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Abstract

The main contribution of this report is the introduction of a new mathematical tool
that we call the Diagonal Poisson Transform� and its application to the analysis of some
linear probing hashing schemes� We also present what appears to be the �rst exact
analysis of a linear probing hashing scheme with buckets of size b�
First� we present the Diagonal Poisson Transform� We show its main properties and

apply it to solve recurrences� �nd inverse relations and obtain several generalizations of
Abel�s summation formula�
We follow with the analyisis of LCFS hashing with linear probing� It is known that

the Robin Hood linear probing algorithm minimizes the variance of the cost of successful
searches for all linear probing algorithms� We prove that the variance of the LCFS scheme
is within lower order terms of this optimum�
Finally we present the �rst exact analysis of linear probing hashing with buckets

of size b� From the generating function for the Robin Hood heuristic� we obtain exact
expressions for the cost of successful searches when the table is full� Then� with the help
of Singularity Analysis� we �nd the asymptotic expansion of this cost up to O��bm	��	�
where m is the number of buckets� We also give upper and lower bounds when the table
is not full� We conclude with a new approach to study certain recurrences that involves
truncated exponentials� A new family of numbers that satis�es a recurrence resembling
that of the Bernoulli numbers is introduced� These numbers may prove helpful in studying
recurrences involving truncated generating functions�
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� CHAPTER �� INTRODUCTION

��� Introduction

The idea of hashing seems to have been originated by H� P� Luhn� in an internal IBM
memorandum in January ���� ����� The �rst major paper published in the area is the
classic article by Peterson ����� In this work� Peterson de�nes open addressing in general�
and gives empirical statistics about linear probing hashing� He also notes the degradation
in performance when records are deleted� Moreover� he acknowledges that the open
addressing idea was devised in ���� by A�L� Samuel� G�M� Amdahl� and E� Boehme� A
good early survey of the area is the paper by W� Buchholz ����� Nevertheless� as noted
by Knuth ����� the word �hashing� to identify this technique appeared for the �rst time
in the literature in the survey of Morris ����� although it had been in common usage for
several years� In that paper he introduced the idea of random probing �with secondary
clustering	�

Linear probing is the simplest collision resolution for open addressing� It works reason�
ably well for tables that are not too full� but as the load factor increases� its performance
deteriorates rapidly� The longer a contiguous sequence of key grows� the more likely
collisions with this sequence will occur when new keys are inserted� Furthermore� one
insertion may coalesce two long clusters� This phenomenon is called primary clustering�

The main application of linear probing is to retrieve information in secondary storage
devices when the load factor is not too high� as �rst proposed by Peterson ����� It was
also proposed by Larson as a method to handle over�ow records in linear hashing schemes
���� ���� One reason for the use of linear probing is that it preserves locality of reference
between successive probes� thus avoiding long seeks �����

The �rst published analysis of linear probing for buckets of size �� was done by Kon�
heim and Weiss ����� However� this algorithmwas �rst analyzed by Knuth in ���� ���� ����
who stated that this analysis had a strong in�uence in the structure of his series �The
Art of Computer Programming�� A di�erent approach to the analysis of this hashing
scheme� based on the application of ballot theorems� was presented by Mendelson and
Yechiali ����� P�ug and Kessler ���� study the case in which the keys are nonuniformly
distributed� They do an asymptotic analysis for the case in which the size of the table
tends to in�nity while the load factor is constant� Pittel ����� also presents an asymptotic
analysis of the probable largest cost of a successful search� Finally� Aldous ��� studies the
case when the access probabilities of the keys are not uniform�

Operating primarily in the context of double hashing� several authors ���� �� ���
observed that a collision could be resolved in favor of any of the keys involved� and used
this additional degree of freedom to decrease the expected search time in the table� We
obtain the standard schemes by letting the incoming key probe its next location� Celis
et al� ���� ��� were the �rst to observe that collisions could be resolved having variance
reduction as a goal� They de�ned the Robin Hood heuristic� in which each collision
occurring on each insertion is resolved in favor of the key that is farthest away from its
home location� Later� Poblete and Munro ���� de�ned the last�come��rst�served heuristic�
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where collisions are resolved in favor of the incoming key� and others are moved ahead
one position in their probe sequences� In both cases� the reduction of the variance can
be used to speed up searches by replacing the standard search algorithm by a �mean�
centered� one that �rst searches in the vicinity of where we would expect the element to
have �drifted� to� rather than its initial probe location�

Very little work has been done with respect to the analysis of open addressing hashing
schemes with buckets of size b� Larson ���� presents an asymptotic analysis for uniform
hashing while Ramakrishna ���� studies random probing but he only gives numerical
solutions� For linear probing� Blake and Konheim ��� present an asymptotic analysis� and
Mendelson ���� derive exact expressions but only solves them numerically� Knuth ����
presents an approximate analysis �based on the Poisson approximation of the binomial
distribution	 generalizing the model presented by Schay and Spruth ����� He completes
the ideas introduced by M� Tainiter �����

����� General References

There are several good and classical references for di�erent areas related with the research
presented in this report�

Two good sources of information for hashing techniques are ���� by D� Knuth and ����
by Gonnet and Baeza�Yates� These books� together with ���� and ����� also describe a wide
class of data structures and algorithms related to sorting� searching� selection� arithmetic�
random numbers generators and text databases� They also present theoretical results on
the complexity of these algorithms�

A good survey about analytic methods for average�case analysis with applications to
analyzing sorting algorithms� algorithms on trees� hashing and dynamic algorithms can
be found in ���� by Vitter and Flajolet�

Other sources for advanced mathematical methods in the analysis of algorithms are
���� ��� ��� ����

���� is a good synthetic presentation of the use of complex analysis to estimate the
asymptotic growth of coecients of generating functions� A source for other methods of
asymptotic analysis is the classical book by de Bruijn ����� This is a very useful problem
solving oriented book� More recently� and as an excellent source of information� we have
the survey by Odlyzko ����� For background related with complex analysis one may
consult ��� ����

Finally� we should mention some references related to automatic average�case analysis
of algorithms� Flajolet et al� ���� present a theoretical framework for a powerful system
developed for just such computations ����� This system� called ���� is oriented to the
analysis of an important class of algorithms that operate over decomposable data struc�
tures� There is a considerable amount of research devoted to improving the capabilities
of this software�
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��� Organization and Guide for the Reader

The main topic of this report is the introduction of a new mathematical tool that we
call the Diagonal Poisson Transform� and its application to the analysis of some linear
probing hashing schemes� We also present what we believe to be the �rst exact analysis
of a linear probing hashing scheme with buckets of size b�
In Chapter �� we describe the basic notation and the mathematical machinery that

we are going to use� These tools include probability generating functions� basic binomial
coecient identities� the Bernoulli numbers� the Euler�Maclaurin summation formula� a
family of functions called the Q�functions� and multisection of summations� The Stirling
numbers of the second kind play an important r�ole in our analyses and so� we present their
main properties as well as the derivation of new identities related to them� We also present
the main ideas of Singularity Analysis ����� a technique that is used to �nd asymptotic
expansions of the coecients of generating functions directly from their singularities� The
Cayley tree function is also introduced together with some generalizations of it� These
functions are essential in the analysis of linear probing hashing with buckets presented in
Chapter ��
In Chapter �� we present two standard models that are extensively used in the analysis

of hashing algorithms
 the Poisson model and the exact �lling model� Actually� these
models are deeply related by the Poisson Transform ����� We present this transform� and
prove several important properties of it� However� to perform our analyses we require a
new mathematical transform� called the Diagonal Poisson Transform� We show the main
properties of the transform and apply it to solve recurrences� �nd inverse relations and
obtain several generalizations of Abel�s summation formula�
We follow with the analysis of LCFS hashing with linear probing done in Chapter �� It

was shown in ���� that the Robin Hood linear probing algorithm minimizes the variance
of the cost of successful searches for all linear probing algorithms� We prove that the
variance of the LCFS scheme is within lower order terms of this optimum� This result
also appears in ����� Chapter � concludes with an alternative analysis of the standard
linear probing algorithm�
In Chapter �� we present the �rst exact analysis of linear probing hashing with buckets�

From the generating function for the Robin Hood heuristic� we obtain exact expressions
for the cost of successful searches when the table is full� Then� with the help of Sin�
gularity Analysis� we �nd the asymptotic expansion of this cost up to O��bm	��	� We
also give upper and lower bounds when the table is not full� The technical results of
this report conclude with a new approach to study certain recurrences that involve trun�
cated exponentials� A new family of numbers that satis�es a recurrence resembling that
of the Bernoulli numbers is introduced� These numbers may prove helpful in studying
recurrences involving truncated generating functions�
Finally� we conclude in Chapter � with a summary of our results and some suggestions

for possible future research�
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Mathematical Background

The happiest moments of my life� as
well as the most di�cult ones� have been
witnessed by her mothering look�
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� CHAPTER �� MATHEMATICAL BACKGROUND

In this chapter we present the mathematical machinery that will be used in our
analyses� In Sections ���� ��� and ��� we describe the basic properties we need for the
derivation of our results� In Section ��� we introduce a family of functions that play a
central r�ole in our analyses� Finally� in Section ���� we describe the Stirling numbers of
the second kind� and we prove some important lemmata that will be used in Chapter ��

��� Mathematical Notation

We use the now standard notation for asymptotic analysis� introduced by Bachmann in
���� ���� Given two functions f� g 
 N � R� we say that f�n	 � O�g�n		 if there exists a
constant C � � and n� � N such that

j f�n	 j � C j g�n	 j for all n � n�� ����	

We also use the �little oh� notation introduced by Landau ����� saying that f�n	 � o�g�n		
if for each constant C � �� there exists nC � � such that

j f�n	 j� C j g�n	 j for all n � nC � ����	

We assume the reader is familiar with the O notation and the manipulation of such terms�
A good introduction to this topic can be found in �����

Given a function F �x�� � � � � xn� z	 we use the following operators


UzF �x�� � � � � xn� z	 � F �x�� � � � � xn� �	 �unit	� ����	

and

Dk
zF �x�� � � � � xn� z	 �

�kF �x�� � � � � xn� z	

�zk
�di�erentiation	 ����	

The Bernoulli numbers are denoted by Bk� They are de�ned by the implicit recurrence
relation

mX
j��

�
m� �

j

�
Bj � �m � �� m � � ����	

�following the notation presented in ���� we use �S� to represent � if S is true� and �
otherwise	� These numbers are named after Jakob Bernoulli who discovered the sum ���


k��X
r��

ri �
�

i� �

iX
j��

�
i� �

j

�
Bjk

i���j � ����	
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We obtain an asymptotic in k for �xed i by considering only the term for j � � in ����	

k��X
r��

ri � O

�
ki��

i� �

�
� ����	

These numbers also appear in the Euler�Maclaurin summation formula ���� ����

X
a�k�b

f�k	 �

Z b

a
f�x	dx� �

�
f�x	 jba �

rX
k��

B�k

��k	�
D�k��
x f�x	 jba ����	

� O����	��r	
Z b

a
j D�r

x f�x	 j dx� ����	

Other properties of the Bernoulli numbers can be found in �����

The harmonic numbers are denoted by Hm and are de�ned as

Hm �
mX
k��

�

k
� log�m	 � � � O

�
�

m

�
� �����	

where � � ����������� � � � is Euler�s constant�

equally likely to occur� the probability of empty location

��� Exponential Generating Functions

Given a sequence fn� we de�ne its exponential generating function �egf	 as
F �z	 �

P
n�� fn

zn

n� � In our analyses we use an important convolution formula for egf�s�
If F �z	 and G�z	 are the egf�s for the sequences fn and gn� then H�z	 � F �z	G�z	 is the
egf for the sequence

hn �
X
k

�
n

k

�
fkgn�k �����	

In Section ��� we work with truncated exponential generating functions� We de�ne

�A�z	�n �
nX

k��

ak
zk

k�
�����	

�we use �� to de�ne functions	�
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��� Probability Generating Functions

If X is an integer�valued random variable� denote pi � Prob�X � i�� i � � � � �n� The gen�
erating function for the probability distribution pi is de�ned by

Pm�n�z	 �
X
i��

piz
i� �����	

We use the following well known properties of generating functions ����


E�X � � UzDzPm�n�z	� �����	

V �X � � UzD
�
zPm�n�z	 �E�X ��E�X ��� �����	

where E�X � and V �X � are the expected value and the variance of X respectively�

If f�z	 �
P

n�� fnz
n� then �zn�f�z	 � fn�

��� Binomial Coe�cients

The binomial coe�cients are de�ned by�
r

k

�
�

�
rk

k� integer k � �� real r
� integer k � �

�����	

where rk is the kth falling factorial power of r� de�ned as

rk � r�r� �	 � � ��r � k � �	 real r � integer k � � �����	

We list here some useful properties of the binomial coecients ����� Let n� k�m be integers
and r real� Then� �

n

k

�
�

n�

k��n� k	�
�n � k � �	 �����	

�
n

k

�
� � �k � �	 �����	

�
n

k

�
�

�
n

n� k

�
�n � �	 �����	

�
r

k

�
�

r

k

�
r � �
k � �

�
�k � �	 �����	

�
r

k

�
�

�
r � �
k

�
�

�
r � �
k � �

�
�����	
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�
r

k

�
� ���	k

�
k � r � �

k

�
�����	

�
r

m

��
m

k

�
�

�
r

k

��
r � k

m� k

�
�����	

X
k

�
r

k

�
xkyr�k � �x� y	r �����	

X
k�n

�
r � k

k

�
�

�
r � k � �

n

�
�����	

X
k�n

���	k
�
r

k

�
� ���	n

�
r � �
n

�
�����	

X
��k�n

�
k

m

�
�

�
n� �

m� �

�
�m�n � �	 �����	

X
n��

�
n�m

n

�
zm �

�

��� z	m��
�����	

�����	

We use the notation �i� j	 for the �symmetric binomial coecients� introduced by Comtet
����� de�ned as

�i� j	 �

�
i� j

j

�
�

�
i� j

i

�
�����	

��� The Q functions

The Q functions are a family of sums of the form

Qr�m�n	 �
X
i��

�i� r	
ni

mi
� �����	

In ���� a more general class of Q functions is presented� several properties are proved�
and a Q�Algebra is de�ned� These generalized Q functions play a central r�ole in the
analysis of hashing with linear probing ����� representation of equivalence relations �����
interleaved memory ����� counting of labelled trees ����� optimal caching ���� and random
mappings ���� ����

Some useful properties of the Q functions are ����


Qr�m�n	 � Qr���m�n	 �
n

m
Qr�m�n� �	 �����	
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�This comes from the fact that �i� r	 � �i� �� r	 � �i� r� �		�

Q���m�n	 � � �����	

Qr�m�n	 �
m

r
�Qr���m�n� �	�Qr���m�n		 �����	

�This is a consequence of  ni � �n� �	i � ni � ini��	�

Qr�m�m� �	 � m

r
Qr���m�m	 �����	

�This is a consequence of �����	 and �����	� In particular� given �����	� it implies that
Q��m�m� �	 � m	�

Q��m�m� �	 �
p
��

�

p
m� �

�
�

p
��

��
m���� � �

���m
� O�m����	 �����	

�The proof of this expansion can be found in ����	�
For �xed �� � � � � �� we have the expansions


Qr�m��m	 �
�

��� �	r��
� �r � �	�r� �	�

���� �	r��
m�� �O�m��	 �����	

Qr�m��m� �	 � �

��� �	r��
� �r� �	�r�� �	

���� �	r��
m�� �O�m��	� �����	

An asymptotic series for Q��m�m � �	 was �rst derived by Ramanujan ���� ���� The
function Q��m�m� �	 is also known as the Ramanujan�s Q function� A detailed analysis
of it is found in �����

��� Stirling Numbers of the Second Kind

The Stirling numbers of the second kind count all the possible ways of partitioning a
set of n elements into k nonempty subsets without distinguishing between the subsets�
Following the notation of ����� we denote these numbers by

�n
k

�
� They are named after

James Stirling ����������	� These are some of their properties for m�n� k non negative
integers ����
 �

n

�

�
� �n � �� �����	

�
n

k

�
�

�
n� �
k � �

�
� k

�
n� �
k

�
�����	

�
n

k

�
� � if k � n �����	
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�
n

n

�
� � �����	

�
n� �

n

�
�

�
n � �

�

�
�����	

nX
k��

���	k
�
n

k

�
km � ���	nn�

�
m

n

�
m � � �����	

nX
k��

�
k

m

��
n

k

�
�

�
n � �

m� �

�
�����	

mX
k��

k

�
k � n

k

�
�

�
m� n� �

m

�
�����	

We also need to prove the following lemma


Lemma �
� �
n� �

n

�
� �

�
n� �

�

�
� �

�
n� �

�

�
� �����	

Proof�

Using properties �����	 and �����	 we �nd

�
n � �

n

�
�

nX
k��

k

�
k � �

k

�
�

nX
k��

k

�
k � �

�

�
�����	

� �
nX

k��

�k � �� �	
�

�
k � �

�

�
�����	

� �
nX

k��

�
k � �

�

�
� �

nX
k��

�
k � �

�

�
�����	

� �

�
n � �

�

�
� �

�
n� �

�

�
� �����	

QED
As a consequence� we have the following sums that will prove useful in Chapter ��

X
n��

�
n � �

n � �

�
xn �

�

�� x
�����	

X
n��

�
n � �

n � �

�
xn �

�

��� x	�
�����	
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X
n��

�
n � �

n � �

�
xn �

�

��� x		
� �

��� x	

�����	

More generally� using �����	� we can prove that up �P
n��

�n���p
n��

�
xn satis�es

u� �
�

�� x
�����	

up �
�

�� x
Dx�xup��	 p � �� �����	

Lemma �
�

nX
k��

���	k
�
n

k

�
�k � �	n�p � ���	nn�

�
n� p� �

n� �

�
p � �� �����	

Proof�

If we use equations �����	 and �����	 then

nX
k��

���	k
�
n

k

�
�k � �	n�p �

nX
k��

���	k
�
n

k

�
n�pX
j��

�
n � p

j

�
kj �

n�pX
j��

�
n� p

j

�
nX

k��

���	k
�
n

k

�
kj

� ���	nn�
n�pX
j��

�
j

n

��
n � p

j

�
� ���	nn�

�
n� p� �

n� �

�
� �����	

QED

Lemma �
�

X
k��

e��k���x
�k� �	k�p

k�
xk �

X
n��

�
n � p� �

n � �

�
xn p � �� �����	

Proof�

We use the Taylor expansion of the exponential and Lemma ���� Hence

X
k��

e��k���x
�k � �	k�p

k�
xk �

X
k��

�k � �	k�p

k�
xk
X
j��

���	j �k � �	
j

j�
xj �����	

fletting n � j � kg �
X
n��

���	n
n�

xn
nX

k��

���	k
�
n

k

�
�k � �	n�p
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�
X
n��

�
n� p� �

n� �

�
xn� �����	

QED
We will also require an analogous formula when p � ��� In this case Lemma ��� does
not hold for n � �� because n � p � �� � �� and so �����	 is not valid� However� the
following lemma holds


