Algorithmic Manipulations and

Transformations of Univariate
Holonomic Functions and Sequences

Diplomarbeit

zur Frlangung des akademischen Grades
“Diplom-Ingenieur”
in der Studienrichtung
Technische Mathematik

Verfafit von
Christian Mallinger

Angefertigt am Institut fiir Mathematik
der Technisch-Naturwissenschaftlichen Fakultét
an der Johannes Kepler Universitdt Linz

Eingereicht bei
o.Univ.-Prof. Dr. Bruno Buchberger

Betreut durch
Univ.Ass. Dr. Peter Paule

RISC-Linz, August 1996



Abstract

Holonomic functions and sequences have the property that they can be represented by
a finite amount of information. Moreover, these holonomic objects are closed under
elementary operations like, for instance, addition or (termwise and Cauchy) multipli-
cation. These (and other) operations can also be performed “algorithmically”. As a
consequence, we can prove any identity of holonomic functions or sequences automati-
cally. Based on this theory, the author implemented a package that contains procedures
for automatic manipulations and transformations of univariate holonomic functions and
sequences within the computer algebra system Mathematica . This package is introduced
in detail. In addition, we describe some different techniques for proving holonomic iden-
tities.

Zusammenfassung

Holonomische Funktionen und Folgen haben die Eigenschaft, dafi sie durch eine endliche
Menge an Information dargestellt werden kénnen. Dariiberhinaus sind diese holonomi-
schen Objekte unter elementaren Operationen wie z. B. Addition oder (gliedweise und
Cauchy-) Multiplikation abgeschlossen. Diese (und andere) Operationen kénnen auch
»algorithmisch® durchgefiihrt werden. Als Konsequenz daraus, kann man jede Identitét
holonomischer Folgen und Reihen automatisch beweisen. Basierend auf diese Theorie
implementierte der Autor ein Programmpaket, das Prozeduren zum automatischen Mani-
pulieren und Transformieren univariater holonomischer Funktionen und Folgen innerhalb
von Mathematica enthélt. Dieses Paket wird im Detail vorgestellt. Zusitzlich beschreiben
wir einige verschiedene Techniken zum Beweisen holonomischer Identitaten.

Part of this work was supported by a sholarship of the Austrian ministry for science and research.
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Chapter 0

Introduction

0.1 Summary

We want to give here a short summary of the contents of this thesis. This summary
contains many heuristics, exact definitions, problem specifications, and proofs can be
found in the subsequent chapters.

The context of all considerations in this thesis is the world of holonomic (or D-finite)
functions and holonomic (or P-recursive, P-finite) sequences. A holonomic function is
a solution of a linear differential equation with polynomial coefficients. Examples of
holonomic functions are all algebraic functions, in particular polynomials and rational
functions, as well as the most important transcendental functions like sin(x), cos(z), €”.
Also “multivariate” functions like the classical orthogonal polynomials are holonomic, if
we view them as functions of the continuous variable.

A holonomic sequence satisfies a linear recurrence equation with polynomial coef-
ficients. Examples of holonomic sequences are the important family of hypergeometric
sequences or classical combinatorial sequences as the Fibonacci and the Catalan numbers.
Considered as sequences in the discrete variable, the classical orthogonal polynomials are
also holonomic.

There are two main reasons that motivate the work with holonomic functions and
sequences.

e Every holonomic object (function or sequence) has the property that it is uniquely
defined by a finite amount of information, i.e., by a holonomic (differential or
recurrence) equation and some initial conditions. (This implies that we can perform
zero recognition in the holonomic world.) This holonomic equation together with
a sufficient number of initial values can be regarded as a holonomic representation
for a holonomic object.
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e A lot of unary, binary and n—ary operations preserve holonomicity: Holonomic
functions are closed under addition, multiplication, integration, differentiation, and
composition with algebraic functions. Holonomic sequences are closed under addi-
tion, multiplication, shifts, differences, partial summation and interlacement.

Moreover, if we have the holonomic representations of some objects, we can use
algorithms (and therefore also computers) to give holonomic representations for ma-
nipulations and transformations of these holonomic objects. For instance, if we know
holonomic differential equations that are satisfied by sin(x) and e”, respectively, it is
possible to come up with a holonomic differential equation that is satisfied by sin(z)e”,
by sin(z) — e” or even by fox (t? + 1) sin(t? — 3t)e~'dt. No need to say that the computer

is able to do these jobs.

Another consequence of these two properties is the fact that it is possible to “rou-
tinely” verify any identity involving holonomic functions or sequences that are manipu-
lated by operations that preserve holonomicity: All we have to do is, to bring everything
to one side of the equation, and perform zero recognition on the resulting object. For
example, we can automatically verify Cassini’s identity for the Fibonacci numbers:

Fopi By — F2=(=1)".

Another simple identity, which can be proved automatically, is the binomial theorem

(1+42)" = Zn: (Z)xk

k=0

The organization of this thesis is as follows: In Chapter 1 we establish the theory of
holonomic functions and sequences. We take a look at the algebraic background, establish
a relation between holonomic functions and sequences, and give the closure properties,
which are a main motivation for the work with holonomic objects. In addition, we
give most of the proofs in a constructive way, in order to make i1t easy to extract the
relevant algorithms that are needed to automatize the manipulations and transformation
of holonomic objects. We also give a lot of examples (some of them containing solutions
to “real life” problems); with respect to theory these examples should serve both as
motivation and illustration.

Based on the theoretical background that is established in Chapter 1, the author im-
plemented the Mathematica package GeneratingFunctions. This package, which follows
the basic ideas of the Maple package gfun by B. Salvy and Paul Zimmermann, is intro-
duced in detail in Chapter 2. We describe the functionality of GeneratingFunctions
as well as the syntactical structure of admissible input. Hence, this chapter may be
regarded as a manual for this Mathematica package. We also show how the procedures
in the package may be used in the process of problem solving.
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Given the first terms of a power series or sequence, it is possible to “guess” a holo-
nomic equation that is satisfied by the whole function or sequence. In Chapter 3 we
present some ideas, how “guessing” can help in situtations where we are faced with op-
erations that do not satisfy the closure properties. Moreover we translate the theory of
holonomic functions and sequences into the operator algebra language of Ore polynomial
rings. This operator algebra is used to present some (more ore less efficient) methods to
prove identies of holonomic sequences.

0.2 Notation

The symbols N, Z, Q, R and C stand for the sets of nonnegative integers, all integers,
rational, real and complex numbers. Throughout this thesis the symbol K denotes a
field of characteristic zero. For algorithmic purposes K should be computable, i.e., every
element in the field should have a finite representation and it should be possible to carry
out the field operations within a finite amount of time. (Note, that neither C nor R have
this property). K[z] stands for the ring of polynomials, K(x) for the quotient field of
rational functions over K. By [K,] and (K,,) we denote the ring of polynomial sequences
and the field of rational sequences (with values in K), respectively. K[[z]] denotes the
ring of formal power series, K((x)) is the field of formal Laurent series over K.

For k£ € N, the symbol n* denotes the kth rising factorial of n, which is defined as
follows:

nf=nn+1) - -n+k—1),ifk>0,
n’ = 1.

If f=25",50anx", then the coefficient of ™ in f, is given by [2"]f = a,,.

0.3 Acknowledgements

I joined the combinatorics group at the RISC in autumn 1992. Since that time, it was
Peter Paule, who taught me most of theory and practice one needs in the world of
mathematics. I want to thank him for constantly keeping me at the right track in the
process of writing this thesis.

I also would like to thank all the members of the combinatorics group, who con-
tributed to this work in form of discussions, questions or by pointing out shortcomings.
My special thanks go to Istvan Nemes and Roberto Pirastu for always willingly answering
my questions.
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Chapter 1

The Holonomic Universe

1.1 Introduction

This chapter is devoted to the discussion of holonomic functions (or more precisely:
power series) and sequences. A Holonomic function satisfies a linear differential equation
with polynomial coefficients, a holonomic sequence is the solution of a linear recurrence
equation with polynomial coefficients. The basic theory and algebraic background are
given in Sections 1.2 and 1.3, respectively, where we also present some famous members
of the holonomic family. The results discussed there and in Section 1.4 are well known,
a comprehensive exposition of the subject was given by Stanley [Sta80].

In fact the algebraic properties of holonomic functions and sequences, presented in
Section 1.4 are the main motivation to work in the holonomic universe: Most elemen-
tary operations like addition, (termwise or Cauchy) multiplication and several univariate
transformations preserve holonomicity. These properties, together with the fact that
holonomic functions (and also sequences) are representable by a finite amount of infor-
mation, make it possible to “compute” representations of functions or sequences that
are built from other (elementary) holonomic functions or sequences via these operations.
Moreover, any identity in this frame can be proved by performing some routine steps.

In Section 1.5 we briefly discuss multivariate holonomicity, without going into details.
The interested reader may consult the literature we refer to.

We aimed to give most of the proofs in this chapter in a constructive way, which
should make it easy to extract algorithms from these proofs. Some of the algorithms
also can be found in [SZ94].

In order to illustrate the theory we give a lot of examples. Since they often contain
solutions to “real life” problems, these examples shall also serve as a motivation for the
whole theory.
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1.2 Holonomic Functions

We are working with formal power series over a field K. A power series f(x) is an object
of the form f(x) = >, 5anz", where a, € K for all n € N. One also says that f(z)
is the generating function of the sequence (an)p>0. We want to note here that power
series are formal objects, rather than functions in the classical sense, i.e., mappings from
the ground field K or from a subset of K into K. A power series may correspond to
a certain mapping from a subset of K. For example, let K = C, >~ ., 2" corresponds
to the analytic function f : @ — (1 — z)~1. This function is rational and has a pole
at @ = 1. The power series is convergent if and only if || < 1. Although the power
series and the function have different analytic properties, we will not run into troubles,
since we regard the power series as a formal object and do not care about poles or other
analytic properties like radius of convergence, continuity, etc.

