
A bijection between the
d-dimensional simplices with

all distances in {1, 2} and the
partitions of d + 1

Sascha Kurz
University of Bayreuth

95440 Bayreuth
Germany

sascha.kurz@stud.uni-bayreuth.de

13th September 2003

Abstract

We give a construction for the d-dimensional simplices with all dis-
tances in {1, 2} from the set of partitions of d+ 1.

1 Introduction

Because there is some interest in integral point sets, i.e. sets of n
points in the euclidean Ed with integral distances between vertices,
we examined such point sets for n = d+ 1. We use the term simplex
for a point set of d+1 points in the euclidean Ed not all points lying in
a hyperplane of the Ed. For d = 2 this is a triangle and for d = 3 this
is a tetrahedron. Similar to integral point sets we define integral sim-
plices as simplices with integral distances between the vertices. The
largest distance of a point set is called its diameter. Calculations,
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done by a computer, gave a short table of the number of nonisomor-
phic integral simplices by diameter and dimension.

dimension 3 4 5 6 7 8 9
diameter

1 1 1 1 1 1 1 1
2 4 6 10 14 21 29 41
3 16 56 197 656 2127 6548 19130
4 45 336 3133 31771 329859 3336597 32815796

Table 1. Number of integral simplices by diameter and dimension.

There is clearly an unique integral simplex with diameter 1 in any
dimension. By testing the sequence of the number of simplices with
diameter 2 with N.J.A. Sloane’s marvellous ’Online-Encyclopedia of
Integer Sequences’ [4] we learned that the first calculated terms are
equal to numbers of partitions of a natural number fewer 1.

A partition of a natural number n is an r-tuple of natural numbers
(i1, . . . , ir) with i1 ≥ i2 ≥ . . . ≥ ir > 0 and i1 + i2 + . . .+ ir = n.

In the next section we give an algorithm which constructs an integral
simplex from a partition. And in Section 3 we proof that there is
indeed a bijection.

Theorem. The number of integral d-dimensional simplices with di-
ameter at most 2 is the number of partitions of d+1, and all simplices
can be constructed by the algorithm of Section 2.

2 Construction

We would like to give an algorithm which constructs an integral sim-
plex from of a given partition. Therefore we represent an integral
simplex by its distance matrix A = (dij) with point i and point j of
the integral simplex having distance dij . See Figure 1 for an example.
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Figure 1. An integral triangle with its distance matrix.

Algorithm.
Input: A partition (i1, . . . , ir)
Output: A distance matrix A, corresponding to an integral simplex

We construct recursively.
(i) The partition (n) yields the n-dimensional matrix




0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0



.

(ii) For r > 1 we construct the matrixB from the partition (i1, . . . , ir−1).
And set

A =




0 2 · · · 2 1 · · · · · · 1
2
...
2

B

2 · · · · · · 2
...

. . . . . .
...

2 · · · · · · 2
1
...
...
1

2 · · · 2
...

. . .
...

...
. . .

...
2 · · · 2

0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0




with the right upper block of 1’s (bold printed) of width ir − 1.

3



We would like to illustrate the bijection by the first few examples.

(
0 1
1 0

)

(2)

(
0 2
2 0

)

(1, 1)




0 1 1
1 0 1
1 1 0




(3)




0 2 2
2 0 1
2 1 0




(2, 1)




0 2 2
2 0 2
2 2 0




(1, 1, 1)




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




(4)




0 2 2 1
2 0 1 2
2 1 0 2
1 2 2 0




(2, 2)




0 2 2 2
2 0 1 1
2 1 0 1
2 1 1 0




(3, 1)




0 2 2 2
2 0 2 2
2 2 0 1
2 2 1 0




(2, 1, 1)




0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0




(1, 1, 1, 1)

Figure 2. Distance matrices and corresponding partitions.