Lemma �
�

X
k��

e��k�c�x
�k � c	k��

k�
xk �

�

c
� �����	

Proof�

This proof is similar to the one of Lemma ���� but we must take care when n � ��

X
k��

e��k�c�x
�k � c	k��

k�
xk �

X
k��

�k � c	k��

k�
xk
X
j��

���	j �k � c	j

j�
xj �����	

fletting n � j � kg �
X
n��

���	n
n�

xn
nX

k��

���	k
�
n

k

�
�k � c	n��

�
�

c
�
X
n��

���	n
n�

xn
nX

k��

���	k
�
n

k

�
�k � c	n��

�
�

c
�
X
n��

�
n

n� �

�
xn �

�

c
� �����	

where the last equality holds by �����	� QED

Lemma �
�

X
k��

e�kx
kk�p

k�
xk �

X
n��

�
n � p

n

�
xn p � �� �����	

Proof�

The Taylor expansion of the exponential and �����	 give

X
k��

e�kx
kk�p

k�
xk �

X
k��

kk�p

k�
xk
X
j��

���	j k
j

j�
xj �����	

fletting n � j � kg �
X
n��

���	n
n�

xn
nX

k��

���	k
�
n

k

�
kn�p
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�
X
n��

�
n � p

n

�
xn� �����	

QED
When p � ��� the following lemma holds�

Lemma �
�

X
k��

e�kx
kk��

k�
xk � x� �����	

Proof�

Again� the Taylor expansion of the exponential and �����	 give

X
k��

e�kx
kk��

k�
xk �

X
k��

kk��

k�
xk
X
j��

���	j k
j

j�
xj �����	

fletting n � j � kg �
X
n��

���	n
n�

xn
nX

k��

���	k
�
n

k

�
kn��

� x �
X
n��

�
n� �
n

�
xn � x� �����	

QED
Knuth� in ����� presents other useful properties of these numbers�

X
k��

k

�
k � r � �

k

�
nk

nk
� nr � �����	

and for �xed m �
k �m

k

�
�

km

�mm�
� O

	
k�m��



� �����	

��	 Asymptotic Analysis

Some of the problems we present in this report give rise to very complicated asymptotic
analyses� Fortunately� there exist fairly synthetic and powerful methods that permit us to
extract the asymptotic form of the coecients of some complicated generating functions
directly from their singularities�

These methods originated in the work of Darboux in the last century ����� We will
use the Singularity Analysis approach by Flajolet and Odlyzko ���� ��� ����
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Their main idea� is to show that it is sucient to determine local asymptotic ex�
pansions near a singularity� and such expansions can be �transferred� to coecients� A
detailed presentation of this method can be found in ���� and ����� This technique applies
to algebraic�logarithmic functions whose singular expansions involve fractional powers
and logarithms� One of the important features of the method� is that it requires only lo�
cal asymptotic properties of the function to be analyzed� Therefore� it is very suitable for
functions that are only indirectly accessible through functional equations� as for example
the Cayley generating function�
One of their results that we will use is

Theorem �
� �Singularity Analysis Let f�z	 be a function analytic in a domain

D � fz 
 j z j� s�� j Arg�z � s	 j� �

�
� 	g� �����	

where s� s� � s� and 	 are three positive real numbers� Assume that� with 
�u	 �
u�log��u	 and � �� f�������� � � �g� we have

f�z	 	 


�
�

�� z�s

�
as z � s � D� �����	

Then� the Taylor coe�cients of f�z� satisfy

�zn�f�z	 	 s�n

�n	

n!��	
� �����	

So� for example ����� if we use Theorem ��� we have

�zn�
�p
�� �z

s
�

�z
log

�

�� �z 	
�np
�n

p
logn �����	

��
 Lagrange Inversion Formula

This inversion formula is very useful for solving certain kinds of functional equations� and
in some cases gives explicit solutions� There is an immense literature on this problem�
and here we only present the main theorem� Lagrange �rst presented this formula in ����
���� and also mentions it in ����� These references were taken from ����� We present here
the formulation given in ����

Theorem �
� Let ��u	 �
P�

j�� �ju
j be a formal power series with �� �� �� and let Y �z	

be the unique formal power series solution of the equation Y � z��Y 	� The coe�cients
of Y � Y k� and �Y 	 �for an arbitrary series � are given by

�zn�Y �z	 �
�

n

h
un��

i
���u		n �����	
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�zn�Y k�z	 �
k

n

h
un�k

i
���u		n �����	

�zn��Y �z		 �
�

n

h
un��

i
���u		nDu�u	� �����	

��� Generalizations of the Cayley Tree Function

In Chapter � we require several generalizations of the function f�z	� de�ned implicitly
by f�z	 � zef�z�� This function appears in problems related with the counting of rooted
labelled trees ���� ��� ���� A standard application of the Lagrange Inversion Formula
���� ��� ���� shows that we can write f�z	 as

f�z	 �
X
k��

kk��

k�
zk �����	

Following the notation presented in ����� we de�ne

fp�z	 �
X
k��

kk�p

k�
zk and gq�y�z	 �

X
k��

�y � k	k�q

k�
zk �����	

When p � �� then it is convenient to begin the summation for fp�z	 at k � � rather than
k � �� so that the constant coecient is �� Therefore� the Cayley function f�z	 is f���z	�
The two most important identities we need are ����

zDzf�z	 �
f�z	

�� f�z	
�

�

�� f�z	
� � �����	

and

gy���z	 �

�
f�z	

z

�y �

�� f�z	
�����	

If we notice that zDzfp�z	 � fp���z	� then by iteration of �����	� we can write the
functions fp�z	� as combinations of powers of ����� f�z		�

With the help of the Implicit Function Theorem ����� and the functional equation that
de�nes f�z	� it is shown in ���� ��� that

Lemma �
� The function f�z	 has a dominant singularity at z� � ��e� and its singular
expansion at z� is

f�z	 � �� ����p�� ez �
�

�
��� ez	 �O���� ez	���	 �����	

Following the notation given in ����� we write � � ����
p
�� ez�
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Therefore� by Theorem ���� using �����	 and �����	� we are able to �nd asymptotic
expansions for the family of generating functions fp�z	 and qq�y�z	�
If we use the Stirling formula and the binomial theorem� we �nd that ����

�
zn

n�

�
��s 	

p
�nn�

s��
�

!

s
�

�
�
s��
�

�
� �

�s� � �s� �
��n

� O

�
�

n�

��
�����	

Equation �����	 is valid for all values of s� provided we de�ne ��!��k	 � �� for k a
positive natural number�

���� Multisection of Series

Let A�z	 �
P

k�� akz
k� Sometimes� we do not want the generating function of ak � but

rather the generating function of abk�t� for some �xed b � � and � � t � b� Therefore�
we want Ab�t�z	 �

P
k�� abk�tz

bk�t�

Let r � e
��i

b � where i �
p��� That is� r� is a primitive b�th root of unity� Then� we

can write ���� ���

Ab�r�z	 �
�

b

b��X
j��

r�tjA
	
rjz



�����	

or� equivalently

X
k��

abk�tz
bk�t �

�

b

b��X
j��

e�
��i

b
tjA

	
e
��i

b
jz



�����	

Therefore� if we know local asymptotic expansions forA�z	 near its dominant singularities�
then� by �����	� we can use singularity analysis to �nd the asymptotics of abk�d� when k
goes to in�nity�
We use this multisection approach to some generalizations of the Cayley generating

function in Chapter ��





Chapter �

The Diagonal Poisson Transform

I have had several night walks with
Manuelita� and often our celestial
mother was illuminating us with her
sweet light�

��
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��� The Poisson Transform

There are two standard models that are extensively used in the analysis of hashing algo�
rithms
 the exact �lling model and the Poisson �lling model�
Under the exact �lling model� we have a �xed number of keys� n� that are distributed

among m locations� and all mn possible arrangements are equally likely to occur�
Under the Poisson model� we assume that each location receives a number of keys that

is Poisson distributed with parameter x� and is independent of the number of keys going
elsewhere� This implies that the total number of keys� N � is itself a Poisson distributed
random variable with parameter mx�

Prob �N � n� �
e�mx�mx	n

n�
n � �� �� � � � ����	

This model was �rst considered in hashing analysis by Fagin et al� ���� in �����
It is generally agreed that the Poisson model is simpler to analyze than the exact

�lling model� The main di�erence is the fact that in the Poisson model� the number of
keys in each location is independent of the number of keys in other places� This is not the
case in the exact �lling model� Gonnet and Munro in ����� observed that these models
are deeply related� They showed that the results from one model can be transformed into
the other� and that this transformation can be inverted�
Consider a hash table of size m with n elements� Let P be a property �e�g� cost of a

successful search	 of a random element of the table� and f�m�n	 be the result of applying
a linear operator f �e�g� an expected value	 to the probability generating function of
P that was found using the exact �lling model� Then "fm�x	� the result of computing
the same linear operator f to the probability generating function of P computed using a
model with m random independent Poisson distributed objects each with parameter x�
is

"fm�x	 �
X
n��

f�m�n	PrfN � ng

� e�mx
�X
n��

f�m�n	
�mx	n

n�
����	

We may use ����	 to de�ne Pm�f�m�n	# x�� the Poisson transform �also called Poisson
generating function ���� ���	 of f�m�n	� as

Pm�f�m�n	# x� � "fm�x	 � e�mx
�X
n��

f�m�n	
�mx	n

n�
����	

If Pm�f�m�n	# x� has a MacLaurin expansion in powers of x� then we can retrieve the
original sequence f�m�n	 by the following inversion theorem ����
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Theorem �
� If Pm�f�m�n	# x� � P
i�� aix

i is the Poisson transform of f�m�n� then

f�m�n	 �
P�

i�� ai
ni

mi �

This theorem is easily proved by multiplying each side of ����	 by emx �or its power series	�
and equating the powers of x on both sides�

So we can study a hashing problem under the more convenient model� and then
transfer the results to the other by using the Poisson transform or its inverse�

The results obtained under the Poisson �lling model can also be interpreted as an
approximation of those one would obtain under the exact �lling model� if n � mx� This
approximation can be formalized by means of an asymptotic expansion� Poblete� in �����
presents an approximation theorem and gives an explicit form for all the terms of the
expansion�

Theorem �
� For x � n�m�

f�m�n	 � "fm�x	 �
X
j��

�
�

n

�jX
i��

ci�jx
i "f �i�m �x	� ����	

Here

ci�j �
�

i�

X
k��

���	i�k�j
�
j

k

��
k

k � j

�
����	

and "f
�i�
m �x	 � Di "fm�x	

where
� k
k�j

�
denotes the Stirling numbers of the �rst kind�

For most situations� this approximation is satisfactory� However� it cannot be used
when we have a full� or almost full table �x is very close to �	�

Some of the transforms presented in ���� are

Pm�f�m�n	# x� � "fm�x	 � e�mx
�X
n��

f�m�n	
�mx	n

n�
����	

Pm��f�m�n	 � �g�m�n	# x� � �Pm�f�m�n	# x�� �Pm�g�m�n	# x� ����	

�� � constants

Pm��# x� � � ����	

Pm
�
nk

mk
# x

�
� xk ����	

Pm�Qr�m�n	# x� �
�

��� x	r��
�����	

Pm�m�f�m�n� �	� f�m�n		# x� � DxPm�f�m�n	# x� �����	
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Pm
�
�

m

n��X
k��

f�m� k	# x

�
�

Z x

�
Pm�f�m�n	# t�dt �����	

We require several new transformations�

Theorem �
� The following properties of the Poisson Transform hold	

e�xPm�f�m�n	# x� � Pm��

��
m

m� �

�n
f�m�n	# x

�
�����	

exPm�f�m�n	# x� � Pm��
��

m

m� �
�n

f�m�n	# x

�
�����	

Pm
�
f�m�n� �	

n � �
# x

�
�
�

mx

Pm�f�m�n	# x�� f�m� �	e�mx� �����	

Pm
�
�

n � �

nX
k��

f�m� k	# x

�
�
�

x

Z x

�
Pm�f�m�n	# t�dt �����	

Pm
h
nkf�m�n� k	# x

i
� �mx	kPm�f�m�n	# x� �����	

Pm
��

n

k

�
f�m�n� k	# x

�
�
�mx	k

k�
Pm�f�m�n	# x� �����	

Pm �cnf�m�n	# x� � e�c���mxPm�f�m�n	# cx� �����	

Pm
�

nX
k��

�
n

k

�
f�m�n� k	# x

�
� emxPm�f�m�n	# x� �����	

Pm
�

nX
k��

�
n

k

�
f�m� k	g�m�n� k	# x

�
� emxPm�f�m�n	# x�Pm�g�m�n	# x� �����	

Pm
�

nX
k��

�
n

k

�
pkf�m� k	qn�kg�m�n� k	# x

�
� Pm�f�m�n	# px�Pm�g�m�n	# qx� �����	

p
q��

Pm
�

nX
k��

�
n

k

�
pkf�pm� k	qn�kg�qm� n� k	# x

�
� Ppm�f�pm� n	# x�Pq�g�qm� n	# x� �����	

p
q��

Proof� These proofs are based on the de�nition of the Poisson Transform�

�����	


e�xPm�f�m�n	# x� � e��m���x
�X
n��

�
m

m� �

�n
f�m�n	

�m� �	n

n�
xn

� Pm��

��
m

m� �

�n
f�m�n	# x

�
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�����	


exPm�f�m�n	# x� � e��m���x
�X
n��

�
m

m� �
�n

f�m�n	
�m� �	n

n�
xn

� Pm��
��

m

m� �
�n

f�m�n	# x

�

�����	


Pm
�
f�m�n� �	

n � �
# x

�
� e�mx

�X
n��

f�m�n� �	

n� �

�mx	n

n�

�
e�mx

mx

�X
n��

f�m�n	
mn

n�
xn

�
�

mx

Pm�f�m�n	# x�� f�m� �	e�mx�
�����	


It follows directly from �����	 and �����	�

�����	


Pm
h
nkf�m�n� k	# x

i
� e�mx

�X
n�k

f�m�n� k	
�mx	n

�n� k	�

� �mx	ke�mx
�X
n��

f�m�n	
�mx	n

n�

� �mx	kPm�f�m�n	# x�

�����	


Divide both sides of �����	 by k��

�����	


Pm �cnf�m�n	# x� � e�mx
�X
n��

f�m�n	
�cmx	n

n�

� e�c���mxe�m�cx�
�X
n��

f�m�n	
mn

n�
�cx	n

� e�c���mxPm�f�m�n	# cx�
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�����	


Pm
�

nX
k��

�
n

k

�
f�m�n� k	# x

�
� e�mx

�X
n��

nX
k��

�
n

k

�
f�m�n� k	

�mx	n

n�

�
�X
k��

�mx	k

k�

�
e�mx

�X
n�k

f�m�n� k	
�mx	n�k

�n� k	�

�

� emxPm�f�m�n	# x�

�����	


Pm
�

nX
k��

�
n

k

�
f�m� k	g�m�n� k	# x

�

� e�mx
�X
n��

nX
k��

�
n

k

�
f�m� k	g�m�n� k	

�mx	n

n�

� emx

�
e�mx

�X
k��

f�m� k	
�mx	k

k�

��
emx

�X
n�k

g�m�n� k	
�mx	n�k

�n� k	�

�

� emxPm�f�m�n	# x�Pm�g�m�n	# x�

�����	


Pm
�

nX
k��

�
n

k

�
pkf�m� k	qn�kg�m�n� k	# x

�

� e�m�p�q�x
�X
n��

nX
k��

�
n

k

�
pkf�m� k	qn�kg�m�n� k	

�mx	n

n�

�

�
e�mpx

�X
k��

f�m� k	
�mpx	k

k�

��
e�mqx

�X
n�k

g�m�n� k	
�mqx	n�k

�n� k	�

�

� Pm�f�m�n	# px�Pm�g�m�n	# qx�

�����	


Pm
�

nX
k��

�
n

k

�
pkf�pm� k	qn�kg�qm� n� k	# x

�
�

� e�m�p�q�x
�X
n��

nX
k��

�
n

k

�
pkf�pm� k	qn�kg�qm� n� k	

�mx	n

n�

�

�
e�mpx

�X
k��

f�pm� k	
�mpx	k

k�

��
e�mqx

�X
n�k

g�qm� n� k	
�mqx	n�k

�n� k	�

�
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� Ppm�f�pm� n	# x�Pqm�g�qm� n	# x�

QED

��� The Diagonal Poisson Transform

In Chapter �� we present a new methodology to study some linear probing hashing algo�
rithms� The main tool in this analysis is the introduction of a new transform which we
call the Diagonal Poisson Transform� This transform� �rst introduced by Poblete et al�
����� is used in section ��� to solve �����	� the main recurrence of this analysis�

����� Motivation for the New Transform

Let P be a property �e�g�
 cost of a successful search	 of a random �but �xed	 element 

into a table of size m with n � � elements� as is shown in Figure ���� Since the table is
circular� without loss of generality we may assume that the last location is empty and 

is among precisely i� � consecutive occupied locations preceding the last one� Let fm�n

be the result of applying a linear operator f �e�g�
 an expected value	 to the probability
generating function of P that was found using the exact �lling model�

� R

� �

� �

� � � �

� i� �

n

i� �n� i� �

m� i� �

i� �

�������� ��������

Figure ���


Since f is linear� we can express fm�n as the sum of the following conditional proba�
bilities

fm�n �
X
i��

Pm�n�Bi	fi���i �����	

where Pm�n�Bi	� Prob�
 � cluster of size i� ���
There are �m� i��	n�i���m�n��	 ways of inserting n� i�� elements in a table of

size m � i� � while leaving the last location of the table empty� Furthermore� there are
�i� �	i ways of inserting i� � elements into a table of size i� �� so that the last position
of the table is empty� Moreover� there are i� � candidates for 
 and mn�n � �	 ways of
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inserting the elements in the table� Therefore�

fm�n �
X
i��

�
n � �

i� �

�
�m� i� �	n�i���m� n � �	�i� �	i�i� �	

mn�n� �	
fi���i �����	

If we apply the Poisson Transform to both sides of �����	 then

Pm�fm�n# x� �

� e�mx
�X
n��

�mx	n

n�

X
i��

�
n� �

i� �

�
�m� i� �	n�i���m� n � �	�i� �	i�i� �	

mn�n� �	
fi���i

� e�mx
�X
i��

�i� �	ixi

i�
fi���i

X
n�i

xn�i

�n� i	�
�m� i� �	n�i���m� n� �	

� e�mx
�X
i��

�i� �	ixi

i�
fi���i��� x	e��m�i���x

� ��� x	
�X
i��

e�i���x
�i� �	ixi

i�
fi���i �����	

So� if we de�ne

Dc�f�n	# x� � ��� x	
X
n��

e��n�c�x
��n� c	x	n

n�
f�n	 �����	

as a new transform� then Pm�fm�n# x� � D��f�n� �� n	# x��

����� Properties of the Diagonal Poisson Transform

We de�ne $fc�x	� the Diagonal Poisson Transform of f�n	� as

$fc�x	 � Dc�f�n	# x� � ��� x	
X
n��

e��n�c�x
��n� c	x	n

n�
f�n	� �����	

The name diagonal Poisson transform comes from the similarity with the Poisson trans�
form� If we consider an in�nite matrix where the rows represent the values of m and
the columns represent the values of n� we may easily see the relationship� The Poisson
transform has m �xed� while n varies from � to in�nity# hence� it follows a row of this
matrix� The diagonal Poisson transform� has the property that m � n � c� where c is a
constant� Therefore� it follows a principal diagonal of the matrix� The grave accent in
the notation $fc�x	 was introduced to illustrate this property�

Some useful properties of this transform are
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Theorem �
�

Dc��f�n	 � �g�n	# x� � � Dc�f�n	# x� � � Dc�g�n	# x� �� � constants �����	

Dc��# x� � � �����	

Dc

�
nk

�n� c	k
# x

�
� xk �����	

Dc�Qr�n� c� n	# x� �
�

��� x	r��
�����	

Dc��n� �	f�n	# x� �

�
�� c�

c

�� x

�
Dc�f�n	# x� � xDx

�Dc�f�n	# x�

�� x

�
�����	

Dc

�
f�n	

n � �
# x

�
�
e��c���x��� x	

x

Z x

�
e�c���tDc�f�n	# t�dt �����	

Dx

�
xc
Dc�f�n	# x�

�� x

�
� xc��Dc��n� c	f�n	# x� �����	

Proof�

For the proofs we just use the de�nition of the Diagonal Poisson Transform�

�����	


Dc��f�n	 � �g�n	# x�

� ��� x	
X
n��

e��n�c�x
��n� c	x	n

n�
��f�n	 � �g�n		

� � ��� x	
X
n��

e��n�c�x
��n� c	x	n

n�
f�n	 � � ��� x	

X
n��

e��n�c�x
��n� c	x	n

n�
g�n	

� � Dc�f�n	# x� � � Dc�g�n	# x��

�����	


Dc��# x� � ��� x	
X
n��

e��n�c�x
��n� c	x	n

n�

� ��� x	
X
n��

X
k��

���	k ��n� c	x	k

k�

��n� c	x	n

n�

fletting j � n� kg � ��� x	
X
j��

��x	j
j�

X
n��

���	n
�
j

n

�
�n� c	j �
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For the inner sum� we use �����	 for m � j and n � j� and then

��� x	
X
j��

��x	j
j�

X
n��

���	n
�
j

n

�
�n� c	j � ��� x	

X
j��

��x	j
j�

���	jj�
�
j

j

�

� ��� x	
X
j��

x � ��

�����	


Dc

�
nk

�n� c	k
# x

�
� xk��� x	

X
n�k

e��n�c�x
��n� c	x	n�k

�n� k	�

� xk��� x	
X
n��

e��n�k�c�x
��n� k � c	x	n

n�

� xkDk�c��# x� � xk �

where the last equality holds by �����	�

�����	
 By �����	 and Theorem ��� �Transfer Theorem	�

�����	


�
�� c�

c

�� x

�
Dc�f�n	# x� � xDx

�Dc�f�n	# x�

�� x

�

�

�
�� c�

c

�� x

�
Dc�f�n	# x� �

X
n��

e��n�c�x
��n� c	x	n

n�
f�n	�n� �n� c	x	

�

�
�� c�

c

�� x

�
Dc�f�n	# x� �Dc��n� c	f�n	# x�� c

�� x
Dc�f�n	# x�

� ��� x	
X
n��

e��n�c�x
��n� c	x	n

n�
f�n	��� c� n� c	

� Dc��n� �	f�n	# x��

�����	
 This is the inverse relation of �����	�

�����	


Dx

�
xc
Dc�f�n	# x�

�� x

�

�
X
n��

e��n�c�x
�n� c	nxn�c��

n�
f�n	��n� c	� �n� c	x	

� xc��Dc��n� c	f�n	# x��

QED
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We are now able to prove the Inversion Theorem�

Theorem �
� �Inversion Theorem If Dc�f�n	# x� �
P

k�� akx
k is the diagonal Pois

son transform of f�n	 then f�n	 �
P

k�� ak
nk

�n�c�k
�

Proof� By �����	 and �����	 we know

Dc

�
�X
k��

ak
nk

�n� c	k
# x

�
� �X

k��

akDc

�
nk

�n� c	k
# x

�
�
X
k��

akx
k � Dc�f�n	# x�� �����	

QED
A useful corollary of the Inversion Theorem is the following inversion formula

Corollary �
�

���	n
n�

�n� c	
X
k��

���	k
�
n

k

�
�k � c	n��bk � an � bn �

X
k��

ak
nk

�n� c	k
� �����	

This inversion formula can be easily checked by �nding the Diagonal Poisson Transform
of bn� and considering the coecients of x

n in the Taylor expansion of this transform�

A very natural question is to characterize the set of functions f�m�n	 such that their
Poisson Transform coincide with the Diagonal Poisson Transform of f�n � c� c	� The
functions presented in �����	������	� satisfy this condition� The next theorem completely
characterizes this set of functions� Therefore we will be able to transfer known properties
from one transform to the other�

Theorem �
� �Transfer Theorem Let "am�x	 � Pm�f�m�n	# x� and $bc�x	 � Dc�f�n�
c� n	# x�� Then "am�x	 � $bc�x	 if and only if "am�x	 does not depend on m�

Proof� The necessity condition is trivial
 if "am�x	 depends on m� then it cannot be
equal to $bc�x	� because the latter does not depend on m�

Now suppose "am�x	 � "a�x	 and let "a�x	 �
P

k�� akx
k and $bc�x	 �

P
k�� bkx

k� Then
by Theorem ��� and the Inversion Theorem�

f�m�n	 �
X
i��

ai
ni

mi
�����	

and

f�n� c� n	 �
X
i��

bi
ni

�n� c	i
� �����	
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Then� if we substitute m � n� c in �����	�

f�n � c� n	 �
X
i��

ai
ni

�n� c	i
� �����	

Therefore� �����	 and �����	 are two expansions for f�n � c� n	� Both expansions are
rational functions in n with the same denominator� Hence� the numerators should be
equal� As both numerators are polynomials in n� their coecients should be equal�
Then� ai � bi for i � �� As a consequence� "a�x	 � $bc�x	� QED
Finally� we would like to �nd an explicit characterization of the functions that satisfy
the Transfer Theorem� This characterization comes as a very nice consequence of Theo�
rem ���� the Inversion Theorem� and the Transfer Theorem�

Corollary �
� A function f�m�n	 satis�es the conditions of the Transfer Theorem if

and only if f�m�n	 �
P

k�� ak
nk

mk � where the ak do not depend on m�

For the case n � m� these functions are exactly those studied by Knuth in ����� where he
de�nes a Q�Algebra to study them�
Let "a�x	 � Pm�f�m�n	# x� and $b�x	 � Dc�f�n�c� n	# x�� and then suppose "a�x	 � $b�x	�

If we consider the Taylor expansion of emx"a�x	 and emx$b�x	� then the coecients of xn

from both expansions should be equal� As a consequence we have the following equation

nX
k��

mk

k�
f�m� k	 �

�

n�

nX
k��

�
n

k

�
�k � c	k�m� c� k	n�kf�k � c� k	 �����	

Hence� the functions that satisfy Corollary ��� are the solutions of �����	�

��� Generalizations of Abels formula

In chapter � we require some generalizations of Abel�s formula

X
k��

�
n

k

�
�k � c�	

k���n� k � c�	
n�k �

�n� c� � c�	
n

c�
�c� �� �	� �����	

We study them with the help of the Diagonal Poisson Transform� After �nding the
transform of the sum� we use the inversion properties of the Diagonal Poisson Transform
to �nd the �nal result� Some of these sums have been studied in ����� They also appear in
other �elds such as coding theory� pattern matching� data compression� randommappings
and multiprocessing systems ���� ��� ��� ��� ��� ���� Asymptotics for some special cases
of these sums have also been studied recently ���� ����
We now study the �rst sum
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Lemma �
�

Dc��c�

�
� �

�n� c� � c�	n

X
k��

�
n

k

�
�k � c�	

k�p�n� k � c�	
n�k�q # x

�
�

�
�

�� x
Dc� ��n� c�	

p# x�Dc���n� c�	
q# x�� �����	

Proof� If we use the de�nition of the Diagonal Poisson Transform� then

Dc��c�

�
� �

�n� c� � c�	n

X
k��

�
n

k

�
�k � c�	

k�p�n� k � c�	
n�k�q # x

�
�

� ��� x	
X
n��

e��n�c��c��x
�n� c� � c�	nxn

n�

X
k��

�
n

k

�
�k � c�	k�p�n� k � c�	n�k�q

�n� c� � c�	n

� ��� x	
X
k��

e��k�c��x
�k � c�	

k�pxk

k�

X
n�k��

e��n�k�c��x
�n� k � c�	

n�k�qxn�k

�n� k	�

� ��� x	
X
k��

e��k�c��x
�k � c�	

k�pxk

k�

X
n��

e��n�c��x
�n� c�	

n�qxn

n�

�
�

�� x
Dc� ��n� c�	

p# x�Dc� ��n� c�	
q# x�� �����	

QED
If c� � c� � � and we use Lemma ���� we obtain the following


Corollary �
�

D�

�
� �

�n� �	n

X
k��

�
n

k

�
�k � �	k�p�n� k � �	n�k�q # x

�
�

� ��� x	
X
n��

�
n� p� �

n� �

�
xn
X
n��

�
n� q � �

n � �

�
xn �p� q � �	� �����	

When p � ��� we use Lemma ���� and arrive at

Corollary �
�

D�

�
� �

�n� �	n

X
k��

�
n

k

�
�k � �	k���n� k � �	n�k�q # x

�
�

� ��� x	
X
n��

�
n� q � �

n � �

�
xn �q � �	� �����	
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Moreover� we �nd Abel�s identity by using Lemma ��� and Lemma ���� for p � �� and
q � ��

Corollary �
�

Dc��c�

�
� �

�n � c� � c�	n

X
k��

�
n

k

�
�k � c�	

k���n� k � c�	
n�k # x

�
� � �

c�
c� �� �

Another interesting case is obtained when p � �� q � �� c� � �� and c� � �� Then

D�

�
� �
nn

X
k��

�
n

k

�
kk�n � k	n�k # x

�
� � �

�� x
� �����	

So after using �����	 for c � �� we derive the following identity proven by Cauchy ����

�

nn

X
k��

�
n

k

�
kk�n� k	n�k � Q��n� n	� �����	

The second sum we have to study is

Lemma �
�

Dc��c�

�
�X
k��

�
n

k

�
�k � c�	k�p�n� k � c�	n�k�q�n� k	qf�n � k � q	

�n� c� � c�	n
# x

�
�

�
xq

�� x
Dc� ��n� c�	

p# x�Dc��q�f�n	# x� �����	

Proof� If we use the de�nition of the Diagonal Poisson Transform and the equality
n� � nq�n� q	�� then

Dc��c�

�
�X
k��

�
n

k

�
�k � c�	k�p�n� k � c�	n�k�q�n� k	qf�n� k � q	

�n� c� � c�	n
# x

�
�

� ��� x	
X
n��

e��n�c��c��x
�n� c� � c�	

nxn

n�

X
k��

�
n

k

�
�k � c�	

k�p�n� k � c�	
n�k�q�n� k	qf�n� k � q	

�n� c� � c�	n

� ��� x	
X
k��

e��k�c��x
�k � c�	k�pxk

k�

X
n�k��

e��n�k�c��x
�n� k � c�	

n�k�q�n� k	qf�n� k � q	x�n�k�

�n� k	�
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� ��� x	
X
k��

e��k�c��x
�k � c�	

k�pxk

k�

X
n��

e��n�c��x
�n� c�	

n�qnqf�n � q	xn

n�

� ��� x	
X
k��

e��k�c��x
�k � c�	

k�pxk

k�

X
n��

e��n�c��q�x
�n� c� � q	nf�n	xn�q

n�

�
xq

�� x
Dc� ��n� c�	

p# x�Dc��q �f�n	# x� �����	

QED
If c���� then we can use Lemma ���� and obtain the following important result�

Corollary �
�

Dc���

�
�X
k��

�
n

k

�
�k � �	k�p�n � k � c	n�k�q�n� k	qf�n� k � q	

�n� c� � �	n
# x

�
�

� xq
X
n��

�
n � p� �

n� �

�
xnDc��q�f�n	# x� �����	

��� Inverse Relations

Inverse relations are very important in the study of combinatorial identities� Probably
the most remarkable one is the Lagrange inversion formula ���� ��� ��� ��� ���� This
tool is used to solve some functional equations� and in several cases it can give explicit
formulae for the solutions� Another famous relation is the M%obius inversion formula� of
wide application in number theory ����� Riordan in ���� presents a very large library of
inverse relations that are very general and varied� In this section we show how we can
derive some classic and new inverse relations with the use of the Poisson and Diagonal
Poisson transforms�

����� Binomial Transform

If we denote

a�m�n	 �
X
k

�
n

k

�
���	kb�m� k	 �����	

and use �����	 and then �����	 for c � ��� we have

Pm �a�m�n	# x� � emxPm����	nb�m�n	# x� � e�mxPm�b�m�n	#�x�� �����	
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Moreover� if we substitute x by �x in �����	� we also have the symmetric equality

Pm �b�m�n	# x� � e�mxPm�a�m�n	#�x� �����	

So we have easily derived the inversion formulae

a�m�n	 �
X
k

���	k
�
n

k

�
b�m� k	 �����	

and b�m�n	 �
X
k

���	k
�
n

k

�
a�m� k	� �����	

In ����� Knuth used this relation to de�ne a transform that maps sequences of real numbers
onto sequences of real numbers� This is called the Binomial Transform of a�m�n	� Poblete
et al� ���� developed the theory of this transform� and show how it can be used to
analyze the performance of skip lists� a probabilistic data structure introduced by W�
Pugh ���� ���� Several of the properties presented there can be proven using the Poisson
Transform�

����� Abel Inverse Relations

In ����� Riordan presents several Abel inverse relations that are associated with Abel�s
generalization of the binomial theorem� We can derive some of these relations using
the Diagonal Poisson Transform� Furthermore� we present a new class of Abel inverse
relations� First we need to prove the following lemma

Lemma �
�

Let A�n	 �
X
k��

�
n

k

�
�k � c�	kB�k	�n� k	q�n� k � c�	n�k�qg�n� k � q	

�n� c� � c�	n
�����	

then Dc��c� �A�n	# x� �
xq

�� x
Dc� �B�n	# x�Dc��q�g�n	# x� �����	

Proof� This proof is very similar to that of Lemma ����

Dc��c�

�
�X
k��

�
n

k

�
�k � c�	

kB�k	�n� k � c�	
n�k�q�n � k	qg�n� k � q	

�n� c� � c�	n
# x

�
�

� ��� x	
X
n��

e��n�c��c��x
�n� c� � c�	

nxn

n�

X
k��

�
n

k

�
�k � c�	

kB�k	�n� k � c�	
n�k�q�n� k	qg�n� k � q	

�n� c� � c�	n
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� ��� x	
X
k��

e��k�c��x
�k � c�	

kxk

k�
B�k	

X
n�k��

e��n�k�c��x
�n� k � c�	

n�k�q�n� k	qg�n� k � q	x�n�k�

�n� k	�

� ��� x	
X
k��

e��k�c��x
�k � c�	

kxk

k�
B�k	

X
n��

e��n�c��x
�n � c�	

n�qnqg�n� q	xn

n�

� ��� x	
X
k��

e��k�c��x
�k � c�	

kxk

k�
B�k	

X
n��

e��n�c��q�x
�n� c� � q	ng�n	xn�q

n�

�
xq

�� x
Dc� �B�n	# x�Dc��q �g�n	# x� �����	

QED

Now suppose we know Dc��q�g�n	# x�� Then� we write the Diagonal Poisson Transform of
B�n	� as a function of that of A�n	� with an identity that resembles �����	� Let us de�ne
G�n	 as a function that satis�es

D�c��q �G�n	# x� �
��� x	�

Dc��q�g�n	# x�
� �����	

So by �����	 and �����	 we obtain

Dc� �B�n	# x� �
x�q

�� x
Dc��c� �A�n	# x�D�c��q�G�n	# x�� �����	

Then� by Lemma ��� we �nd

B�n	 �
X
k��

�
n

k

�
�k � c� � c�	

kA�k	
�n� k	�q�n� k � c�	

n�k�qG�n� k � q	

�n� c�	n
� �����	

The inverse relation is obtained by de�ning

an � �n� c� � c�	
nA�n	

bn � �n� c�	
nB�n	

c� � z

and substituting these values in �����	� Therefore� we arrive at

an �
X
k��

�
n

k

�
�n� k	q �n� k � z	n�k�qg�n� k � q	bk �����	
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and bn �
X
k��

�
n

k

�
�n� k	�q �n� k � z	n�k�qG�n� k � q	ak� �����	

We obtain several useful special cases for various choices of g�n	�

����� A New Abel Inverse Relation

Consider g�n	 � Qr���n� z � q� n	� Then� by �����	�

Dz�q �g�n	# x� � ��� x	�r��� �����	

and therefore

D�z�q �G�n	# x� � ��� x	�

Dz�q �g�n	# x�
� ��� x	r�� �����	

Then� by �����	� we obtain G�n	 � Q�r���n� z � q� n	� So �����	 and �����	 give us the
following inversion formulae

an �
X
k��

�
n

k

�
�n� k	q �n� k � z	n�k�qQr���n� k � z� n� k � q	bk �����	

bn �
X
k��

�
n

k

�
�n� k	�q �n� k � z	n�k�qQ�r���n� k � z� n� k � q	ak� �����	

The most interesting feature of this pair of inverse relations is its symmetry in z� q� and
r� Since Q���m�n	 � �� then for q � � and r � � �����	 and �����	 simplify to

an �
X
k��

�
n

k

�
�n� k � z	n�kbk �����	

and bn �
X
k��

�
n

k

�
�z� � n� k	�n� k � z	n�k��ak � �����	

�����	 and �����	 are studied in �����

We can �nd more inverse relations by replacing g�n	 in �����	 with other functions
whose Diagonal Poisson Transforms are known� and using �����	�
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��� Solving Recurrences with the Diagonal Poisson Trans�

form

In the analysis presented in Chapter � we require a solution to the recurrence


Hi � Bi �
X
k��

�
i

k

�
�k � �	k�p�i� d	Hi�k��� �����	

Writing hi �
Hi

�i�c�i�i���
and bi �

Bi
�i�c�i�i���

we are to solve

hi � bi �
X
k��

�
i

k

�
�k � �	k�p

i� d

�i� c	i�i� �	
�i� k � c� �	i�k���i� k	hi�k��

� bi �
i� d

i� �
i�
X

��k�i

�k � �	k�p

k�

�i� k � c� �	i�k��
�i� k � �	�

hi�k��
�i� c	i

� bi �

�
� �

d� �
i� �

�
ai� �����	

where ai denotes the factor that multiplies
i�d
i�� � Applying the diagonal Poisson transform

to both sides of �����	 we get

$hc�x	 � $bc�x	 � Dc�ai# x� � �d� �	 Dc

�
ai

i� �
# x

�
� �����	

where �����	 holds by the linearity property of the transform�

Now� we only have to �nd the values ofDc�ai# x� andDc�
ai
i�� # x�� For the �rst transform�

we can use Corollary ���� for c� � c� �� q � � and f�n	 � hn� Then� we have

Dc�ai# x� �

�
�xX

n��

�
n � p� �

n � �

�
xn

�
A $hc�x	 � sp�x	$hc�x	� �����	

where sp�x	 denotes the sum involving the Stirling coecients�

For the second transform� we use �����	 and �����	 and obtain

Dc

�
ai

i� �
# x

�
�
e��c���x��� x	

x

Z x

�
e�c���tsp�t	$hc�t	dt� �����	

Finally� we arrive at the following integral equation


$hc�x	 � $bc�x	 � sp�x	$hc�x	 �
�d� �	e��c���x��� x	

x

Z x

�
e�c���tsp�t	$hc�t	dt� �����	
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After solving the integral equation and using �����	� we obtain the following solution

$hc�x	 �
��� x	e�d�c�x

xd��� sp�x		
e�d���A�x�

Z x

�
xd��e�c�d�te��d���A�t�Dc��i� �	bi# t�dt� �����	

where A�x	 �
R x
t����� t	��t��� sp�t		dt�

We use �����	 to solve �����	� the main recurrence studied in Chapter ��
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On January �� ����� my wife
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��� Motivation

The simplest collision resolution scheme for open addressing hash tables is linear probing�
which uses the cyclic probe sequence

h�K	� h�K	 � �� � � �m� �� �� �� � � � � h�K	� � ����	

assuming the table slots are numbered from � to m� �� Linear probing works reasonably
well for tables that are not too full� but as the load factor increases� its performance
deteriorates rapidly�

If An denotes the number of probes in a successful search in a hash table of n elements
�assuming all elements in the table are equally likely to be searched	� and if we assume
that the hash function h takes all the values in � � � �m� � with equal probabilities� then
we know from ���� ���


E�An� �
�

�
�� �Q��m�n� �		 ����	

V�An� �
�

�
Q��m�n� �	� �

�
Q��m�n� �	� � �

��
����	

where the functions Qi�m�n	 are a generalization of Ramanujan�s Q�function studied in
Section ���� For a table with n � �m elements� and �xed � � � and n�m � �� these
quantities depend �essentially	 only on �


E�A�m� �
�

�

�
� �

�

�� �

�
� �

���� �	�m
� O

�
�

m�

�
����	

V�A�m� �
�

���� �	�
� �

���� �	�
� �

��
� � � ��

���� �		m
� O

�
�

m�

�
����	

For a full table� these approximations are useless� but the properties of the Q functions
can be used to obtain the following expressions


E�Am� �

p
��m

�
�
�

�
�
�

��

r
��

m
� O

�
�

m

�
����	

V�Am� �

p
��m�

��
�

�
�

�
� �

�

�
m�

��
p
��m

���
� ��

���
� �

��
�O

�
�p
m

�
����	

It is clear from these expressions that not only is the expected search time high� but
also the variances are quite large� and therefore the expected value is not a very reliable
predictor for the actual running time of a successful search�

It was shown in ���� that the Robin Hood linear probing algorithm minimizes the
variance for all linear probing algorithms� This variance� for a full table� is &�m	� instead
of the &�m���	 of the standard algorithm� They derived the following expressions for the
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variance of the successful search time


V�An� �
�

�
Q��m�n� �	� �

�
Q��m�n� �	� � �

�
Q��m�n� �	 � �

�
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���� �	�
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���� �	
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�
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�� �

�
m�

�

�
� �

��
�
�

���

r
��

m
�O

�
�
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�
����	

In this chapter we study the e�ect of the LCFS �last�come��rst�served	 heuristic on the
linear probing scheme� Surprisingly� the variance of this scheme is much less than that of
the standard �rst come �rst served approach and within lower order terms of the minimal
�Robin Hood	 method� Some of the results presented here also appear in �����

��� Analysis of Last�Come�First�Served

Linear Probing Hashing

Consider a hash table of size m� with n � � elements inserted using the last�come�
�rst�served linear probing algorithm� We will consider a randomly chosen element as
a �tagged� one� and denote it by 
� De�ne Pm�n�z	 as the probability generating function
for the cost of searching for this tagged element� We �rst derive a recurrence for Pm�n�z	�

We de�ne an almost full hash table of size m as a hash table of size m with m � �
elements inserted in such a way that the last location is empty�

Following the analysis of the standard linear probing algorithm given in ����� we use
the function �f�m�n	 to denote the number of ways to create a table of size m� with n
elements inserted so that the last location is empty� If all the possible mn arrangements
are equally likely to occur� the probability of empty location being the last is ��� n�m	�
It follows that

�f�m�n	 � mn���m� n	� ����	

Without loss of generality� we may assume that after inserting the �rst n elements� the
hash table is as shown in Figure ���� and that as a result of the insertion of the �n� �	st

element� the last location of the table is �lled� We may see the table as a concatenation
of two tables of sizes m� i� � and i� � with n � i� � and i� � elements respectively�
We may also assume that 
 belongs to the last cluster of the hash table� Consider now
the insertion of the last element� With probability ���n� �	� this element is 
� and so its
cost is � �generating function z	� With probability n��n��	 the new element is not 
� If
we assume this insertion does not force 
 to move� then we have the recurrence


Pm�n�z	 �
z

n � �
�

n

n� �
Pm�n���z	 �����	
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We must� of course� include a correction term to account for this shortcoming� As we can
see in Figure ���� the last insertion increments the cost of searching for 
 when it maps
into any of the �rst �� � positions of the last cluster�

� �

� �

� �

� ��

� �

m� i� �

������� ��������

i� �

i� ll

�n� ��stinsertion

Figure ���


In order to study the correction term� we introduce two auxiliary functions� Given
a table of size � � r � �� we de�ne F��r�z	 as the generating function for the number of
ways of inserting �� r � � elements in the table� where one element is tagged �
	 with z
keeping track of its cost� such that the rightmost location is empty� and such that there
are � elements to the left of 
 and r elements to its right� Figure ��� helps to understand
this de�nition� It is easy to see that if we insert a new element in any of the �rst � � �
locations of the table� the cost of 
 increases by one� By the de�nition of F��r�z	 we know
that

UzF��r�z	 � �f��� r � �� �� r � �	 � ��� r � �	��r� �����	

� � � �

�� r�

�� r � �

Figure ���


We de�ne Ci�z	 as the generating function for the number of ways of inserting i� �
elements into a table of size i � �� where one element is tagged �
	� and such that the
rightmost location is empty� z keeps track of the cost of 
� Since 
 may be any of the
i� � elements inserted we have

Ci�z	 �
X
��r�i
��r��

F��r�z	� �����	
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Equations �����	 and �����	 imply that

UzCi�z	 � �i� �	
i�i� �	� �����	

The function Ci�z	�UzCi�z	 is the probability generating function for the cost of a suc�
cessful search for 
 in an almost full table of size i� �� Therefore� by ����	 we have

UzDzCi�z	

UzCi�z	
�
�

�
�� � Q��i� �� i		� �����	

because the expected successful search time for a linear probing scheme is independent
of the discipline used to resolve collisions ���� ����

We now have the tools to �nd the correction term Tm�n�z	�

There are
P

��r�i��� �	F��r�z	 possibilities that the insertion in an almost full table of

size i�� increments the cost of searching for 
� Moreover� there are �f�m� i� �� n� i� �	
ways of inserting n� i�� elements in a table of size m� i��� in such a way that the last
location in the table is empty� Furthermore� there are

 n
i��

�
ways to divide the n inserted

elements in two sets of sizes n� i� � and i� �� Since this is valid for � � i � n� �� we
have the following correction term


Tm�n�z	 �
z � �

mn�n� �	

n��X
i��

�
n

i� �

�
�f �m� i� �� n� i� �	

X
��r�i

��� �	F��r�z	� �����	

The increment in cost is �� therefore we have to use the factor �z � �	� Since we are
counting number of ways� and want probability generating functions� we have to divide
by a normalization factormn�n��	
 there are mn ways of inserting n elements in a table
of size m� and there are n�� possibilities for the choice of the tagged element� Therefore�
if we consider �����	 and �����	 together� we have the following recurrence for Pm�n�z	


Pm�n�z	 �
z

n � �
�

n

n � �
Pm�n���z	 � Tm�n�z	 �����	

with Pm�� � z� as it is the probability generating function for the cost of searching for

 when it is the only element in the table� If we de�ne Rm�n�z	 � �n � �	Pm�n�z	� then
recurrence �����	 is transformed into the linear recurrence

Rm�n�z	 � Rm�n���z	 � z � �n� �	Tm�n�z	� �����	

This leads us to the solution

Rm�n�z	 � �n� �	z �
nX

k��

�k � �	Tm�k�z	 �����	
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and so�

Pm�n � z �
�

n� �

nX
k��

�k � �	Tm�k�z	 �����	

To further simplify �����	� we need the following lemma


Lemma �
�

S�m�n� i	 �
nX

k�i��

�
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�
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Proof�
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�m� k � �	
m

�

�
n� �

i� �

�
�m� i� �	n�i��

mn

�i� �	

m

�

�
�� i� �

m

�
S�m�n� i	�

�
n� �

i� �

�
�m� i� �	n�i��

mn

�i� �	

m
�

So� we have an equation in S�m�n� i	� and the lemma follows immediately� QED
Then� if we de�ne Gi�z	 �P

��r�i��� �	F��r�z	� using Lemma ��� and equations ����	�
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�����	 and �����	� we �nd

Pm�n�z	 � z �
z � �
n� �

nX
k��

�

mk

k��X
i��

�
k

i� �

�
�m� i� �	k�i���m� k � �	Gi�z	

� z �
z � �
n� �

n��X
i��

Gi�z	
nX

k�i��

�
k

i� �

�
�m� i� �	k�i���m� k � �	

mk

� z �
z � �

mn�n� �	

X
��i�n��

�
n � �

i� �

�
�m� i� �	n�i��Gi�z	 �����	

Following the ideas presented in ���� we will �nd the Poisson transform "Pm�x� z	 of
Pm�n�z	� So� we �rst obtain an accurate analysis under a Poisson��lling model� and
then after using the inversion theorem of the Poisson transform we convert "Pm�x� z	 back
to Pm�n�z	� If we use the de�nition of the Poisson transform we obtain

"Pm�x� z	 � z � �z � �	e�mx
X
n��

�mx	n

mn�n� �	�

n��X
i��

�
n� �

i� �

�
�m� i� �	n�i��Gi�z	

� z � �z � �	e�mx
X
i��

xi��

�i� �	�
Gi�z	

X
n�i����

��m� i� �	x	n�i��
�n� i� �	�

� z � �z � �	
X
i��

e��i���x
xi��

�i� �	�
Gi�z	� �����	

Now� we have to �nd a recurrence for Gi�z	� and try to solve it� Note that Gi�z	 is de�ned
in almost full tables of size i � �� If we use �����	 and the de�nition of Gi�z	 we may
easily check that for z � �

UzGi�z	 �
�i� �	�i� �	i��

�
� �����	

����� A Recurrence for Gi�z�

We �rst present a recurrence for F��r�z	� which is required to derive the recurrence we
need� We have a table of size � � r � �� with � � r elements inserted� and want to see
what happens when we add the ��� r � �	st element� There are four cases as described
in Figure ���� When the tagged element is moved one position� the label z of the arrow
shows that we need z as a factor in the recurrence�

Case a	 is the insertion of the tagged element� In this case case the generating function
is z times the number of ways of generating a table of size �� r� � with �� r elements�
in such a way that the last cluster is of size k� For a �xed k� this factor is

��r
k

�
�k �



�� CHAPTER 
� ANALYSIS OF LCFS HASHING WITH LINEAR PROBING

�	k����� r � k � �	��r�k��� Since k ranges from � to r� the contribution is

F��r�z	 z
X

��k�r

�
�� r

k

�
�k � �	k����� r � k � �	��r�k��� �����	

�

�

�� � � � �

�� � �

a�

z

�

�

r

r � k k

�

���

�� � � � �

� � � �

c�

z

�

�� �

r

r � k k

�

� ��

�� �� ��

�� ��

b�

� r

�� k � �k r

�

� ��

�� � � � �

�� � �

d�

�

�

r

r � k � � k

Figure ���


For the last three cases� we assume that the inserted element is not the tagged one�

Case b	 is the insertion of an element in the cluster that precedes the one that has 
� The
cost of searching for 
 does not increase� We have k�� di�erent positions where the new
element may hash� The number of ways of generating the upper table is the product of
the number of ways of generating the �rst cluster and the number of ways of generating
the second one� For a �xed k� the number of ways of generating the second cluster is
F��k���r�z	� while we have

��r
k

�
�k��	k�� ways of generating the �rst one� Since k ranges

from � to �� ��

F��r�z	
X

��k����

�
� � r

k

�
�k� �	k��F��k���r�z	�k� �	� �����	

Case c	 is the insertion of an element to the left of the tagged element� Now� the cost of
searching for it increases by �� and therefore we multiply by z� We have � positions where
the element may hash� Following a similar analysis as for the previous cases we have

F��r�z	 �z
X

��k�r

�
�� r

k

�
�k� �	k��F����r�k�z	� �����	
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Case d	 is the insertion of an element to the right of 
� Again� in this case the cost of
searching for 
 does not increase� We have r � k positions where the element may hash�
Therefore�

F��r�z	
X

��k�r��

�
�� r

k

�
�k � �	k��F��r�k���z	�r� k	� �����	

Putting the contributions of �����	������	������	 and �����	 together� and noting that in
cases b	� c	 and d	 we may omit the limits in the sum if we assume that F��r�z	 � � for
l � � and r � �� we have the recurrence


F��r�z	 � z
X

��k�r

�
�� r

k

�
�k � �	k����� r � k � �	��r�k��

�
X

��k�r

�
�� r

k

�
�k � �	k�� �F��k���r�z	�k� �	 � �zF����r�k�z	

� �r � k	F��r�k���z		 � �����	

If we sum both sides of �����	 for �� r � i� we have

Gi�z	 �
X
��r�i

��� �	F��r�z	

�
X
k��

�
i

k

�
�k � �	k��

�
�z�i� k � �	i�k��

X
k�r�i

�i� r � �	

�
X
��r�i

��� �	�k� �	F��k���r�z	 �
X
��r�i

z���� �	F����r�k�z	

�
X
��r�i

��� �	�i� �� k	F��r�k���z	

�
A

�
X
k��

�
i

k

�
�k � �	k��

�
z
�i� k � �	i�k�i� k � �	

�

�
X

���k����r�i�k��

���� k � �	 � k � �	�k� �	F��k���r�z	

�
X

�������r�k��i�k��

z���� �	 � �	���� �	 � �	F����r�k�z	

�
X

���r�k����i�k��

��� �	�i� �� k	F��r�k���z	

�
A
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�
z

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k�i� k � �	

�
X
k

�
i

k

�
�k � �	k��

X
��r�i�k��

F��r�z	 ���� k � �	�k � �	

� z��� �	��� �	 � ��� �	�i� �� k		 �

So� if we use the de�nition of Gi�z	 and Ci�z	� we arrive at the following recurrence for
Gi�z	


Gi�z	 �
z

�

X
k

�
i

k

�
�k � �	k���i� k � �	i�k�i� k � �	

�
X
k

�
i

k

�
�k � �	k��

	
�i� �	Gi�k���z	 � �k � �	

�Ci�k���z	



��z � �	
X
k

�
i

k

�
�k � �	k��

X
��r�i�k��

��� �	��� �	F��r�z	� �����	

Later we will require the value of UzDzGi�z	� So� we need to prove the following


Lemma �
�

UzDzGi�z	 �
�i� �	i��

�
�
�i� �	i

�
� ��i� �	

i��

��
Q��i� �� i	

��i� �	
X
k��

�
i

k

�
�k � �	k��UzDzGi�k���z	� �����	

Proof� If in �����	 we take derivatives with respect to z and evaluate at z � �� we have