Every power series is the generating function of a sequence in the ground field. Hence
we will also use the word function to denote a formal power series.

Let f(x) = >, so@nx™ and g(x) = > o, bpx™ be two power series. We define
addition and (Cauchy) multiplication as follows:

F@) +a() = 3 (an + bo)a"

n

flx)g(z) = Z(Z agbn_p)x"

n>0 k=0

The domain of power series over K with addition and (Cauchy) multiplication is a
commutative ring without zero divisors, denoted by K[[«]]. The two functions f(z) and
g(x) are equal, written as f(x) = g(z), if and only if a,, = b,, for all n € N.

The derivative f'(z) is defined to be

f(z):= Z(n + Dapq412”.

n>0

It follows immediately that
an = [2"]f () =[]/ (x) /n! = f (0) /n.

Definition 1.2.1 (holonomic functions) A function f € K[[z]] is holonomic if and
only if f satisfies a linear differential equation with polynomial coefficients (holonomic
differential equation), i.e., there exist d € N and polynomials py,p1,...,pq in K[z],
pa # 0, such that

po() f(2) + pr(@)f'(x) + - + pa() S D () = 0. (1.2.1)



CHAPTER 1. THE HOLONOMIC UNIVERSE 8

The nonnegative integer d denotes the order of the holonomic equation. The degree of
equation (1.2.1) is given by max{deg(p;(#))|0 < ¢ < d}. In literature holonomic functions
are also called differentiably finite, D-finite [Sta80], [Lip89], [GKP94] or simple functions
[Koe92].

Subsequently, we will sometimes write f and p instead of f(z) and p(z), if the inde-
terminate  1s clear from the context.

If we extend our working domain from the ring K[[#]] to K((z)), the field of formal
Laurent series, i.e, series of the form Zn>n0 anx™ with ng € Z, we can multiply a power
series with any rational function, because those can be expanded as Laurent series. Thus
it makes sense to regard K((x)) as a vector space over K(z).

The following theorem [Sta80] gives alternatives for defining holonomic functions.

Theorem 1.2.1 For f € K[[z]] the following three conditions are equivalent.

(i) There are d € N and polynomials ¢, py, p1, ..., pqa in K[z], pg # 0, such that
¢(2) + po() f(x) + pr(2) f (&) + -+ pa(a) f (x) = 0. (12.2)

(i1) f is holonomic.

(iii) The linear space spanned by {f®*)(z)|k € N} is a finite dimensional subspace of
K((x)) over K(z).

Proof.

(i)=(ii). Suppose [ satisfies (1.2.2). Differentiate this equation to get, say, (1.2.2)".
f clearly satisfies ¢'(#)(1.2.2)—¢(x)(1.2.2)’, which is a homogenous holonomic differential
equation of order d + 1.

(ii)=(iii). Let f satisfy equation (1.2.1). Tt is evident that f(9(z) lies in L :=
(f, ..., £ the linear hull of {f, f/,..., f4=D1. If we repeatedly differentiate
equation (1.2.1), it becomes clear that for every & € N, we have Fld+k) e L. Hence
(f, f',...y = L, which has dimension less or equal d over K(z).

(iii)=>(i). Assume (f*)(z)|k € N) has finite dimension, say d, over K(z). This means
that any d 4 1 elements of {f*)(x)|k € N} are linearly dependent. In fact equation
(1.2.2), with ¢(x) = 0, is a linear dependence relation with cleared denominators. a

In view of Theorem 1.2.1, we also call an inhomogenous equation of type (1.2.2)
holonomic. Whenever we want to emphasize distinctions between equations (1.2.1) and
(1.2.2), we will use the adjectives homogenous and inhomogenous, respectively.

We give some simple examples of holonomic functions.
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Example 1.2.1

1. Let f(z) = p(x)/q(x) where p(z), ¢(x) are polynomials over K. Rational functions
are holonomic. They satisfy the holonomic differential equation

(P'(2)q(z) = p(z)g' () f () + (=p(w)q(2)) f'(x) = 0.

2. Let K = C. The trigonometric functions f(z) = sin(z), g(x) = exp(z) and
h(z) = arctan(z) are holonomic since they satisfy the differential equations

fle)+f"(x) = 0,
g(z) —g'(z) = 0,
) 1
W) = 7

(Note that the holonomicity of h(z) follows from Theorem 1.2.1.)

3. The generating function f(y) = >, ., Cq(x)y" of the Gegenbauer polynomials

C2(x) (see, e.g. [AS64]) is given by f(y) = (1 — 2zy + y?) ™%, where o € R satisfies
a > —1/2. This function is a solution of the differential equation

(—ax+ay) f(y)—i—(l—?xy—l—yz) flyy=0 (1.2.3)

with the initial condition f(0) = [¥°]f(y) = 1. Considering o as an indeterminant
in R, we can set K = R(«, z).

O

The simple functions in the previous example should not mislead us to assume that all
“elementary” functions are holonomic. For example, we can easily show that the tangent
function f(x) = tan(z) is not holonomic (See also [KS94]): We know that tan(z) satisfies
the derivation rule

tan’(z) = 1 + tanz(x).

By an induction argument it follows that also higher derivatives of the tangent function
are polynomials in tan(z). Now, suppose that tan(z) satisfies a holonomic differential
equation of the form (1.2.1). Replacing the derivatives of f(#) by the corresponding
polynomials in tan(z), gives an algebraic equation for the tangent function. Tt is well
known that the tangent function is not algebraic, therefore it can not satisfy a holonomic
differential equation. (Analogous argumentations are used in Stanley’s [Sta80] proof that
sec(z) is not holonomic.)
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1.3 Holonomic Sequences
In this section we briefly discuss the discrete counterpart to holonomic functions:

Definition 1.3.1 (holonomic sequences) A sequence (an)p>0 € KN is holonomic if
and only if (a,)n >0 satisfies a linear recurrence with polynomiz;l coefficients (holonomic
recurrence equatign), i.e., there are polynomials pg, p1, ..., pqs in K[z], ps # 0, such that
for all n € N:

po(n)an +pi(n)anyr + -+ pa(n)anya = 0. (1.3.1)

The nonnegative integer d is the order of the holonomic recurrence. As in the case
of holonomic functions the integer max{deg(p;(#))|0 < i < d} is called the degree of
recurrence (1.3.1). In literature holonomic sequences are sometimes called polynomially
recursive, P-recursive [GKP94], [Sta80] or P-finite [Zei90].

Let [K,] be the ring of polynomial sequences in K with addition and termwise
(Hadamard) multiplication. Since [K,] has a unit element and no zero divisors, we
can define (K,,), the field of rational sequences, to be the set

(K,) = {g 1D = (p(n))n30,a = (4(n))ns0 € [Knl}/m,

where p/q ~ p/q if and only if p(n)g(n) = ¢(n)p(n) for all n € N. In the given case of
rational sequences the relation ~ is equivalent to ~o,, where (an)n>0 ~oo (bn)n>0 if and
only if there is an ng € N such that a, = b, for all n > ng. (StanTey [Stag0] called the
equivalence classes of ~., the germs at infinity.) Let r ~ p/q, with p,q € [K,], be a
rational sequence and let a = (ap)n>0 be an arbitrary K-sequence. Now we define the
product r - a to be the equivalence class (w.r.t. ~u) of the sequences that agree with

p(n)/q(n) - a, from some index ng on. Hence we can consider KN/NOo to be a vector
space over (K,). Subsequently we will use the symbol [a] to denote the equivalence class
w.r.t. ~. of a sequence a.

Due to the similarities in the definitions of holonomic functions and holonomic se-
quences, the following result comes without surprise. Indeed this theorem [Sta80] as well
as its proof are quite similar to Theorem 1.2.1.

Theorem 1.3.1 Let E be the shift operator on sequences, i.e., Fa, = any1. For

a:= (an)HZO € KN the following three conditions are equivalent.

(i) There are d € N and polynomials ¢, pg, p1, ..., pa in K[z], pa # 0, such that for all
n € N:
q(n) +po(n)an +p1(n)antr + -+ pi(n)ansa = 0. (1.3.2)

(ii) (@n)n>0 is holonomic.
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(iii) The linear space spanned by {[E*a]lk € N} is a finite dimensional subspace of
KN/NOo over (K,).

Proof.

(7) = (i7). Assume that (a,)n>o satisfies the recurrence (1.3.2). Shifting this equation
by step 1 gives, say £(1.3.2), which has the inhomogenous part q(n+1). The homogenous
recurrence equation ¢(n + 1)(1.3.2) — ¢(n)E(1.3.2), which is of order d + 1, is satisfied
by (an)n20~

(#4) = (dit). Suppose a satisfies (1.3.1). We choose ng € N as follows: If pg has
nonnegative integer roots we take ng = max{n € N|pg(n) = 0} +1, otherwise let ng = 0.
Now we get

d—1
—piln
Upig = Za”“mgz)) for all n > ng. (1.3.3)
i=0

Hence [E%a] lies in L := ([a],[Fa],...,[E? !a]). By repeated shifts of (1.3.1) and sub-
stitutions according to (1.3.3) we find that for each k € N, [E4t*a] lies in L and we get
([a],[Fa],[E?%a],...) = L, which has finite dimension.

