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BASIC ANALYTIC COMBINATORICS
OF DIRECTED LATTICE PATHS
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ABSTRACT. This paper develops a unified enumerative and asymptotic the-
ory of directed 2-dimensional lattice paths in half-planes and quarter-planes.
The lattice paths are specified by a finite set of rules that are both time and
space homogeneous, and have a privileged direction of increase. (They are
then essentially 1-dimensional objects.) The theory relies on a specific “kernel
method” that provides an important decomposition of the algebraic generating
functions involved, as well as on a generic study of singularities of an associ-
ated algebraic curve. Consequences are precise computable estimates for the
number of lattice paths of a given length under various constraints (bridges,
excursions, meanders) as well as a characterization of the limit laws associated
to several basic parameters of paths.

To Maurice Nivat, with many thanks for so many things!

INTRODUCTION

By a lattice path is meant in all generality a polygonal line of the discrete Carte-
sian plane Z x Z. The lattice paths to be considered here are specified by a finite set
of simple rules: typically, from each point, there is a finite set of allowable moves
that are both “time independent” and “space independent”. Throughout this study,
we also assume the existence of some privileged direction of increase (the horizon-
tal axis, say), so that paths become essentially similar to one-dimensional objects,
namely, walks on the line. Such directed lattice paths intervene in many areas of
mathematics and computer science. They play a role, for instance, in probability
theory (sums of discrete random variables), statistics (non-parametric tests), formal
language theory, random generation of planar diagrams (animals and polyominoes),
the analysis of dynamic data structures, and queueing theory models.

In probability theory, lattice paths describe the evolution of sums of independent
discrete random variables, for instance, the succession of your gains if a die is
repeatedly cast and your capital is increased by j when face number j shows up.
A typical question in this context is the following: Determine the probability of a
“lucky game” in the sense that, at any time t, the partial gain is at least as large as
the “mean gain”, %t. Such questions are indeed addressed by classical probability
theory, with Brownian motion entering the game. However, by design, stochastic
processes only provide a first-order asymptotic theory, while some purely discrete
phenomena remain out of reach of this theory.
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Statistics, though not our primary motivation in this paper, is historically an
other important source of problems regarding lattice paths. We may mention
the Kolmogorov-Smirnov test in non-parametric statistics that aims at discern-
ing whether two random variates have the same distribution (see, e.g., [47]). As a
matter of fact, the early books on lattice path combinatorics and lattice path statis-
tics by Mohanty and Narayana [57, 59] specifically draw some of their motivations
from such questions.

In discrete mathematics, all sorts of constrained lattice paths serve to describe
apparently complex objects. Two-sorted permutations are for instance equivalent to
paths made of horizontal and vertical steps that connect the origin to a point lying
on the main diagonal—such facts are directly relevant to the analysis of the merge-
sort and shellsort algorithms [48, 69, 74]. Dyck paths that are closely related to
diagonal paths describe traversal sequences of general and binary trees; they belong
to what Riordan has named the “Catalan domain”, that is, the orbit of structures
counted by the Catalan numbers, -4+ (*"). The wealth of properties surround-
ing Dyck paths can be perceived when examining either Gould’s monograph [41]
that lists 243 references or from Exercise 6.19 in Stanley’s book [72] whose state-
ment alone spans more than ten full pages. More generally, trees constrained by
degrees—e.g., term trees in free magmas, of interest in formal semantics [60]—are
known to be bijectively equivalent to Lukasiewicz words, themselves isomorphic to
lattice paths of a special form; Lothaire’s book offers a good description within the
framework of combinatorics on words [52, Chap. 11].

Lattice paths also intervene in the analysis of dynamically evolving structures,
and, as such, they surface in the continuous as well as discrete parts of the the-
ory. On the discrete side, we have Flajolet’s combinatorial theory of continued
fractions [29] motivated by Frangon’s theory of “histories” of dynamic data struc-
tures [32, 36] or Knuth’s dynamic storage allocation model (see [46, 2.2.2-13] for
the statement of the problem and [30, 75] for solutions). As regards continuous as-
pects, the Karlin-McGregor theory of birth-death processes (of which [33, 58] offer
lattice-path perspectives), itself closely related to various queueing theory models,
involves lattice paths that describe an interesting collection of events (the embed-
ded Markov chain). The recent book by Fayolle et al. on random walks in the
quarter-plane [26] is historically motivated by such queueing theory questions [25].

Word representations of lattice paths also provide many examples of context-
free languages. This side of the coin is closely related to encodings of trees by
words, so that Dyck paths (that are associated to general trees and binary trees)
and Motzkin paths (that encode unary-binary trees) play an especially important
role. The theory of context-free languages and pushdown automata then combines
nicely with the Chomsky-Schiitzenberger theorems [10, 73], to the effect that many
types of paths can be a priori recognized as admitting generating functions that are
algebraic. Examples are provided by Labelle and Yeh [49, 50], Merlini et al. [56],
and Duchon [22]. (In return, enumerative studies related to context-free languages
can sometimes provide structural information on generation mechanisms and formal
languages as is evidenced by the analytic theory of inherent ambiguity of [31].)

Finally, because of the rich combinatorics surrounding them, lattice paths inter-
vene at many places in the random generation of structured objects. The problem
there is to draw a combinatorial object from some class C, and do so uniformly
at random amongst all objects of size n in C. Strong decomposability properties
of paths usually make random generation possible in low polynomial time (usually
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with a complexity between O(n) and O(n?)). Consequently, any easily computable
bijection between a class C and a class of simple enough lattice paths induces a ran-
dom generation algorithm for C. Known examples include the random generation of
two dimensional diagrams like polyominoes and animals. For instance, the Delest-
Viennot methodology of [18] allows us to generate parallelogram polyominoes in
linear time; the rejection methods of the “Florence School” [8] make it possible to
generate various types of directed lattice animals in a surprisingly efficient manner.
The design of such algorithms is clearly dependent on the basic combinatorics of
lattice paths while the corresponding performance analyses rely on fine probabilis-
tic estimates of characteristic properties of paths; see Louchard’s contribution [53]
for a neat example and the paper [4] for algebraic techniques related to the present
paper.

In this introduction, we cannot do more than scratch the surface of such rich
combinatorial, probabilistic, and algorithmic aspects of lattice paths. Accordingly
we cut short our discussion of motivations at this point.

Scope of the paper. This paper assembles combinatorics of words and paths,
some algebra of formal power series, and complex analysis. Under this angle, we
believe the enterprise to be original. Quite a lot is otherwise known regarding prob-
abilistic properties of paths, as these represent sums of random variables. Accord-
ingly, our treatment can be, to some extent, regarded as a parallel of probabilistic-
analytic methods in the realm of enumerative combinatorics.

In Section 2, we show that the counting generating functions of paths of various
sorts are invariably algebraic functions. This algebraic character is predictable since
the word encodings of the object considered are clearly recognizable by determinis-
tic pushdown automata, hence are deterministic context-free languages. However,
for directed lattice paths, we demonstrate that a strong algebraic decomposability
prevails that is obtained by a specific technique, the “kernel method” (historical
remarks are given at the end of Section 2.2) and is not clearly visible on combinato-
rial and grammatical descriptions. Our purpose in this paper is to arrive eventually
at a complete characterization of the singular structure of intervening generation
functions (Section 3)—by virtue of the method of singularity analysis, this leads to
very precise asymptotic information on the counting quantities involved. At this
level also, the decomposability granted by the kernel method is central as it enables
us to determine the location and nature of dominant singularities. Then, once the
singular structure of counting generating functions has been extracted, tight esti-
mates on probability distributions of parameters follow easily: see Section 4 for a
sample of what can be done. Section 5 sketches extensions to the enumeration of
certain types of planar objects provided they satisfy a strong directedness condition.

1. LATTICE PATHS AND GENERATING FUNCTIONS

This section presents the varieties of lattice paths to be studied as well as their
companion generating functions.

Definition 1. Fiz a finite set of vectors of Zx Z, S = {(a1,b1),... ,(@m,bm)}. A
lattice path or walk relative to S is a sequence v = (v1,... ,vy) such that each v;
is in S. The geometric realization of a lattice path v= (v1,... ,v,) is the sequence
of points (Po, P, ... ,P,) such that Py = (0,0) and Pj_1P; = v;. The quantity n
is referred to as the size of the path.
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FiGure 1. The four types of paths: walks, bridges, meanders,
and excursions and the corresponding generating functions.

In the sequel, we shall identify a lattice path with the polygonal line admitting
Py,...,P, as vertices. The elements of S are called steps or jumps, and we also
refer to the vectors Pj_; P; = v; as the steps of a particular path.

Various constraints will be imposed on paths. In particular we restrict attention
throughout this paper to directed paths defined by the fact that if (a, b) lies in S, then
necessarily one should have a > 0. In other words, a step always entails progress
along the horizontal axis and the geometric realization of the path naturally lives
in the half plane Z>o x Z. (This constraint rules out paths like the ones occurring
in Pélya’s “drunkard problem” as described in the attractive booklet of Doyle and
Snell [19]; it also implies that the paths studied can be treated essentially as 1-
dimensional objects.) The following conditionings are to be considered (Figure 1).

Definition 2. A bridge is a path whose end-point P,, lies on the z-axis. A meander
is a path that lies in the quarter plane Z>o X Z>o. An excursion is a path that is at
the same time a meander and a bridge; it thus connects the origin to a point lying
on the x-azis and involves no point with negative y—coordinate.

A family of paths is said to be simple if each allowed step in S (Definition 1) is of
the form (1,b) with b € Z. In this case, we also abbreviate S as S = {by,... b }-

In the simple case the size of a path coincides with its span along the horizontal
direction, that is, its length. The terminology of bridges, meanders, and excursions
is chosen to be consistent with the standard one adopted in Brownian motion
theory; see, e.g., [62].

The main objective of this paper is to enumerate exactly as well as asymptotically
paths, bridges, and meanders, this with special attention to simple families. Once
the set of steps is fixed, we let W and B denote the set of paths and bridges



ANALYTIC COMBINATORICS OF LATTICE PATHS 5

respectively (VW being reminiscent of “walk”); we denote by M and & the set of
meanders and excursions.

Given a class C of paths, we let C,, denote the subclass of paths that have size n,
and, whenever appropriate, Cp, ;; C Cp, those that have final vertical abscissa (also
known as “final altitude”) equal to k. With the convention of using standard
fonts to denote cardinalities of the corresponding sets (themselves in calligraphic
style), Cy, = card(C,) and C,, = card(Cp, ), the corresponding (ordinary) generating
functions (GF’s) are then

C(z):= Zan”, C(z,u) = Zkaukz”.
n n,k

This paper is entirely devoted to characterizing these generating functions: they
are either rational functions (W) or algebraic functions (B, E, M). As we shall see,
a strong algebraic decomposition prevails which, as opposed to other approaches,
renders the calculation of the GF’s effective. Even more importantly, the decom-
posability of GF’s makes it possible to extract their singular structure, and in turn
solve the corresponding asymptotic enumeration problems in a wholly satisfactory
fashion.