UzDzGi�z	 �
X
k

�
i

k

�
�k � �	k��

�i� k � �	i�k�i� k � �	

�

��i� �	
X
k

�
i

k

�
�k � �	k��UzDzGi�k���z	

�
X
k

�
i

k

�
�k � �	k��UzDzCi�k���z	

�
X
k

�
i

k

�
�k � �	k��

X
��r�i�k��

��� �	��� �	UzF��r�z	�
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If we use �����	 and �����	� then

UzDzGi�z	 � �i� �	
X
k��

�
i

k

�
�k � �	k��UzDzGi�k���z	

�
�

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k���i� k	Q��i� k � �� i� k � �	

�
�

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k

�
�

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k

�
�

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k��� �����	

If we divide by �i� �	i� the second sum of the right hand side of �����	 has the form

s�i	 �
�

�i� �	i

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k���i� k	hi�k��� �����	

So� we have a sum that is the same as that studied in Corollary ���� for p � �� q � ��
c� � c� � �� and f�n	 � Q��n � �� n	� If we use �����	 and �����	 then� the Diagonal
Poisson Transform of s�i	 is

D��s�i	# x� �
x

��� x	�
�

�� x
�

�

��� x	

� �

��� x	�
� �����	

Dividing by �i� �	i� the next three addends of �����	 have the form

s�i	 �
�

�i� �	i

X
k��

�
i

k

�
�k � �	k�p�i� k � �	i�k�q� �����	

So� we can use Corollary ��� for the following values of �p� q	 � ��� �	� and Corollary ���
for q � � and q � �� De�ning

r�i	 � �

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k���i� k	Q��i� k � �� i� k � �	

�
�

�

X
k��

�
i

k

�
�k� �	k���i� k � �	i�k
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�
�

�

X
k��

�
i

k

�
�k� �	k���i� k � �	i�k

�
�

�

X
k��

�
i

k

�
�k� �	k���i� k � �	i�k���

we have by �����	� �����	 and �����	�

D�

�
r�i	

�i� �	i
# x

�
�

�

�

�
�

��� x	

� �

��� x	�

�

�
�

�
��� x	

�

��� x	�
�

��� x	

�
�

�
��� x	

�

��� x	

�
�

�
��� x	

�

��� x	

�
�

��� x		
� �

��� x	


�

�
�

�
� �

���� x	�
�

�

���� x	

� �����	

Using �����	 and �����	 to �nd the inverse of the transform �����	� and �����	� �����	 to
simplify the expressions we obtain� we �nd

r�i	 �
�

�
� �
�
Q��n� �� n	 �

�

�
Q��n� �� n	

�
�i� �	i��

�
�
�i� �	i

�
� ��i� �	

i��

��
Q��i� �� i	� �����	

Substituting this value for r�i	 back into �����	� we obtain

UzDzGi�z	 �
�i� �	i��

�
�
�i� �	i

�
� ��i� �	

i��

��
Q��i� �� i	

��i� �	
X
k��

�
i

k

�
�k � �	k��UzDzGi�k���z	� �����	

QED

It is interesting to note that setting z to � in �����	 and applying �����	� we have

UzGi�z	 �
X
k

�
i

k

�
�k � �	k��

�i� k � �	i�k�i� k � �	

�

�
X
k

�
i

k

�
�k � �	k��

	
�i� �	UzGi�k���z	 � �k � �	

�UzCi�k���z	
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� �i� �	
X
k

�
i

k

�
�k � �	k��UzGi�k���z	

�
�

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k

�
�

�

X
k��

�
i

k

�
�k � �	k���i� k � �	i�k��

�
X
k��

�
i

k

�
�k � �	k���i� k � �	i�k

�
X
k��

�
i

k

�
�k � �	k���i� k � �	i�k��� �����	

We can use Corollary ��� to �nd the values of the sums that do not involveUzGi�k���z	�
This gives us a recurrence for UzGi�z	� to which we apply formula �����	 for c � �� d � �
and p � ��� This reveri�es the special case �����	 previously given as �����	�

��� Veri�cation of Known Results

In this section we rewrite �����	 as a function of D��gi�z	# x� and then verify that
E�An��� �

�
��� �Q��m�n		�

De�ne $g��x� z	 as D��gi�z	# x�� where gi�z	 �
Gi�z�

�i���i�i���
� then

��x "Pm�x� z		

�x
� "Pm�x� z	 � x

� "Pm�x� z	

�x

� z � �z � �	
X
i��

e��i���x
�i� �	�i� �	ixi��

�i� �	�
gi�z	

� x�z � �	
X
i��

e��i���xgi�z	

�
��i� �	�i� �	

i��xi��

�i� �	�
�
�i� �	��i� �	ixi

�i� �	�

�

� z � �z � �	x
X
i��

e��i���x
�i� �	�i� �	ixi

�i� �	�
gi�z	��� �i� �	x� �i� �		

� z � �z � �	x��� x	
X
i��

e��i���x
�i� �	ixi

i�
gi�z	

� z � �z � �	x$g��x� z	� �����	
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Therefore we derive

"Pm�x� z	 �
�

x

Z x

�
�z � t�z � �	$g��t� z		dt � z �

z � �
x

Z x

�
t$g��t� z	dt� �����	

Taking derivatives with respect to z we obtain

UzDz
"Pm�x� z	 � � �

�

x

Z x

�
tUz$g��t� z	dt �����	

UzD
�
z
"Pm�x� z	 �

�

x

Z x

�
tUzDz$g��t� z	dt� �����	

From �����	� Uzgi�z	 � �i� �	��� therefore Uz$g��x� z	 � D�

h
i��
� # x

i
� By �����	 we know

D�

h
�i���
� # t

i
� �

�

	
�

���t�� �
�

���t�



� Therefore� if we substitute into �����	 and integrate�

we �nd that UzDz
"Pm�x� z	 �

�
�

	
� � �

��x



�

Since ���� � x	 is the Poisson transform of Q��m�n	� we have given an alternative
proof of ����	 to that of �����

��� Solving the recurrence for UzDzgi�z�

In �����	� we wrote "Pm�x� z	 as a function of D��gi�z	# x�� and in �����	 we found the value
of UzD

�
z
"Pm�x� z	 as a function of UzDz$g��x� z	� However� we still do not know the value

of UzDz$g��x� z	�
Equation �����	 is the special case of �����	 with c � �� d � � and p � ��� Since

p � ��� sp�x	 � x� Therefore� the general solution simpli�es to

$h��x	 �
ex

x

Z x

�
e�tD���i� �	bi# t�dt� �����	

In �����	 $h��x	 � UzDz$g��x� z	� Applying �����	 to �����	


UzD
�
z
"Pm�x� z	 �

�

x

Z x

�
eu
�Z u

�
e�tD���i� �	bi# t�dt

�
du

�
�

x

Z x

�
e�tD���i� �	bi# t�

�Z x

t
eudu

�
dt

�
�

x

Z x

�

	
ex�t � �



D���i� �	bi# t�dt� �����	

In �����	 we have �i � �	bi �
�i����

� � �
 � ��i���

�� Q��i� �� i	� If we use �����	������	 and
�����	 for c � �� we arrive at the �nal result


UzD
�
z
"Pm�x� z	 �

�

x

Z x

�

	
ex�t � �


� �

���� t	

� �

���� t	�
�
�

�

�
dt




��� ANALYSIS OF THE VARIANCE ��

�
�

���� x	
�

�

���� x	�
� �
�
� �

�x
�ex � �	� ex��

�x
�Ei��	� Ei��� x		 �����	

where Ei��	� Ei��� x	 �
R �
��x

et

t dt� The function Ei�x	 is the exponential integral func�
tion ���� Next we apply the inversion formulae presented in ���� to �nd UzD

�
zPm�n�z	�

����� Finding UzD
�
zPm�n�z�

Since the Poisson transform is linear� we need only �nd the inverse of each summand
of �����	� We �nd easily the inverse of the �rst three� by ����	� ����	 and �����	� With
more work� we �nd the inverse of the other two addends� With a change of variable
t � � � v we have ex��

x

R �
��x

et

t dt �
ex

x

R x
�

e�v

��vdv� To �nd the inverse transform of the
function e�x���� x	� we may use �����	� Then� applying formulae �����	 and �����	� we
arrive at the relation

"Pm

�
�

�

�
m� �

m

�n �

n � �

nX
k��

�
m

m� �

�k
Q��m� k	# x

�

�
ex��

�x
�Ei��	�Ei��� x		 �����	

Using a similar analysis� we �nd the remaining inverse transform

"Pm

�
m� �

��n� �	

�
m� �

m

�n
� m

��n� �	
# x

�
�
�

�x
�ex � �	� �����	

and have proven

Lemma �
�

UzD
�
zPm�n�z	 �

�

�
Q��m�n	 �

�

�
Q��m�n	� �

�
� m� �

��n� �	

�
m� �

m

�n

�
m

��n� �	
� �
�

�
m� �

m

�n �

n � �

nX
k��

�
m

m� �

�k
Q��m� k	� �����	

��� Analysis of the Variance

As a consequence of Lemma ��� and using �����	 we have the following theorem�

Theorem �
�

V�An��� �
�

�
Q��m�n	� �

�
Q�

��m�n	 �
�

�
Q��m�n	� m� �

��n� �	

�
m� �

m

�n

� �
��
�

m

��n� �	
� �
�

�
m� �

m

�n �

n � �

nX
k��

�
m

m� �

�k
Q��m� k	� �����	
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If we use the approximation theorem� Theorem ���� we have the following result for a
table with n � �m elements� for �xed � � � � � and n�m���

Theorem �
�

V�A�m� �
�

���� �	�
�

�

���� �	
� �

��
�e� � �	

�e
���

��
�Ei��	� Ei��� �		� �

��
� O

�
�

m

�
�����	

Now� we want to study the asymptotic behavior of the variance for a full table �n �
m � �	� We know by �����	 the asymptotic behavior of Q��m�m � �	� and we have
Q��m�m � �	 � m� Then the only diculty is with the asymptotic expansion of the
last summand of V�Am�� This is done in two steps� First� in Lemma ���� we �nd the
asymptotic expansion of �

m

Pm��
k�� Q��m� k	 up to o���

p
m	� Then we generalize the ideas

presented in this lemma to �nd the expansion for our original sum�
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Proof� In ���� Bender gives the �rst term of the approximation� but we would like some

lower order terms� First� note that mk

kmk is a monotone decreasing function of k� So�

mX
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that is exponentially small� Therefore� we only have to consider the sum of the �rstm����

terms�

The sum may be rewritten as
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If we use formulae ����	 and ����	 and the asymptotic expansion of ex� we have
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The Euler�Maclaurin summation formula can be used to �nd good estimates for �����	�
This formula is

X
a�k�b

f�k	 �
Z b

a
f�x	dx� �

�
f�x	 jba �

rX
k��

B�k

��k	�
f ��k����x	 jba

�O����	��r	

Z b

a
j f�r�x	 j dx� �����	

We may see that the contribution of the last sum in �����	 is O���m	� and therefore we
need only examine the �rst three sums�

The �rst sum can be rewritten as

m����X
k��

e�k
���m

k
�

m����X
k��

e�k
���m � �
k

�
m����X
k��

�

k
� �����	

The �rst sum can be approximated by an integral� and the second sum gives us the
harmonic numbers� Using �����	� we apply the Euler�Maclaurin formula to the �rst sum�
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giving
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We apply the Euler�Maclaurin formula to the other two sums and �nd
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The lemma follows from �����	� �����	 and �����	� QED

Lemma �
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Proof� The key ideas are similar to those used to prove Lemma ���� We use the following
well known generating function
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The de�nition of Q��m� k	 can be used to rewrite the sum
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Now� we �nd the value of the innermost sum� We have
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Equation �����	 is simpli�ed by discarding terms known to be o���
p
m	� First we know

that �� ln�m	� � o���m	� and therefore we can discard all the terms for r � lnm� Then�
for r � lnm� we know that �m�r	r � mr�O�r�mr��	� and so �m�r	r�mr � ��O�r��m	�
Now� if we use Lemma ���� as r � �� the innermost sum of �����	 is O�lnm	� Therefore
we have
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We continue with a line of reasoning similar to the proof of Lemma ���� We may check
that if r � O�lnm	� then all the expansions given by the Euler�Maclaurin formula are
exactly the same for all the terms up to O���

p
m	� This is the main reason to bound the

sum up to lnm terms� Hence� we have the following derivation� where the equalities are
up to o���

p
m	 �we omit this term� so the text is more readable	
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The last equation requires some explanation� If we de�ne H�z	 �
P

k��Hkz
k�k�� then we

must �nd H���	�It is easy to check that z �H�z�
�z � zH�z	�ez��� Solving the di�erential

equation� we evaluate the result in z � ��� and have H���	 � �� � Ei��		�e� QED
From �����	� Theorem ��� and Lemma ��� we have
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Comparing with ����	� we have shown that for a full table� the last�come��rst�served
heuristic on a linear probing hash table achieves the optimal variance for the distribution
of successful searches� up to lower order terms�

��� Analysis of the Standard Linear Probing

Hashing Algorithm

In a footnote ����� p�����	� D�E� Knuth acknowledges that the standard linear probing
hashing was the �rst nontrivial algorithm he had ever analyzed satisfactorily� He did
this analysis in ����� However� the �rst published analysis of this algorithm was done
by Konheim and Weiss in ���� ����� In this section� we present a di�erent analysis of
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this algorithm� based on similar ideas as those used to analyze the LCFS linear probing
algorithm�

We de�ne Pm�n�z	 as the probability generating function for the cost for searching 

in a table of size m with n � � elements inserted� As observed in section ������ we have
Pm�Pm�n�z	# x� � D��Pn���n�z	# x�� Therefore� we only have to study Pn���n�z	�

There are two cases as indicated in Figure ����

�

�� � �

a�

n � k k

�

�� ��

b�

n� k k

Figure ���


In case a	� we insert 
� There are �k � �	k�� ways of creating a table of size k � ��
with k elements inserted in such a way that the last location is empty� Similarly� there
are �n � k � �	n�k�� ways of creating a table of size n � k � �� with n � k elements
inserted in such a way that the last location is empty� Since 
 can hash into any of the
�rst n�k locations of the cluster� the cost for inserting 
 will bePn�k

j�� z
j��� Since we are

working with probability generating functions� we have to divide by the normalization
factor �n��	n�n��	� as there are �n��	n ways of inserting n elements in a table of size
n � � and there are n � � di�erent possibilities for choosing 
� Therefore� for case a	 we
have

Pn���n�z	 	
X
k��

�
n

k

�
�k � �	k���n� k � �	n�k��

�n� �	n�n� �	

X
��j�n�k

zj��� �����	

In case b	� the element inserted is not 
� therefore� the cost for searching it� does not
increase� There are �n��	 places where the new element can hash� There are �k��	k��

ways of creating a table of size k � �� with k elements inserted in such a way that the
last location is empty� There are �n� k � �	n�k���n� k	Pk���z	 ways to create a table
of size n� k � � with n� k elements inserted� one of them 
� with z tracking the cost of
retrieving 
� in such a way that the last location of the table is empty� Then� for case b	�
we have

Pn���n�z	 	 �n� �	
X
k��

�
n

k

�
�k � �	k���n� k � �	n�k��

�n� �	n�n� �	
�n� k	Pn�k��� �����	
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Adding �����	 and �����	� we �nd
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Bn�z	 �

P
k��

n
k

�
�k��	k���n�k��	n�k��Pn�k

j�� z
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Since we need UzDzD��Pn���n�z	# x� and UzD
�
zD��Pn���n�z	# x�� then we have to �nd

the values of UzDzD���n� �	Bn�z	# x� and UzD
�
zD���n� �	Bn�z	# x�� If we di�erentiate
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Using �����	 and �����	 we have
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So� by ����	 and �����	� we �nd

E�An��� �
�

�
�� � Q��m�n		 �����	
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as expected�
With respect to the second moment� we �nd
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Finally� by ����	 and �����	� we have
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as we know from ���� ����
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Linear Probing Hashing with

Buckets

While I was kissing Manuelita� she
said	 �When daddy is with me� he will
kiss me� However� while he is in Canada�
I will kiss the moon and he will also kiss
her��

��
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��� Introduction

The problem of storing information in a computer memory or a peripheral device has been
widely studied� Several data structures have been proposed that work well on secondary
storage devices such as magnetic disks� Two of the most popular techniques are B�trees
�and its variations	 introduced by Bayer and McCreight ���� and hashing with buckets
�Peterson in ���� presented the �rst major paper in this area	� Two good sources of
information for this problem are ���� and ����� More recently� O�Neil ���� presents some
applications to data bases�

Several methods for handling over�ow records in hash tables have been proposed�
Many of these methods are based on open addressing ����� The key of each record uniquely
determines a probe sequence that is followed for storing or retrieving the record� The
most basic algorithm for con�ict resolution under open addressing is linear probing�

In this chapter we present an exact analysis for the average cost of a successful search
in a linear probing hash table with buckets of size b� In ���� Blake and Konheim studied
the asymptotic behavior of the algorithm as the number of records and buckets tend
together to in�nity so that their ratio is constant� Mendelson ����� derived exact formulae
for the problem� but only solved them numerically�

We present an analysis of Robin Hood linear probing hashing ���� ��� with buckets of
size b� This algorithm is introduced in section ���� It is well known ����� that in a hash
table accessed by linear probing� the average number of probes for a successful search is
independent of the collision resolution strategy used� and this is true for any set of keys�
Therefore our analysis gives an exact solution for the algorithm studied in ����� and solves
the open problem presented by D� Knuth in question ������ in �����

This chapter is divided as follows� Section ��� contains preliminary de�nitions and
theorems� In section ��� we introduce the Robin Hood heuristic� and in sections ���� ���
and ��� the main results are proved� Finally� in section ��� we present a di�erent point
of view to study some aspects of the problem�

��� Some Preliminaries

We de�ne Qm�n�d as the number of ways of inserting n records in a table withm buckets of
size b� so that a given �say the last	 bucket of the table contains more than d empty slots�
The subscript b will be omitted� as it is a �xed parameter� There cannot be more empty
slots than the size of the bucket so Qm�n�b � �� For each of the mn possible arrangements�
the last bucket has � or more empty slots� and so Qm�n��� � mn� Observe that Qm�n��

gives the number of ways of inserting n records into a table with m buckets� so that the
last bucket is not full� For notational convenience� we de�ne Q��n�d � �n � ��� In �����
Mendelson proves
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Theorem �
� For � � d � b� �� and m � ��

Qm�n�d �

���
��

nX
j��

�
n

j

�
Qm���j�d �� � n � mb d��

� �n � mbd��

It does not seem possible to �nd a closed formula for Qm�n�d� However� as we shall see�
for the average cost of a successful search we only require

Pb��
d��Qm�n�d� The following

theorem� tells us that this sum is surprisingly simple�

Theorem �
�

b��X
d��

Qm�n�d � bmn � nmn�� �� � n � bm	� ����	

Proof�

Let Pm�n�j �
Qm�n�j���Qm�n�j

mn � Pm�n�j is the probability of inserting n records in a table
with m buckets of size b so that the last bucket of the table contains exactly j empty
slots� Then� as Qm�n�b � ��

Qm�n�d � mn
bX

j�d��

Pm�n�j ����	

As a consequence� we �nd the following identity

b��X
d��

Qm�n�d � mn
b��X
d��

bX
j�d��

Pm�n�j ����	

� mn
bX

j��

Pm�n�j

j��X
d��

� ����	

� mn
bX

j��

jPm�n�j � ����	

The last sum gives the expected number of empty slots in a given bucket� There is an
average of n

m records in each bucket of capacity b� Therefore the expected number of
empty slots in a given bucket is b� n

m � and the theorem is proved� QED
We will need the exponential generating function of

Pb��
d��Qm�j�d for � � j � bm� This is

easily obtained using Theorem ��� as

b��X
d��

Qm�d�x	 �
bmX
j��

b��X
d��

Qm�j�d
xj

j�
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�
bmX
j��

�bmj � jmj��	
xj

j�
� ����	

��� Robin Hood Linear Probing

When a new record moves to an occupied location in an open addressing hash table�
the usual solution is to let the incoming key try again in some other bucket� Thus� the
standard collision resolution strategy can be called �First�Come�First�Served�� Operating
in the context of double hashing� Celis et al� ���� ��� de�ned the Robin Hood heuristic�
under which each collision occurring on each insertion is resolved in favor of the record
that is farthest away from its home bucket� We will focus on the same heuristic but in
the context of linear probing �as did Carlsson et al� in ���� for buckets of capacity one	�
Figure ��� shows the result of inserting records with the keys ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� �� and �� in a table with ten buckets of size two� and
with hash function h�x	 � x mod ��� and resolving collisions by linear probing using the
Robin Hood heuristic�

a
�� �	 �	 
� �� �� � 	� 
�

�	 �	 �� 
� �� �� �

� � � 
 �  � � � 	

Figure ���


When there is a collision in bucket i and this bucket is full� then the record that has
probed the least number of buckets� probes bucket �i� �	 mod m� In the case of a tie�
we �arbitrarily	 move the record whose key has largest value�

a
�	 �	 �� 
� �� �� �

�	 �� � 	� 
� ��

� � � 
 �  � � � 	

Figure ���


Figure ��� shows the partially �lled table after inserting ��� When we want to insert
��� bucket � is full� Both keys in bucket � are in their second probe position� and �� is
in its �rst� so it has to try bucket �� At bucket �� all three keys are in their second probe
position� Then we arbitrarily choose ��� the key with largest value� to probe bucket �� At
bucket �� both �� and �� are in their third probe bucket� while �� is in its second� So� ��
has to move to bucket �� where it is inserted� Figure ��� shows the table after inserting
���
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a
�	 �	 �� �� 
� �� �� �

�	 �	 � 	� 
� ��

� � � 
 �  � � � 	

Figure ���


The following properties are easily veri�ed



 At least one record is in its home bucket�

 The keys are stored in nondecreasing order by hash value� starting at some location
k and wrapping around� In our example� k � � �the second slot of the third bucket	�


 If a �xed rule is used to break ties among the candidates to probe their next probe
bucket �eg
 by sorting these keys in increasing order	� then the resulting table is
independent of the order in which the records were inserted �����

��� Linear Probing Sort

To analyze Robin Hood linear probing with buckets� we �rst have to discuss some ideas
presented in ���� and �����
For b � �� when the hash function is order preserving �that is� if x � y then h�x	 �

h�y		� a variation of the Robin Hood linear probing algorithm can be used to sort �����
by successively inserting the n records in an initially empty table� In this case� instead of
letting the excess records from the rightmost bucket of the table wrap around to bucket
zero� we can use an over�ow area consisting of buckets m� m � �� etc� The number
of buckets needed for this over�ow area is an important performance measure for this
sorting algorithm�
In this section we study the average number of records that over�ow when the buckets

have capacity b� Then� in section ��� we show how this analysis is related to the study of
the cost of successful searches in the Robin Hood linear probing algorithm�
Let Wm�n�w	 be the generating function for the number of records that go to the

over�ow area when n keys are inserted in a table with m buckets� each with capacity
b� Since b is a given parameter� this subscript is omitted� Let us also de�ne Wm�n�k �
�wk�Wm�n�w	�
The records inserted in the table can be divided in two sets� as shown in Figure ����

The hash table can be seen as a concatenation of two tables of size m� �� and � respec�
tively�
If n� k � b� then n� k� b records go to the over�ow area as a consequence of being

inserted in the last bucket of the table� To this number we have to add the records that
go to the over�ow area when k records are inserted in the table of size m� �� Then� for
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this case� the probability generating function for the number of records that over�ow is
Wm���k�w	w

n�k�b�

� ���

s�

n� k

m� � �

n

k

Figure ���


Therefore� as a �rst approximation

Wm�n�w	 	
X

��k�n

�
n

k

��
m� �
m

�k � �
m

�n�k
Wm���k�w	w

n�k�b ����	

since there are
n
k

�
ways of choosing the n � k records that hash to the last bucket� and

the probability that any record hashes to a given bucket is ��m�

However� we have to make a correction because� when n� k � b� there is no over�ow
caused by the records inserted in the last bucket of the table� In such a case� the following
correction term is needed X

��i�b��n�k�

Wm���k�i

	
�� wi�n�k�b



� ����	

Then� by ����	 and ����	� we have the following recurrence for the probability generating
function of the size of over�ow

Wm�n�w	 �
X

��k�n

�
n

k

��
m� �
m

�k � �
m

�n�k
�
�Wm���k�w	w

n�k�b �
X

��i�b��n�k�

Wm���k�i

	
�� wi�n�k�b


�A � ����	

As a consequence of this correction term� the values of Wm�n�i for � � i � b have to be
studied separately� So� the �rst bucket of the over�ow area is analyzed with a di�erent
approach�
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����� First Bucket of the Over�ow Area

Let Dm�n�r � Qm�n�b�r���Qm�n�b�r � be the number of ways of inserting n records so that
the last bucket has exactly r records� for � � r � b� Also de�ne Bm�n�r � mnWm�n�r� We
want to �nd Bm�n�r for � � r � b�

Theorem �
�

Bm�n�r � Dm���n�r �
rX

j��

�
n

j

�
Bm�n�j�r�j � �����	

Proof� Bm�n�r can �rst be approximated by Dm���n�r� However� we do not want any
record to hash to bucket m� This situation should be considered when � � r � b�

For a �xed j with � � j � r� Bm�n�j�r�j counts the number of ways of inserting n� j

records in a table of size m� such that r � j records go to over�ow� Since there should
be r records in the over�ow area� then j records have to hash to bucket m� There aren
j

�
di�erent ways of choosing these j records� So� for a �xed j� the number of forbidden

con�gurations is
n
j

�
Bm�n�j�r�j � Then� the lemma is proven by letting j vary from � to r�

QED
As a solution of �����	� we have

Theorem �
�

Bm�n�r �
rX

j��

���	j
�
n

j

�
Dm���n�j�r�j � �����	

Proof� By Theorem ���� we have

Dm���n�r �
rX

j��

�
n

j

�
Bm�n�j�r�j � �����	

and since Bm�n�j�r�j and Dm���n�j�r�j both vanish when j � r �as � � r � j � b	� then

Dm���n�r �
nX
j��

�
n

j

�
Bm�n�j�r�j � �����	

For a �xed r� let Bm�n�j � Bm�n�j�r�j and Dm���n�j � Dm���n�j�r�j � Also de�ne
Bm�z	 �P

n��Bm�n
zn

n� and Dm���z	 �P
n��Dm���n

zn

n� � Then� by �����	

Dm���n �
nX
j��

�
n

j

�
Bm�n�j � �����	
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This identity is directly translated into an equation in their respective exponential gen�
erating functions as

Dm���z	 � ezBm�z	� �����	

If �����	 is solved for Bm�z	� and then we consider the coecient of
zn

n� on both sides� the
following inverse relation is obtained

Bm�n �
nX
j��

���	j
�
n

j

�
Dm���n�j � �����	

and so�

Bm�n�r �
nX
j��

���	j
�
n

j

�
Dm���n�j�r�j �����	

�
rX

j��

���	j
�
n

j

�
Dm���n�j�r�j � �����	

QED

Corollary �
�

Wm�n�w	 �
X

��k�n

�
n

k

��
m � �
m

�n�k � �
m

�k
�
�Wm���n�k�w	w

k�b �
X

��i�b�k

	
�� wi�k�b


 iX
j��

���	j
�
n � k

j

�
Dm�n�k�j�i�j

�m� �	n�k

�
A � �����	

����� Distribution of the Size of the Over�ow Area

In this section we use the Poisson Transform to �nd E�Wm�n�� Let us de�ne

Tm�x� w	 � e�mx
X
n��

Wm�n�w	
�mx	n

n�
� Pm�Wm�n�w	# x� �����	

and Rm�x� w	 � emxTm�x� w	 �
X
n��

Rm�n�w	x
n� �����	

First we will �nd ai� i � � that satisfy

UwDwTm�x� w	 � Pm�E�Wm�n�# x� �
X
i��

aix
i� �����	
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and then� by Theorem ����

E�Wm�n� �
X
i��

ai
ni

mi
�����	

By Corollary ���� and the de�nition of Rm�n�w	�

Rm�n�w	 �
�

wb

X
��k�n

Rm���n�k�w	
wk

k�

�
�

n�

X
��k�n

�
n

k

� X
��i�b�k

	
�� wi�k�b


 iX
j��

���	j
�
n� k

j

�
Dm�n�k�j�i�j � �����	

Let us �rst concentrate on the last sum of �����	� The following lemma will be useful for
this purpose�

Lemma �
�

�X
k��

���	k
�
n

k

��
n� k

�� k

�
� �� � ��� �����	

Proof�

By �����	� we have

�X
k��

���	k
�
n

k

��
n� k

�� k

�
�

�
n

�

�
�X

k��

���	k
�
�

k

�
� �� � ��� �����	

QED
If s � i� k� then

�

n�

X
��k�n

�
n

k

� X
��i�b�k

	
�� wi�k�b


 iX
j��

���	j
�
n� k

j

�
Dm�n�k�j�i�j �����	

�
�

n�

X
��k�n

�
n

k

� X
��s�b

	
�� ws�b


 s�kX
j��

���	j
�
n� k

j

�
Dm�n�k�j�s�k�j �����	

�
�

n�

X
��s�b

	
�� ws�b


 X
��k�n

�
n

k

�
s�kX
j��

���	j
�
n� k

j

�
Dm�n�k�j�s�k�j � �����	

Actually� the upper bound of the sum indexed by k may be s instead of n� If n � s� when
n � k � s�

n
k

�
� � because n � �� Moreover� if n � s� when s � k � n� the sum indexed
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by j is �� because s� k � �� If we use Lemma ��� and de�ne � � k � j� then

�

n�

X
��s�b

	
�� ws�b


 X
��k�n

�
n

k

�
s�kX
j��

���	j
�
n� k

j

�
Dm�n�k�j�s�k�j

�
�

n�

X
��s�b

	
�� ws�b


 X
��k�s

�
n

k

�
s�kX
j��

���	j
�
n� k

j

�
Dm�n�k�j�s�k�j

�
�

n�

X
��s�b

	
�� ws�b


 X
��k�s

�
n

k

�
sX

��k

���	��k
�
n� k

�� k

�
Dm�n���s��

�
�

n�

X
��s�b

	
�� ws�b


 X
����s

���	�Dm�n���s��

�X
k��

���	k
�
n

k

��
n� k

�� k

�

�
�

n�

X
��s�b

	
�� ws�b



Dm�n�s� �����	

So� by �����	 and �����	 we can write

Rm�n�w	 �
�

wb

X
��k�n

Rm���n�k�w	
wk

k�
�
�

n�

X
��s�b

	
�� ws�b



Dm�n�s

�
�

wb

X
��k�n

Rm���n�k�w	
wk

k�
�
�

n�

X
��s�b

	
�� ws�b



�Qm�n�b�s�� � Qm�n�b�s	

�
�

wb

X
��k�n

Rm���n�k�w	
wk

k�
�
�

n�

X
��s�b


�� w�s

�
�Qm�n�s�� �Qm�n�s	

�
�

wb

X
��k�n

Rm���n�k�w	
wk

k�
�Am�n�w	� �����	

where Am�n�w	 denotes the sum indexed by s� If

Am�x� w	 �
X
n��

Am�n�w	x
n �����	

then�

Rm�x� w	 �
�

wb

X
n��

�
nX

k��

Rm���n�k�w	
wk

k�

�
xn � Am�x� w	

�
�

wb

X
k��

�wx	k

k�

X
n�k

Rm���n�k�w	x
n�k � Am�x� w	

�
ewx

wb
Rm���x� w	 �Am�x� w	� �����	
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Since �����	 is a linear recurrence with R��x� w	 � �� we �nd

Rm�x� w	 �
emxw

wbm
�

mX
k��

e�m�k�xw

wb�m�k�
Ak�x� w	� �����	

Finally� by the de�nition of Tm�x� w	�

Pm�Wm�n# x� � e�mxRm�x� w	

�
emx�w���

wbm
�

mX
k��

e�kx
e�m�k�x�w���

wb�m�k�
Ak�x� w	� �����	

Let us study now Ak�x� w	� From its de�nition�

Ak�x� w	 �
X
n��

Ak�n�w	x
n

�
X
n��

xn

n�

X
��s�b


�� w�s

�
�Qk�n�s�� � Qk�n�s	

�
X

��s�b


�� w�s

�X
n��

xn

n�
�Qk�n�s�� � Qk�n�s	

�
X

��s�b


�� w�s

�
�Qk�s���x	� Qk�s�x		 � �����	

As a consequence�

UwAk�x� w	 � �� �����	

and by ����	�

UwDwAk�x� w	 �
X

��s�b

s �Qk�s���x	�Qk�s�x		

�
X

��s�b

Qk�s�x	

�
bkX
j��

�bkj � jkj��	
xj

j�
� �����	

Finally� since

UwDw

�
e�m�k��w���x

wb�m�k�

�
� Uw

�
e�m�k��w���x�m� k	�wx� b	

wb�m�k���

�
�

� �m� k	�x� b	 �����	
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then by �����	� �����	� �����	� �����	 and �����	�

Pm�E�Wm�n�# x� � m�x� b	 �
mX
k��

e�kx
bkX
j��

�bkj � jkj��	
xj

j�
� �����	

This sum can be further simpli�ed� If n � i� j� then

mX
k��

e�kx
bkX
j��

�bkj � jkj��	
xj

j�

�
mX
k��

X
i��

���	i �kx	
i

i�

bkX
j��

�bkj � jkj��	
xj

j�

�
mX
k��

X
n��

���	nx
n

n�

min�n�bk�X
j��

���	j
�
n

j

�
kn�j�bkj � jkj��	

�
mX
k��

X
n��

���	nx
n

n�

bkX
j��

���	j
�
n

j

�
kn�j�bkj � jkj��	 �����	

�
X
n��

���	nx
n

n�

mX
k��

kn��
bkX
j��

���	j
�
n

j

�
�bk� j	� �����	

Step �����	 needs some justi�cation when n � bk� as it may cause problems when n �

j � bk� In this range�
n
j

�
� �� and so min�n� bk	 can be substituted by bk as the upper

bound of the sum indexed by j�

To continue the simpli�cation� we require an identity that is a special case of �����	


bkX
j��

���	j
�
n

j

�
� ���	bk

�
n� �
bk

�
� �����	

Therefore� from �����	�

X
n��

���	nx
n

n�

mX
k��

kn��
bkX
j��

���	j
�
n

j

�
�bk � j	

�
X
n��

���	nx
n

n�

mX
k��

kn��

�
�bk bkX

j��

���	j
�
n

j

�
�

bkX
j��

���	jj
�
n

j

��A

�
X
n��

���	nx
n

n�

mX
k��

kn��

�
�bk bkX

j��

���	j
�
n

j

�
� n

bkX
j��

���	j
�
n � �
j � �

��A
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�
X
n��

���	nx
n

n�

mX
k��

kn��

�
�bk bkX

j��

���	j
�
n

j

�
� n

bk��X
j��

���	j
�
n � �
j

��A

�
X
n��

���	nx
n

n�

mX
k��

kn��
�
bk���	bk

�
n� �
bk

�
� n���	bk��

�
n � �
bk� �

��

�
X
n��

���	nx
n

n�

mX
k��

kn��
�
���	bk�n� �	

�
n� �
bk � �

�
� n���	bk

�
n� �
bk � �

��

�
X
n��

���	nx
n

n�

mX
k��

���	bk��kn��
�
n� �
bk � �

�

�
X
n��

���	nx
n

n�

mX
k��

���	bk��kn��
�
���	bk��

�
bk� n

bk � �
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�
X
n��

���	nx
n
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mX
k��

kn��
�
bk� n

bk � �

�

� bm�mx�
X
n��

���	nx
n

n�

mX
k��

kn��
�
bk � n

bk � �

�
� �����	

Finally� from �����	 and �����	�

Pm�E�Wm�n�# x� �
X
n��

���	nx
n

n�

mX
k��

kn��
�
bk� n

bk � �

�
�����	

Moreover� by �����	�

E�Wm�n� �
X
i��

ni

mi

���	i
i�

mX
k��

ki��
�
bk� i

bk � �

�

�
X
i��

�
n

i

�
���	i
mi

mX
k��

ki��
�
bk� i

bk � �

�
� �����	

It is important to note that for b � �� �����	 can be used with m � i and n � i � � to
calculate the inner sum� Then�

E�Wm�n� �
X
i��

ni

mi

���	i��
i�

mX
k��

���	kki��
�
i� �
k � �

�

�
X
i��

ni

mi

���	i��
i��i� �	

mX
k��

���	kki
�
i� �
k

�
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�
X
i��

ni

mi

���	i��
i��i� �	���	

i���i� �	�
�

i

i� �

�

�
X
i��

ni

mi

�

i��i� �	�i� �	�
i�i� �	
�

�
�

�

X
i��

ni

mi

�
�

�

�
Q��m�n	� �� n

m

�
� �����	

as was derived in ���� and �����

��� Analysis of Robin Hood Linear Probing

In this section we �nd the average cost of a successful search for a random record in a
hash table withm buckets of size b that contains n�� records� Without loss of generality�
we search for a record that hashes to bucket �� Moreover� since the order of the insertion
is not important� we assume that this record was the last one inserted�
If we look at the table after the �rst n records have been inserted� all the records that

hash to bucket � �if any	 will be occupying contiguous buckets� near the beginning of
the table� The buckets preceding them will be occupied by records that wrapped around
from the right end of the table� as can be seen in Figure ���� The key observation here
is that those records are exactly the ones that would have gone to the over�ow area�
Furthermore� it is easy to see that the number of records in this over�ow area does not
change when the records that hash to bucket � are removed�
Let Sm�n�y	 be the probability generating function for the cost of a successful search

for a random record that hashes to � in a table withm buckets of capacity b that contains
n� � records� As before� the subscript b will be omitted� as it is a given constant�
The cost of retrieving a record that hashes to � can be divided in two parts�


 The number of records �k	 that wrap around the table� In other words� the size of
the over�ow area�


 The number of records �i� �	 that hash to bucket ��
So the cost of �separately	 retrieving all records that hash to bucket � is represented by
the generating function

y
iX

r��

yb k	rb c� �����	

The y outside the sum� denotes that the cost is at least � �the �rst bucket	� The exponent
of y in the sum represents the fact that to retrieve the �r � �	st record that hashes to
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�� the k records that go to over�ow plus the �rst r records that hash to �� have to be
probed� Since the buckets have size b� we have to divide this cost by b� Hence � � bk�rb c
is the number of buckets probed to retrieve the �r � �	st record that hashes to bucket ��
Therefore� the cost of retrieving a random record that hashes to �� given that k records
over�ow from the end of the table and i�� records hash to �� has the generating function

y

i� �

iX
r��

yb k	rb c� �����	

If the table contains n � � records and i � � of them hash to bucket �� then only the
remaining n � i records that hash to buckets � through m � � in�uence the size of the
over�ow area� Remember from section ��� that Wm���n�i�k is the probability that k
records over�ow when we insert n� i records in a table of size m� � �as bucket � is not
considered	� Then�

X
k��

Wm���n�i�k
y

i� �

iX
r��

yb k	rb c �����	

represents the cost of retrieving a random record that hashes to �� given that i � � of
them hash to this bucket� We need now to average over all i� There are

n
i

�
di�erent

possibilities to choose the i records that hash to � �besides the last one inserted	� and the
probability of a record hashing to � is �

m � Finally� we �nd the generating function

Sm�n�y	 �
nX
i��

�
n

i

��
�

m

�i �m� �
m

�n�i X
k��

Wm���n�i�k
y

i� �

iX
r��

yb k	rb c

�
y

�n� �	mn

nX
i��

�
n � �

i� �

�
�m� �	n�i

X
k��

Wm���n�i�k

iX
r��

yb k	rb c� �����	

����� Average Cost of a Successful Search

The expected number of buckets inspected on a successful search is E�Sm�n��

UyDySm�n�y	� By �����	�

E�Sm�n� �
nX
i��

�
n � �

i� �

�
�m� �	n�i
�n� �	mn

X
k��

Wm���n�i�k

iX
r��

��
k � r

b

�
� �

�
�����	

As a �rst approximation� we can use the relation x� � � bxc � x� and therefore

nX
i��

�
n� �

i� �

�
�m� �	n�i
�n� �	mn

X
k��

Wm���n�i�k

iX
r��

k � r

b
�����	
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� E�Sm�n�

�
nX
i��

�
n� �

i� �

�
�m� �	n�i
�n� �	mn

X
k��

Wm���n�i�k

iX
r��

�
k � r

b
� �

�
� �����	

Since Wm�n�w	 is a probability generating function� UwWm�n�w	 � �� Therefore� the
di�erence between �����	 and �����	 is bounded by

nX
i��

�
n � �

i� �

�
�m� �	n�i
�n� �	mn

iX
r��

X
k��

Wm���n�i�k

�
nX
i��

�
n � �

i� �

�
�m� �	n�i
�n� �	mn

�i� �	

�
�

mn

nX
i��

�
n

i

�
�m� �	n�i � �� �����	

To analyze the lower bound �����	� we �rst study the inner sum

X
k��

Wm���n�i�k

iX
r��

k � r

b

�
X
k��

Wm���n�i�k

�
�i� �	

k

b
�
i�i� �	

�b

�

�
i� �

b

X
k��

kWm���n�i�k �
i�i� �	

�b

X
k��

Wm���n�i�k

�
i� �

b
E�Wm���n�i� �

i�i� �	

�b
�����	

and so�

nX
i��

�
n � �

i� �

�
�m� �	n�i
�n� �	mn

X
k��

Wm���n�i�k

iX
r��

k � r

b

�
nX
i��

�
n � �

i� �

�
�m� �	n�i
�n� �	mn

�
i� �

b
E�Wm���n�i� �

i�i� �	

�b

�

�
�

b

nX
i��

�
n

i

�
�m� �	n�i

mn
E�Wm���n�i� �

n

�b

nX
i��

�
n � �
i� �

�
�m� �	n�i

mn

�
�

b

nX
i��

�
n

i

�
�m� �	n�i

mn
E�Wm���n�i� �

nmn��

�bmn
� �����	
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In order to study the �rst sum in �����	� we use �����	� and so

�

bmn

nX
i��

�
n

i

�
�m� �	n�iE�Wm���n�i�

�
�

bmn

nX
i��

�
n

i

�
�m� �	n�i

X
j��

�
n� i

j

�
���	j
�m� �	j

mX
k��

kj��
�
bk� j

bk � �

�

�
�

bmn

X
j��

�
n

j

�
���	j�m� �	n�j

mX
k��

kj��
�
bk � j

bk� �

� n�jX
i��

�
n� j

i

�
�

�m� �	i

�
�

bmn

X
j��

�
n

j

�
���	j�m� �	n�j

mX
k��

kj��
�
bk � j

bk� �

��
� �

�

m� �
�n�j

�
�

b

X
j��

�
n

j

�
���	j
mj

mX
k��

kj��
�
bk� j

bk � �

�

�
�

b
E�Wm�n�� �����	

Then� by �����	� �����	� �����	 and �����	 we have the following bounds

E�Wm�n�

b
�

n

�bm
� E�Sm�n� � E�Wm�n�

b
�

n

�bm
� �� �����	

Nevertheless� we can give an exact expression for a full table �n � bm � �	� Every real
number x can be written as x � bxc � fxg� where fxg denotes the fractional part of x
����� The bounds given in �����	 are based on the approximation of bk�rb c made in �����	
and �����	� This term appears after taking derivatives in �����	 with respect to y� We
could have replaced the exponent of y in �����	 by

� �

�
k � r

b

�
� � �

k � r

b
�
 
k � r

b

!
� �����	

When we take derivatives� the upper bound �����	 is obtained from the �rst two addends
of the right hand side of �����	�

When the table is full� we can give an interpretation for the coecient of yf k	r
b g in

�����	� The cost of searching for a random record in the table can be divided in two parts�
The �rst is the number of buckets we have to probe� We add one to the cost� every time
a new bucket is probed� The second part is the location of the record inside the bucket�
In our model we do not consider this cost� and this is the discrepancy we have from k�r

b

�total cost of the two parts	 and bk�rb c �cost of the �rst part	� Since the table is full� the
record to be searched has the same probability ���b	 of being in any position inside its
bucket� Therefore� for the special case of a full table� the probability generating function
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for the second part is

Gm�bm���y	 �
b��X
j��

y
j
b

b
�����	

and therefore�

UyDyGm�bm���y	 �
b��X
j��

j

b�
�
b� �
�b

� �����	

So� we have proven

Lemma �
�

�

bmbm

bm��X
i��

�
bm

i� �

�
�m� �	bm���i

X
k��

Wm���bm���i�k

iX
r��

 
k � r

b

!
�

b� �
�b

�

The most notable feature of Lemma ���� is that this sum is independent of m� Now� we
can use it to prove

Theorem �
�

E�Sm�bm��� �
E�Wm�bm���

b
�
m� �
�bm

� �� �����	

Proof� We have to subtract �����	 from the upper bound given in �����	 for n � bm���
Then�

E�Sm�bm��� �
E�Wm�bm���

b
�
bm� �
�bm

� �� b� �
�b

�����	

�
E�Wm�bm���

b
�
m� �
�bm

� �� �����	

QED
It is important to note that when b � �� Theorem ��� tells us that

E�Sm�m��� �
�

�
�� �Q��m�m� �		 � �����	

as we already know by ����	�
As a corollary� we can improve the bounds given in �����	�

Corollary �
�

E�Wm�n�

b
�

n

�bm
� �� b� �

�b
� E�Sm�n� � E�Wm�n�

b
�

n

�bm
� �� �����	
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��� Asymptotic Analysis

By Theorem ���� only the asymptotic behavior of E�Wm�bm��� has to be studied� For this
purpose� we use the method of singularity analysis �����

Our approach is as follows� We will �rst �nd an exponential generating function for
E�Wm�bm���� As we shall see� this generating function is related with some variations of
the Cayley generating function� introduced in chapter �� Then we use multisection of
series to express this generating function as a combination of known series� Finally� we
use singularity analysis to �nd the desired asymptotics�

����� The Exponential Generating Function

First we require the following technical lemma�

Lemma �
� Let I�vc	 �
R vc
v dvc��

R vc��
v dvc�� � � �

R v�
v dv�� Then� I�vc	 �

�vc�v�c��

�c���� �

Proof� The proof is by induction on c�

If c � �� then
R v�
v dv� � �v� � v	�

For the induction step� we have I�vc	 �
R vc
v I�vc��	dvc��� Then�

I�vc	 �

Z vc

v

�vc�� � v	c��

�c� �	� dvc�� �����	

�
�vc � v	c��

�c� �	� �����	

QED
By �����	� and using �����	� we can express E�Wm�bm��� as follows

E�Wm�mb��� �
X
i��

�
mb� �

i

�
���	i
mi

mX
k��

���	bk��ki��
�
i� �
bk � �

�
�����	

� �b
X
i��

�
mb� �

i

�
���	i
�bm	i

mX
k��

���	bk�bk	i��
�
i� �
bk � �

�
� �����	

More generally� we will �nd the exponential generating function of

Ba�c�d�n �
X
i�c

�
n

i

�
�n� a	n�i���	i

mX
k��

���	bk�bk	i�c�d
�
i� c

bk � �

�
� �����	

As usual� we omit the subscript b� If we denote

Ai�d � ���	i
mX
k��

���	bk�bk	i�d
�

i

bk � �

�
� �����	



�� CHAPTER �� LINEAR PROBING HASHING WITH BUCKETS

then the outer sum in �����	 can be rewritten as

Ba�c�d�n �
X
i�c

�
n

i

�
�n� a	n�iAi�c�d �����	

and so

E�Wm�bm��� �
�b

�bm	bm��
B������bm��� �����	

The �rst goal is to �nd an exponential generating function for Ba�c�d�n�

Ba�c�d�z	 �
X
n�c

�
�X
i�c

�
n

i

�
�n� a	n�iAi�c�d

�
A zn

n�

�
X
i�c

Ai�c�d
zi

i�

X
n�i

�n� a	n�i
zn�i

�n� i	�

�
X
i�c

Ai�c�d
zi

i�

X
n��

�n� i� a	n
zn

n�
� �����	

If f�z	 is the Cayley generating function de�ned in chapter �� and we use �����	� with
y � i� a� then the inner sum of �����	 can be simpli�ed as follows

Ba�c�d�z	 �
X
i�c

Ai�c�d
zi

i�

�
f�z	

z

�a�i �

�� f�z	

�

�
f�z	

z

�a �
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X
i�c

Ai�c�d
f�z	i

i�

�

�
f�z	

z

�a �

�� f�z	

X
i��

Ai�d
f�z	i�c

�i� c	�
� �����	

Then� if we denote the exponential generating function of Ai�d by Ad�z	� and use

Lemma ���� �����	 tells us that for d � ��

Ba�c�d�z	 �

�
f�z	

z

�a �

�� f�z	

Z f�z�

�
dvc��

Z vc��

�
� � �

Z v�

�
Ad�v	dv

�

�
f�z	

z

�a �

�� f�z	

Z f�z�

�
Ad�v	dv

Z f�z�

v
I�vc��	dvc��

�

�
f�z	

z

�a �

�� f�z	

Z f�z�

�

�f�z	� v	c��

�c� �	� Ad�v	dv
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�

�
f�z	

z

�a �

�� f�z	

Z z

�

�f�z	� f�u		c��

�c� �	� Ad�f�u		Duf�u	du� �����	

Therefore� by �����	� we have to �nd Ad�z	� By the de�nition of Ai�d�

Ad�z	 �
X
i��

�
����	iX

k��

���	bk�bk	i�d
�

i

bk � �

��A zi

i�

�
X
k��
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X
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�i� bk � �	�
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X
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X
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X
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X
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� ��
z

X
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ze�z
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� �����	

However� by �����	� we do not need Ad�z	� but rather Ad�f�z		� Since we have

f�z	e�f�z� � z�

Ad�f�z		 � � �

f�z	

X
k��

�bk	bk�d

�bk	�

	
f�z	e�f�z�


bk

� � �

f�z	

X
k��

�bk	bk�d

�bk	�
zbk� �����	

We have a case of multisection of series� as presented in chapter �� By �����	� we are
dealing with a b�section of fd�z	� So� by �����	 for t � ��

Ad�f�z		 � � �

bf�z	

b��X
j��

fd
	
e
��i

b
jz


� �����	

So� �����	 can be rewritten as

Ba�c�d�z	 � � �

b�c� �	�
b��X
j��

�
f�z	

z

�a �

�� f�z	
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Z z

�
�f�z	� f�u		c��fd

	
e
��i

b
jz

 Duf�u	

f�u	
du� �����	

Although several interesting special cases can be derived from �����	� we will only deal
with the special case a � �� c � � and d � ��

Since f��z	 � zDz �zDzf�z	�� �����	 can be applied twice� and so�

f��z	 � zDz

�
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�� f�z	

�
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�
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� �

�

�
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�
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��� f�z		�
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Therefore� �����	 can be rewritten as

A�f�z		 � � �
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b��X
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b
jz
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Finally� by putting �����	 and �����	 together we obtain
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b
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Moreover� the �rst integral in �����	 can be simpli�ed by using �����	�

Z z

�
��� f�u		

f
	
e
��i

b
ju
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ju
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�
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jz


 � �� �����	

Furthermore� when j � �� the second integral in �����	 can also be simpli�ed�

Z z

�

Duf�u	

��� f�u		�
du �

�

� ��� f �z		�
� �
�
� �����	

Finally� if we substitute �����	 and �����	 into �����	� and use �����	 then
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����� Singularity Analysis

For simplicity� we will do singularity analysis on �bzB�z	� Let r � e
��i

b be a b�th root of
unity and let zj � r�j�e� Sometimes� depending on the context� zj will be also denoted

by uj � Then if �j�z	 � �
���
q
�� z�zj � by Lemma ��� ���� ���� f�r

jz	� admits the singular
expansion at z � zj

�� �j�z	 �
�

�
��j �z	 �O��j�z	

�	� �����	

Since f�z	 is analytic at z � zj � j �� �� then by �����	

f�z	 � f�zj	� f�zj	

���� f�zj		
�j�z	

� � O��j�z	

	� �����	

First� let concentrate on the integral that appears in �����	� For each j� the integrand
has � singularities� one at uj and the other u��

Around u � uj � by �����	 and �����	

f��r
ju	 �

f�rju	

��� f�rju		�
� �j�u	

�� �O��j�u	
��	� �����	
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Moreover� �
u���f�u�� is analytic at uj � because j � �� and f�u	 has its only singularity at

u�� Then�

�

u��� f�u		
�

�

uj��� f�uj		
� O��j�u	

�	� �����	

Therefore�

f��r
ju	

u��� f�u		
�

�j�u	
��

uj��� f�uj		
�O��j�u	

��	� �����	

We also know

Z z

�

�j�u	
��

uj
du �

Z z

�

�������� u�uj	
����

uj
du � �j�z	

�� �p� �����	

and

Z z

�

�j�u	��

uj
du �

Z z

�

�������� u�uj	����

uj
du � ��j�z	 �

p
��� �����	

Then� around z � zj we have

Z z

�

f
	
e
��i

b
ju



	
�� f

	
e
��i

b
ju


� du

u��� f�u		
�

�j�z	��

��� f�zj		
� O��j�z		� �����	

Similarly� around u � u�� we �nd

�

�� f�u	
� ���u	

�� � �
�
� O����z		 �����	

and

f��r
ju	 �

f�u�j	

��� f�u�j		�
�O����u	

�	� �����	

So by �����	 we can conclude that around z � z��

Z z

�

f
	
e
��i

b
ju



	
�� f

	
e
��i

b
ju


� du

u��� f�u		
� 	 O����z		 �����	
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So from �����	� �����	 and �����	� we �nd

f�z	
b��X
j��

Z z

�

f
	
e
��i

b
ju



	
�� f

	
e
��i

b
ju


� du

u��� f�u		

	
b��X
j��

�
f�zj	�j�z	

��

��� f�zj		
� O��j�z		

�
�O����z		� ������	

The other addends of �����	� can be studied by using �����	 and �����	� So�

�bzB�z	 	 ���z	
��

�
� ���z	

��

�
�O����z		

� ���z	
�� �O����z		

�
b��X
j��

�
f�zj	�j�z	

��

��� f�zj		
�O��j�z		

�
�

b��X
j��

f�z�j	���z	
��

��� f�z�j		
�O����z		

�
b��X
j��

�
f�zj	�j�z	��

��� f�zj		
�O��j�z		

�
� O����z		

�
���z	��

�
� �
�
���z	

�� �
b��X
j��

f�z�j	���z	��

��� f�z�j		
�O����z		� ������	

Once the asymptotic expansion ������	 is obtained� we can �nd the asymptotic expansion
of Bn� In fact� by �����	 we require the asymptotic expansion of �bBn��n� �	

n�

First� by the binomial theorem and Stirling�s formula� we �nd ����

�
zn

n�

�
���z	

�s 	
p
�nn�

s��
�

!
 s
�

�
�
s��
�

�
� �

�s� � �s� �
��n

� O

�
�

n�

��
������	

Because z is a factor of the left hand side of ������	� we require the asymptotic behavior

of �
n��

h
zn	�

�n����

i
���z	

�s� Since n� � � mb� by ������	 and ������	 we arrive at

Theorem �
�

E�Wmb�mb��� �
�

�

s
bm�

�
� �
�
�

b��X
j��

f�e
��i

b
j��	

��� f�e
��i

b
j��		

�
�

��

r
�

�bm
�O

�
�

bm

�
� ������	

Then� by Theorem ���� we obtain our main theorem�
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Theorem �
�

bE�Sm�bm��� �

p
��

�
�bm	����

�

�
�

b��X
j��

�

��� f�e
��i

b
j��		

�

p
��

��
�bm	����� O

	
�bm	��



� ������	

As a particular case� when b � �� we �nd

E�Sm�m��� �

p
��

�
m��� �

�

�
�

p
��

��
m���� �O

	
m��



������	

as we already know �����

��	 A New Approach to the Study of Qm�n�d

In this section we present a di�erent approach to the study of the numbers Qm�n�d� by
introducing exponential generating functions� In the process� we de�ne a new family of
numbers that satisfy a recurrence resembling that of the Bernoulli numbers� We feel that
this approach may be helpful in solving problems involving recurrences with truncated
generating functions� So even though no new results related with hashing probing with
buckets are obtained� we feel that this approach deserves a special study in its own right�
By �����	 Theorem ��� gives the following recurrence relation

Q��d�z	 � �

Qm�d�z	 � �ezQm���d�z	�bm�d�� �m � �	 ������	

where Qm�d�z	 �
P

n��Qm�n�d
zn

n� � The main problem is that we are dealing with a
recurrence that involves truncated generating functions�

Our strategy is to �nd an exponential generating function Td�z	 such that

Qm�d�z	 � �Td�z	e
mz �bm�d�� ������	

where Td�z	 �
P

k�� Tk�d
zk

k� � for some coecients Tk�d to be determined� and independent
of m� Again� b is an implicit parameter�
The intuition behind this idea is as follows� From ������	� we obtain Qm�d�z	 by

multiplying the truncated generating function Qm���d�z	 by the series e
z and then taking

only the �rst bm � d � � terms of it� Moreover� Q��d�z	 is the �rst term of ez � It is
clear that without any truncations Qm�d�z	 would be e

mz � However we have to consider
a correcting factor originated by these truncations and this is the reason for de�ning this
generating function Td�z	� Then ������	 gives a nonrecursive de�nition of Qm�d�z	 that
involves the truncated product of two series� The interesting aspect of this approach is
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that Td�z	 does not depend on m� Furthermore� the only dependency on m is captured
in the well known series that converges to emz � This section is devoted to the study of
some properties of the numbers Tk�d�

By �����	 and assuming ������	�

Qm�n�d �
X
k��

�
n

k

�
Tk�dm

n�k � �� � n � mb� d	� ������	

Actually� as we will see below� we need

Qm�d�z	 � �Td�z	e
mz �b�m����d�� ������	

Equation ������	 is not an immediate consequence of Theorem ��� because the recursive
de�nition of Qm�n�d is valid only up to n � bm� d� �� So we have to prove

Lemma �
�

Qm�n�d �
X
k��

�
n

k

�
Tk�dm

n�k �bm� d � n � �m� �	b� d	� ������	

By Theorem ��� and �����	 we can reformulate ������	 as

X
k��

�
n

k

�
Tk�dm

n�k � � �bm� d � n � �m� �	b� d	� ������	

The reason for Lemma ��� is as follows� By ������	 and ������	 we have

Qm�d�z	 � �ezQm���d�z	�bm�d��

�

�
ez
h
Td�z	e

�m���z
i
�m���b�d��

�
bm�d��

�

�
�X
n��

zn

n�

�m���b�d��X
n��

�
�X
k��

�
n

k

�
Tk�d�m� �	n�k

�
A zn

n�

�
�
bm�d��

�

�
�X
n��

zn

n�

bm�d��X
n��

�
�X
k��

�
n

k

�
Tk�d�m� �	n�k

�
A zn

n�

�
�
bm�d��

������	

�
bm�d��X
n��

�
�X
j��

�
n

j

�X
k��

�
j

k

�
Tk�d�m� �	j�k

�
A zn

n�

�
bm�d��X
n��

�
�X
k��

�
n

k

�
Tk�d

n�kX
j��

�
n� k

j

�
�m� �	n�k�j

�
A zn

n�
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�
bm�d��X
n��

�
�X
k��

�
n

k

�
Tk�dm

n�k

�
A zn

n�

� �Td�z	e
mz�bm�d�� �

Note that ������	 �and therefore Lemma ���	 is required at step ������	 above� Lemma ���
will follow as a consequence of Theorem ����

The numbers Tk�d satisfy some nice properties� The following can indeed be used as
de�nition�

Theorem �
�

X
j

�
k

j

���
k � d

b

��k�j
Tj�d � �k � ��� ������	

To prove this theorem we require

Lemma �
�

Tk�d � � � � k � b� d� �� ������	

Proof�

If m � �� by Theorem ���

Q��n�d �
X
k��

�
n

k

�
Q��k�d �

X
k��

�
n

k

�
�k � �� � � � � n � b� d� � ������	

and so by ������	

Q��n�d �
X
k��

�
n

k

�
Tk�d � � n � b� d� � ������	

If n � �� by ������	� T��d � ��

We prove the lemma by induction on n� Note that as ������	 is valid only up to
n � b� d� �� so is this induction proof�
For n � �

Q����d �

�
�

�

�
T��d �

�
�

�

�
T��d �

�
�

�

�
� �

�
�

�

�
T��d � � ������	

and so T��d � ��
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Now� if we assume this lemma holds for up to n � k � �� then for n � k�

Q��k�d �
X
j��

�
k

j

�
Tj�d �

�
k

�

�
� �

�
k

k

�
Tk�d � � ������	

and so Tk�d � �� QED
Since bk�db c � �� for � � k � b� d� � as a consequence we obtain

Corollary �
�

X
j

�
k

j

���
k � d

b

��k�j
Tj�d � �k � �� �� � k � b� d� �	� ������	

Proof of Theorem �
��

When � � k � b� d� � the theorem holds by Corollary ����
Let s � mb� d and � � r � b� �� for m � �� By Theorem ��� we have

Qm���s�r�d �
s�rX
k��

�
s� r

k

�
Qm�k�d �

s��X
k��

�
s� r

k

�
Qm�k�d ������	

as Qm�k�d � � if k � s� Then by ������	 we obtain

s�rX
k��

�
s � r

k

�
Tk�d�m� �	

s�r�k �
s��X
k��

�
s� r

k

�
kX

j��

�
k

j

�
Tj�dm

k�j ������	

If we manipulate the right hand side of ������	� and use �����	� then

s��X
k��

�
s � r

k

�
kX

j��

�
k

j

�
Tj�dm

k�j �
s��X
j��

�
s� r

j

�
Tj�d

s��X
k�j

�
s � r � j

k � j

�
mk�j

�
s��X
j��

�
s� r

j

�
Tj�d

s���jX
k��

�
s � r � j

k

�
mk

�
s��X
j��

�
s� r

j

�
Tj�d�m� �	

s�r�j

�
s��X
j��

�
s� r

j

�
Tj�d

s�r�jX
k�s�j

�
s� r � j

k

�
mk� ������	
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So considering together ������	 and ������	�

s�rX
k�s

�
s � r

k

�
Tk�d�m� �	

s�r�k � �
s��X
j��

�
s� r

j

�
Tj�d

s�r�jX
k�s�j

�
s� r � j

k

�
mk � ������	

By changing the variable k to k � s� j on the right hand side of ������	 and then using
�����	 we �nd

s��X
j��

�
s� r

j

�
Tj�d

s�r�jX
k�s�j

�
s � r � j

k

�
mk �

s��X
j��

�
s � r

j

�
Tj�d

rX
k��

�
s� r� j

s� k � j

�
mk�s�j

�
s��X
j��

�
s � r

j

�
Tj�d

rX
k��

�
s� r � j

r� k

�
mk�s�j

�
rX

k��

�
s � r

r � k

�
s��X
j��

�
s� k

j

�
Tj�dm

k�s�j

�
rX

k��

�
s� r

s � k

�
s��X
j��

�
s � k

j

�
Tj�dm

k�s�j �

After substituting the variable k by k � s on the left hand side of ������	� we obtain the
identity

rX
k��

�
s � r

s� k

�
Ts�k�d�m� �	

r�k � �
rX

k��

�
s � r

s� k

�
s��X
j��

�
s� k

j

�
Tj�dm

k�s�j � ������	

Now we prove the theorem by induction on r� Note that ������	 is valid only if r � b� ��

If r � � in ������	� then

Ts�d � �
s��X
j��

�
s

j

�
Tj�dm

s�j ������	

and so

sX
j��

�
s

j

�
Tj�dm

s�j � �� ������	

By induction hypothesis� suppose that for � � i � r� �� then
s�iX
j��

�
s � i

j

�
Tj�dm

i�s�j � � ������	
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and therefore

s��X
j��

�
s� i

j

�
Tj�dm

i�s�j � �
s�iX
j�s

�
s� i

j

�
Tj�dm

i�s�j � ������	

So for i � r� we can derive for the left hand side of ������	

�
rX

k��

�
s� r

s � k

�
s��X
j��

�
s � k

j

�
Tj�dm

k�s�j

� �
s��X
j��

�
s � r

j

�
Tj�dm

r�s�j �
r��X
k��

�
s� r

s � k

�
s�kX
j�s

�
s� k

j

�
Tj�dm

k�s�j

� �
s��X
j��

�
s � r

j

�
Tj�dm

r�s�j �
r��X
k��

�
s� r

s � k

�
kX

j��

�
s � k

s � j

�
Ts�j�dm

k�j

� �
s��X
j��

�
s � r

j

�
Tj�dm

r�s�j �
r��X
j��

�
s� r

s� j

�
Ts�j�d

r��X
k�j

�
r � j

k � j

�
mk�j

� �
s��X
j��

�
s � r

j

�
Tj�dm

r�s�j �
r��X
j��

�
s� r

s� j

�
Ts�j�d

r�j��X
k��

�
r� j

k

�
mk

� �
s��X
j��

�
s � r

j

�
Tj�dm

r�s�j �
r��X
j��

�
s� r

s� j

�
Ts�j�d

	
�m� �	r�j �mr�j




� �
s��X
j��

�
s � r

j

�
Tj�dm

r�s�j �
s�r��X
j�s

�
s� r

j

�
Tj�dm

r�s�j

�
r��X
j��

�
s� r

s� j

�
Ts�j�d�m� �	

r�j

� �
s�r��X
j��

�
s� r

j

�
Tj�dm

r�s�j �
r��X
j��

�
s � r

s � j

�
Ts�j�d�m� �	

r�j � ������	

Finally consider ������	 and ������	 together� Then

Ts�r�d � �
s�r��X
j��

�
s � r

j

�
Tj�dm

r�s�j ������	

and so

s�rX
j��

�
s� r

j

�
Tj�dm

r�s�j � �� ������	
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Since k � s � r � mb� d� r� then as � � r � b� ���
n � d

b

�
�

�
bm� r

b

�
� m� ������	

Therefore� after putting ������	 and ������	 together� we have proved the theorem for
mb� d � k � �m� �	b� d� �� Since this proof is valid for each m � �� the theorem
follows� QED
As an important consequence of Theorem ��� we obtain the proof of Lemma ���� Proof
of Lemma �
�� By Theorem ���� for � � r � b� �� we have

bm�d�rX
j��

�
bm� d� r

j

�
Tj�dm

bm�d�r�j � �� ������	

The theorem follows easily� because by Theorem ���� Qm�mb�d�r � �� for r � �� QED
From Theorem ��� we can derive a recurrence to generate the numbers Tk�d as follows

T��d � �

Tk�d � �
k��X
j��

�
k

j

���
k � d

b

��k�j
Tj�d �k � �	 ������	

A very curious property of these numbers is

Theorem �
�

b��X
d��

Tk�d �

���
��

b �k � �	
�� �k � �	
� �k � �	�

������	

Proof� By ������	 and Theorem ����

b��X
d��

Qm�n�d �
b��X
d��

X
k��

�
n

k

�
Tk�dm

n�k ������	

�
X
k��

�
n

k

�
mn�k

b��X
d��

Tk�d ������	

� bmn � nmn��� ������	

Since this is an identity of two polynomials onm� the theorem follows immediately� QED
There is also an inverse relation as follows�
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Theorem �
�	

Tn�d �
X
k��

�
n

k

�
���	n�kQm�k�dm

n�k �n � �m� �	b� d� �	� ������	

Proof� By ������	 and Lemma ����

Qm�d�z	 � �Td�z	e
mz ��m���b�d�� ������	

and therefore we �nd the inverse relation

Td�z	 �
�
Qm�d�z	e

�mz�
�m���b�d�� � ������	

After taking the coecient of zn

n� on both sides of ������	� we obtain the result claimed�
QED

It is interesting to note that this inverse relation is independent of the value of m� as long
as n � �m� �	b� d� ��

��	�� The Exponential Generating Function for Tk��

In this section we �nd an implicit formula for T��z	� By ������	�

X
k��

�
�X

j

�
k

j

���
k

b

��k�j
Tj��

�
A zk

k�
� � ������	

It is convenient to de�ne k � bs� � with � � � � b� �� Let us study the left hand side
of ������	�

X
k��

�
�X

j

�
k

j

���
k

b

��k�j
Tj��

�
A zk

k�

�
b��X
���

X
s��

X
j

�
bs� �

j

�
sbs���jTj��

zbs��

�bs� �	�

�
b��X
���

X
j��

Tj��
zj

j�

X
s�d j��b e

�bs	bs���j
�z�b	bs���j

�bs� �� j	�
������	

The inner sum is a b�section of
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Therefore� if r is a b�th root of unity�
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We now use �����	 for the inner sum� and so
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Since f�z	 � zef�z�� then �z�b	�f�rnz�b	 � r�ne�f�r
nz�b�� and as r�nb � �� we have

proved

Theorem �
��

�
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b��X
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�� f�rnz�b	

e�bf�r
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When b � �� then ������	 simpli�es to

T��f�z		 � �� f�z	� ������	

and therefore T� � �� T� � ��� and Tk � �� k � �� as we already know�
It would be very interesting to study ������	 for other values of b�
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Conclusions and Future Work

Every night of the full moon� when I look
to the sky� I know that far away a four year
old girl is in deep communication with me�
and is asking the moon to reunite her with her
father very soon�

��
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��� Conclusions

In this report we introduce a new mathematical transform that we call the Diagonal
Poisson Transform� This transform� which resembles the Poisson Transform� is the main
tool in the analysis presented in Chapter �� In Chapter � we use it to study in a uni�ed
way various general classes of �Abel�like� recurrences� sums� and inverse relations�

In Chapter � we study the e�ect of the LCFS heuristic on the linear probing hashing
scheme� We prove that� up to lower order terms� this heuristic achieves the optimal
variance for the distribution of successful searches�

Finally� in Chapter �� we present the �rst exact analysis of a problem related with
an open addressing hashing scheme and multi�record buckets� We study the average cost
for a successful search of a random element in a linear probing hash table with buckets
of size b� We obtain the generating function for the Robin Hood heuristic� and then� for
a full table� �nd an asymptotic expansion up to O��bm	��	� In Section ��� we introduce
a new family of numbers that verify a recurrence that resembles that of the Bernoulli
numbers� These numbers may be used to give an alternative derivation of the analysis
made in Chapter � and may prove very helpful in studying recurrences involving truncated
generating functions�

Most of the formulae we have derived in this report have been checked with the assist
of the Maple system �����

��� Future Work

Several problems arise from the results presented in this report�

It would be very interesting to �nd new areas that can be studied with the help of
the Diagonal Poisson Transform� This tool seems to be particularly useful when �Abel�
like� problems arise� Furthermore� we would like to �nd problems in which new classes
of recurrences� sums or inverse relations can be studied using it� Other problems of
mathematical interest involve �nding new properties of this transform� as well as to
de�ne an algebra �similar to the Q�Algebra de�ned by Knuth ����	 of the functions that
satisfy the Transfer Lemma�

For the analysis of hashing with buckets� we would like to �nd an exact expression for
the variance� as well as an asymptotic expansion when the table is full� It would also be
interesting to study the variance for other heuristics such as the standard FCFS or the
LCFS approach�

Another area of research is to study other open addressing schemes such as uniform
or random probing� For uniform probing� Larson ���� presents an asymptotic analysis� in
which m�n � � while the ratio m�n is constant� Later� for random probing� Ramakr�
ishna ���� gives explicit expressions for the cost of successful searches� However� he only
solves them numerically� New ideas have to be introduced to analyze these algorithms�
The methodology used in Chapter � to do the asymptotic analysis could be used in the
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analysis of these schemes�
It would be very interesting to better understand the numbers Tk�d de�ned in Sec�

tion ���� A development of a theory for them may help in studying other recurrences
that involve truncated generating functions� These numbers seem not to appear in The
Encyclopedia of Integer Sequences ����� although some special cases were handled by the
Superseeker� We would like to �nd other problems in which these numbers appear�
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