In the next section we will show that this algorithm gives all integral
simplices of diameter at most 2 without repetitions.
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3 Proof for the bijection

At first we want to illustrate the bijection between partitions and in-
tegral simplices with diameter at most 2 by an example. Let A be the
distances matrix constructed of the partition (4, 3, 3, 2, 2). Thus

A =




0 2 2 2 2 2 2 2 2 2 2 2 2 1
2 0 2 2 2 2 2 2 2 2 2 2 1 2
2 2 0 2 2 2 2 2 2 2 1 1 2 2
2 2 2 0 2 2 2 2 1 1 2 2 2 2
2 2 2 2 0 1 1 1 2 2 2 2 2 2
2 2 2 2 1 0 1 1 2 2 2 2 2 2
2 2 2 2 1 1 0 1 2 2 2 2 2 2
2 2 2 2 1 1 1 0 2 2 2 2 2 2
2 2 2 1 2 2 2 2 0 1 2 2 2 2
2 2 2 1 2 2 2 2 1 0 2 2 2 2
2 2 1 2 2 2 2 2 2 2 0 1 2 2
2 2 1 2 2 2 2 2 2 2 1 0 2 2
2 1 2 2 2 2 2 2 2 2 2 2 0 2
1 2 2 2 2 2 2 2 2 2 2 2 2 0




.

This yields the upper right triangle matrix of A.

A =




2 2 2 2 2 2 2 2 2 2 2 2 1
2 2 2 2 2 2 2 2 2 2 1 2

2 2 2 2 2 2 2 1 1 2 2
2 2 2 2 1 1 2 2 2 2

1 1 1 2 2 2 2 2 2
1 1 2 2 2 2 2 2

1 2 2 2 2 2 2
2 2 2 2 2 2

1 2 2 2 2
2 2 2 2

1 2 2
2 2

2




Figure 3. Boundary of ones.
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The shape of A can be described as follows. The length of a bold
printed block of ones is one less than the corresponding summand of
the partition. Each block of such ones is completed to a upper right
triangular matrix consisting only of ones (printed in italics) at the
bottom of the corresponding columns. The remaining places are filled
with twos. It is not difficult to show that every partition yields a ma-
trix with such a shape.

There are several things to prove the proposed bijection. We have to
show that the matrices, constructed by the algorithm of Section 2, are
integral simplices. Not every symmetric matrix can be realized as a
distance matrix in the euclidean space. There is for example no tri-
angle with side length 4,2, and 1. At this point we can use a theorem
by Menger [2], which reduces the problem to calculate certain deter-
minants. With Definition 1 we can state the used part of Menger’s
theorem as follows. If M is a set of d+ 1 points with distance matrix
D = (dij) and squared distance matrix A = (d2

i,j), then M is realizable
in the euclidean d-dimensional space, iff (−1)d+1det(Â) ≥ 0 and each
subset of M is realizable in the (d− 1)-dimensional space.

Definition 1. For a matrix A we define Â by

Â :=




A

1
...
1

1 · · · 1 0


 .

We denote the determinant of a matrix A by det(A), and its number
of rows by dim(A).

Lemma 1. If D = (di,j)1≤i,j≤dim(A) is a matrix, which is constructed
by the algorithm in Section 2, and A = (d2

i,j) then it holds

(−1)dim(A)(4 det(Â) + det(A)) > 0

and
(−1)dim(A)det(Â) > 0.
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Proof.
We prove by induction on dim(A).

Induction start dim(A) = 2.
Here there are only the two cases corresponding to lines of length 1
and 2.

For A =
(

0 1
1 0

)
we get

det(A) = −1, det(Â) = 2

and so
(−1)2(4 · 2− 1) > 0, (−1)22 > 0.

For A =
(

0 4
4 0

)
we get

det(A) = −16, det(Â) = 8

and so
(−1)2(4 · 8− 16) > 0, (−1)28 > 0.

Induction step.
(i) The corresponding simplex to A has only unit distances. (This is
case (i) of the algorithm in Section 2.) A little calculation leads to

det(A) = (−1)dim(A)−1(dim(A)− 1), det(Â) = (−1)dim(A)dim(A).

Thus

(−1)dim(A)(4 · (−1)dim(A)dim(A) + (−1)dim(A)−1(dim(A)− 1))
= 3 dim(A) + 1 > 0,

(−1)dim(A)(−1)dim(A)dim(A) = dim(A) > 0

holds.
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(ii) The matrix A has the shape



0 4 · · · 4
4
...
4

B




with a Matrix B corresponding to one from the construction algo-
rithm. Dividing the first row and the first column by 4, and reordering
yields det(A) = 16 det(B̂).

det(Â) =

∣∣∣∣∣∣∣∣∣∣∣

0 4 · · · 4 1
4
...
4

B

1
...
1

1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣

Subtracting 3 times the last row from the first row,4 times the last
column from the first column yields

det(Â) =

∣∣∣∣∣∣∣∣∣∣∣

−7 1 · · · 1 1
0
...
0

B

1
...
1

1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣

.

