end with an a is described
symbolically by S� above and the GF is

S��a� b	 �
�

�� a � �
��b

� a �

This is because �� � f	�� � � � f � f� � f� � � � � generates symbolically all
sequences of objects of type f � Thus� S��a� b	 enumerates sequences of objects
of type a

��b that end with an a� On the other hand� a��� b represents an a
prepended to a sequence of objects of type b� Therefore� globally� S��a� b	 rep�
resents all sequences described by the combinatorial type S� of ��	�

Take next the three types of blocks
 isolated �P 	� LR� and RL� The GF�s
are� respectively� z� LR�z	 � z����� z	� RL�z	 � z����� z	� This is because
isolated points are always of size � �and the speci�cation Z translates to the
GF z	� while LR and RL objects must be of size at least � �we have thus to
multiply with z�	� Since the �rst and the last blocks can only be isolated points
or LR blocks� the univariate GF for blocks is obtained by substituting a by
z � LR �isolated point or LR block	 and b by RL in S�� This gives here

T �z� �� �	 �
�

�� z
��z �

�

�� z�

��z

�
z

�� z
� z

�� z � z�

��� z	��� �z � z�	

� z � �z� � �z� � �z� � ��z� � ��z	 � ���z� � ���z
 � � � � �

�Strangely enough� this is already listed as sequence A���	
� in Sloane�s En�
cyclopedia of Integer Sequences �����	

Finally� we make use of markers� These have size � �hence they do not a�ect
the total size measured by the main variable z	 and they can be replaced by
variables that record useful additional information� The total number of blocks
is translated into the variable u� which corresponds to the translation

�LR �
 u� �RL � u�

�



The variable v keeps track of the total length of LR and RL blocks where
the marker 	 had been purposely introduced so as to record all the relevant
exceptional edges� thus the substitution

	 �
 v

is also e�ected� In this way� we get the following trivariate GF for templates


T �z� u� v	 �

�
��� u

�
z � z�v

��vz

�
�� uz�v

��vz

�
A
��

� u

�
z �

vz�

�� vz

�

�
uz��� vz � uz�v	

�� ��v � u	z � v�z� � uv�z�
�

��	

C� The inclusion�exclusion transform� By �xing the way blocks of a
template are chained together� one obtains a permutation with a distinguished
set of exceptions to the rule de�ning avoiding permutations� Counting the
number of ways to do so yields the relation

P hji
n �

X
k

Tn�k�j 
�k	 ��	

where 
�k	 is the modi�ed factorial



��	 � �� 
�k	 � �k � �	$ for k � �� ��	

The reason for the factorial is that any such chaining is determined by an arbi�
trary permutation of the k � � intermediate blocks when k � ��

We have obtained above an explicit rational expression ��	 for the trivariate
GF T �z� u� v	 of the Tn�k�j � In terms of this GF� one can express the OGF Q�z	
of the Qn as an integral transform of T �z� u� v	� The starting point is the simple
combination of ��	 and ��	 into

Qn �
X
k�j

���	j
�k	Tn�k�j � ��	

with 
�k	 as de�ned in ��	� The usual Eulerian integral�Z �

�

e�uukdu � k$ �

provides a way to transform a monomial uk into a factorial k$ by integrating
against the exponential kernel e�u� It then su�ces to introduce the operator L


L �h�u		 �

Z �

�

e�u
�
h�u	� �u� u�	

�
�

�u
h�u	

�
u��

�
du

u�
� ��	

��



It is easily recognized that this is a linear transformation �akin to the Laplace
transform	 whose e�ect is precisely to transform a series in u into a number
according to the rule

uk �
 
�k	�

Finally� the sign alternation in ��	 is taken care of by the substitution v �
 ���
Thus� the OGF Q�z	 �

P
Qnz

n satis�es the main equation

Q�z	 � L�T�z� u���		� ��	

D� Final evaluations� Application of the L�transformation �that counts
the number of ways to connect the blocks	 requires a mildly amended form of T
�where terms of degrees � and � only are adjusted	�From ��	 used in conjunc�
tion with ��	 and ��	� there derives an integral representation of the ordinary
generating function of avoiding permutations�

