
Representing Trees with Constraints

Ben Curry1?, Geraint A. Wiggins2 and Gillian Hayes1

1 Institute of Perception, Action and Behaviour, Division of Informatics,
University of Edinburgh, Edinburgh EH1 1HN

2 Department of Computing, School of Informatics,
City University, Northampton Square, London EC1V 0HB

Abstract. This paper presents a method for representing trees using
constraint logic programming over finite domains. We describe a class
of trees that is of particular interest to us and how we can represent
the set of trees belonging to that class using constraints. The method
enables the specification of a set of trees without having to generate all
of the members of the set. This allows us to reason about sets of trees
that would normally be too large to use. We present this research in the
context of a system to generate expressive musical performances and, in
particular, how this method can be used to represent musical structure.

1 Introduction

This paper describes how constraints can be used to represent a specific class of
trees that have the following properties:

Rooted - each tree has a node distinguished as the root node.
Ordered - the children of each node are distinct and cannot be re-ordered

without changing what the tree represents.
Constant depth - the leaf nodes of each tree are all the same distance from

the root.
Strict - at each depth, one of the nodes has at least two successors.

The number of distinct trees in this class is large for each n, where n is
the number of leaf nodes. If n ≥ 10 the set of trees described can not easily be
manipulated or used within a computer system. We present here an efficient way
of representing this large set of trees, using constraint logic programming, that
enables us to use this class of trees in our research.

The structure of the paper is as follows. The next section explains why we are
interested in representing sets of trees in the context of music. We then present
some implementation details including our representation and the constraints
used to specify the trees of interest. Some results are presented that illustrate
the effectiveness of this method. Finally, we end with our conclusions.

? Ben Curry is supported by UK EPSRC postgraduate studentship 97305827



2 Motivation: Grouping Structure

This work forms part of our research into creating an expressive musical per-
former that is capable of performing a piece of music alongside a human musician
in an expressive manner.

An expressive performance is one in which the performer introduces vari-
ations in the timing and dynamics of the piece in order to emphasise certain
aspects of it. Our hypothesis is that there is a direct correlation between these
expressive gestures and the musical structure of the piece and we can use this
link to generate expressive performances.

The theory of musical structure we are using is the Generative Theory of
Tonal Music (GTTM) by Lerdahl and Jackendoff (1983). The theory is divided
into four sections that deal with different aspects of the piece’s musical structure.
We are particularly interested in the grouping structure which corresponds with
how we segment a piece of music, as we are listening to it, into a hierarchy of
groups. It is this hierarchy of groups that we seek to represent with our trees.

The rules are divided into two types: well-formedness rules that specify what
structures are possible; and preference rules that select, from the set of all pos-
sible structures, those that correspond most closely to the score.

The rules defining grouping structures are based on principles of change
and difference. Figure 1 shows four places where a grouping boundary may be
detected (denoted by a ‘∗’). The first case is due to a relatively large leap in pitch
between the third and fourth notes in comparison to the pitch leaps between the
other notes. The second boundary occurs because there is a change in dynamics
from piano to forte. The third and fourth boundaries are due to changes in
articulation and duration respectively.
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Fig. 1. Points in the score where grouping rules may apply

Figure 2 shows an example of a grouping structure for a small excerpt of
music. We can see that the music has been segmented into five different groups,
one for each collection of three notes. The musical rest between the third and
fourth groups causes a higher level grouping boundary that makes two higher
level groups which contain the five groups. These groups are then contained
within one large group at the highest level.

The grouping structure can be represented with a tree. Figure 3 shows a tree
representation (inverted, to aid comparison) for the grouping structure shown
in Fig. 2. The leaf nodes at the top of the tree correspond to the notes in the
score, and the branches convey how the notes are grouped together. This is an



example of the class of tree we are trying to represent. From this point onwards
the trees will be presented in the more traditional manner, i.e. the leaf nodes at
the bottom and the root node at the top.
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Fig. 2. An example grouping structure

Fig. 3. Tree representing the grouping structure shown in Fig. 2

Although the GTTM grouping rules are presented formally, the preference
rules introduce a large amount of ambiguity. For a particular piece of music,
there are many possible grouping structures which would satisfy the preference
rules. The purpose of the present research is to devise a way to represent this
large set of possible structures in an efficient way so that they can be used by a
computer system.

Using our hypothesis of the link between musical structure and expressive
performance, one of the core ideas of our research is to use rehearsal performances
by the human musician to disambiguate the large set of possible grouping trees.
The expressive timing used by the musician in these rehearsals provides clues
as to how the musician views the structure of the piece. A consistent pattern
of timing deviations across a number of performances will enable us to high-
light points in the score where the musician agrees with the possible grouping
boundaries.