Weighted paths. For several applications, it is useful to associate weights to
single steps. In this case, the set of steps S is coupled with a system of weights
IO = {wi,...,wy}, with w; > 0 the weight associated to (aj,b;) € S; the weight
of a path is then defined as the product of the weights of its individual steps. Then
the quantity C,,, still referred to as number of paths (of size n), represents the total
weight of all paths of size n. Such weighted paths cover several situations of interest;:
(¢) combinatorial paths in the standard sense above when each w; = 1; (i) paths
with coloured steps, e.g., w; = 2 means that the corresponding step (a;,b;) has two
possible coloured incarnations (say blue and yellow); (ii7) Y w; = 1 corresponds
to a probabilistic model of paths where, at each stage, step (a;,b;) is chosen with
probability w;.

2. ALGEBRAIC STRUCTURES AND THE KERNEL METHOD

In this section, we characterize the generating functions of the four types of
directed paths (unconstrained, bridges, meanders, and excursions). For ease of
exposition, we restrict attention to simple families of paths till Section 5, where
we briefly discuss the more general directed models. It will be seen that a specific
algebraic curve, the “characteristic curve” plays a central role. In this section, a
modicum of analysis is introduced for convenience, but it is limited to the vicinity
of z = 0, and consequently, it is largely equivalent to formal series manipulations!.

Definition 3. LetS = {b1,... b} be a simple set of jumps, with Il = {wq,... ,w;}
the corresponding system of weights (w; = 1 in the unweighted case). The character-
istic polynomial of S is defined as the polynomial in u,u™' (a Laurent polynomial)

m
P(u) := Z w; ub.
j=1

IFollowing a remark by a referee, we note that analyticity considerations in this section could
be logically dispensed with; see Gessel’s paper [38] for a proper framework. However, the authors’
feeling is that purely algebraic proofs, though feasible, tend to be less transparent. More impor-
tantly, analyticity considerations developed here serve as a useful preparation for our “nonlocal”
treatment of singularities in the next section.
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FicURE 2.  Fragments of the sublattices accessible from the
origin by the Dyck walk (§ = {—1,+1}) and Duchon’s clubs
(8§ = —=2,43}). The periods are 2 and 5 respectively.

Let ¢ = —min; b; and d = max; b; be the two extreme vertical amplitudes of any
jump, and assume throughout c,d > 0. The characteristic curve of the lattice paths
determined by S is the plane algebraic curve defined by the equation

1) 1= 2P(u) =0, o equivalently u®—z(u’P(u)) = 0.

The quantity K(z,u) := u® — zu®P(u) is also referred to as the kernel and Equa-
tion (1) as the kernel equation..

As we shall see the characteristic equation plays a central role, the second form
being the entire version (that is, a form without negative powers).

We also need to introduce technical conditions on periodicities. In a coin-tossing
game (S = {—1,+1}) for instance, a bridge or an excursion only exists for even
lengths; consequently, what is observed of a random path at time n depends on the
residue class of n modulo 2 (Figure 2).

Definition 4. A Laurent series h(z) = >_,~ _, hn2" is said to admit period p if
there exists a Laurent series H and an integer b such that

(2) h(z) = 2"H(2");

the largest p such that a decomposition (2) holds is called the period of h and is
denoted by per(h). The series h is called aperiodic if per(h) = 1.

A simple walk defined by the set of jumps S is said have period p if the charac-
teristic polynomial P(u) has period p.

A simple walk is said to be reduced if the ged of the jumps is equal to 1.

In what follows, we systematically restrict attention to reduced walks since, up
to a linear change of abscissa, any walk can be reduced. For instance, the walks
corresponding to i = {—3, +3} are transformed (upon shrinking the vertical axis by
a factor of 1) into the reduced form S = {—1,+1}. (Aperiodic walks are from their
definition automatically reduced.) Periodic walks live on sublattices: the walks
associated to S = {—1,+1} (Dyck walks) and 7 = {—1,0, +1} (Motzkin walks) are
naturally reduced, but Dyck walks are periodic with p = 2 (since uP(u) = 1+ u?),
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FIGURE 3. Graphs associated to the set of jumps & =

{-2,-1,0,1,2,3}, with characteristic polynomial P(u) = u~2 +
w4+ 1+u+u?+u® Top: the graphs of P(u) and 1/P(u) for
real u. Bottom: the three real branches of the characteristic curve,
one large of order z~'/3, and two small of order 2"/ (two complex
branches of order e=2¥"/32~1/3 are not shown).

while Motzkin walks are aperiodic; “Duchon’s clubs” studied below and defined by
S = {2, +3} have period p = 5 (since u>P(u) = 1 + u%), etc.
Notice that, if we write

(3) P(u) = ijubj, w; #0, b; € Z,
j=1

the period of P (and of the set of jumps S) is
p=per(P) =ged (b2 —b1,..., by —b1).

Also, by the strong form of the triangle inequality, for an aperiodic P(u), the strict
inequality holds in

(4) |P(u)| < P(|u]) for all u € C\ Rsog.
It proves convenient to rewrite

d
P(u) = Z preu®.

k=—c
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Examination of the asymptotic regimes consistent with the characteristic equation
near z = 0 shows that the equation can only be satisfied if one of the two relations,

(5) pazu® ~ 1 or p_czu “~1 (z = 0),

is satisfied. The characteristic equation being of degree ¢+ d in u is known to have
generically ¢ + d roots; these constitute the branches of a single algebraic curve
defined by (1) and called the characteristic curve. Then, as suggested by (5), one
expects, in the complex domain (for z near 0), ¢ “small branches” that we write as
u1,- .. ,u. and d “large branches” vy = tey1,- .- ,Uq = Uctq satistying (Figure 3)

(6) U,j(Z) ~ eQi(j_l)ﬂ/c(p_c)l/czl/c, ’Uk(Z) ~ 62i(1—k)ﬂ/d(pd)—l/dz—l/d_

For determinacy, one restricts attention to the complex plane slit along the negative
real axis, which allows us to talk freely of the individual branches in the sequel.
The informal discussion summarized by (6) is vindicated by the classical theory
of Newton-Puiseux expansions—the fundamental result in the elementary theory
of algebraic curves that determines constructively all the possible behaviours of
solutions of polynomial equations. For an exposition, we refer to one of the many
excellent books on the basic theory of algebraic curves, e.g., [1, 45]. Precisely, the
general theory teaches us that the small branches are conjugate of each other at 0,
and similarly for the large branches at co. This means that there exist functions A
and B analytic at 0 and nonzero there, such that, in a neighbourhood of 0, one has

uj(z) = wimlz/e A(wi=121/¢) =y (2D, w = e2in/e

vp(z) = w'TRzTVAB(wh1 /) = g (e2ikDTy) = ein/d

(7)

In summary, the u; and vy organize themselves into two “cycles” of ¢ and d elements
respectively; for analytic details, we refer to Hille’s crisp presentation based on
monodromy and analytic continuation in [44].

The branch u; defined near 0 by (6) is real positive and is called the principal
(small) branch. The graph of branches is obtained by interchanging the axes in
the graph of 1/P(u), with u; appearing as the real positive branch near the origin;
see Figure 3 for an example. We shall prove in Section 3 that in a proper sense u;
“dominates” all the other small branches.

2.1. Walks and bridges. We start with the easy case of unconstrained walks
and bridges. This already makes use of the characteristic curve and some of its
branches.

Theorem 1. The bivariate generating function (BGF) of paths (with z marking
size and u marking final altitude) relative to a simple set of steps S with character-
istic polynomial P(u) is a rational function. It is given by

1
The GF of bridges is an algebraic function given by
c UI(Z) d
B = J = ZzZ— 1 B
) (2) =230 2255 = e log (w(2) -+ ue(2)
j=1
where the expressions involve all the small branches w1, ... ,u. of the characteristic

curve (1). Generally, the GF Wy, of paths terminating at altitude k is, for —oo <
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k<ec,

Vi z d
(10) W’C(Z):ZZW e ZUJ ;

and for —d < k < 400,

d v%(2) 2 d
(11) Wk'(z) = _ZZ iy ]Z)]H_ E d_ ZUJ )

j=1 "
where v1,. .. ,vq are the large branches.

(For Wy, the second form is to be taken in the limit sense k — 0.)

Proof. Set wy(u) = [2"]W (z,u), the Laurent polynomial that describes the possible
altitudes and the number of ways to reach them in n steps. We have wo(z) = 1,
wi(z) = P(u), and wypy1(2) = P(u)wy(2), so that w,(z) = P(u)” for all n. The
determination of W (z,u) in (8) follows from

n.,n __ 1

n>0

where the sum converges and represents an analytic function of both arguments for
|z| < 1/P(|u]). Observe that the resulting series is entire in z but of the Laurent
type in u (it involves arbitrary negative powers of ).

For positive u, the radius of convergence of W (z,u) viewed as a function of z
is exactly 1/P(u). Also, by dominance of coefficients (one has B,, < P(1)"), the
radius of convergence of B ( ) as a function of z is at least 1/P(1). Consider now
|z] < r, where r := £P(1)~!. Then, since 1/P(u) is continuous and unimodal for
u € (0,400) (where P”( ) > 0, so that P is convex) and 1/P(0) = 1/P(oc0) = 0,
there exists an interval (a, 8) such that for & < uw < 3, one has 1/P(u) > r. More
generally, by positivity of the coefficients, the function W (z, u) is seen to be analytic
in the product domain

(z,u) € {z | 2] <r} x{u] o <|u| <p}.
Thus, by Cauchy’s formula applied to the function W (z,u) (viewed now as a func-
tion of u analytic in a crown), one has?

1
B(z) = [u’]W (z,u) = %/ W (2, u) %‘
lul=(a+8)/2

Take z small enough, so that all the large branches that escape to infinity lie
outside of |u| < (a + ()/2 and the small branches are all distinct. Then, only the
small branches remain inside, and, since there are only simple poles, one has

1 1
12 R —_— | =
12) 25 <u<1 = zP(u») w0 ()
The integration contour is shrunk to 0, which is legitimate since W (z,u) remains

O(1), and residues are taken into account. The residue theorem then gives B(z) as
a sum of residues of the form (12) over all small branches. The formula simplifies

2We make use of the conventional notation for coefficients of entire and Laurent series:

[2™] >, fa2"™ := fn.
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to (9) since differentiation of the characteristic equation shows that P'(u)™! =
—z2u' for any branch wu.