(iii) = (7). If {{E*a]|k € N) has finite dimension, then (by linear dependency) there
is an ng € N such that (1.3.2) with ¢ = 0 holds for all n > ng. Multiply all polynomials
pi(n) by n(n —1)---(n —ng + 1) and we get an equation of this type that holds for all
n € N. a

If ¢ # 0, equation (1.3.2) will be called an inhomogenous holonomic recurrence.

Holonomic sequences have the nice property that they can be represented by a finite
amount of information, i.e., if we have a holonomic recurrence of type (1.3.2) and a
set of initial values {ag, ay,...,a,,} we can compute the elements in the sequence with
little effort (and storage) by just applying the recurrence. The index ng up to which
the initial values must be supplied, depends on the order d of the recurrence and on
the maximum of the nonnegative integer roots of the polynomial pg: If pg(n) is not
equal to zero for all n € N, then ng = d — 1 is sufficient. Otherwise we have to take
ng = max{n € N|pg(n) =0} +d.

We turn to some well known examples of sequences that are holonomic.

Example 1.3.1
1. Let K = Q. The Fibonacci numbers F,, are recursively defined by
Foyp1i=Fo+F,o1 forn>1, =0, =1 (1.3.4)

In fact this recursive definition is a holonomic recurrence equation of order 2. If
all polynomials p;(n) in a holonomic recurrence of type (1.3.1) are constants, as in
this case, we call the recurrence as well as the corresponding sequence C-finite or
C-recursive [NP95].
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2. A sequence (i, )n>0 is hypergeometric if and only if there exists a rational function
r(z) € K(x) such that for alln € N

tzzl = r(n). (1.3.5)

Hypergeometric sequences are the class of sequences that satisfy a first order holo-
nomic recurrence. A simple example of a hypergeometric sequence are the factorials
nl. For this sequence r(n) = n+ 1.

3. Let K = C(a, #). The Gegenbauer polynomials C2(x) are defined by the recurrence
—(n+20)C(x) +2(n+ a4+ 1)2Chy (x) — (n 4+ 2)CF o(2) =0 (1.3.6)

with the initial values C§(z) = 1 and C{¥(x) = 2ax. Hence the sequence of the
Gegenbauer polynomials (Cf(x))n>0 is holonomic.

O

A lot of sequences we are faced with in “real” life are holonomic. But not all of them,
as the example of the Bernoulli numbers, which are well known to be not holonomic!,

shows.

1.4 Closure Properties

Examples 1.2.1.3 and 1.3.1.3 have shown that both the sequence of the Gegenbauer
polynomials and their generating function are holonomic.

At the beginning of this section we make explicit that there is a one-to-one corre-
spondence (already observed by [Jun31, p.299]) between holonomic sequences and their
generating functions. Moreover, we will see that 1t is possible to “compute” this corre-
spondence, i.e., given a holonomic sequence (ay)n>p Via a recurrence one can compute a
holonomic differential equation satisfied by the ge_nerating function f(z) =), 5o ana”,
and vice versa. -

Theorem 1.4.1 A formal power series f(x) =) ., anz"” € K[[z]] is holonomic if and
only if (ay )n>0 is holonomic. B

n
BpE

!

1Let By, denote the nth Bernoulli number. The exponential generating function f(x) = Zn>0

is given by f(x) = z/(e® — 1) (see [GKP94, p. 285]). An induction argument that is similar to the
one in the proof that tan(x) is not holonomic on page 9, tells us that f(x) is not holonomic. Applying
some results of the following section (Theorem 1.4.1, Theorem 1.4.3) proofs the non-holonomicity of the
Bernoulli numbers.
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Proof. Assume that f(z) =) <, a,2" is holonomic. We can easily check that

9 =253 4 Yangga = (41— kY ap
n>0 n>k

We transform (1.2.1) according to this relation and, by equating coefficients of same
powers of & on both sides of the resulting equation, we get a linear recurrence equation
with polynomial coefficients, satisfied by (a,)n>0. An appropriate shift of this recurrence
results in an equation of type (1.3.1). -

Suppose the sequence (ay)n>o satisfies the holonomic recurrence (1.3.1). Multiply
this equation by " and sum over all n > 0. Let @ be the operator defined by

s

If we replace the terms n*a,; according to the transformation rule

i—1
g — AT — - — a1
Z n*a, 2" = 6" Z apyja” = 08 (f . / )

xJ
n>0 n>0

we get an inhomogenous linear differential equation with coefficients that are rational
functions in #. Clearing the denominator results in a (possibly inhomogenous) holonomic
differential equation, satisfied by f. a

Assume a holonomic power series f(z) =, -, anz” is given by a holonomic differ-

ential equation of order d and degree k. Following the proof of Theorem 1.4.1, it is easy
to see that the sequence (an)HZO satisfies a holonomic recurrence of order < d + k and
degree < d.

Conversely, if (@, ), >0 is a solution of a holonomic recurrence of order d and degree k,
then its generating function satisfies an (inhomogenous) holonomic differential equation
of order < k and degree < d + k.

Theorem 1.4.1 makes it easy to establish connections between some of the functions
and sequences in Example 1.2.1 and Example 1.3.1.

Example 1.4.1

1. (Cf. Example 1.2.1.1 and Example 1.3.1.1.) Let (ayn)n>0 be a C-finite sequence
over K, i.e., (an)HZO satisfies a linear recurrence with constant coeflicients

Cop + C1Gp41 + -+ catnya = 0. (1.4.1)

According to the rules presented in the proof of Theorem 1.4.1, this recurrence is
transformed into an inhomogenous differential equation of order zero. It is evident
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that the solution of this equation is a rational function. Hence C-finite sequences
have rational generating functions. A prominent example are the Fibonacci num-
bers F),. Their generating function is given by

x
g annziz.
l—z—=
n>0

2. In Example 1.2.1 we mentioned that the function f(x) = sin(x) is holonomic, since

it satisfies the differential equation

JH"=0.1If f(x) =, 50 ana” then the sequence (an)n>0 is recursively defined
by B
an+(n+1)(n+2)ans2 =0, ao=0, a1 =1.

It is also possible to obtain a “closed” form for the coefficients a,, and we find that

: (_1)2n+1 2n+1
sin(z) = A .
yp e

3. A hypergeometric function , F, is a formal power series that is defined by

ai,...,Q a’f_~~~a
F( ’ ’p‘): VLT
PRAN by, by * ;b’f~~b

:L,Tl

S|

(1.4.2)

QS'

n!’

(The rising factorial n* is defined on page 5.) None of the lower parameters by is
allowed to be a negative integer, otherwise we would get a division by zero.

One can easily check (see [GKP94, Section 5.5]) that the coefficients ¢, of " in
the power series expansion of a hypergeometric function, which is given by (1.4.2),

satisfy the recurrence
r(n)tn, = s(n)tpy1, (1.4.3)

where we can split the polynomials r(n) and s(n) into linear factors as follows
rin)=(n+a)(n+az)-(n+a),

s(n) = (04 b1)(n 4 b2) -+ (n 4 by) (n + 1).

We will now derive a differential equation satisfied by the hypergeometric function
F. (For a shorter notation we will often omit all the parameters). We start out
by multiplying the left hand side of (1.4.3) by #" and summing over all n > 0.
Following the ideas presented in the proof of Theorem 1.4.1 we get

D ntar)(ntap)taa” = (0+ar) - (0+a,)F.
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Similar transformations of the right hand side result in

ST by) e (4 b)(n A 1) by 2" =

x_lz(n—i—bl—1)~~~(n—|—bq—1)ntnx":
n>0

e @+ by — 1) (0+b,— 1)0F.

Hence a hypergeometric function F', as given by (1.4.2), satisfies the differential
equation

@ +ar) - (@+a)F=0—+b—1)---(0+0b,—1)0F.

O

We want to mention here that Theorem 1.4.1, as a Theorem on formal power series,
allows us to compute a differential equation that is satisfied by a power series, say f(z),
that analytically does not have a positive radius of convergence. For example, the series
flz) = >, 5o nla™ does not converge if « # 0. Hence f(x) does not correspond to a
function in the analytical sense. However, as a formal power series, it can be defined to
be the (unique) solution of the differential equation —1+ (1 —z)f(z) —x?f'(x) = 0, with
the initial condition [2°]f(z) = 1. Note that sometimes we write f(0) for [2°]f(z).

So far, we have seen that a holonomic (or P-recursive) sequence has a holonomic (or
D-finite) generating function. Let us now consider the sequence of Catalan numbers C)

([GKP94, p. 358-360]), which is recursively defined by
Cop1 =3 CkCng,  Co=1. (1.4.4)
k=0

If we are given the Catalan numbers up to index n, we have to perform O(n) multipli-
cations to compute Cy, 1. Hence, the computation of C,, needs O(n?) operations, if we
use recurrence (1.4.4). Let us see how the generating function C'(x) =3~ Cp ™ helps
us to compute the sequence more efficiently: For that multiply both sides of (1.4.4) with
z" and sum over all n > 0:

n
S s = XY
n>0 n>0k=0

Since the right hand side is the Cauchy product C'(2)C(x), we get

(Clx) = 1)/x = C*(a),
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which results in the quadratic equation
2C*(x) — C(z) +1=0. (1.4.5)

The fact that C'(z) satisfies a quadratic equation does not really help us now; however,
after we have proven constructively the following theorem—already given by Comtet
[Com64] in the 60’s—this will help a lot.

Theorem 1.4.2 If f(z) € K[[«]] is algebraic, then f(z) is holonomic.

Proof. Assume f satisfies the algebraic equation

pol@) + pi(x) f(x) + -+ pale) f(2) = 0, (1.4.6)

where p; € K[z] (0 < ¢ < d), pg(x) # 0. Let the symbol A(f, #)—sometimes written
without the indeterminates f and x—denote the polynomial on the left hand side of
(1.4.6). Without loss of generality we may assume that A(f, z) is squarefree. We define
two polynomials B and C' by

JA(f, z)
Oz

and get f'(x) = B(f,2)/C(f, z).