3 Using Constraints

This section of the paper explains how we use constraint logic programming
(Van Hentenryck, 1989) to represent sets of trees. Although constraints have
been used in the areas of music composition (e.g. Henz 1996) and tree drawing



(e.g. Tsuchida 1997), this research is concerned with an efficient representation
of large numbers of tree structures, which is a problem distinct from these.

Constraint logic programming over finite domains enables the specification
of a problem in terms of variables with a range of possible values (known as the
domain of the variable) and equations that specify the relationships between the
variables. For example if (1), (2) and (3) hold then we can narrow the domains
of x and y as shown in (4):

x ∈ {1..4} (1)
y ∈ {3..6} (2)
x + y ≥ 9 (3)

x ∈ {3..4} ∧ y ∈ {5..6} (4)

The following sections outline the representation and the constraints we use
to specify the class of trees. We begin by discussing the representation of the
nodes and then present the five types of constraints used to ensure that the trees
generated belong to our class.

3.1 Representation

We know that our class of trees will be monotonically decreasing in width from
the leaf nodes up to the root and, therefore, we can represent the set of trees by
a triangular point lattice of nodes1. Figure 4 shows the point lattices for trees
of width n = 3 and n = 4.

n=4n=3

Fig. 4. Point lattices for trees of width 3 and 4

Each node has the following variables (illustrated in Fig. 5):

1. id: a unique identifier;
2. uplink: a connection to the level above;
1 An implementation detail means that there is always a path from the highest node

of the point lattice to the leaf nodes, but this highest node should not be considered
the root node. The root node may occur at any height in the point lattice and is
identified as the highest node with more than one child.



3. Downlink values which represent all the nodes on the level below that are
connected to this one.

The id is specified as an (x,y) coordinate to simplify the implementation
details. The uplink variable contains an integer that represents the x-coordinate
of the node on the level above to which this node is connected i.e. node (uplink,
y + 1). The downlink values, specified by a lower (dl) and upper (du) bound,
refer to a continuous range of nodes on the level below that may be connected
to this one i.e. nodes (dl, y − 1). . . (du, y − 1).

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

id = (x,y)

uplink

Downlinks

du

dl

Fig. 5. A typical node

The next sections present the constraints that are applied to the nodes in
order to create the specific set of trees in which we are interested. They begin
by specifying the domains of the variables and then constraining the nodes so
that only those trees that belong to our class can be generated.

3.2 Node Constraints

The first task is to define the domains of the variables for each node. Due to the
triangular shape of the point lattice, the uplink for each node is constrained to
point either upwards, or up and to the left of the current node. We constrain
the downlink for each node to span the nodes directly below, and below and to
the right of the current node.

The constraints (given in (5)-(8)) define the domains of the uplink and down-
link range (i.e. dl and du) for each node2. The uplink lies in the range {0..x}
where x is the x-coordinate of the current node. The zero in the range is used
when the node is not connected to the level above.

domain([uplink]) = {0..x} (5)
domain([dl, du]) = {0..n} (6)

(dl = 0) ⊕ (dl ≥ x) (7)
du ≥ dl (8)

2 The ⊕ in (7) denotes exclusive-or.



The downlink specifiers dl and du are constrained in a similar way to lie in a
range from {0..n} with the added constraints that du has to be greater than or
equal to dl and that dl either equals zero or is greater than or equal to x. Figure
6 shows how these constraints relate to the direction of the connections to and
from each node.

Constraint (9) handles the situation of a node which is not used in a tree. If
the uplink of the node is zero then the downlinks of the node must also be zero.

((dl = 0) ⇔ (du = 0)) ∧ ((dl = 0) ⇔ (uplink = 0)) (9)
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Fig. 6. Constraining the Uplinks and Downlinks

3.3 Level Constraints

To ensure that the connections between two levels do not cross, constraints (10)
and (11) are applied to each pair of adjacent nodes. For a pair of nodes A and
B, with A directly to the left of B, the uplinkB must either point to the same
node as the uplinkA or to the node to the right of it or, if it is unused, be equal
to zero (10).

(uplinkB = uplinkA) ∨ (uplinkB = uplinkA + 1) ∨ (uplinkB = 0) (10)

Once one of the uplinks on a particular level becomes equal to zero, all the
uplinks to the right of it must also be zero (11). This prevents the situation of
an unconnected node in the midst of connected ones.

(uplinkA = 0) ⇒ (uplinkB = 0) (11)

Figure 7 shows examples of correct and incorrect mid-sections of a tree un-
der these new constraints. The bottom example is incorrect because it violates
constraints (10) and (11).



Violates (11) Violates (10)

Fig. 7. A correct (top) and incorrect (bottom) mid-section of a tree

3.4 Consistency Constraints

If the current node refers to a node in the level above, the x-coordinate of this
node must appear within its downlink range. Constraint (12) ensures that if this
node points to a node on the level above, the downlink range of that node must
include this one. Figure 8 shows how this constraint affects two nodes where the
lower one is connected to the upper one.