The same procedure is applicable to

= [t 1 / du

Wk:(z) = [U ]W(Z,U) 2% lul=(at6)/2 W(Z)u) uk+1”

The integration contour can be shrunk to zero provided the integrand (which is of

order u¢~*~1) remains bounded as u — 0, which necessitates k < (c—1). The result

of (10) follows again from a residue calculation involving small branches. (The proof

shows the formula to be valid in a small enough neighbourhood of the origin. The

identities are then a posteriori valid as identities between formal (fractional) power
series.)

When k > —d, which covers the case (11) of an arbitrary positive k, the residue
calculation is completed by extending the contour to a large circle at oco; in this
case, the large branches contribute.

The algebraic character of B(z) and the W (z) finally results from the well-known
fact that algebraic functions are closed under sums, products, and multiplicative
inverses. (|

The quantity B(z) = Wy(z) is equivalently given as the diagonal of a bivariate
rational function,

1
B — n,cn n
@ =5 (e )
n
and as such it must be algebraic: see Pélya’s paper [63] of 1921 and [37] for devel-
opments regarding diagonals of rational functions.

ExXAMPLE 1.  Central binomial and trinomial numbers. These are perhaps the
most famous examples, associated to the sets S = {—1,+1} and 7 = {-1,0,+1}.
The corresponding polynomials are PS(u) = v~ +u and P7 (u) =u~'+ 14 u. In
this case, the characteristic curve is of degree 2 and there is only one small branch,
namely

S 1—+1—422 T 1—2z—+1-2z—322

uf() = L2, () = =
The algebraic generating functions of bridges are then
1
BS(2) = —=———==1+22"462"+202°+702"+2522""+-..
(2) i =E
BT(2) = —m—=142+322 47224192 +512°+-.-,

V1—2z—322
the coefficients being® EIS A000984 and EIS A002426

2"BS(z) = ["](1 + )" = <2:> "B (2) = [1"](1 + ¢ + £)".

The names of central binomial and trinomial numbers are suggested by the usual
expansions of (1 + t2)" and (1 +t + )™

3References to EIS point to Sloane’s Encyclopedia of Integer Sequences [70], of which a version
also exists in print [71].
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1 1
1 + ¢ 1 +1t  +t2
1 + 2t + ¢ 1 +2t  +3t2 4265 ¢t
1 + 3t + 3t* + 5 1 +3t +6t2 +7t3 46t +3t° +¢°

1+ 4t* + 6t* + 4t° + ¢° 1 +4t +106% +16t> +19t* +16¢° 10t° +4¢” +¢°
It is notable that these cases were already considered by Euler [24] who also gave
linear recurrences (with polynomial coefficients) satisfied by B . O

2.2. Meanders and excursions. In this section, we consider meanders, that is
paths that never go below the horizontal axis. The meanders whose final altitude
is 0 are called excursions, in accordance with Definition 2, and they turn out to be
the objects with the richest combinatorial properties.

We continue with a simple system of paths defined by the set of jumps S, pos-
sibly endowed with weights. The new generating functions will again involve the
characteristic curve together with its small and large branches. Let now Fj, ; be
the number of meanders of size (i.e., length) n that end at altitude k. The corre-
sponding BGF is

F(z,u):= ZFn,kukz”,
n,k

which is now an entire series in both z and u. By the combinatorial origin of the
problem, F(z,u) is bivariate analytic for |u| < 1 and |z| < 1/P(1). We also make
use of the polynomials f,,(u) that describe the possible positions after n steps and
write

(13) F(z,u) =Y fa(w)z" =) Fi(2)u.
n>0 k>0

Combinatorially, the natural decomposition is the one based on the last step added.
For the f,,(u), “adding a slice” is translated by the recurrence,

(14) folw =1, fagi(u) = P(u) fu(w) — {u=} P(u) fu (u).

There, the notation {«<"}g(u) means the sum of all the monomials with exponent
less than r that appear in the Laurent series g(u):

+o0 r—1
(15) W<y | Y gl | =) giwd

j=—a j=—a
Then, multiplying the terms of the recurrence by z™ and summing yields
(16) F(z,u) = 1+ 2P(u)F(2,u) — 2{u~"} (P(u) F (2, u)),

where {u<C} is to be understood as applied to the u-expansion of F(z,u) in (13).
The relation (16) is the fundamental functional equation defining meanders. It
reads as follows: “A path is either the empty path or it consists of a step (zP(u)
describes the possibilities) added to a path except that the steps that would take
the walk below level 0 (the operator {u<°}) are to be taken out”. Now, P involves
only a finite number of negative powers, so that

(17) F(z,u)(1—-2P(u)) =1-— zz_:rk(u)Fk(z),
k=0
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for some Laurent polynomials 7,(u) that are immediately computable from P
via (16):

—k—1
(18) ri(u) == {u<"} (P(u)u*) = Y puith.

j=—c
Theorem 2. For a simple set of steps, the BGF of meanders (with z marking size
and u marking final altitude) relative to a simple set of path S is algebraic. It is
given in terms of the small and large branches of the characteristic curve of S by

d

[T (v —u;(2)) 1 1
j _ 11 :

u(l—zP(w))  paz u—v(2))

(19) F(z,u) =
=1
In particular the GF of excursions, E(z) = F(z,0), satisfies

_1\e—1 _€ _1yd-1 4
(20) B = S0 [ = S =

P—cz paz - ve(2)

j=1
Proof. The point is that the fundamental equation in its form (17) looks grossly
underdetermined as it involves (¢ + 1) unknown functions; to wit, the bivariate
F(z,u) and the univariate {Fj(z)}{_f. The main idea of a method known as the
“kernel method’ (see also historical notes below) consists in binding z and u in such
a way that the left hand side vanishes.

Indeed, substitute in (17) any small branch of the characteristic equation. Take
|z] < #1) and restrict z to a small neighbourhood of the origin in such a way that:
(¢) all the small branches are distinct; (i¢) all the small branches satisfy |u;(z)| < 1.
Then the substitution is analytically legitimate and, taking all small branches into

account, it provides a system of ¢ equations in the unknown functions Fy, ... , Fe_1:
( c—1
ui — 2z Z uirg(u)Fy = 0
k=0
(21) :
c—1
us — z Zugrk(uc)Fk = 0.
k=0

This system is nonsingular for the reason that its determinant is a variant of the
Vandermonde determinant and the small branches are clearly all distinct. This ob-
servation is enough to justify that each of the F}, is an algebraic function expressible
rationally in terms of the algebraic branches u;.

Instead of pursuing in the direction of determinantal calculations, we make use
here of a cute observation of Mireille Bousquet-Mélou (introduced in [13] and em-
ployed in the parallel paper [4]). The quantity

(22) N(z,u):=u’—z i ulry (u) Fi
k=0

is by (21) a polynomial in u whose roots are precisely all the u;. The leading
monomial of this polynomial is u°, so that the polynomial factorizes as

C
(23) N(z,u) = H(u —uj(2)).

j=1
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Then, the constant term is at the same time the product (—1)u; ---u. and the
quantity —zp_.Fp, as is apparent from the definition (22) and the form (18) of the
coefficients. The form of Fy follows.

Finally, the result for the BGF F(z,u) derives from (17) made entire,

N(z,u)
ut(1 — 2P (u))’
and from the factorization (23). O

F(z,u) =

An immediate corollary of Theorems 1 and 2 is the generating function of all
paths and meanders irrespective of their final altitude.

Corollary 1. The generating functions of all paths and all meanders are
W(z)=W(1) = —pm>
— c d
M(z) = F(z,1) = ﬁp(l)njzl(l—uj(z)):—ﬁ Hz:1 #@(z)

A somewhat deeper consequence is a direct relation between the GF’s of excur-
sions and bridges that obtains by comparing Equations (9) and (20).

Corollary 2. The generating functions of bridges (B) and excursions (E) are re-
lated by

B(z) = 1+zd%(1ogE(z)):1+zg((Zz)),
E(z) = exp </OA(B(t)—1)%>.

In the same vein, consider paths whose intermediate steps may be negative, but
with a final altitude that is > 0. Their BGF is

Wt (z,u) = Z Wi (2)u®.
k=0

Then, comparison of the forms involving large branches for W, and F(z,u) and a
trite calculation shows that

d
WH(z,u) = 14z (log F(z,u))

Flzu) = exp </OA(W+(t,u)—1) %)

Finally, with F(z) being the generating function of meanders that end at alti-
tude k, one has F,(z) = [uF]F(z,u). Since F(z,u) is a rational function of u with a
simple product expression in terms of the large branches, its expansion with respect
to u is easily accessible via a partial fraction decomposition, and one finds:

Corollary 3. The generating function of meanders terminating at altitude k is

d
1 1
Fi(z) = — Y &uk T, & = .

Some of these relations admit of combinatorial interpretations succinctly dis-
cussed in Section 4.1.
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EXAMPLE 2. Ballot problem, Dyck paths, and Motzkin paths. These are the most
famous problems in the area, and they are closely related to Example 1. The ballot
problem asks for the probability, in a two candidate election between A and B that
eventually results in a tie, of A dominating B throughout the poll. Recording the
difference between the scores of A and B as time evolves, we model the problem as
the counting of excursions associated with S = {—1,+1}. The characteristic curve
is the one examined in Example 1 in connection with central binomial coefficients
and the GF of excursions is

1—+v1—422 1 2
Es(z) S e Z " 2™
222 n+1l\n

n>0

where the coefficients =7 (°") are the Catalan numbers (EIS A000108). For

T ={-1,0,+1}, one finds similarly

1—2z—vV1-2z—322 n
BT = L2V -y En
n>0
where the coefficients are the Motzkin numbers (EIS A001006). O

ExamMpLE 3. Lukasiewicz paths and tree codes. Consider generally a finite set (2
that contains —1 as single negative value. The corresponding paths are known as
Lukasiewicz paths. Set ¢(u) := uP(u), which is a polynomial. There is only one
small branch satisfying

(24) uy(2) = 2¢(u1(2)),
and the GF of excursions is Zp{l u1(z). Lukasiewicz paths of type Q encode trees
whose node degrees are constrained to lie in 1 4+ , this by virtue of a well-known
correspondence [52, Chap. 11]. (Traverse the tree in preorder and output a step
of d — 1 when a node of outdegree d is encountered.) In this way, it is seen that
Equation (24) gives the GF of trees counted according to the number of their
nodes, an otherwise classical result [55]. By Lagrange inversion, the number of

trees comprised of n nodes is

T, = = "o (w)",

where ¢ can be directly interpreted as the characteristic polynomial of the allowed
node (out)degrees. O

ExamvmPLE 4. Walks with steps in {—2,—1,0,+1,+2}. This is our first example
involving inherently more than one branch. The characteristic equation is

w? —z(1+u+u? +ud +ut) =0.
The two small branches are conjugate and given by
u(z) = +2Y2 414 328/2 422 4 28L55/2 4 3,0 4
us(z) = =22+ Lr— 52282 422 - 252 4 3,0 4.
Then, by (20), the first few terms of E(z) are easily determined as

o (z) ua(z)

E(z) = =14 2+322492° + 322 +1202° + 47325 + 192527 + - .
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Similarly, for meanders, one has
(1 —ui(2))(1 — uz(2))
M =
(2) 1-52
It is then a natural question to ask for an equation satisfied directly by E(z)

or F(z,1). Regarding excursions, an equation may be obtained by elimination of
u1, us from the system

=14 32+ 122% 4+ 512% 4+ 2262* + 10252° + - - - .