The polynomial A is squarefree, hence A and C' are relatively prime (w.r.t. f) and
the extended Euclidean algorithm (with respect to f) gives polynomials S(f, x), T(f, »)
and g(z) such that S(f, =) A(f,z) + T(f,z) C(f,x) = g(x). Now we get

o B(Ao)T(fa) | B(ho)T(he) B T(f.a)
F® = G rothe ~— s@ - Ao sts — @ - A7

(Note, that the last equality holds, since A(f, ) =0.)

It is clear that f’ and, by further differentiation and substitution of f’ according
to (1.4.7), also higher derivatives of f can be expressed by a linear combination of

{1,f,f%,...}. Hence
dim{L, f, /', f,. ) < dim(L, £ %) = dim(1 f 2 ) < d

over K(z). Now, by Theorem 1.2.1, f is holonomic. a

and C(f,x):w,

B(f’$): of

Remark. If we are given a function by an algebraic equation, the proof above can be
used in a constructive way. This means, it also gives a method to compute a holonomic
differential equation, that is satisfied by the function: We have to compute the functions
LA f ", ..., f14 1) ag linear combinations of 1, f, f2,..., f4=!. This should be done
by observing that, for arbitrary k, f*)(z) = Rx(f, ) = Ri(f,z), where Ry (f,z) and
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Rk (f, ) are polynomial in f and rational in =, and R(f,z) = R(f,z) mod A(f,z). (The
residues R are computed with respect to f.)

Substituting these linear combinations into an inhomogenous holonomic equation of
the form

a(x) +po(@)F(2) + pr(@) ' (2) -+ pa—i () f17 D () = 0

and equating all powers of f to zero, results in a linear system of equations (with inde-
terminates ¢, po, P2, . .., Pd—1), that is guaranteed to have a non trivial solution. a

We apply this method to the the function C'(x), the generating function of the Catalan
numbers C,. From (1.4.5) we deduce that

02

'’
¢ T 1=2zC"

By extended gcd computations we obtain
(1 -4z — 22C) (2C? = C+ 1) + (=14 22)C + 2?C) (=1 + 22C) = 1 — 4z

and we get

C? ((=1 4 22)C + 220) —14+C(1—2x)
1 d 2 _ = — =77
¢ 1— 4z mod (27 = O+ 1) = — s
Now we have to solve the equation r(z) + po(2)C(2) 4+ p1(2)C’'(2) = 0, which can be
written as (1 - 22)
b1 pi{l — 2z .
: x(—1—|—4x)+f<p0+x(—1—|—4x)) -

for the rational functions r(x),po(z), p1(z). Equating all coefficients of same powers of
f with zero, results in the differential equation

1+ (1 —=22)C(z) + z(1 — 42)C’(z) = 0.

Following Theorem 1.4.1, we can transform this differential equation into a recurrence
that is satisfied by the sequence of Catalan numbers:

21+2n)Cp — (24 n)Crgr =0, Co=1 (1.4.8)

This recurrence makes it possible to compute C), by performing O(n) operations,
whereas the computation of the nth Catalan number via (1.4.4) requires O(n?) opera-
tions.

Moreover, equation (1.4.8) delivers the information that the sequence (C))p>o is
hypergeometric. We have -

Coyr  2(1+20)
C, = 24n
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and, remembering Example 1.4.1.3, it follows that

C = A"(5)" <2n) 1

(n+ 1)! n) n+l

Remark. We want to note that, due to the fact that the generating function of the
Catalan numbers satisfies a quadratic equation, the closed form representation for C,
could also be derived by other means. See, for instance, [GKP94, p. 358].

After we have proved that all algebraic functions are holonomic, we are going to show
that some elementary (binary) operations on sequences and their generating functions
preserve holonomicity. (Cf. for instance [Sta80].) In fact, the following theorem contains
the main reason, why we work with holonomic functions and sequences.

Theorem 1.4.3 Let f(z) = > s anz” and g(x) = > o, bp2™ be holonomic power
series. Then - -

(a) f(z)+9(x) =3 50(an +bn)a", (sum)
(b) f(x) g(x) = ano(zzzo agbp_p)x" (convolution, Cauchy product)
(c) f(x)*g(x):= ano anb,x”, (termwise or Hadamard product)

are holonomic power series.

Proof. We start the proof of the closure properties with the following observation:
Suppose f(z) satisfies a (possibly inhomogenous) holonomic differential equation of order
d, hence we can express f(9) as a linear combination of 1, f, f/, ..., f(4=1)

Y = pa(@) + qao0(@)f + qap (@) + -+ qaa—r (2) 7Y (1.4.9)

with pg, ¢4 ; € K(2). We differentiate (1.4.9) with respect to # and replace the derivative
f(@ on the right hand side of the resulting equation according to (1.4.9) in order to ex-
press fUt) in terms of 1, f, f'..., f{*=1). Hence, given k € N, repeated differentiations
and substitutions make it possible to find rational functions py ;,qx € K(z) such that
FE @) = (@) + 520 pei (@) fD (@),

Given a sequence (an)n>o that satisfies a holonomic recurrence of the form (1.3.2),
let ng be the integer ng :_max{n € Nips(n) = 0} + 1 if pg has nonnegative integer
roots. Otherwise we set ng = 0. For any k& € N, by repeated shifts and substitutions
we find rational functions py ;,¢x € K(z) such that for all n > ng, apyr = qu(n) +

d—1
> =0 Phj(n)anq;.
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Now, let f and g satisfy (inhomogenous) holonomic differential equations of orders d;
and da, respectively. To prove (a) and (b), we assume that for every & € N the rational
functions py ;, qx, 7% 5, Sk have the property that

di—1 da—1
I =g+ Z pi i f9 and g% =5, + Z 59",
7=0 j=0

where we omitted the function variable .

(a) Let A = f+ g and k € N, then we can express h*¥) as a linear combination of
1’f"'"f(dl_l)’g""’g(d2_1)’ i'e"

di—1 da—1
RE) = #0) 4 o) — o s+ Z pk,jf(]) + Z m,jgm. (1.4.10)
7=0 7=0

Now we search for the inhomogenous differential equation
t+uoh 4+ urh’ + -+ ugh® = 0. (1.4.11)

We plug (1.4.10) into (1.4.11) and get a homogenous system of dy +d2+1 linear equations
in the d + 2 variables , ug, ..., uy. Hence, if we take d = dy 4+ d2, we can be sure that
this linear system has a nontrivial solution.

(b) For h = fg and k € N we get (by the Leibniz rule)

dy—1 da—1

k
plk) — Z (lj) f(i)g(k—i) — Z (lj) (qH— Z pi,jf(j)) (Sk—i+ Z rk_ing(j))’ (1.4.12)
i=0 i=0 7=0 7=0

which tells us that we can write h(*) as a linear combination of (d1+1)(d2+1) functions.
Therefore, a non trivial differential equation of type (1.4.11) exists, if we take d =
(di+1)(da+1)—1.

(c) Let ¢ = apby. Since ¢pip = dpyrbntr for every k € N, an argument that
is similar to the one applied in the proof of part (b), but which uses shifts instead of
derivatives, tells us that (Cn)HZO is a holonomic sequence, hence Zn>0 ¢p 2™ 1s holonomic.
O

Remark. We will use the terminology: sum, Cauchy product (convolution) and Hada-
mard (or termwise) product both for sequences and for functions.

The proof of the previous theorem is constructive, i.e., given two holonomic func-
tions (sequences) we can apply the presented proof to obtain the holonomic differential
(recurrence) equation that is satisfied by their sum, Cauchy or Hadamard product. A
short example serves as an illustration.



CHAPTER 1. THE HOLONOMIC UNIVERSE 20

Example 1.4.2 Let f(z) = sin(z), g(x) = arctan(x). Following the proof of Theorem
1.4.3, we will derive a holonomic differential equation that is satisfied by h(z) = f(x) +

g(x):
Stepl. (Find an upper bound for the order of the desired differential equation.)
We know that f and g are solutions of the differential equations

fF+f"=0 and

1—(1+2%)g¢ =0,
respectively. Thus, h satisfies a holonomic differential equation of order 3.

Step2. (Express f, ', f', " in terms of 1, f, f', and ¢,¢',¢”,¢"" in terms of 1,g.)
If we repeatedly differentiate and substitute according to the two differential equations
that are satisfied by f and g, we get:

I=r 9=9

f=f g'= - _|_1x2
fll=—f g'= ﬁ
f///:_f/ g///: (—12—:—;321)‘;

Step3. (Solve the corresponding linear system.)
The search for a differential equation of the form

q(x) + po(2)h(z) + pr(e) (x) + pa(@)h” (x) + ps(e) " (x) = 0

gives the linear system

- —2z__ =2+ 62’ q
T+22 (14297 (1+27)° o
01 0 0 0 » | =o. (1.4.13)
01 0 ~1 0 .
00 1 0 ~1 3

We solve (1.4.13) and find that h(z) is a solution of the differential equation

(1— 8z? + 41‘4) +(1+ xz)?’h/(x) +(1+ xz)?’h/”(x) =0.
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We have seen that one step in the computation of a holonomic (recurrence or differ-
ential) equation, satisfied by a sequence or function that is built from other holonomic
sequences or functions via holonomicity preserving operations, is to solve a homogenous
system of linear equations. In other words, we have to compute the Nullspace of a cer-
tain matrix A, whose entries are rational functions. We assume now that A has d + 1
rows and d + 2 columns. Every element in the Nullspace of A corresponds to a (possibly
inhomogenous) holonomic equation, whose order is less or equal d.