(xabove = uplinkthis) ⇔ ((xthis ≥ dlabove) ∧ (xthis ≤ duabove)) (12)
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Fig. 8. Ensuring connectivity between nodes

3.5 Width Constraints

We now constrain the trees to decrease in width as we travel from the leaf nodes
to the root node. The width of a level is defined as the number of nodes that
have a non-zero uplink on that level. Constraint (13) deals with this situation
with the precondition that the width of the current level is greater than 1. This
precondition is necessary to allow situations such as the first four trees in Fig.
10 where we consider the root node to be at the point where branching begins.



(widthi > 1) ⇒ (widthj < widthi) (13)

We want to ensure that the trees decrease in width to reduce the search space
as much as possible. Figure 9 shows an example of a tree which does not decrease
in width between two levels, we can remove this tree from our search space as
it does not contribute anything new to the grouping structure as we move from
level i to level j.

j

i

Fig. 9. A section of a tree that does not decrease in width

3.6 Edge Constraints

The last step is to ensure that the uplink of the rightmost3 node on a level
points inwards (the rightmost node in Fig. 7 is an example of this). We find the
maximum x of the level above that has a non-zero uplink and then ensure that
the uplink of the rightmost node points to it ((14) and (15)).

S = {x : id(x, y) has uplinkx 6= 0} (14)
uplink ≤ max(S) (15)

3.7 Valid Trees

The constraints given in §3.2 to §3.6 define the set of trees which belong to our
class. Figure 10 shows an example set of width n = 4. The white nodes are ones
that appear in the generated solutions but are not considered to be part of the
tree since the root of the tree is the highest node with more than one child.

3.8 Using the Constraint Representation

The constraints which have been defined in the sections above describe a general
class of trees. The next step is to introduce aspects of the grouping structure to
3 By ‘rightmost’ we mean the node on the current level with the maximum x-

coordinate that has a non-zero uplink.



Fig. 10. All the trees of width four (n = 4)

reduce this large set of trees to only those trees that correspond to the piece of
music being analysed.

Every point in the musical score where a grouping boundary could occur
is identified, for each of these points we then measure the relative strength of
this boundary against the surrounding ones. Every boundary point can then be
used to determine the shape of the tree by ensuring that every pair of notes
intersected by a boundary corresponds to a pair of nodes separated in the tree
set.

To separate the nodes in a tree, we need to ensure that the parents of the
nodes are not the same, and if we have a measure of relative strength between
boundaries, we can specify how far towards the root the nodes need to be sepa-
rated. The algorithm below shows how this is implemented:

Repel(idA, idB, strength)
if (strength ≥ 1) then

parent(idA) 6= parent(idB)
Repel(parent(idA), parent(idB), strength − 1)

endif

This recursive predicate takes two nodes and a strength argument and re-
cursively ensures that the nodes are separated up to a height strength. Figure
11 shows an example tree where the tree is divided into two subtrees by a Repel
constraint that is applied with strength = 1 between the second and third leaf
nodes.

repel

Fig. 11. How Repel affects the tree



4 Results

We generated all the trees up to width n = 7 and found a similarity with an
entry in the Online Encyclopedia of Integer Sequences (Sloane, 2000). It matched
a sequence discovered by the mathematician Arthur Cayley (1891) based upon
this particular class of trees which has the recurrence shown in (16) and (17)4

This recurrence defines the number of trees that belong to our class that are
of width n.

a(0) = 1 (16)

a(n) =
n∑

k=1

(
n

k

)
a(n − k) (17)

Using our representation, the approximate formula, derived experimentally,
for the number of constraints to represent the set of all the trees of width n is
given in (18).

Constraints ≈ 2
3
n3 + 11n2 − 2

3
n − 24 (18)

The number of trees of width n grows rapidly (e.g. the number of trees of
width 50 is 1.995 × 1072). By contrast, the number of constraints it takes to
represent the same number of trees is 1.1 × 105.

Figure 12 shows how the number of trees grows in comparison to the number
of constraints as we increase the width of the tree. The number of trees increases
at a greater than exponential rate whereas the number of constraints increases
at a low-order polynomial rate.

5 Conclusions

This paper presents our research on representing a specific class of trees with
constraint logic programming. Although the number of constraints needed to
represent these large sets of trees is comparatively small, the computational
time needed to solve the constraints is not.

The representation currently restricts the trees to have leaf nodes at the same
depth; however, it does allow the addition of quite simple constraints to change
the class of trees represented. For example, to restrict the trees to strictly binary
trees we need only add the constraint du = dl + 1.

With the use of constraints we have delayed the generation of trees until we
have added all the possible restrictions, this offers a great reduction in complexity
and allows us to manipulate trees of greater width than would normally be
possible.
4 Where

(
n
k

)
is the standard n choose k formula given by: n!

k!(n−k)!
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Fig. 12. A graph showing how the number of trees and number of constraints grows
with the width of the tree
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