2E+uus =0, uf —z(1+ud4+ud+u])=0, ud—z(14uul+ud+us)=0.
Either resultants or Grobner bases do the job. For instance, resultants give a
polynomial equation of degree 12 satisfied by E(z). The polynomial factorizes (this
is expected as we did not impose conditions like u; # w2 in the process). Eventually,
it is found that E(z) satisfies a polynomial equation of degree 4:

(25) 2yt =221+ 2+ 22+ 2)y  —(1+2)y+1=0.

We shall examine shortly a much better way to perform such computations. d

EXAMPLE 5.  Duchon’s clubs and underdiagonal paths. The following problem*
was considered by Duchon [22] (under a different formulation): A club opens in the
evening and closes in the morning. People arrive by pairs and leave in threesomes.
What is the possible number of scenarios from dusk to dawn as seen from the club’s
entry? For instance, an event may be +2 (two enter), +2 (two more enter), —3
(three leave), +2 (two, again arrive), —3 (and the club closes). Naturally the
population inside the club is never negative and a business night starts with the
empty club and ends with the empty club. The generalized problem then calls
for the number of excursions with step set {—c,d} (where Duchon’s case is S =
{—3, +2} or, equivalently by time reversal, S = {—2, +3}). We assume here without
loss of generality that ¢ and d are coprime integers, so that the system of paths is
reduced.

The characteristic polynomial is P(u) = u~¢ 4+ u? and the kernel equation is
equivalent to

u=2z(14+u’) with e=c+d.

Thus, the period is e = ¢+ d and the horizontal axis is only touched at places that
are a multiple of e. Set z = t¢, where t is a local uniformizing parameter at 0.
Then, the quantity y(t) := uy(¢°) satisfies the equation y = (1 + y¢)'/, which is
Lagrangean. By Lagrange inversion [42], one finds

20 0= 2 (05 e)

n>1

(By convention, (‘;) = 0 if b is nonintegral.) Let w be a primitive cth root of unity;
then all the branches admit an expansion similar to y(z). Indeed, by conjugacy,
one has
ujr (1) = y(wt) = >y,
n>1
4 After this paper had been submitted, Christian Krattenthaler pointed us to Ref. [68] by
Masako Sato, dating from 1989. In that paper, Sato derives directly our equation (27) by matrix

generating function methods and provides valuable additional results regarding underdiagonal
paths in a strip.
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where y,, = [t"]y(t) is given by (26). Then, the number of excursions is a convolu-
tion:

(—1)0—1En = Z Yy Uns - - -yncw°”1+1”2+"'+(c—1)nc.
ni+-+ne.=c(n+1)

It can be checked that E,, is automatically zero unless n = 0 (mod e) (see also
the discussion on periodicities in Section 3.3 below). In summary, taking w any
primitive cth root of unity, and setting n; = 1 4 ev;, n = ev, we find

(27)
B,= Y 1 ((1+V1e)/c>'_ 1 <(1+I/ce)/c>woyl+1yz+(c1)’/8.

1+ e v 1 Vee v,
Vi ve=cv + 1 1 + c c

In particular, for ¢ = 1, no summation is needed and

1 1+ ne
1+ ne n
gives the number of excursions of length n and type {—1,e — 1}, which is also the

number of e-ary trees having n internal nodes (Example 3). If ¢ = 2 the formula (27)
yields a single convolution. For & = {—2, 3}, the result is

S () b (),

v=0

to be compared to

n

1 on + 1\ [on + 2
2 Es, = o — . . )
(28) ° 25n+z+l<n—z>< ) )

i=0

which Duchon obtained from quite specific series manipulations. In general if the
jump in the negative direction is —¢, formula (27) is a (¢ — 1)-fold convolution of
binomial coefficients.

Duchon’s clubs can also be interpreted as underdiagonal paths. Consider paths
in the Z >o x Z > lattice whose allowed steps are of type either Fast (horizontal) or
North (vertical), with a straight line barrier A. Tt is assumed that A passes through
the origin and has a rational slope, % < 1. The number of ways N, , of reaching
point (m,n) by North and East steps then satisfies a recurrence of the same type
as Pascal’s triangle but with boundary conditions. For instance, the case of slope 1
gives rise to the original formulation [54] of the ballot problem (Example 2).

If one measures at each step of a path the vertical distance to A, then, this
distance can only evolve by +2 for a horizontal step and —1 for a vertical step.
Thus, up to rescaling, such an underdiagonal path is equivalent to a Duchon path
of type {—¢,+p}. The numbers N, , are then amenable to the analysis of the
paper since their determination is equivalent to counting meanders and excursions.
For instance, here is a table of values for slope %:
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377 | 1144
136 | 377 | 767
23 | 66 | 136 | 241 | 390
9 (23|43 | 70 | 105 | 149
2159|1420 27 35 44
11234 5 6 7 8 9
11111 |1]1 1 1 1 1

The sequence of numbers in this array that correspond to the number of ways of
touching the boundary line is (EIS A060941)

1, 2, 23, 377, 7229, 151491, 3361598, 77635093, 1846620581, ---

which precisely coincides with the sequence of Duchon numbers, {Es, },>0, in (28).

Related enumerative results have been obtained by Durand [23] in the context
of the “klam” recurrence that arises in complexity theory. Mohanty [57, p. 22] even
quotes results of Takacs relative to underdiagonal paths under a line of arbitrary
slope. a

As the last example shows, the decomposability afforded by the kernel method
provides a grasp on the structural complexity of summatory formula expressing the
number of walks, excursions, etc. Following Comtet [15, p. 216], we observe that the
“rank” (defined as the minimal number of summations) of the excursion formula
in the general case is at most ¢(q¢ — 1) — 1 if P(u) comprises ¢ terms. For instance,
Catalan numbers ((¢,q) = (1,2)) are of rank 0, Motzkin numbers ((c, q) = (1, 3))
and the Duchon numbers E,, of (28) (having (¢, q) = (2,2)) are of rank 1, etc.

Some origins of the kernel method. What we named here the “kernel
method” has been part of the folklore of combinatorialists for some time. Earlier
references usually deal with the case of a functional equation of the form

K(z,u)F(z,u) = A(z,u) + B(z,u)G(z)

(with F,G the unknown functions), when there is only one small branch, u;, such
that K(z,u1(z)) = 0. In that case, a single substitution does the job, and G(z) =
—A(z,u1)/B(z,u1). One clear source of this is the exercise section of the first
edition (in 1968) of Knuth’s book [46]: the detailed solution to Exercise 2.2.1-4 (see
[46, p.536-537] and also Ex. 2.2.1.11) presents a “new method for solving the ballot
problem”, for which the characteristic equation is quadratic. See also Odlyzko’s
splendid survey [61, Sec. 15.4] for a discussion of a pebbling game and Prodinger’s
recent note [64] for an original application to a quadratic problem arising from
queueing theory.

The kernel method in its more general version was used recently in a few unpub-
lished works by the authors, including a systematization to directed lattice paths by
Banderier in his memoir [2]. Independent combinatorial developments at the end of
the last century are due to Bousquet-Mélou and Petkosek whose recent paper offers
a penetrating perspective on the subject of multidimensional walks, recurrences,
and kernels [13]. In fact, as indicated earlier, a remark of Bousquet-Mélou has been
used to simplify our proof of Theorem 2 (see also [4] for another application).

That probabilists had known a lot since the early 1950’s regarding related ques-
tions is manifest upon reading Chapter XII of Fellers’ book [28]. It appears that our
presentation parallels in some ways what is obtained by the famous Wiener-Hopf
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approach: refer in particular to the example on bounded arithmetic distributions
in [28, p. 407-408]. Such techniques prove in turn valuable in the theory of queue-
ing systems: see, e.g., Robert’s book [66] for an account. The synthesis by Fayolle,
Tasnogorodski, and Malyshev [26] exposes the deep ramifications of the theory in
the harder case of walks in a quarter plane not satisfying directedness restrictiction
(thus, a “pure” 2-dimensional problem), but their methods only apply to nearest-
neighbour moves. The book [26] itself draws some of its inspiration from the early
paper [25] where a sophisticated use of the kernel method already plays a central
role (amongst other techniques like conjugacy and Riemann—Hilbert problems); see
also the references to Flatto and Malyshev’s works in [61, p. 1208] and the historical
comments in [26, p. VII-XI].

2.3. Computational aspects. We discuss now a way to determine directly the
equations satisfied by the algebraic functions encountered so far. Because of Corol-
lary 2, we know that bridges and excursions are tightly coupled, and the case of
excursions will be detailed here.

It is assumed that the characteristic polynomial P(u) is fixed. Then, what
is needed in view of Theorem 2 is the equation satisfied by the product ¥ =
uy - - - ue of ¢ distinct roots of a polynomial of degree ¢+ d. As roots are in general
“indistinguishable”, we expect a polynomial of degree (ctd) to cancel Y.

Take a polynomial Q(u) of degree e in C(z)[u] normalized by Q(0) = 1 and

assume it has distinct roots uy,... ,u.. For us, e = ¢+ d, and
1
Qu) = — u® — zu°P(u)),
(W) =-——( (u)

yet another reformulation of the kernel. We first develop the computational process
when ¢ = 2, so that the equation for Y = ujus with uy,us two distinct roots of ()
is sought. Write a, o’ for generic roots of (). Then, since Q(0) = 1, one has

Qu =TI (1-%).
while what we need to determine is
Rw) = [[ (1 - CZ;) :
{a,a’}

(A sum or product over {a,a’} means a sum or product over all unordered pairs
of distinct elements.) Now, take logarithms. One has

10g< 1 ) S s Y ith S L

- = — w1 = —

Q(u) = "n &
log [——) = 3 g@¥ p @) . T L
R(u) " n " ana'™

n>1 {aa'}

Then, a simple combinatorial reasoning shows that

1 1 1 1 1

2 ™ =3 2 giam 32 g
{a,a’} (a,a) «

so that

1 1
@ _Lle 1
(29) S = 557 = 55
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The degree of R is § := (;) a priori, and R can be recovered from the formula (“I
am always the exponential of my logarithm!”)