If the Nullspace of A has dimension, say k, with & > 1, the resulting (recurrence or
differential) equation is not unique. (We regard two holonomic equations to be the same
if they coincide up to a common factor.) In this case, an element p = (¢, po, p1,- .., pPd)
in the Nullspace of A can be found, where the last & — 1 components of p are all equal
0. Then p gives a holonomic equation of order less or equal d — k+ 1. Since p is a linear
combination of the basis elements of the Nullspace of A, it can be computed by again
solving a system of linear equations.

We also want to mention here that in the process of solving a linear system (for
instance by Gaussian elimination), the coefficients of the elements in the solution space
grow rather fast: Assume that we are given two sequences a = (ap)n>0 and b = (b, )n>0,
where a satisfies a homogenous recurrence of order d; and degree k; and b is the solution
of a homogenous recurrence of order ds and degree ks. We know that ¢ = a+b satisfies a
recurrence equation of order d;+d,. Based on experimental results the author conjectures
that the degree of a recurrence that is satisfied by ¢ raises up to ky(da + 1) + ka(d1 + 1)
in the worst case. If we compute a recurrence for the termwise product of a and b,
it seems as if the result, which has order less or equal dids, may be of degree up to
(1 4 (di — 1)(d2 — 1))(d2k1 + d1k2). (The same bounds were observed in the case of
differential equations.) Although we did not prove these conjectures, it is evident that
computations with holonomic objects that involve sums and products (and possibly other
operations) quickly become extremely time consuming as the number of these operations
increases.

Note also that the closure properties in the theorem above do not include fractions
of holonomic functions or sequences. As we have seen (page 9) the function tan(z) =
sin(z)/ cos(z) is not holonomic, though both sin(z) and cos(x) are.

Part (a) of the closure properties (or its proof) tells us how to compute a differential
equation that is satisfied by f(x) + g(z), the sum of arbitrary solutions of two given
holonomic differential equations. If these two equations are homogenous, 1t is clear that
any linear combination of f and ¢ (over K) satisfies the computed equation. In particular
f — g has this property, and, by checking a finite number of initial values of f — g to
be zero, we can “prove” whether these two functions are identical in the ring of formal
power series.

The same result holds for sequences. However, certain roots in the leading polynomial
of a holonomic differential or recurrence equation may cause problems, if we want to
perform zero recognition. This subject 1s discussed in more detail in Chapter 3.
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Indeed, the property that the families of holonomic functions and sequences are al-
gebras (with respect to addition and multiplication) together with the fact that zero
recognition can be done, is the most important strength of holonomicity. It is thus pos-
sible to prove identities like sin(z) + cos?(x) = 1 or Cassini’s identity for the Fibonacci
numbers Fy 41 F,_1 — F? = (=1)" “automatically”. (In real life, most identities will not
look that nice.)

Let K = C. We know that the functions sin(z), cos(xz) are holonomic. Apply-
ing Theorem 1.4.3, we immediately deduce that for a constant ¢ € C the function
sin(z) cos(a) 4 cos(z) sin(a), which is identical to sin(x + a), is holonomic. The follow-
ing theorem delivers the holonomicity of sin(z + a) (and many more functions) without
requiring the knowledge of this identity.

Theorem 1.4.4 Let g(x) € K[[z]] be algebraic, let f(z) € K[[z]] be holonomic. If
h(z) = f(g(x)) € K[[z]], then h(z) is holonomic.

A theoretical argument for the holonomicity of h(x) was given by Stanley [Sta80].
Here, we want to present a more constructive proof [SZ94]:

Proof.

Let g(x) satisfy the squarefree algebraic equation A(g,#) = 0 with A € K[z, 2] and
degy(A) = di. We suppose that f satisfies a homogenous holonomic differential equation
of order ds:

go() f(x) + qu(z) ' (z) + -+ g4, (2) 192 (2) = 0. (1.4.14)
Now define G(g, z) = ged(A(g, ), ¢4, (g)) (w.r.t. g).

We start out by giving an argument that, without loss of generality, we may assume
that G(g,z) = 1: Tt is clear that deg,(G) < deg,(¢4,(g9)) = 0. Now let A = G - T'; we
know that g(z) is a root of A, hence G(g(z),x) =0 or T'(g(x),z) = 0. If g(x) is a root
of G, then g(z) is constant? and, if f(g(x)) is defined, then h(z) is also constant and
hence holonomic. In the case that g(x) is a root of T, we observe that—note that A is
squarefree—ged (7', ¢4, (9)) = 1 (w.r.t. ¢). Now we can continue the proof assuming that
g(x) is a root of a polynomial, say A, with deg, (A) = d; and, where A and qq,(g) are
relatively prime.

2 Assume g(x) satisfies the equation
cotecig+ - ---+ergfF =0 (1.4.15)
with ¢; € K (0 <4 < k). Differentiating (1.4.15) w.r.t z yields
(c1 42029+ -+ + kexg" g’ = 0. (1.4.16)

from (1.4.16) we deduce that g(x) satisfies an algebraic equation of order k — 1 or that g’(z) = 0. Now,
and induction argument proves that g(x) is constant.
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The chain rule tells us that for each & € N there are polynomials P ; such that

k
W) @) =" 9 g) Pejlg.d's .. 9™).

7=0

Following the proof of Theorem 1.4.2 we find functions R;(g, z) that are rational in z
and polynomial in g of degree less than d; such that for every j € N we have g(j)(a:) =
R;(g,x). Hence we can write

R¥) (@) =" f9(g) B i (g, ), (1.4.17)

7=0
where By, ; € K(z)[g].
We compute ;(g) = ¢;(g9) mod A (w.r.t. g) and get

da—1

1g) =~ (X 7,019 0) f149). (1.4.18)

7=0

Now we have G(g,x) = ged(A(g, x), ¢4, (9)) = ged(Alg, %), T4, (9)) (Wwrt. g).

Since deg, (G) = 0, we use the same argument as in the proof of Theorem 1.4.2 to get
rid of ¢ in the denominator of (1.4.18) and to obtain functions Cy, ; that are rational in
z and polynomial in g (of degree less than d;) such that

£ (g) = Cayo(g, #) F(g) + Cann (9,2) F'(9) + -+ Cay a1 (g, 2) V(). (1.4.19)

An induction argument makes it clear that—by repeatedly differentiating (1.4.14) and
representing as in (1.4.19)—for each k € N we can express %) as follows:

F*(9) = Crolg, 2)F(9) + Cia(g,2) [ (9) + -+ Croamr (9, 0) F=7D(g). (1.4.20)
We put (1.4.17) and (1.4.20) together and see that

da—1

W) =3 Bij(g.2) Y- Cuilo.x) [ (o).

We reduce this expression, which is polynomial in g, modulo A. The result are rational
functions ¢ ;; in x such that

di—1da—1

A9 () = Z Z crji(z) gl fO. (1.4.21)

7=0 ¢=0
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Now we search for a holonomic equation of the form
go(2)h(z) + qu(2)h' () + - + qa(2)h D (z) = 0

by substituting according to (1.4.21) and equating the coefficients of ¢ 74 in this equa-
tion with zero, which gives a system of d;d; equations in d + 1 variables. This linear
system has a non trivial solution if d = d;ds. O

The properties of holonomicity that we have seen in the previous theorems (and their
proofs) in this section, enable us to solve the following combinatorial problem.

Example 1.4.3 (See [Wil90, p. 76].)

An undirected 2-regular labeled graph is a graph in which each vertex has exactly degree
2. Hence an undirected labeled 2-regular graph is a union of cycles, where each cycle has
at least 3 vertices. Let g, be the number of undirected 2-regular labeled graphs with n
vertices. The exponential generating function G/(x) of the sequence (g, )n>0 is known to

be

lo_1g2

G( ) x" e~ 2% %
r) = _ = —
E gn ol T2
n>0
Find a recurrence satisfied by g¢,,.

Considering the fact that the exponential function e” is in our holonomic knowledge
base, we can use the results of this section to solve this problem.

Step 1. (Compute a holonomic differential equation satisfied by e‘x/z_x2/4.)
Let h(z) = f(g(z)) with f(z) = €” and g(z) = —x/2 — ?/4. Following the proof of

Theorem 1.4.4 we get

h = flg),
Moo= fle) (=1 —x)/2.

The search for a holonomic differential equation of order one gives

poh +p1h/ = f(g) (po - ﬁ) =0,

which results in

2h(x) + (1+2)h'(x) = 0.

Step 2. (Compute a holonomic differential equation satisfied by 1/+/1 — x.)
Since a(x) = 1/4/T — z is a solution of the algebraic equation 1 — a?(z)(1 — z) = 0, (by
Theorem 1.4.2) we can find a holonomic equation that is satisfied by a(z):

a(z) +2(x — Dd'(z) =0
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Step 3. (Compute a holonomic differential equation satisfied by e‘x/z_x2/4/\/1 —z.)
We apply Theorem 1.4.3 (b) and obtain a differential equation for the Cauchy product
G(x) = h(z)a(z):

22 Glz) +2(x - 1) G (z) =0 (1.4.22)

Step 4. (Compute a holonomic recurrence equation satisfied by gn/n!.)
Let g, = gn/n!. We perform the transformations that are described in the proof of
Theorem 1.4.1 for (1.4.22) and get

Gn+2(n+2)gns2 —2(n+3)gnss = 0.