After developing the first column and reordering we get

det(Â) = −7 det(B̂)− det(B̂)− det(B).

Inserting into the two conditions yields

(−1)dim(A)(4(−8 det(B̂)− det(B)) + 16 det(B̂))
= 4((−1)dim(B)(4 det(B̂) + det(B))) > 0,

(−1)dim(A)(−8 det(B̂)− det(B))
> 4(−1)dim(B) det(B̂) > 0.
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(iii) The matrix A = Cj has the shape



0 4 · · · 4 1 · · · · · · 1
4
...
4

B

4 · · · · · · 4
...

. . . . . .
...

4 · · · · · · 4
1
...
...
1

4 · · · 4
...

. . .
...

...
. . .

...
4 · · · 4

0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0




with the upper right block of width j. With this notation we have
shown the lemma for C0 in (ii).

Subtracting the first column of Cj from the last column yields

det(Cj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 4 · · · 4 1 · · · · · · 1 1
4
...
4

B

4 · · · · · · 4
...

. . . . . .
...

4 · · · · · · 4

0
...
0

1
...
...
1

4 · · · 4
...

. . .
...

...
. . .

...
4 · · · 4

0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0

0
...
...
0

1 4 · · · 4 1 · · · · · · 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Developing the last column, and moving, in the first submatrix, the
last row to the first, row yields

= −det(Cj−1)−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 4 · · · 4 1 · · · · · · 1
4
...
4

B

4 · · · · · · 4
...

. . . . . .
...

4 · · · · · · 4
1
...
...
1

4 · · · 4
...

. . .
...

...
. . .

...
4 · · · 4

0 1 · · · 1

1
. . . . . .

...
...

. . . 0 1
1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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If j > 1 we get by extracting the bottom right 1 of the second sum-
mand

det(Cj) = −det(Cj−1)−det(Cj−1)−det(Cj−2) = −2 det(Cj−1)−det(Cj−2).

For j = 1 we get by the same operation

det(C1) = −det(C0)− det(C0)− det(B) = −32 det(B̂)− det(B).

We define C−1 = B to avoid the distinction. Now we use the ˆoperator
on the above calculation to get

det(Ĉj) = −2 det(Ĉj−1)− det(Ĉj−2).

By induction we get

4 det(Ĉj) + det(Cj) = (−1)j+1(4j + 1)(4 det(B̂) + det(B)).

With dim(Cj) = 1 + dim(B) + j and the induction hypothesis, we see
that the first condition holds. We can also derive by induction

det(Ĉj) = (−1)j+1((7j + 8)det(B̂) + (j + 1)det(B))

and conclude

(−1)dim(Cj)det(Ĉj) = (j + 1)(−1)dim(B)(4 det(B̂) + det(B))+
(3j + 4)(−1)dim(B)det(B̂) > 0.

�

Lemma 2.
If we chooses a matrix A with dim(A) ≥ 2 as in Lemma 1 then for
every sub-matrix Ai, obtained by deleting row and column i of A,
(−1)dim(Ai)det(Âi) > 0 holds.
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Proof. Suppose we are given such a matrix

A =




0 4 4 4 4 4 4 4 4 1
4 0 4 4 4 4 1 1 1 4
4 4 0 1 1 1 4 4 4 4
4 4 1 0 1 1 4 4 4 4
4 4 1 1 0 1 4 4 4 4
4 4 1 1 1 0 4 4 4 4
4 1 4 4 4 4 0 1 1 4
4 1 4 4 4 4 1 0 1 4
4 1 4 4 4 4 1 1 0 4
1 4 4 4 4 4 4 4 4 0




and the corresponding partition (4, 4, 2).
If we delete a row, and the corresponding column, below the ”bound-
ary of ones”, e.g. row 4 or 5 we get a matrix corresponding to (3, 4, 2).
In the other case we delete above the ”boundary of ones”,and so delete
a block of, bold printed, ones. Deleting row and column 2 yields the
matrix 



0 4 4 4 4 4 4 4 1
4 0 1 1 1 4 4 4 4
4 1 0 1 1 4 4 4 4
4 1 1 0 1 4 4 4 4
4 1 1 1 0 4 4 4 4
4 4 4 4 4 0 1 1 4
4 4 4 4 4 1 0 1 4
4 4 4 4 4 1 1 0 4
1 4 4 4 4 4 4 4 0




.