0

(30) R(U) = {usé} [exp (— Z %(52 - SQn)%)] )

n=1

where {uS%} f means the truncation of the series expansion of f with all terms of
degree < ¢ included (see the analogous notation (15)).

The general formula for ¢ > 2 are easily found from the usual relations between
elementary and power sum symmetric functions. Set z; = aj_”. What is sought
is plainly a formula expressing the sum @, of all products z;, - --x;, taken over all
distinct subsets {j1,...,jc} when the power sums s := Zj z* are known. Then,

j
one has (by exponentials of logarithms again)

o

(31) o, = [t9] H(l +txj) = [t°] exp Z(—l)k 13,@?
J k>1
Thus, ®. is a computable polynomial in si,...,s., obtained from extracting the
coefficient [¢¢] in the exponential form of (31) that we write as ®.(s1,... ,s.). Define
finally
D D
{j17"' 7-].5}

the sum being on all subsets of ¢ elements. Then we have
Sr(Lc) = q)C(Sn: S2n: Tt :Scn)-

For instance, the formula analogous to (29) for ¢ = 3,4 are found to be

. S = Lls3_15.5,, +1s,,
S = Lsi_1s25, 4+15,5, +152 —15,,.

These considerations give rise to a simple algorithm for computing the polyno-
mial cancelled by the product of all small branches.
Platypus Algorithm. Computes the polynomial R(u) € C(2)[u] of degree § =
(¢) such that R(Y) = 0, where Y = uy---u. = (=1)°"*2p.E(z) is the product
of all small branches of the characteristic curve. The input is the characteristic
polynomial of steps, P(u).

1. Set up the symbolic formulae of type (29) and (32) appropriate for the given
value of ¢. To this effect, perform the symbolic expansion of (31) with
®.(s1,...,5:) denoting the coeflicient of ¢¢ in the exponential form.

2. Take the normalized kernel Q(u) = (—zp.) ™" (u® — zu°P(u)). Set § = (¢) and
determine the expansion

1 cd u? .
IOg (W) = nXZ:l Sng + O(u 5+1).

3. Recover R(u) from the truncated series

4 n
R(U,) = {US‘S} lexp (— Z (I)C(Sn, SQn, . 7Scn)%>] .
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Half a dozen instructions in a symbolic manipulation language are sufficient to
translate the algorithm. In contrast to Groébner basis or resultant calculations,
the process is efficient, whenever the degree of the result remains reasonable. For
instance, we could successfully determine polynomials R of degree 45 = (%)) in a
matter of seconds on a machine with a 500MHz clock.

On coefficients of algebraic functions. As it is well known [14], any alge-
braic function f(z) satisfies a linear differential equation L(f) = 0 with coefficients
that are rational functions of the variable. This in turn translates into a linear
recurrence with polynomial coefficients in n for the quantities [z"]f. Thus, the
coefficient of index n of any algebraic function is computable in a number of opera-
tions that is linear in n. (The procedure is implemented in Salvy and Zimmermann’s
Gfun package [67].) This remark applies to all the generating functions considered
in this paper. For instance, the excursion generating function F(z) corresponding
to the set of jumps {—2,—1,0,+1,4+2} (Example 4) satisfies an inhomogeneous
differential equation of order 3

3 2 2 d°E 2
(33) 2°(5z+4)(5z+ 1)(z — 1)*(5z — 1) e + -+ +(—100z° + 56z — 4) = 0,
and its coefficients can be obtained from a recurrence of order 6,

(34) 2(n+7)(n+8)(2n+13)E,i6+ -+ +625(n+1)(n+2)(n+3)E, =0.

3. SINGULAR STRUCTURES

We now examine paths, bridges, meanders and excursions under the angle of
asymptotics. Asis well known, the asymptotic behaviour of counts is closely related
to the singular structure of the corresponding generating functions [34, 61]. Thanks
to the factorizations afforded by the kernel method, the singular forms of intervening
generating functions become manageable. This part of the analysis makes use of
global properties of branches followed by local analysis in the vicinity of a quantity
called the “structural radius” p.

Lemma 1. Let P(u) be the polynomial associated to the steps of a simple walk.

Then, there exists a unique number T, called the structural constant, such that
P'(t)=0, 7>0.

The structural radius is by definition the quantity

1

P(r)

Proof. Differentiating twice P as given in (3), we see that P"(z) > 0 for all z > 0.

Thus, the real function  — P(z) is strictly convex. Since it satisfies P(0) =

P(+00) = 400, it must have a unique positive minimum attained at some 7, and
P'(r) =0. O

pi=

Structural constants a priori live in a field of degree e := ¢+ d over the base field
of weights. However, for symmetric walks (P(u) = P(u™!)), they automatically
reduce to the value 7 = 1 and p becomes automatically a member of the field of
coefficients of P.

In Section 2, we have defined the principal branch u; (z) near the origin by means
of its expansion at 0. We show here that this branch satisfies a useful domination
property for 0 < z < p. Cf. Figure 4 for an illustration.
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FIcURE 4. A rendering of the modulus of the five branches of
the characteristic curve in the example of Figure 3 illustrates the
domination properties of the principal small and large branches.

Lemma 2. For an aperiodic walk, the principal small branch ui(z) is analytic on
the open interval z € (0,p). It dominates strictly in modulus all the other small
branches, uz(2), ... ,u.(z), throughout the half-closed interval z € (0, p].

Proof. By the discussion of Lemma 1, the function 1/P(z) is continuously increas-
ing for z € [0,7]. Hence the equation (in u) z = 1/P(u) admits a unique positive
solution, say u™(z), that is less than 7 when z € [0, p]. This positive solution u™(z)
must coincide with the branch u; at 0T (since the expansions at 01 are the same).
Also, the analytic version of the implicit function theorem guarantees that the pos-
itive solution u™(z) remains analytic all along z € (0, p), so that the principal small
branch u; and the positive solution u™ must coincide throughout this interval. Con-
sequently, u; (originally only defined near 07) increases from 0 to 7 as p increases
from 0 to p.

Next, a general fact about polynomials with positive coefficients enters the game:
if P(u) is aperiodic, then one has for positive r

(35) |P(re®)] < P(r) forall#0 (mod 27),

as seen from the strong form of the triangle inequality. Fix z = z, with = real
positive and xz < p, and let w be an arbitrary solution of the kernel equation
1 —zP(w) = 0 that is at most 7 in modulus and not equal to u;(x) (i.e., not real
and positive). Then, one has by the strict inequality in (35)

. 1 1 S 1
"7 Plw@) ~ Pw) ~ P(ul)’
which implies |w| < uy(z) since 1/P is increasing in the region considered, [0, 7].
Thus, near 0T and since the nonprincipal small branches us, ... ,u. are majorized
by 7 in modulus (they tend to 0), they must satisfy |u;(z)| < wi(z). Addition-
ally, the domination property cannot cease to hold on (0, p): by continuity of the
modulus of any branch, this would imply that u, () itself reaches the value 7 for
some = < p, yielding a clear contradiction. Domination must finally continue to
hold at p, since otherwise, there would be a contradiction with the strong triangle
inequality (35). O
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Stronger domination properties are in fact derivable from similar uses of the
strong triangle inequality, under the aperiodicity condition (see also [3] for details).
For |z| < p, one has: |u;(2)| < ui(|z|) for j = 2,...,¢; also, Jui(2)] < |v1(z)| safe
at z = p. Simply put, the principal small branch u; is the “largest” of all the small
branches.

In Section 4, it will also prove handy to have available the corresponding prop-
erties of large branches. For instance, the principal large branch, vy, is in a similar
sense the smallest of all large branches. Generally, the domination properties of
large branches are counterparts of those of small branches, as can be seen by mim-
icking the arguments. Alternatively, one can introduce duality: If P(u) is a Laurent
polynomial, then P(u) = P(u™') is called its dual. It is then easy to see that the
small and large branches, u; and v, of the dual are respectively the inverses of the
large and small branches of the primal: u;v; = 1 and v,u, = 1. Duality thus ex-
changes small and large branches. (Combinatorially, duality may be realized either
as a symmetry along the horizontal axis applied to steps, or by the time-reversal
transformation that changes a path into another path obtained by reading steps
backwards.)

3.1. Bridges and excursions. We first address the important problem of esti-
mating the numbers of bridges and excursions. The discussion makes use of the
assumption that the walk is reduced and aperiodic.

Theorem 3. Consider a simple system of walks that is aperiodic. Let T be the
structural constant determined by P'(r) = 0, 7 > 0. The number of bridges of
size n admits a complete asymptotic expansion

P(r)" ar | a2 1 | P(7)
B, ~ 1+ —+ =4 - =— .
(36) n /80 \/ﬁ ( + n + n2 + ) ) BO T P”(T)
The number of excursions of size n satisfies
P(T)n b1 b2
(37) EnN€02 7‘_”3 <1+E+F+"‘>,
where (the u; are the small branches, with ui the principal branch)
(=1t [2P(1)3 - 1
= Y] Y] = i = .
(38) e P Py 1 (p), Yi(z) g uj (2), p P0r)

By Lemma 2, the constant Y7 (p) is equivalently characterized as

Yilp) = H v.

lvl<T, P(v)=p~!

Proof. The result for bridges is known as it is equivalent to the local limit theorem
for sums of discrete random variables [40, Chapter 9], of which the first proof goes
back to Laplace® in [51]. For completeness, we briefly sketch the argument here.

5Quite remarkably, in his Théorie analytique des probabilités, in 1812. Laplace expresses the
problem as a Cauchy coefficient formula presented by its Fourier series counterpart (analytic
functions are not yet invented by Cauchy!) and proceeds with a saddle point argument expressed
as an application of the “Laplace method” that was specifically developed for that occasion (saddle
point integrals will only emerge half-a-century later!).
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Start from the fact that the number of bridges of length n is [u’]P(u)". By
Cauchy’s coefficient formula, one has

1 du
Py 2,

~

Bn = 2im
where the contour v is any positively oriented loop about the origin. The posi-
tive real point 7 is a simple saddle point of P(u) (hence of P(u)"), so that the
choice of the circle |u| = 7 as integration contour suggests itself by the saddle-point
method [16]. By the aperiodicity condition, P(u) is uniquely maximal in mod-
ulus along the contour at u = 7; see (4). Therefore, the following saddle-point
approximations are justified:

1 » du
Bn = o7 - Pl <>
+ze
1 1P"(r du
~ g exp (n <logP(7') + 3 P((T)) (u—1)% 4+ O((u — 7')3)>> o
S TP - A il
2t J_o T\/m P(1)

By the usual process, the contribution is first localized near 7, taking for instance
e = (logn)/+/n, and local expansions are applied; then the contour is extended
back to yield a complete Gaussian integral. This streamlined version of the method
is then extended to a full asymptotic expansion in the usual way [43, p. 419], so
that (36) results.