Step 5. (Compute a holonomic recurrence satisfied by gy.)
Remembering the proof of Theorem 1.4.3 (¢) we find a recurrence for the Hadamard
product g, n':
(n+1)(n+2)gn+2(n+2)gny2—2gny3 =0

O

It is important to note that the computations of each step in the previous example can
be done by a computer algebra system. For example, the Maple package gfun by Salvy
and Zimmermann [SZ94] is able to perform these (and many more) computations. With
Mathematica, the package GeneratingFunctions which has been implemented by the
author, does the calculations. This package is introduced in detail in Chapter 2. Another
Mathematica package, called RComp, which was written by Nemes and Petkovsek [NP95],
provides tools for manipulations of C-finite sequences.

We will now extend the holonomic closure to some unary operations on formal power
series. To cause no confusion about integrals in fields like C, we start out by defining
the indefinite integral of a power series: Let f(z) =" ., a,2" € K[[z]], then

/xf(t)dt =Y “"n—‘lxn (1.4.23)
0 n>1
Corollary 1.4.5 Let f(z) =3 ,5qanz" € K[[z]] be a holonomic power series. Then
(a) foxf(t)dt (integral)
(b) f'(») (derivative)
are holonomic.

Proof. (See [KS94].) (a) Let F(z) = foxf(t)dt, and suppose f satisfies equation (1.2.2).
Since F'(z) = f(z), we have to replace f*)(z) by F(:+1(z) in this differential equation
to get a holonomic equation that is satisfied by F(z).
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(b) Let f satisfy (1.2.2). If pp = 0, then g(x) = f'(x) is a solution of the differential
equation
a(x) + p1(@)g(x) + pag' (x) + -+ pa(a)g" ™V () = 0.

If py # 0, we can express f as a linear combination of 1, £, /. ..., f(4 in order to get a
holonomic differential equation where the coefficient of f is 0. Then we can proceed as
in the case that pg = 0. a

Let f(z) =3, v0anz™. It is a well known (and easily verified) fact that

S et = L@ £ 2),

2
n>0

Hence

NI CES (o)

2
n>0

and we immediately see that (a,,)n>0, the sequence of the even elements of (a,)n>0, is
holonomic (Theorem 1.4.3 and Theorem 1.4.4). Besides other propositions, the following
corollary generalises this observation.

Corollary 1.4.6 Let (an)n>0, (bgj))nzo (0 < j < m) be holonomic K-sequences. If

(a) ¢p = anyh, where h € N, or (shift)
(b) ¢ => o ak, or (partial sum)
(€) ¢en = Aay := anq1 — ap, or (forward difference)
(d) ¢n = adgn4n, with d,h € N or (subsequence, multisection)
(€) en = b((f) withg e N, n=gm+rand 0 <r < m, (interlacement)

then the K-sequence (cy,)n>0 is holonomic.

Proof. (a) If (an)n>0 is the solution of a recurrence of type (1.3.2), then ¢, = danqs
clearly satisfies

q(n+h) + po(n + h)e, + pr(n+h)eppr + -+ pa(n + h)enpa = 0.

(b) Let f(x) =", soanx™. If ¢y =" 50 ak, we get

g(z) = chl‘" = Zzn:akx" = (Zanx") (Zx”) = 1f(_xl

n>0 n>0k=0 n>0 n>0
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By Theorem 1.4.3, g(x) and also (¢, )n>0 are holonomic.
(c) Follows immediately from Theorem 1.4.3 and (a).

(d) Because of (a), we can assume h = 0. Let f(z) = >+, anz” and assume that
a € C is a dth root of unity?, i.c.,

o’ =1 p=0 (modd), for peN. (1.4.24)
We define
d
1 .
g(z) = anx" = EZf(oﬂx).
n>0 Jj=1

By definition we have

an n n n
bn:7<a +am 4.4t ).

If n=0 (mod d) we find that b, = a,.

Ifn=p (modd)(0<p<d),wegetb, =a,s/d, where s = a? +a? + ...+ a®.
Since a?? = 1, we observe that s = o (1 + a® + - - - + o?{4=1)) = aPs. With (1.4.24) we
have af # 1 and hence s =0 and also b, = 0.

Thus we have shown that g(z) =3, -, agne®™ . Let

h(z) = g(a:l/d) = Zadnx" = Z cnx”.

n>0 n>0

By Theorem 1.4.3 and Theorem 1.4.4, both h(x) and (¢, )n>0 are holonomic.

(e) Assume f;(z) = Zn>0bgj)x” for (0 < j < m)and g(x) =3, 5ocnz™. Now we
obtain - -

g(x) = fo(e™) +xfi(x™) + -+ 2™ g (™),
which is holonomic by Theorem 1.4.4 and 1.4.3. a

Remark. The proof of Corollary 1.4.6(d) tells us to compute the multisection ¢, = anq
the following way: If f(z) =3, vqa,2" and h(z) = >, caz”, we get

M) = 537 (@),

where the algebraic functions a;(z) satisfy a;4(z) —2 = 0 (1 < j < d). Hence h(z) is the
linear combination of d functions f(a;(z)) (1 < j < d), all of which satisfy a common
differential equation, which can be computed if we follow the proof of Theorem 1.4.4. It

3 As we will see in the remark, following this proof, it is not necessary that o € K.
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is clear that h(x) is also a solution of this differential equation, and we need not compute
a differential equation that is satisfied by the sum of d holonomic functions.

However, experimental results have shown that it is not advisable to do multisection
of a sequence via algebraic substitution. A more efficient method would be as follows:

Suppose the sequence (ap)n>0 is a solution of a recurrence of order dy:

g(n) + po(n)an + pr(n)ansr + -+ pa, (n)antq, =0

Thus we also have

q(nd) + po(nd)anq + p1(nd)anasr + - -+ pa, (nd)anayq, = 0. (1.4.25)
Given k € N, we can use (1.4.25) to compute rational functions ry ;, s; such that
dy—1
U(ntk)d = Cndydk = Sk (1) + Z 755 (N)Gndts-
7=0

Now, the search for an inhomogenous holonomic recurrence of order dy, that is satisfied
by (Cn)HZO with ¢, = a4, corresponds to solving a system of d; + 1 homogenous linear
equations in d; + 2 variables. This system has a nontrivial solution. a

Example 1.4.4 (by Herta T. Freitag, [Rab93, p. 212])

Let F,, be the nth Fibonacci number (page 11). L,, denotes the nth Lucas number, which
is recursively defined by L,y2 = L1 + Ly with Lg = 2, and Ly = 1.

Prove that for all positive integers n

2n
> FskgrLsk =0 (mod 5). (1.4.26)
k=1

Via multisection we find that
Fstng2y41 = 11 Fsp1)41 + Fongr and Ls(ny2) = 11 Lging1y + Lon.
Now, the Hadamard product G,, = Fs,41Ls, satisfies
Gpys = 122G 424+ 122G 41 — Gy,

and going via a differential equation, satisfied by the generating function ) ., Gpz™

(see proof of Corollary 1.4.6(b)), we see that H, = > ,_, Fsx11Lsk is a solution of the
recurrence
Hyps = 123H, 5+ 123H, 11 — Hy,

and we get for the subsequence Hs,
Ho(nys) = 15128 Ho g0y — 15128 Hoy 1y + Hap.

This recurrence and the initial conditions Hy = 0, Hy = 11035 and H4 = 166937445
prove (1.4.26). i
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In Chapter 2 we will apply the theory discussed in this chapter to a lot of “real
life” examples. We will see that a number of problems concerning identities between
functions and sequences, summation, combinatorial enumeration, a.s.o., are covered by
the holonomic universe. Therefore they can be solved almost completely “automatically”,
1.e., the computer does the routine jobs and we can concentrate on the creative parts.

1.5 The Multivariate Case

Zeilberger [Zei82] generalised the concept of univariate holonomic functions and se-
quences to the multivariate case. However, his definition does not preserve the one-to-one
correspondence between holonomic (multivariate) sequences and their (multivariate) gen-
erating functions. Lipshitz [Lip89] pointed at this shortcoming and cured this deficiency
by adjusting the definition of holonomic (or in his notation P-recursive) sequences in
several variables appropriately.

Holonomic systems are obtained, if we consider multivariate functions of one or more
continuous and/or discrete variables. (An instance of a holonomic system are the Gegen-
bauer polynomials C(z) given in Example 1.3.1).

Since this thesis concentrates on holonomic univariate functions, we omit exact def-
initions of multivariate holonomicity. Detailed descriptions and discussions were given,

for example, by Chyzak [Chy94], Gessel [Ges90], Lipschitz [Lip89] and Zeilberger [Zei90].



Chapter 2

My Mathematica Package

2.1 Introduction

In Chapter 1 we discussed some properties of holonomic sequences and their generating
functions. A closer look at the proofs of these properties reveals the fact that these
proofs contain algorithms to compute holonomic differential or recurrence equations for
functions or sequences that are built from other holonomic functions or sequences via
holonomicity preserving operations. For example, if two holonomic functions are given
by differential equations they satisfy, a holonomic differential equation for their sum can
be computed, if we follow Theorem 1.4.3 and its proof. Considering also the property
that holonomic functions and sequences are completely determined by a finite amount of
information, 1.e., a differential or recurrence equation together with finitely many initial
values, it is evident that we have a machinery consisting of systematic methods to handle
manipulations of holonomic functions and sequences.

Since it is possible to perform zero recognition! in the holonomic universe, we can au-
tomatically proof any identity that contains holonomicity preserving manipulations. In
the case of sequences, these manipulations are additions, (termwise or Cauchy) multipli-
cations, partial (indefinite) summation, differences, shifts, subsequences (with constant
step width) and interlacements. Holonomic power series may be manipulated by addi-
tions, (termwise or Cauchy) multiplications, indefinite integrations, differentiations, and
compositions with algebraic functions.