Q�z	 � z

Z �

�

�uz� � ��� u	z � �	

�� � z	�uz� � ��� u	z � �	
� e�u du�

that calls for evaluation�

In such a situation� we can always perform a partial fraction expansion with
respect to the variable u �here this is trivial as the denominator has a u�degree
of �	� This reduces the integral to a canonical form that now involves the
exponential integral ��� Ch� ���

E��x	 
�

Z �

x

e�t

t
dt�

The following closed form is then easily obtained


Q�z	 � z

�
�

z � �
�

�

z� � �
e

z��
z�z��� E�

�
z � �

z�z � �	

��
�

Since one deals with ordinary generating functions� the last expression is to
be taken as a formal �asymptotic	 series as z 
 �� Indeed� we have from the
classical expansion of the exponential integral at in�nity

e��yE�

�
�

y

�

�
y � �$y� � �$y� � �$y� � �$y� � � � �

�
�y 
 �	�

Thus� everything can be re�expressed in terms of the hypergeometric function
F� i�e�� the OGF of factorial numbers �set y � z�z � �	��z � �		� One gets the
expression for Q�z	 as stated� Finally this form of Q�z	 is expanded using the
binomial theorem� and double combinatorial sums result for the coe�cients� �

Though they have no immediate bearing on the graph problem at hand� we
mention two interesting consequences of this theorem�

��



Corollary � The quantities Qn satisfy the recurrence

�n� �	Qn �Qn�� � �nQn�� � �Qn�� � �n� �	Qn�� �Qn�� � �� ��	

where Q� � �� Q� � �� Q� � Q� � Q� � Q� � �� Asymptotically� one has

Qn

�n� �	$
� e��

�
� �O

�
�

n

��
� ���	

Proof� First� the generating function Q�z	 is obtained from classical special
functions �the exponential integral or the hypergeometric functions	 by rational
operations and substitutions� Many such functions fall into what Zeilberger ����
has named the �holonomic class�
 a function �or a power series	 is holonomic
if it satis�es a linear di�erential equation with coe�cients that are rational
�equivalently polynomial	 functions� Holonomic functions enjoy a rich set of
closure properties� including closure under sums and products� integration and
di�erentiation� as well as algebraic substitutions� TheMaple package Gfun due
to Salvy and Zimmermann ���� actually implements these closure properties�

Here� since the exponential integral �also� its hypergeometric cognate	 is
clearly holonomic� we may take advantage of the Gfun package and build up
automatically a di�erential equation satis�ed by Q�z	


�z��z���z����z��z�	Q�z	����z��z��z		
�Q�z	

�z
��z���z��z��z � ��

From this the recurrence follows by elementary properties of generating func�
tions
 multiplication by z corresponds to a shift of coe�cient indices� while
di�erentiation essentially multiplies coe�cients by n� In this way� the recur�
rence ��	 is established �it is also conveniently obtained in an automatic fashion
by the Gfun package	�

Regarding asymptotics� we may take advantage of the expression involving
the divergent series F� The following general principle proves especially useful

One has

�zn�F
�
z � dz� �O

�
z�
��
� n$ ed�� � o��		

provided that the argument of the hypergeometric F is analytic at the origin� so
that its coe�cients grow at worst exponentially� �Elementary coe�cient manip�
ulations in the style of ��� Sec� �� establish this�	 But� given this principle� the
expression already obtained for Q�z	� and the fact that

z��� z	

� � z
� z � �z� � �z� � �z� � �z� �O�z		�

the main asymptotic estimate of ���	 immediately results� �

The recurrence above implies the non�obvious fact that each number of
avoiding permutations Qn is computable in a constant number of arithmetic
operations�a contrast with the quadratic cost of the double combinatorial sum�
The GF found in this way starts as