Here we marked also the ones in row 6 which correspond to the block
of the deleted bold printed ones. If we move row and column 6 be-
tween row respectively column 1 and 2, we get a matrix corresponding
to (4, 3, 2). The switch of rows and columns can be described by a per-
mutation τ , in this case τ = (3 4 5 6).

What might happen, and happened in the first case is that the de-
scription as a tuple is not a partition anymore. In (3, 4, 2) we must
interchange the 3 and the 4 to gain a partition again. Translated as a
operation on the matrix this is again a suitable permutation τ .

Since a permutation acting simultaneous on the rows and columns of
a matrix does not change its determinant the lemma is proven. �
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Lemma 3.
The matrices constructed by the algorithm of section 2 are simplices.
Proof. Distance matrices that are realizable in the euclidean d-
dimensional space have been characterized by Menger [2]. If M is
a set of d + 1 points with distance matrix D, and squared distance
matrix A, then M is realizable in the euclidean d-dimensional space,
iff (−1)d+1det(Â) ≥ 0 and each subset of M is realizable in (d − 1)-
dimensional space.
(−1)d+1det(Â) = 0 is equivalent to the realizability in the d − 1-
dimensional space. Since we do not want degenerate simplices we
request (−1)d+1det(Â) > 0. The use of Lemma 1 and Lemma 2 com-
pletes the proof of Lemma 3. �

Now we know that the algorithm of Section 2 converts a partition into
an integral simplex. To prove that the algorithm yields an injection
we define an order on the partitions and a term named value of a
matrix.

Definition 2. The value val(A, b) in base b of a symmetric matrix A
is defined by

val(A, b) =
dim(A)∑

i=2

∑
j = 1i−1ai,jb

dim(A)(dim(A)−1)−i(i−1)
2

+i−1−j .

The matrix A is called maximal in base b if for every permutation τ

val(A, b) ≥ val((aτ(i),τ(j))1≤i,j≤dim(A), b)

holds.

Let us give a little more insight in this definition of the value val(A, b)
of a symmetric matrix A. As the diagonal elements are not involved
in the definition of val(A, b) and A is symmetric we can consider the
upper right triangle matrix of A

A =




a1,2 a1,3 · · · a1,dim(A)

a2,3
. . . a2,dim(A)

. . .
...

adim(A)−1,dim(A)



.

If we read this triangle matrix columnwise, and regard the sequence
of coefficients as a number in base b notation we have the definition
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of val(A, b). A simple fact is, that the matrix consisting of the first
columns and rows of a maximal in base b matrix is maximal in base
b.

Lemma 4.
The matrices constructed by the algorithm in section 2 are maximal
in base 3.
Proof. We will prove by induction on the dimension of the matrices.
For shortness the coefficients of the matrix A will be denoted by as,t
and similar for the other matrices.

Since the two matrices of dimension 2 are maximal in base 3 the in-
duction start is made.

Induction step.
Let A be such a matrix.
The corresponding partition has the shape p = (p1, p2, . . . , , pr). Now
we consider the set S of partitions where one summand of p is de-
creased by one. Since we know the maximality of the corresponding
matrices by induction hypothesis we can conclude, by a look at the
”boundary of ones”, that (p1, p2, . . . , pr−1, pr − 1) leads to a matrix
with the maximum value. If pr = 1 then A clearly is maximal in base
3 because the entries of the last column of A do not increase. In the
other case there must be at most a one in the last column. Consider
the maximal in base 3 representation R of A. We know that the first
dim(A)− 1 columns of A equal those of the maximal representation.
The row number of the first one in the last column of R can not be
bigger than the row number of the first one in the last but one col-
umn of A, because interchanging the last two columns would yield a
contradiction to the maximality of the submatrix. If pr 6= 2 the row
number of the first one in the last column of A equals the row number
of the first one in the last but one column because the last block of
ones has a length at most 2 due to pr > 2. Since possible other ones
are at the bottom of the last column of A, thus A is maximal in base
3 in this case. In the other case, pr = 2, consider the number of rows
which contain a single one. Since this number is equal for R and A,
and R,A equal in the first columns, the row with the first one in the
last column of R must be a row with a single one. So we can conclude
that A is maximal in base 3. �.
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Definition 3. Given two partitions i = (i1, . . . , ir), j = (j1, . . . , js) of
a natural number n. If r < s then i < j, similar if r > s then i > j.
In the case r = s we choose lexicographical order.