The saddle point method thus provides an easy access to the enumeration of
bridges. This gives indirectly valuable information on the small branches that can
be translated into the singular structure of the GF B(z). First, the relation that
determines the branches of the characteristic curve can be put under the form

1
39 = .
(39) *= P
This shows that a branch can become infinite only at z = 0; in fact the corre-
sponding solutions give rise precisely to the large branches vy, ... ,v4. By general

principles (the inverse of an analytic function at a point where the derivative is
nonzero is analytic), the relation (39) is invertible analytically in a the neighbour-
hood of any point v such that P'(v) # 0. Accordingly, a singularity (in the sense
of analytic functions) must occur at any value ¢ such that P’({) = 0.

At u = 7, with 7 the structural constant, one has P’(7) = 0 by construction,
while P"(7) > 0. Then, the local form of (39), reads

(40) z=p— %P”(T)(U—T)Z +O0((u—1)*). p:= )

This is readily inverted, yielding two local solutions

(41) P” \/l—z +- (z—=p ).

In particular, the principal branch u;(z) has a square root singularity; it takes as
value the structural constant 7 at the place

1
P(r)’

p:
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and the —,/ determination must be adopted in (41) since u; (z) increases as z — p~:

(42) P” 1—z/p+- (z—=p7).

Next, for z # 0, all smgularltles of the solutions of (39), since they correspond
to finite values of w, can only be finite branch points ( with a local expansion of
the form ag 4 bo(z — ¢)'/" for some ramification index 7 > 1. (This is easily seen
directly by a suitable generalization of (40) and(41) upon taking into account the
first nonzero derivative of 1/P).

We can now confront the result of (42) with the the saddle point estimation (36),
remembering that one has by (9)

B(z) = Zdi,Jz logY(z), Y(z) = (u1(2) - - ue(2)) -

First, Y (z) that is analytic near 0 must remain analytic throughout the disk |z| < p,
since otherwise B(z) would be singular for some value inside the disk and this would
contradict the asymptotic growth (36) that is of type P(7)" for B,. Next, Y (z)
cannot have any (algebraic) singularity other than z = p on the circle |z| = p, since,
by singularity analysis®, this would entail the presence of oscillating terms in the
asymptotic expansion of B,,, again contradicting (36). Also, Y'(z) can only have a
branch point of ramification index r = 2 at z = p, since otherwise some term of the
form n='*1/" would have been present in the expansion of B,,. Finally, the deflated
product Y7 (2) = us(2) - - - us(z) must be analytic at p since otherwise, being capable
only of having a branch point with ramification index 2, one would reach a con-
tradiction regarding the leading coefficient of B,, (as checked from comparing (36)
against the consequences of (42) on coefficients).

In other words, this sequence of indirect arguments shows the following”: The
product of all the nonprincipal small branches

(43) Yi(2) = ua(2) - -ue(2)

is analytic at all points of the closed disk |z| < p.

It is now an easy matter to complete the estimate of the number of excursions by
singularity analysis applied to (20) in Theorem 2. The unique dominant singularity
of E(z) must be at z = p where the local expansion (42) gives

E(z) ~ E(p) — €0V/1 = z/p, o = ———Yi(p) QPT(T)’
with Y] given by (43). A full expansion of u;(z) in powers of (1 — z/p)'/? being
available, and Y; (z) being analytic on the whole of |z| < p, the proof of (37) is at
last completed. [l

EXAMPLE 6. Asymptotics of tree codes. The case of walks with only one type of
descending step equal to —1 corresponds to tree codes, as discussed in Example 3.

6Singularity analysis [34, 61] allows us to transfer a singular element of the form (1 — z/a)*in
the expansion of a function f(z) at a singularity « into a corresponding asymptotic element of
the form a~"n~#~1/T'(—k) in the expansion of the coefficient [2"]f(z) at infinity. It is applicable
unconditionally to algebraic functions.

7An alternative argument based on the refinement of domination relations evoked after the
proof of Lemma 2 is possible; see Banderier’s thesis [3] for details.
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In this very special case, there is only one small branch, and the GF of excursions is
E(z) = u1(2)/(p1—z). For aperiodic walks, the result (37) of Theorem 3, or plainly
the estimate (41), gives us

T

(44) P(1)?
E P(r

" p 1V 27rn3 P" T)

In terms of trees, the principal branch w; (z) is precisely the GF of trees correspond-
ing to the degree set 1 + S with generating polynomial ¢(u) := uP(u) and one has
T(z) = p_12E(2) = u1(2). The estimate (44) then coincides with the well-known
asymptotic estimate of the number T;, of trees of size n,

— T¢’ =0
(45)
Tn \/ 2mn? ¢"
which was first discovered by Meir and Moon [55]. g

As soon as ¢ > 1, there are several small branches, and, in this case, the algebraic
constant Y7 (p) intervenes. Numerically, this constant can be determined easily as it
only involves the product of the small solutions to the kernel equation taken at z =
p. Algebraically, since Y7 (p) is the product of ¢—1 solutions to an algebraic equation
of degree c +d, it is an algebraic number of degree at most (C+d) over Q(p) = Q(1)
that is computable by the techniques of Section 2.3 (upon changing ¢ to ¢ — 1 in
Platypus Algorithm). However, since 7 is a double root of the kernel equation
instantiated at z = p, further simplifications accrue. This explains that constants
involving radicals are often to be observed when analysing problems of relatively
low “complexity”. The next example is typical of this state of affairs.

EXAMPLE 7. Asymptotics of the {—2,—1,0, 1, 2}-excursions. The walk introduced
in Example 4 is symmetric, and like for any symmetric walk system, the structural
constant is equal to 1 while the structural radius is the rational number, p =
1/P(1) = £. The product of the nonprincipal small branches at p reduces to uz(p).
This quantity is a priori one of the roots of an equation of degree 4 (Equation (25)
instantiated at z = p), but since this equation has already 7 = 1 as a double root,
the equation satisfied by wus(p) is in fact of degree 2 (it is u? + 3u + 1 = 0) so that

us(p) = —3 + 55,

and this quantity is precisely Y;(p) of (38) Thus, we can conclude and get easily

Bn =23V (1+00).

The quality of the asymptotic approximation provided by the first term is 11%
when n = 10 and 1.2% when n = 100, where the E,, are conveniently determined
by (34). The estimate is also consistent with the nature of the singularity at p = 1
of the differential equation (33).

O
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3.2. Paths and meanders. Now that the bulk of the work is done, asymptotic
estimates of the basic counts of paths and meanders fall as a ripe fruit. The result for
unconstrained paths is trivial, since the number of possibilities for size n is P(1)",
a fact consistent with the simple pole of W(z,1) = (1 — zP(1))~!. For meanders,
three cases are to be distinguished depending upon the value of a quantity called
the drift.

Definition 5. Given a simple walk with characteristic polynomial P(u), the drift
is by definition the quantity

§=P'(1).

In the unweighted case, the drift is thus the sum of all the possible values of the
jumps, which constitutes an indicator of the “tendency” for the walk to go up or
down. In the probabilistic case (P(1) = 1), the drift represents exactly the expected
movement in the y-direction of any single step. For a symmetric walk, the drift
is = 0, while 7 = 1.

Theorem 4. Consider a simple aperiodic walk. The number of paths of length n,
[2"MW(z,1), is P(1)™ exactly. Set

c

Vi(z) = [J(1 = u;(2)).

=2
The asymptotic number of meanders depends on the sign of the drift § = P'(1) as
follows:

,Uoli/(—}rz:

0=0: M, 1_|___|__+ )

), p=P(r) "t =P1)"}

T

P n
§<0: My ~ () <1+ —22+ )
n

po =1 —ui(p1))Y1(p1), p1:=P(1)7"

The formulae have an intuitive meaning. In the case of a positive drift, a fraction
close to pd of all the (unconstrained) walks is a meander, in accordance for the
walks to have a natural tendency to go up. For negative drift, most paths tend
to go down and the proportion of meanders is exponentially small, roughly like
(P(r)/P(1))™. For zero drift, the proportion becomes as large as 1/+/n, while the
walks tend to oscillate not too far from the horizontal axis.

n + +
§>0: M, ~ pfP1)"+ ,,ngP(T) <1+%+C_2+...>

Proof. The discussion is based on the formula of Corollary 1 rewritten as

1—u1(2) = — c
G COE | CEO))

Jj=2

M(z) = F(z,1) =
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It suffices to examine the position of the zeros and the dominant singularity of the
numerator in relation to 1/P(1) that is always a zero of the denominator. By proof
arguments similar to Lemma 2, the quantity Y (2), being a symmetric function of
small branches each of which is dominated by w1, must remain analytic throughout
2] < p

In the case § =0, one has P'(1) =0, 7 =1, and p = 1/P(r) = 1/P(1). Thus,
(1—uy) contributes a term of the form (1 —z/p)'/? at z = p while the denominator
(1 = zP(1)) has a simple zero there. Globally, the singularity of F(z,1) is thus of
type 1/ /> and the result follows.

For a negative drift, meaning P'(1) < 0, one must have 7 > 1, since P'(u)
increases from —oo to +o0o when u ranges from 0% to +oco. With p = 1/P(7)
(the structural radius) and p; := 1/P(1), one then has p; < p. In this case, the
prefactor (1 — zP(1))~! has a pole at p;; this pole is however cancelled by a zero
in the numerator induced by the numerator (1 —u(2)) (since u;(p1) = 1), so that
p1 is a removable singularity of F'(z,1). Consequently, the dominant singularity of
F(z,1) is at p, where F(z,1) is of the square-root type.

For a positive drift, one must have 7 < 1, so that the prefactor induces a pole
at p1 := 1/P(1) before Y, or 1 — u; become singular. The argument concludes by
“subtracting singularities”, since the function,

Yi(p1)(1 —ui(pr)) 1
F(z,1) — =
(Za ) ].—ZP(].) ) P1 P(l)a
now has a dominant singularity of the square-root type at p. O

The earlier discussion about the algebraic character of asymptotic constants
applies: quantities like Y (p1) and Y (p) can be determined by adapting Platypus
Algorithm of Section 2.3. Should the degrees of the algebraic numbers involved
become fairly large, one can always resort to numerical analysis as the next example
illustrates.