z�� z	��� z���� z
���� z������ z�������� z��������� z���������� z���� � � �

��



The asymptotic estimate extends properties known for permutations with ex�
cluded patterns �e�g�� derangements have asymptotic density e��� see ��� Sec� ����
for a more general result	� Consequently� a nonzero proportion �about �����&	
of all cyclic permutations that start with � and end with n are avoiding� Sim�
ilar techniques can be employed to analyse more general avoidance rules �e�g��
excluding any �xed �nite set of jumps	� see ��� ���� The net result is that the cor�
responding divergent OGF�s are compositions of the F function with algebraic
functions themselves determined by �nite�state models and their associated ra�
tional functions�

� The random graph model

We now turn to the analysis of robustness in the random graph model Gn�p�
A crucial step consists in enumerating what we call �avoiding paths� �Sub�
section ���	 where we build upon the methods already developed for avoiding
permutations� The transfer to the random graph model Gn�p is then easy �Sub�
section ���	�

��� Avoiding paths

De�ne an avoiding path of type �n� j	 by the fact that it satis�es the basic
constraints of avoiding permutations regarding the base line ��� �� � � � � n	� but
contains j �outer nodes� taken to be indistinguishable and anonymously repre�
sented by the symbol %��� Precisely� an avoiding path of type �n� j	 is a sequence
���� � � � � �n� such that each �i is in f�� � � � � ng � f�g satisfying the conditions

�� � � and �n � n� no numeric value amongst the �i�s is repeated� �i����i �� 	�
if �i�� and �i are both numeric� the number of �i�s that equal � is exactly j� For
instance� for types �n� j	 � ��� �	� ��� �	� ��� �	� the listings are respectively

f��� �� ��g f��� �� �� ��� ��� �� �� ��g f��� �� �� ��g �

We consider now the problem of counting the number Qn�j of avoiding paths of
type �n� j	� where n is the size �the number of nodes	 and j is the number of
�outer nodes��

Proposition � The number of avoiding paths of type �n� j	 with j � � is ex�
pressible as

Qn���j �

n�jX
k���

n�j�k�X
k���

���	k��k��n� k� � k�	$�
n� j � k� � k�

k�

��
n� j � �� k�

k�

��
n� k� � k�

j

��

�

Note that the combinatorial sum on the right hand side extends the one for
avoiding permutations in the sense that Qn � ���	

n�� �Qn���

��



Proof� It appears convenient to relax the constraints a bit and not to impose
a priori the number of outernodes� In so doing� we enumerate ordered pairs of
paths  � ���� ��	� called �relaxed pairs�� where ��� �� may or may not be of
the same length� The �rst path will be called the �ground path� and its nodes
are assumed to be labelled in the canonical order �� �� � � � � j��j� The second path
�i�e�� the �avoiding path�	 is not allowed to have any edge of type �i� i � �	
or �i� i � �	 �nor to contain any repeated label� evidently	� in addition� it may
contain outside nodes written as � that represent nodes not in the ground path�
We let Q��m��m�

be the number of relaxed pairs that comprise a total of � nodes
and are such that the nodes of ��n�� �with ��� �� taken here as sets of nodes	 are
in number m� while there are m� nodes in �� n ��� This sequence extrapolates
the sought sequence Qn�j in the sense that Qn�j � Q�n�j�j �

The counting is achieved by modifying the templates introduced in Section ��
We omit the somewhat lengthy details as they are conceptually very similar �see
also ��� where detailed speci�cations are spelled out with ample con�rmation
of the formula above by exhaustive combinatorial listings	� The idea is now
to distinguish �inner nodes� that are in �� n ��� �outer nodes� belonging to
�� n ��� and �joint� nodes from �� � ��� The constraints are seen to remain of
the �nite�state type� corresponding to regular expressions that only involve the
combinatorial constructions %Union� Prod� Sequence��

We can then proceed with the enumeration of modi�ed templates� Let
T �z� u� v� w�� w�	 be the generating function in ve variables� where z records
the total number of nodes� v records the total length of LR and RL blocks
�needed for inclusion�exclusion as it gives the number of exceptions	� u records
the number of such blocks �needed to apply the integral transform	� the vari�
ables w�� w� record the number of points on each one of the two paths that
does not belong to its companion� The generating function T �z� u� v� w�� w�	
then mechanically results �details omitted	� For inclusion�exclusion� we must
set v � ��� then modify T to make it comply with the form needed to apply
the transform ��	 and de�ne

T
�
�z� u� w�� w�	 � T �z� u���� w�� w�	� �u� u�	

�
�

�u
T �z� u���� w�� w�	

�
u��

�

Then the integral transform technique applies via relation ��	� Let Q�z� w�� w�	
be the GF of the Qn�m��m�

de�ned at the beginning of the proof as counting
relaxed pairs of type �n�m��m�	� One obtains in this way

Q�z� w�� w�	 �

Z �

�

T
�
�z� u� w�� w�	e

�u du� ���	

where

T
�

�
z�

� � z�

�
� �

z�

D

�
D � �� z�w� � w�	 � z���� u� w�w�	� z��w� � w�	 � z��u� w�w�	�

��



�It is comforting to note that the expression is symmetric in w�� w�$	

An exponential integral form is obtained which is eventually reduced to the
�nal hypergeometric form that involves the GF of factorials


Q�z�w�� w�� �
z�

� � z�
�

z�

�� � z������ zw����� zw��
F

�
z���� z��

�� � z����� zw����� zw��

�
�

����

This is our main formula and it reduces to Q�z�	� as it should� upon setting
w� � w� � �� From there� the expansion in terms of binomials is straightforward
and Qn�j is determined as the coe�cient �z

�nwj
�w

j
��Q�z� w�� w�	� �

��� Average�case analysis of the random graph model

We discuss now how to estimate the robustness to link failures in a random
graph that obeys the Gn�p model� An avoiding pair of length � in a graph is an
unordered pair of paths� each of length �� with a common source and a common
destination� that may share some nodes� but are totally edge�disjoint� We have
an exact characterization of the non�asymptotic regime


Theorem � The mean number of avoiding pairs of length � between a random
source and a random destination in a random graph obeying the Gn�p model is

N��n� p	 
�
p��

�n�n� �	

�X
j��

Q����j

�
n

l � � � j

�
�l � � � j	$

where the coe�cients Qn�j are given by Proposition ��

Since the Gn�p model implies isotropy� the quantity N��n� p	 is also the mean
number of avoiding pairs between any xed source and destination s� t�

Proof� The coe�cient ��� corresponds to the fact that one takes unordered
pairs of paths� the coe�cient ���n�n��		 averages over all possible sources and
destinations� the factor p�� provides the edge weighting corresponding to Gn�p�
the arrangement numbers

�
n

l���j

�
�l��� j	$ account for the number of ways to

embed an avoiding path into a graph by choosing certain nodes and assigning
them in some order to an avoiding path� the coe�cients Q����j provide the basic
counting of avoiding paths that build up avoiding pairs� �

Robustness� A short table of initial values of N��n� p	 follows


N� �
�
� �n� �	�n� �	p

�� N� �
�
� �n� �	�n� �	

��n� �	p	�

N� �
�
� �n� �	�n� �	�n� �	�n� �	�n� �	

�p
�

N� �
�
� �n� �	�n� �	�n� �	�n� �	

��n� � ��n� � ��n� ��	p���
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From developments in the previous section� the formul' are computable in
low polynomial time �as a function of �	 and they describe exactly the non�
asymptotic regime� This makes it possible to determine the mean number of
avoiding pairs in graphs of a given size for all reasonable values of n� p� �� Take
for instance a graph with n � ��� nodes and an edge probability p � � � �����
This corresponds to a mean node degree that is extremely close to �� so that�
on average� each node has � neighbours� Then the mean values are