These computations can be performed if the power series and sequences are defined
over a computable field K, where K is Q or a finitely generated extension of Q (pos-
sibly containing complex algebraic numbers) or the field of rational functions in several

1The problem of verifying that f(z) = 0 for all # € R is not in general decidable as shown by
Richardson [Ric68].

30
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indeterminates over Q or its extension, respectively.?

B. Salvy and P. Zimmermann [SZ94] (INRIA Paris, France) implemented these ma-
nipulations in Maple . Their package gfun® also contains procedures that perform guess-
ing.

Based on the ideas and the philosophy of gfun the author implemented the Math-
ematica package GeneratingFunctions®. The implementation of some easy-to-use and
user-friendly interfaces was inspired by I. Nemes’ and M. Petkovsek’s Mathematica pack-
age RComp [NP95], which contains procedures for manipulating and computing with
C-finite or C-recursive sequences, i.e, holonomic sequences that satisfy recurrences with
constant coefficients. A great part of the procedures require the solution of systems of
linear equations where the coefficients are rational functions (in possibly more than one
indeterminate). These linear systems are solved by a Nullspace procedure which has
been implemented by E. Aichinger.

In this chapter we want to describe the structure and the functionality of the package
GeneratingFunctions, hence it may be regarded as a manual. Moreover, the examples
that are given, shall illustrate how the package may be used as an assistant that does
the “routine jobs” in the process of solving problems.

2.2 Installation

The implementation consists of the following three files:

GeneratingFunctions.m The Mathematica source code
examples.txt A Mathematica session containing examples
readme.txt Information about previous and current versions

By typing the Mathematica command <<GeneratingFunctions.m the whole package
is installed. (Be sure that Mathematica finds the directory where this file is located.)
If your operating system does not allow file names with more than eight characters (or
if you don’t want to type this lengthy name), simply rename the file that contains the
source code into, for instance, GF.m. Then the package can be loaded by the command
<<GF.m.

2.3 Classification

To describe the procedures, we split the package GeneratingFunctions into four basic
parts.

2Though Mathematica is able to handle transcendental constants like m or e in most cases, non
algebraic extensions of QQ should be used carefully.
3See Appendix A for the availability of this package.
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1. Transformation part: A holonomic sequence is characterized by a recurrence to-
gether with some initial values. A holonomic function (or power series) may be
defined by a differential equation and initial values. Some of the procedures in this
part transform a recurrence into a differential equation for the generating function
of the sequence, and vice versa. We also provide tools to switch between the first
terms of a sequence, which are given by a list, and the truncated power series of a

certain type of generating function.

Procedures (Aliases).

ListToList (L2L)
ListToSeries (L2S)
SeriesToList (s2L)
SeriesToSeries (s29)
RecurrenceEquationToDifferentialEquation (RE2DE)
DifferentialEquationToRecurrenceEquation (DE2RE)
RecurrenceEquationToList (RE2L)

. Guessing part: Given the initial terms of a sequence or power series, these proce-
dures try to guess a holonomic sequence or function (sometimes of a special type)

that has these initial terms.

Procedures (Aliases).

GuessRecurrenceEquation (GuessRE)
GuessDifferentialEquation (GuessDE)
GuessRationalFunction (GuessRatF)
GuessAlgebraicEquation (GuessAE)

. Closure properties: This part is the “heart” of the package. It is an implementation

of the results that are proved in Section 1.4.

Procedures (Aliases).

RecurrenceEquationPlus (REPlus)
RecurrenceEquationHadamard (REHadamard)
RecurrenceEquationCauchy (RECauchy)
DifferentialEquationPlus (DEPlus)
DifferentialEquationHadamard (DEHadamard)
DifferentialEquationCauchy (DECauchy)
AlgebraicEquationToDifferentialEquation (AE2DE)
AlgebraicCompose (ACompose)
RecurrenceEquationSubsequence (RESubsequence)
RecurrenceEquationShadow (REShadow)
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RecurrenceEquationInterlace (REInterlace)
HomogenousRecurrenceEquation (HomogenousRE)
HomogenousDifferentialEquation (HomogenousDE)

4. Interface to the system: In principle, the procedures in the parts 1-3 contain enough
tools to work with holonomic sequences and their generating functions (in the scope
of the closure properties). However, these computations might demand some typing
effort from side of the user. Therefore we provide some user interfaces that make
it possible to define sequences and functions via holonomic equations. Once these
definitions are performed, we can add, subtract, multiply, verify identities, a.s.o.,
just by typing +, —, *, == etc.

Procedures (Aliases).

DefineSequence (DefinesS)
DefineFunction (DefineF)
RecurrenceEquationOut (REQut)
DifferentialEquationQut (DEQut)

Additional “short form” operations for sequences.
+, -, *, ==, PSum, Delta, Shift
Additional “short form” operations for functions.

+, -, *, ==, Integrate, D, Series

Remark. Following a Mathematica philosophy, the names given to the procedures in
this package are fully spelt out, i.e., the words in the procedure calls are not abbreviated.
However, the user has to do a lot of typing, whenever he calls some of these procedures.
For this reason, the author supplied aliases for the procedure names that are easier typed
and still descriptive enough to understand their actions.

In order to avoid ugly and lengthy Mathematica expressions, we subsequently will
also use the shorter aliases in most cases.

2.4 The Input Equations

Most of the procedures in GeneratingFunctions take recurrence, differential and/or
algebraic equations as input. In this section we discuss the structure of the input equa-
tions.
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2.4.1 Recurrence Equations

We characterize a recurrence in aln]. (a and n are symbols.)

o A recurrence equation (RE) may be a single recurrence relation (RR) or a list
consisting of exactly one RR and an arbitrary number of initial conditions for an

RE (ICR).
e An RR is a Mathematica expression R of the form
R(n,1,aln+bol,aln+by + 11,..., aln+by + d1),

where by 1s any integer, d any nonnegative integer, and R is rational in n and linear
with respect to the other variables. We will refer to this expression as R(a, n, bg, d).
(Note, that this definition allows inhomogenous recurrences of the form (1.3.2).)

Alternatively, an RR may be given as an equation of the form
lhs==rhs,
where this expression can be transformed into
R(a, n, by, d)==0

just by moving rhs to the left and clearing denominators. (Note, that this may
cause troubles if the common denominator vanishes for some nonnegative integer.
Hence, in the case that this denominator is not free of the variable n, a warning
message is given.)

If by > 0, the equation R(a,n, by, d) = 0 is interpreted to be valid for all n > 0.

If by < 0, then R(a,n,by,d) = 0 is assumed to hold for all n > —bg or, equiva-
lently, R(a,n,0,d) = 0 for n > 0, where R is obtained from R by replacing every
occurrence of n by n — bg.

e An ICR is an equation (containing possibly more than one “=="-gign) that involves
at least one of the expressions a[0], a[1],...,alng]l, where ng is a nonnegative
integer (which does not necessarily depend on by or d). The ICR must not contain
the variable n.

Following these rules, the sequence of Fibonacci numbers (see (1.3.4)), which starts
with 0,1,1,2,3,5,8,13,etc., might be defined in several different ways:

{f[n+2]==f[n]+f [n+1], £[0]==0, f£[1]==1}
{f[n+2]-f[n]-f[n+1], £[1]==f[2]==1}
{f[4]1==3, fln]l==f[n-2]+f[n-1]1, £[6]==f[4]+2}
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Possible recurrences for n!, the sequence of factorials, would be:

{aln]==n*a[n-1], a[0]==1}
{aln+1]/aln]==n+1, al0]==1}
{aln-2]1/alnl==1/(n-1)/n, al0]l==al1]==1}

A recursive definition of the Gegenbauer polynomials C% () (see Example 1.3.1) might
be given by:

{c[n+2]==(-(n+2*al)*c[n]+2*(n+1+al)*x*c[n+1])/(n+2),c[0]==1,c[1]==2al*x}

(We used the variable al for «.)

The recurrences may also be given without initial conditions; for instance, f [n+2]==
f[n]+f [n+1] is an RE that represents the whole solution space of this recurrence. Other
admissible input forms show up in the subsequent sections of this chapter.

Finally, we want to give a few examples of recurrences that are not accepted:

al[2#n]==2%a[n] (This recurrence is not holonomic.)
{aln+1]==aln]+al0],a[0]==1} (Initial values must not show up in the RR.)
{b[n]==b[n-1]+n!,b[0]==1} (The inhomogenous part is not rational in n).

2.4.2 Differential Equations

We characterize a differential equation in fLz]. (f and z are symbols.)

o A differential equation (DE) may be a single differential relation (DR) or a list
consisting of exactly one DR and an arbitrary number of initial conditions for a

DE (ICD).
e A DR is an expression D of the form
D(z,,fLz],f> [2],..., Derivative[d] [f][«]) ,

where d is a nonnegative integer, and D is rational in  and linear with respect to
the other variables. We will refer to this expression as D(f,z,d). (Note, that this
definition allows inhomogenous differential equations of the form (1.2.2).)

Alternatively, a DR may be given as an equation of the form
lhs==rhs,
where this expression can be transformed into
D(f,z,d)==0

ust by moving rhs to the left and clearing denominators. (Note, that this may
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cause troubles if the common denominator vanishes at the origin. Hence, in the
case that this denominator is not free of the variable z, a warning message is given.)

The equation D(f,z,d) = 0 is assumed to be valid for all # in the ground domain.

e An ICD is an equation (containing possibly more than one “=="-gign) that involves

at least one of the variables f[0],f’[0],..., Derivative[ngy] [f] [0], where ng 1s
a nonnegative integer (which does not necessarily depend on d). The ICD must
not contain the variable x.