EXAMPLE 8.  Lucky periods in die casting. In [63, p. 45], Pélya introduces the
following problem: “En jetant 2n dés a la fois, on peut obtenir différentes sommes
de points de 2n da 12n. Le cas le plus probable est celur de Tn points. Désignons
par A, le nombre de combinaisons ou se produit cet événement.” Imagine that at
each of n rounds two dice are cast and the score of the round is the sum of the
two dice’s values. Poélya thus considers the number of ways A, (and probability
A, /36™) of reaching the balanced score 7n at the end of a game of dice consisting
of n rounds. Pdlya proceeds by an integral representation (precisely of the type
used in the proof of Theorem 1) from which he concludes that the GF A(z) has the
character of an algebraic function, but does not make the calculation explicit.

By centring around the mean score of a round, which equals 7, it is easily realized
that the problem is equivalent to a walk whose characteristic polynomial is

Pu)=u"’(1+u+u’+u’ +u4+u5)2.
Let B, be the number of bridges. (The quantity B,, is exactly Pdlya’s A,,.) Here,
¢ = —5,d = +5; also 7 = 1 as the walk is symmetric, and p = 1/36. The asymptotic
number of bridges is simply
6- 36"

By~ ———
" V22 3.5 T
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which is nothing but an avatar of the local limit gaussian law.

Consider next the modification of Pdlya’s problem where we ask for the number
of “lucky” games, in the sense that at any time ¢ the score is at least 7t. This
is equivalent to finding the number of meanders. Excursions surface if we further
impose the final score to be 7n exactly. We have 7 = 1 and p = 31—6. One should
then examine the kernel equation at z = p,

1
u® — %u5P(u) =0,

as this gives all the values of the small branches there. We find that there are 10
roots, amongst which 7 = 1 is a double root. The eight other go by pairs of complex
conjugates, with

¢ = —0.36381 + 0.22924 ¢, (' =0.06208 + 0.476221,

¢" = -1.96746 + 1.239764, (" = 0.26919 + 2.06476 .
Then, the quantity Yi(p) is determined numerically as the product of the roots
of modulus less than 7 = 1, namely, (( ¢’ (’. We find Y;(p) = 0.42648, so that

the constant in the asymptotic formula for excursions can be determined to great
accuracy:

36"

Vin?’

In the same vein, we determine Y1 (p) = (1—¢)(1—¢)(1—¢")(1—(') tobe Y1(p) =
2.11615, and

(46) E,~C. C =0.3586542111 34518 86172.

1 c'
—[2"F(2,1) ~ —, (" =0.93071 59694 87799 20216
36” Vn
gives the probability of a lucky game (a meander). d

Pélya’s example is interesting structurally. For instance, the excursion con-
stant C in (46) involves Y7 (p) that is a root of a self-reciprocal polynomial Z(y) of
degree 16 (found by Platypus Algorithm and factorization), itself equivalent to a
resolvent of degree 8 that turns out to be irreducible,

2(y) = ¥*E@y+y )
E(v) = v® — 1707 — 15205 + 340° — 5510 — 120530 + 803802 + 386920 + 12664,

but algebra stops there. In contrast, analysis based on the decomposability devolv-
ing from the kernel method provides fully satisfactory numerical answers.

3.3. Periodicities. The discussion above has been conducted under the assump-
tion of aperiodicity. As we explain now, similar results hold for periodic walks
provided suitable congruence conditions are imposed on the indices of coefficients
of generating function. For reasons explained after Definition 4, we freely assume
the set of jumps to be at least reduced, as this implies no loss in generality.

Take a set S corresponding to period p. We sketch the discussion in the case of
excursions, with E(z) the corresponding GF. Then, E(z) is periodic with period p,
meaning that it is of the form E(z) = E(zP) for some E(z) that is analytic at 0.
The foregoing discussion of small branches continues to apply as long as |z| stays
inside the disk |z| < p, and the local analysis (42) of u; continues to hold as z — p.
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However, it appears now that there are p conjugate dominant singularities at the
points

pi=p’,  m=emr

Indeed, E(z) satisfies E(z) = E(nz), while Equation (42) describes the behaviour
of ui(z) at p; upon changing z into z/n’. Then, each of the p singular elements
cumulate and contribute jointly to [2"]E(z) provided n = 0 mod p. One finds in
this way

n

P
En Np€02 (T)

= n=pv, vELx
™

where € is (still) given by (38).

The analysis easily adapts to the other types of paths considered, and is summa-
rized by a simple rule: For a system of jumps of period p, the asymptotic form of
the count of index n must be restricted to a suitable congruence class of n mod p
in order for objects to exists; then the corresponding asymptotic formula is obtained
from the estimate of the aperiodic case through multiplication by a factor of p.

EXAMPLE 9. Asymptotics of generalized Duchon’s clubs. We return to Example 5.
The kernel equation is 1 — z(u ¢ + u?) = 0, which gives the structural constant

T = (2)1/6, e=c+d.

The period is equal to e. The number of excursions of length n is nonzero only if
n =0 (mod e) and it satisfies (with r = p®)
— ctd?
E., ~ Dc7d rc75 v 3/27 Ted = 6—6,
for some computable constant D, 4. This generalizes the estimate of Duchon [22]
who determined D» 3 by a particular grammar construction followed by a specific
algebraic elimination. O

4. BASIC PARAMETERS AND LIMIT LAWS

The singular structure of basic generating functions of paths, bridges, meanders,
and excursions is well established by Section 3. On the other hand, many parame-
ters “decompose” combinatorially, so that their GF’s are expressible in terms of the
basic generating functions, or equivalently, they lie in Q(z, X;uy,... ,u.) for some
set X of markers. In this paper, we only exhibit few sample cases of application
of this methodology. As pointed by Philippe Robert (private communication), the
whole combinatorial-analytic apparatus largely parallels what probabilists do by
means of Wiener-Hopf decompositions (this is analogous to the separation between
small and large branches) and Tauberian theorems (instead of singularity analysis
that affords greater asymptotic accuracy through complete asymptotic expansions).

4.1. Arches and contacts. Define an arch as an excursion of size > 0 whose only
contact with the horizontal axis is at its end points and let A be the set of arches.
The set £ of excursions satisfies the combinatorial equation

&= 6{-’4}7
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where & denotes the combinatorial construction that freely forms sequences. By
well known mechanisms this translates directly into the GF equation

1 1
=40’ or, equivalently, A(z) B

The singular form of A(z) then reads immediately:

. . 1 €p
E(z) ~ E(p) —€eo/1—2/p, implying A(z) (1 E(p)) E(p)? 1-2z/p.
Thus, the number of arches A,, is asymptotically proportional to p~"n3/2, hence
also to the number of excursions E,,.

Define a vertex of an excursion not equal to one of the end points to be a contact
if its altitude is 0. Then, A(z)¥*! is the GF of excursions having k contacts. For
any fixed k, the function A¥*! has again a singularity of the square root type that
is amenable to singularity analysis. An easy calculation then gives:

(47) E(z)

Theorem 5. The probability that a random excursion of size n has k contacts is
for any fixed k of the form

sk + (1-%)2@(%).

The number of contacts is thus asymptotically distributed like the sum of two inde-
pendent geometric random variables with parameter 1 — E(p)~t. In particular,

1
E(p)?

The constant E(p) is expressible in terms of the quantity Yi(p) and is thus a
close relative of 3y introduced in Theorem 3.

Ap ~ E,.

On the relation between bridges and excursions. We briefly discuss here
a construction that relates excursions to arches. Consider a bridge and let m (with
m < 0) be the minimal altitude of any vertex. Any nonempty bridge 8 decomposes
uniquely into a walk ¢ of size > 1 from 0 to m that only reaches level m at its
right end, followed by an excursion ¢ (this is the part where one wanders around
but above level m), followed by a path ¢ of size > 0 from m to 0 that only touches
level m at its beginning. By rearrangement, one can write 5 = € - (2|p1), where
the glueing of w2¢1 is an arch and the bar keeps track of where the splitting should
occur. This construction is illustrated by the following diagram:

—
\

€
71 79

In other words, the set of nonempty bridges is combinatorially isomorphic to
the product of the set of excursions by the set of arches with a split step that is
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distinguished. This construction is then nothing but the combinatorial reflex of the
identity

. ) split arches
bridges  excursions ——r—

(48) Bo-1= & - (s40)

which, in view of (47) is equivalent to

B(z) —1=E(z) zi <1 - EEZ)) = zg((zz))

(Thus, combinatorics of arches gives back Corollary 2.) Such relations are ubiqui-
tous in the theory of paths, the most famous ones being known by the names of
Spitzer and Sparre Andersen: see Kittel’s appendix to [35] and Lothaire’s book [52,
Sec. 5.3] for a summary. Raney’s classic [65] and Gessel’s papers [38, 39] make
use of similar ideas (inter alia, the “cycle lemma”) in combinatorial proofs of the
Lagrange inversion formula. One of the many consequences of this orbit of ideas,
is for instance the possibility of analysing the number of times a bridge attains
its minimum value by adapting the decomposition (48) and closely mimicking the
proof of Theorem 5. Louchard’s analyses in [53] provide many striking illustrations
of such an interplay between probabilistic and combinatorial properties.

4.2. Final altitude of a meander. The final altitude of a path is the abscissa of
its end point. For unconstrained paths, the usual local and central limit theorems
for discrete random variables apply [40, Chapter 9], so that the limit law, after
normalization, is Gaussian, the underlying technology being plainly the saddle point
method. We consider now meanders. The random variable associated to finite
altitude when taken over the set of all meanders of length n is denoted by X, and

it satisfies
oy EMFIE (2, 0)
P =0 =G

We state:

Theorem 6. The final altitude of a random meander of size n admits a limit dis-
tribution, with the limit law being dictated by the value of the drift é.

(i) For a negative drift, § < 0, the limit distribution is a discrete one character-
ized in terms of the large branches:

Jim Pr(X, =k) =[] w(u), where w(ufﬁi:iizni:i’,iiii'
£>2

(i7) In the case of zero drift, 0 = 0, the normalized random variable

X Pr(1)

IV TR

converges in law to a Rayleigh distribution defined by the density xe™

. X, . —o?/2
nh_}rr;oPr<19\/ﬁ§x>—l—e .

z%/2 .
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(i31) In the case of a positive drift, § > 0, the standardized version of X,,,

Xy—pn P, <p~<1> P'<1>_<P'<1>>2>

o FEro T T\ P T T\ PO
converges in law to a Gaussian variable N'(0,1):

X, —un 1 /”E o
o )= — V2 dy.
(A <o) =g [

In the case of a negative drift, the limiting distribution admits an explicit form

[u¥] @ (u) = 77%(co + c1k) + Z cove(p)F,
£>2

lim Pr
n—oo

for a set of constants c; that can be made explicit by a partial fraction expansion
of w(u).