N� � ��� � ����� N� � ��� � ����� N� � ��� � ���	� N	 � ��� � ����� N
 � ��� � �����

N� � ����� N� � ���� N� � ���� N�� � ����� N�� � ������� N�� � ��� � ��
�

Thus� in this example� one expects to have short and multiple connections
between source and destination provided paths of length � are allowed� This
numerical example also shows that there are rather sharp transitions� The
formula of Theorem �� that entails the following rough approximation

N��n� p	 �
�

�
n����p�� ���	

precisely accounts for such a sharpness phenomenon�

In the introduction� we have de�ned ��robustness as multiple connectivity
by edge�disjoint paths of length at most �� In fact� Equation ���	 gives access to
explicit expressions for relaxed pairs of type ���� ��	 that are made of two paths�
of lengths ��� ��� It can then be seen that the bottleneck for existence of pairs
���� ��	 with ��� �� at most � is in fact the case ��� �	� Thus� since N��n� p	 
 �
when p

PM �n�� 
 �� the function

PM �n� �	 � �
�
��n���

�
�

is a �cut�o�� point for ��robustness �in a mean value sense	 and an �� ��� �	�
avoiding pair is expected or not depending on whether p�PM tends to � or
to ��

Corollary � Any xed pair in a Gn�p graph is almost surely not ��robust if
p�PM �n� �	
 ��

Proof� When p
PM �n�� 
 �� then the expected number N��n� p	 of the desired

pairs of paths tends to � and so does the probability of existence of at least one
such pair of paths �by Markov�s inequality or by direct reasoning	� Thus� with
probability tending to �� there is no pair of edge�disjoint paths between the two
vertices and these two vertices are� almost certainly� not ��robust� �

� Thresholds in the random graph model

In this section� we examine properties that hold �almost surely� �a�s�	� a term
synonymous to �with probability tending to � as n
��� We provide bounds

��



for the probability �and thus the threshold	 of existence� between pairs of ver�
tices� of two edge�disjoint paths of length at most �� by proving the following


� We give an estimation of the �lower threshold� value PL � PL�n� �	 such
that Gn�p graphs with p � PL do not satisfy the desired property of the
existence� between all pairs of nodes� of two edge�disjoint paths with prob�
ability tending to � as n goes to in�nity�

� We present an �upper threshold� value PU � PU �n� �	 such that almost
every Gn�p graph with p � PU has almost all its �source�destination	 pairs
of vertices connected by at least two edge�disjoint paths of length at most
��

Theorem 
 Dene

PL�n� �	 �

�
log

n�

logn

� �
�

n���
�
� �

Then� for p � PL�n� �	� almost surely� there exists a pair of vertices in the Gn�p
graph that does not have the ��robustness property�

Proof� Use the threshold function for diameter � �see ���� Theorem ��� p� ���	�
and the fact that the property of having diameter at most � is a monotone
increasing property for random graphs� �

Theorem � Dene

PU �n� �	 � �
�
log
�
n� logn

�� �
� n���

�
� �

Then� for p � PU �n� �	� almost surely� almost all pairs of vertices of a Gn�p graph
have the ��robustness property�

Proof� Consider two independent distributions Gn�p� and Gn�p� on the same set
of vertices� Let Ei �i � �� �	 be the events �Gn�pi has diameter � ��

Consider the graph eG obtained when we superimpose an instance G� � Gn�p�
and an instance G�� � Gn�p� and OR them �i�e�� eG has an edge joining u� v i� at

least one of G�� G�� has	� Clearly eG is a Gn�p object with

p � p���� p�	 � p���� p�	 � p�p� � p� � p� � p�p��

In fact� if u� v are joined in G� by a path �� and in G
�� by a path ��� then these

two paths both exist in eG� For p equal to the threshold for constant diameter
� of Gn�p� the number of pairs u� v of eG for which the paths of G�� G�� overlap
in some edge is o�n�	� thus the vast majority of pairs of vertices �there are

n� � o�n�	 of them	 in eG are connected via two edge�disjoint paths of length at
most ��

��



If su�ces to take p � p�� p�� p�p� with p� � p� � p
��
� and p

��
� a threshold

for diameter �� so that

p � �p
��
� �

�
p
��
�

��
�

Precisely� we can then adopt for p the value

PU � ��� logn� log c	
�
� n

�
�
��

where c is adjusted to �� log n �see ���� Corollary ��� p� ���	� so that the diameter
is almost surely �� �

Finally� we show how to transfer results relative to the probability of ro�
bustness of a �xed pair to an all�pairs property� This starts with an easy
combinatorial lemma�

Lemma � For every graph G�V�E	� if vertices u� v are each connected to a
specic vertex x � V via two edge�disjoint paths each of length �� then u� v are
connected in G via two edge�disjoint paths� each of length at most ���

Proof� For simplicity� let the two �edge�disjoint	 paths from u to x be coloured
blue and the two �edge�disjoint	 paths from v to x be coloured red� Take one of
the two red paths and mark the �rst red�blue intersection vertex x� of it �there
always exists such a vertex since at worst one may take x� � x	� Now take the
other red path and mark the �rst red�blue intersection vertex x� �again this
vertex can be x	� There are two cases


Case �� Vertices x�� x� are in di�erent blue paths� Then the lemma is easily
proved by simply following the two di�erent blue parts and then continuing with
the two di�erent red ones� Note that the two blue parts are edge�disjoint� the
two red continuations are also edge�disjoint and there is no red�blue edge�

Case �� Both x�� x� are on the same blue path� Let x� the closest to u on
this blue path� Take the �rst u� v path to be from u �on this blue path	 to x�
and then from x� to v �by the same red path which de�ned x�	 and the second
u� v path be composed by the other red path from v to x�� then the blue part
from x� to x and then the unused other blue path returning to u� Again� there
is obviously no edge intersection�

With respect to length� the worst case is clearly Case �� where the second
constructed path has pieces from three of the four initial paths� leading to length
at most ��� �

Lemma � can be restated as follows
 For every graph G�V�E	 if there exists
a vertex x � V such that for all vertices u� v � V �u� v �� x	 each of u� v connects
to x via two edge�disjoint paths of length at most �� then the diameter of G is
at most �� and each u� v � V is connected via two edge�disjoint paths of length
at most ��� We use this in our last result


Theorem 	 Given Gn�p� if p�n� �	 is such that the probability that two specic
nodes of G are connected via two edge�disjoint paths of length at most � is at
least �� � 	where � � o

�
�
n

�
	� then all pairs of nodes u� v of G are connected via

two edge�disjoint paths of length at most �� with probability at least �� n��

��



Proof� Consider a speci�c vertex x � V and let Y �u� x	 be the indicator random
variable of the event �u is connected to x via two edge�disjoint paths�� Let also
Z�x	 be the sum of Y �u� x	 for all u �� x� Then


Prf�u 
 Z�x	 � n� �g �
X
�u��x

PrfY �u� x	 � �g

� �n� �	PrfY �u� x	 � �g

� �n� �	��� PrfY �u� x	 � �g	�

If PrfY �u� x	 � �g � �� � �where � � o
�
�
n

�
	� then

Prf�u 
 Z�x	 � n� �g � �n� �	�

and all pairs of nodes u� v of G are each connected via two edge�disjoint paths
of length at most �� with probability at least �� n�� �

Theorem � potentially provides an upper bound for the all pairs problem�
by way of a bound � such that for p � �� in an instance of Gn�p� any �xed
�or random	 pair has the ��robustness property with probability tending to
� as n tends to in�nity� The derivation of such a bound could conceivably
be approached by a determination of the Second Moment of the ��robustness
distribution� a computation that seems to represent a major technical di�culty�

Conclusions� We have estimated here tightly and also asymptotically the
mean number of ways to get at least two edge�disjoint paths between any two
speci�c nodes of Gn�p graphs� We pose as an open problem the calculation
of the second moment �this would provide bounds for the all�pairs problem	�
Another question of interest is the extension of the analysis to the existence of
k simultaneously edge�disjoint paths�
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