Lemma 5.
For two partitions p1 < p2, the algorithm of Section 2 produces two
matrices A1, A2 satisfying val(A1, 3) < val(A2, 3)
Proof. A look at Figure 3 and a little thought shows the fact. �

We can conclude from Lemma 3, Lemma 4, and Lemma 5 that there
are at least as many d-dimensional integral simplices of diameter at
most 2 as the number of partitions of d+ 1.

To construct all integral d-dimensional simplices of diameter at most
2 in order, we let the algorithm of Section 2 work on a complete in-
creasing sequence of the partitions of d+ 1.

The last thing to prove is that every integral simplex with distances
in {1, 2} is isomorph to a simplex constructed by the algorithm of Sec-
tion 2. Due to isomorphism we only must consider integral simplices
which are maximal in base 3.

Lemma 6.
Every integral maximal (in base 3) simplex with diameter at most 2
is constructed by the algorithm of Section 2.
Proof. Let A be the distance matrix of the simplex. We will use in-
duction on dim(A). As a induction start we check that the examples
in Section 2 are all integral simplices with diameter at most 2 and
dimension at most 3 which are maximal in base 3.

Induction step.
By B we denote the matrix consisting of the first dim(A)−1 columns
and rows of A. With A maximal in base 3 B is also maximal in base 3.
So B was constructed by the algorithm of Section 2 due to induction
hypothesis and there is a partition i = (i1, . . . , ir) which corresponds
to B. Thus we must only consider the last column of A. We distin-
guish three cases for the permutation τ = (dim(A)− 1, dim(A)).

(i) τ is an automorphism on A.
If the last column of B contains only twos, then A is constructible
from one of the two partitions (1, . . . , 1) or (2, 1, . . . , 1). Else both the
last and the last but one columns of A contain a one at a row number
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say l. Applying the triangle inequality yields adim(A)−1,dim(A) = 1, so
A corresponds to the sequence i = (i1, . . . , ir + 1). If i is a partition
then A is constructible by the algorithm, else A is not maximal in
base 3.

(ii) val(τ(A), 3) > val(A, 3).
A contradiction to the maximality of A.

(iii) val(τ(A), 3) < val(A, 3).
(iii) a) The last but one column of A contains no one, then by induc-
tion hypothesis all non diagonal entries of B must equal 2. The last
column of A can not contain more than 1 one, because of the triangle
inequality and the absence of another 1 in B. If the last column of
A contains no one, than A corresponds to the partition (1, 1, . . . , 1).
In the other case the last column of A contains a single one. Due to
the maximality of A the single one must be located in the lower right
corner of A, and so A is constructible from the partition (2, 1, . . . , 1).

Define h1 as the row number of the first one of the last but one col-
umn of A. Because val(τ(A), 3) < val(A, 3) there must exist the row
number h2 of the first one of the last column of A fulfilling h1 ≥ h2.
We distinguish the two cases of equality and strict inequality.

(iii) b) h1 = h2.
Let l 6= h2 be a row number with a one in the last column of A. From
ah2,dim(A) = al,dim(A) = 1 we conclude with the help of the triangle
inequality that ah2,l = 1 must hold. Again by using the triangle in-
equality and ah2,dim(A)−1 = 1 we conclude al,dim(A)−1 = 1. Together
with val(τ(A), 3) < val(A, 3) we get a contradiction.

(iii) c) h1 > h2.
From the induction hypothesis we know that the first h1−1 rows of B
contain only twos, so due to the maximality ofA it holds ah1−1,dim(A) =
1. Now assume that there exists a row number l 6= h1−1 with a one in
the l’s row of the last column of A. Applying the triangle inequality
yields ah1−1,l = 1, a contradiction. So A is constructible from the
partition (i1, . . . , ir−h1+1, 2, 1, . . . , 1). �
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