Proof. (i) For a negative drift, one directly shows that the probability generating
function of X,, at u converges pointwise to a limit that precisely equals w(u), the
convergence holding for v € (0,1). By the fundamental continuity theorem [27,
p. 280] for probability generating functions (PGE’s), this entails convergence in law
of the corresponding discrete distributions.

We now fix a value of u taken arbitrarily in (0,1) and treated as a parameter.
The PGF of X, is

[2"]F' (2, u)
[2"F (2,1)

where F(z,u) is given by Theorem 2. In the case of a negative drift we know
from the proof of Theorem 4 that 7 = v(p) satisfies 7 > 1 while the radius of
convergence of F(z,1) coincides with the structural radius p. Then, the quantity

u — vg(2)

is analytic in the closed disk |z| < p: being a symmetric function of the nonprincipal
large branches, it has no algebraic singularity there; given the already known dom-
ination relations between the large branches (Lemma 2), the denominators cannot
vanish.

It then suffices to analyse the factor containing the principal large branch v;.
This factor has a branch point at p, where

1 1 1 P(r)
T\ e Ve

u—v(z) u-—r7

as follows directly from (42) and the fact that vy is conjugate to u; at z = p.

Singularity analysis then gives instantly the fact that, for some nonzero constant C,
1
[2"]F(z,u) ~ Cp~"n~2/?Q(u), where Q(u)= ﬁYl(p, u),
u—"T

and the result follows after normalization by [2"]F(z,1).
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For the remaining two cases, it will prove convenient first to estimate the mean
value (expectation E(-)) of X,,,
[2"]Fy(z,1)
[2"F(z,1)”
where F), indicates differentiation with respect to u. Logarithmic differentiation
gives

(49) E(Xy) =

(50) Fi(z,1)=F(z,1))_

1
—~ 1—we(2)

d
from which one attains singularities easily.
(i7) In the case of a zero drift, the value of the structural constant is 7=1 and
the radius of convergence of F'(z,1) is p = 1/P(r) = 1/P(1). Then, the singularity
at p of F)(z,1) combines a factor 1/4/1 — z/p that arises from F(z,1) and another
similar factor that arises from the term (1 — v1(z))~!. This singularity is thus,
to first order asymptotics, similar to a simple pole. A computation based again
on (42) reveals that the mean value of X, is of the order of \/n. Precisely, one finds

™ [P
s o/ 9= /70

(Note that y/7/2 is the mean of the standard Rayleigh distribution.)

The formula of Corollary 3 then suggests that Fj(z) should behave very much
like v¥, implying that the coefficients should resemble, up to scaling, the coefficients
in the large power [2"](1 — /1 — 2)¥. Such a situation is known to be conducive
to Rayleigh laws: it is covered extensively in Drmota and Soria’s study [21] and
revisited in the paper [5]; see also [20]. In particular Theorem 1 of [21] gives us the
convergence in distribution to the Rayleigh law, while a simple adaptation of the
results of Appendix B in [5] provides corresponding density estimates (a “local”
limit law). We omit the tedious but routine details.

(731) For a positive drift, probabilistic intuition indicates that there are relatively
few chances for a walk to ever come under the negative axis, and when this happens,
it only tends to do so early in the history of the walk. Consequently, the final
altitude should be only marginally affected by the meander conditioning,.

In this case, one has 7 < 1 and the radius of convergence of F'(z,1) is py = 1/P(1)
while the structural radius satisfies p > p;. By definition, one has v;(p1) = 1.
Consequently, the function F!(z,1) in (50) admits a double pole at p;, with

I
vi(p1)(z —p1)

Fl(z,1) ~ F(z,1)

so that (one has v (p1) = —(pIP'(1))71),
[z"]F.(z,1) _  P'(1)
E(X,) = = = O(1).
) = Eren ~ " PO
In the probabilistic case, the coefficient of n in the estimate reduces to the drift, and
this estimate does agree with the probabilistic argument sketched above. Similarly,
the variance is found to satisfy

B (T

P(1) T PQ)
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Finally, the Gaussian law is established from the power-sum form of Corollary 3
upon applying Cauchy’s coefficient formula. One has

n _ 1 —k—1 dz
IR = g [ GEmE T+ R

The error term R,, ;, that arises from all the nonprincipal branches is exponentially
smaller than p; ™ because of the domination properties of 1/vi(2) (see the proof
of Lemma 2, once more). The main integral is then treated by the saddle point
method in the range considered, k = pn+0(y/n) with p := P’(1)/P(1). The saddle
point of the integrand is at p;, very nearly. The Gaussian density then comes out
from a standard saddle point perturbation analysis. [l

5. DIRECTED TWO-DIMENSIONAL MODELS

The kernel method is generally well suited to problems where all the jumps are of
the form (a;,b;) with a; > 0. In this case, each choice of a step implies progression
along the horizontal axis. One considers the trivariate GF

F(z;z,y) == Z Fppg2 Pyl
.4

where F), ,, is the number of meander paths in Zs>o X Z>o with size (number
of steps) equal to n that connect the origin to the point of coordinates (p,q).
The walk is thus directed in the sense of Section 1. As we now explain, such
enumeration problems, though formulated in two-dimensional space, are in fact
fake 1-dimensional problems amenable to the kernel method.

In the directed case, the method of “adding a slice” encountered in Equa-
tions (14) and (16) gives rise to the fundamental equation

(51) F(z;2,y)(1 = 2P(z,y)) =1 = 2{y="} (P(z,y) F(z;2,y)),

where the characteristic polynomial is now
P(z,y):= Y a"y",
J

which is entire in = but of Laurent type with respect to y. The parameters of
size (marked by z) and horizontal displacement (marked by z) are bound by linear
inequalities, and one of them can be treated as the basic variable, the other as
an auxiliary parameter or even the constant 1. Then, the adaptation of the kernel
method consists in binding the Laurent variable, here y, to the basic variable chosen
(z or z) by

(52) 1—2P(z,y)=0.

Newton’s polygon then shows that, for the bound equation, the number of “small”
roots of the kernel equation coincides with the maximum negative vertical span,
namely, ¢ := |min; b;|, and this number is precisely the number of unknown func-
tions in the right side of (51). We let u; represent these small branches. The
treatment of walks and bridges adapts easily from what has been done earlier. Re-
garding excursions and meanders, substitution of the u; then shows the following:
The GF of excursions (defined by final altitude 0) and the BGF of meanders (de-
fined by final altitude > 0) depend rationally on the variables z,x and the set of
small branches {u;} of the associated “kernel equation” (52).
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ExAMPLE 10. Chess moves of Labelle and Yeh. In two papers [49, 50], La-
belle and Yeh develop an interesting set of decompositions for generalized knight
moves on a chessboard. The standard version of the problem is: Consider the
Z>o X Lo chessboard. How many sequences of Eastbound knight moves (S =
{(1,2),(1,-2),(2,1),(2,—-1)}) are there from (0,0) to (n,0)? By definition, the
moves are not allowed to involve points with negative coordinates.

As size is not needed, we take = as the independent variable and set z = 1. The

kernel equation is then

1— (e +ay 2+ 2%y + 2%y =0,
so that the characteristic curve is a quartic. The vertical symmetry of the moves
implies that the kernel equation can be rewritten as a combination of two quadratic
equations,

1
1—x(W? 4+ 2W —2) =0, W::y+§.

There results that the four branches of the characteristic equation are given by

1 1
ye(W) =3 (W + /W2 — 4) L We(d) = 5 (—:r2 + /74 + 822 +4a:) .
It appears that the two small branches u;, us correspond to taking opposite signs
in the determinations of y(W) and W (z), and one finds for the GF of excursions

(i-e., paths terminating at altitude 0), in complete analogy to the simple walk,

B@) = —1(u@uw@) = 1y (@) p (7 (@)

= 14+22+32*+22° +122°+ 142" + 5428 +862° + - - .

This is the sequence (a,) of [49] and also EIS A005220. Decomposability renders
especially easy the asymptotic analysis of the number of excursions and of corre-
sponding parameters. More general knight moves can be treated similarly by the
kernel method. In particular, the equation satisfied by the excursion generating
functions tends to be of a degree exponential in ¢; see [49, 50]. Here, the kernel
method yields a reduction to an equation of degree 2¢, which even reduces to a resol-
vent of degree ¢ when symmetry is taken into account via the W-parameterization.
This illustrates a sharp contrast between the exponential blow-up in combinatorial
complexity and the linear character of the analytic complexity. a

6. CONCLUSION

In this paper, we have aimed at illustrating the analytic tractability of many
1-dimensional path problems, a boon of the kernel method. The reduction in the
asymptotic-analytic complexity of the problem is often spectacular, as exemplified
by Duchon’s clubs or the Labelle-Yeh knight moves. Parameters that are easily
readable on paths lead to generating functions whose singularities arise simply
from the branches of a characteristic curve of low degree. The method applies
to all 1-dimensional problems as well as to 2-dimensional problems provided they
remain directed. For a thorough discussion of the algebraic power of the kernel
method, we refer once more to the study by Bousquet-Mélou and Petkovsek [13].
(The kernel technique is also reminiscent of Tutte’s quadratic method much of use
in the enumerative theory of planar maps [42]; see Bousquet-Mélou’s paper [11] for
a perspective.)
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The case of undirected 2-dimensional problems, where one can go back and forth
in all four cardinal directions, is appreciably harder. Even in the case of movement
of amplitude < 1, Fayolle et al. show in [26] that stationary solutions involve elliptic
functions and integrals. Some directed path problems in dimension higher than 2
can however still be successfully treated by specific combinatorial decompositions;
see [12] for an example.

A tribute to Maurice Nivat. As is apparent from the bibliography of this
paper, many papers directly relevant to our study have been published in the journal
Theoretical Computer Science along the years. We owe much for this to the Editor-
in-Chief, Maurice Nivat. His openness of mind has been a constant help in the
emergence and shaping up of sub-communities within theoretical computer science.
Examples are the GASCOM (Generation of Random Combinatorial Objects) and
AofA (Analysis of Algorithms) communities which have greatly benefitted from
special issues of TCS, this at the invariably encouraging initiative of Maurice. In
view of this and of Maurice’s long-standing interest in similar discrete geometrical
objects (see, e.g., [6, 7, 9, 17]), we kindly dedicate this study to him.
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