Following these rules, the generating function of the sequence of Fibonacci numbers
might be defined in several different ways:

flx]==x/(1-x-x"2)
{(14x2)*#£ [x]+(-x+x"2+x"3) *£’ [x] ,£[0]==0,£’ [0]==1}

For example, we can define the sine function sin(x) via:
{s’’ [x]==-s[x],s[0]==Sin[0],s’ [0]==Cos[0]%}

The generating function f(y) = >, v, Cn(x)y” of the Gegenbauer polynomials Cf(x)
(see Example 1.2.1) might be given by:

{2*al(-x+y)*f [yl+(1-2*x*y+y~2)*£’ [y],f[0]==1}

(We used the variable al for «.)

The differential equations may also be given without initial conditions. Other ad-
missable input forms show up in the subsequent sections of this chapter.

The following examples are equations that are not accepted:

flx~2]==f’[x]+1 (This equation is not holonomic.)
{t’ [x]==£[x],f[1]==1} (Initial values must be given at 0.)
{f’° [x]1-f[x]+Exp[x],f[0]==1} (The inhomogenous part is not rational in x).

2.4.3 Algebraic Equations

We characterize an algebraic equation in f[z]. (f and z are symbols.)

o An algebraic equation (AE) may be a single algebraic relation (AR) or a list con-
sisting of exactly one AR and at most one initial condition for an AE (ICA).

e An AR is an expression A(f,z), that is rational in # and polynomial in f[z]. (For
fLz] the abbreviation f is allowed.)
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Alternatively a AR may be given as an equation of the form
lhs==rhs,

where this expression can be transformed into
A(f, x)==0

just by moving rhs to the left and clearing denominators. (Note, that this may
cause troubles if the common denominator vanishes at the origin. Hence, in the
case that this denominator is not free of one of the variables f[z] or &, a warning
message is given.)

The equation A(f,x) = 0 is assumed to be valid for all # in the ground domain.

e An ICA is an equation that involves the variable f[0]. The ICA must not contain
the variable z.

Following these rules, the generating function of the sequence of Catalan numbers
(see page 15) might be defined in one of the following ways:

{(clx]-1)/x==c[x]"2,c[0]==1}
{x*c"2-c+1,c[0]==13}

The algebraic equations may also be given without initial conditions. Other admiss-
able input forms show up in the subsequent sections of this chapter.

The following examples are algebraic equations that are not accepted:
flx~2]==f[x]+1 (This equation is not algebraic.)
{f[x]==Sqrt[1-x],f[0]==1} (This equation does not define the

algebraic function via an algebraic equation.)

2.5 The Transformation Part

Holonomic sequences have the nice property that the elements can be quickly computed
(affording little computer memory). A procedure that is described below does this job,
1.e., 1t takes a holonomic recurrence as input and returns some elements of the sequence.

Sometimes we try to solve a problem with holonomic sequences via their generating
functions or vice versa.

In other cases we are given the first terms of a sequence and we want to get a truncated
power series of the exponential generating function of this sequence.

The procedures that are described in this section perform these (and other) transfor-
mations.

We introduce some different types of generating functions: Let (an)HZO be an arbi-
trary sequence. We define
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(a) f(x) = ano apx", (ordinary generating function)
(b) f(x) = ano ana™/nl, (exponential generating function)
(c) f*(x), where f*(f(z)) =« and (reverse ordinary generating function)
(d) f*(x), where f*(f(x)) =z (reverse exponential generating function)

We note that the reverse ordinary and reverse exponential generating functions are formal
power series if and only if ap = 0 and a; # 0.

2.5.1 ListTolList (L2L)

The procedure L2L[list,transf] computes the initial terms of a sequence that is obtained
after performing the transformation transf to a sequence (or more precisely: to its
generating function), which is given by its first terms list={ag,a1,..., a5}

The built-in transformations are "ogf", (ordinary generating function), "egf" (ex-
ponential generating function) and "revogf'" (reverse ordinary generating function)
"revegf" (reverse exponential generating function), which means that the elements in
the input list are regarded as power series coefficients of the ordinary generating func-
tion, and the elements in the output list are the first coefficients of the type of generating
function that is specified by transf.

Examples.

In[1]:= ListTolList[{0,1,2,3,4,5,63},"egf"]
1 1 1 1

Out[i]: {o’ 1’ 1’ T T T ___}
2 6 24 120

In[2]:= L2L[{0,1,a,a"2,a"3,a"4}," "revogt"]

2 3 4
Out[2]= {0, 1, -a, a , -a , a }

We mention that the transformation "ogf" is the identity, and hence input and output
list are equal. The same “result” is obtained, if no transformation is given.



CHAPTER 2. MY MATHEMATICA PACKAGE 39

2.5.2 ListToSeries (L2S)

The procedure L2S[list,x,transf] performs a transformation, as described above, to
the input list lest. The output is given as a truncated power series expansion in z. If
the third parameter is omitted, the procedure takes the default value {ransf="ogf".

Examples.

In[3]:= ListToSeries[{1,2,3,4,5,6},x]

2 3 4 5 6
Out[3J=1+2x+3x +4x +5x +6zx + 0[x]

In[4]:= L25S[{0,1,a,a"2,a"3,a"4},x, " "revogt"]

2 2 3 3 4 4 5 6
Out[4]J=x-ax +a x -a x +a x + 0[x]

2.5.3 SeriesToList (S2L)

Given a truncated power series, the procedure S2L[series, z,transf] outputs a list of the
first coefficients of the power series, which is obtained after performing the transformation
transf to the function. In case that the third parameter is omitted, no transformation
is done. The input variable series may be given as a Taylor series (around the point 0)
or as a polynomial in z.

Examples.

In[5]:= SeriesToList[Series[ArcSin[x],{x,0,8}]1,x]

Out[5]= {0, 1, O, -, 0, -——-, O, ———, O}
6 40 112

In[6] :=S2L[x+x"2+2%x"3+3*x"4+b*x"5+8*x"6+13*x"7,x, "revegt"]
1 1 1 5 11 209

Out[6]= {o’ 1’ _(_)’ T T _(__)’ 7 _(____)}
2 6 12 24 60 5040
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2.5.4 SeriesToSeries (S2S)

The command S2S[series,z,transf] gives the same output as performing S2L. The
output given here is a series instead of a list.

Example.

In[7]:= SeriesToSeries[Series[Sin[x],{x,0,8}],x,"revogt"]

3 5 7
X 3 x 5 x 8
Out[7]=x + -——- + ———— + -——- + 0[x]
6 40 112

2.5.5 Adding New Transformations

The command ListOfTransformations[] gives a list of the currently implemented
transformations that may be chosen in the procedure calls for L2L, L2S, S2L, S2S:

In[8]:= ListOfTransformationsl[]

Out [8]= {ogf, egf, revogf, revegf}

(Note that this output is a list of strings, i.e., to refer to a transformation we have to
put it between quotes; for example "revogf".)

In Section 2.6 we describe how all the supplied transformations may be used in
the process of guessing. In some circumstances it might be desireable to have more
transformations available. We explain in an example how the user can expand the
system: Suppose we’d like to have a transformation, which, given the initial terms of
a function (or series) f, outputs the initial terms of the reciprocal 1/f. Let’s call this
transformation "repogt" (for reciprocal ordinary generating function).

We proceed in two steps: First, we define a procedure Li2Li[list_,"rcpogf"],
which does this transformation for the input 1ist. Here, we can use the fact that Math-
ematica automatically computes the reciprocal of a series, if we type 1/SeriesDatal_].
However, we must not forget to check wheter the input list (series) in fact has a reciprocal:

(* Case 1: Series has reciprocal power series (coeff of x"0=!=0) *)
Li2Li[list_,"rcpogf"]:=Module[{x},
CoefficientList[1/SeriesDatalx,0,1ist,0,Length[1list],1],x]
17;1ist[[1]1]=1=0;
(* Case 2: Series has no reciprocal power series (coeff of x~0===0) *)
Li2Li[list_,"rcpogf"]:=
Print["Reciprocal is no power series."]/;list[[1]1]===0;
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(We note that due to the internal structure of the package the procedure name Li2Li
must not be replaced by a different one.) The second step is to redefine the command
ListOfTransformations[]. (This step may be skipped, if we do not want to use this
command.)

ListOfTransformations[]:={"ogf", "egf", "revogt", "revegt","rcpogt"};
Now we can use the transformation "rcpogf" just like the built in ones:
In[9]:= L2S[Table[ChebyshevT[n,x],{n,0,4}],y,"rcpogt"] //Simplify

2 2 3 3 2 4 4 5
Out[9l=1 -xy+ (1 -x)y +(x-x)y +(x -x)y +0[y]

2.5.6 RecurrenceEquationToDifferentialEquation (RE2DE)

The procedure RE2DE[re,aln], f[2]1] gives a holonomic differential equation in f[z],
which is satisfied by f(x), the ordinary generating function of a sequence (ay,)n >0, which
satisfies the recurrence re in al[n].

Example. Let D,, be the number of derangements of n letters. (A derangement is a
permutation that has no fixed points.) If a, = D, /n!, then the sequence (an)n>o is
recursively defined by

an+ (n+ Dang1 — (n+2)ap42 =0, and ao=1, a; =0.

We compute a differential equation that is satisfied by the exponential generating func-
tion f(x) =), 5 ana™ of the sequence (Dy)n>o0:

In[10] := RE2DE[{a[n]+(n+1)*a[n+1]-(n+2)*a[n+2]==0,a[0]==1,a[1]==0}, f [x]1]

Out[10]= {x f[x] + (-1 + x) £’[x] == 0, £[0] == 1}
Inhomogenous recurrences are also handled:
Example.

In[11]:= RE2DE[a[n]==1/(n+1),aln],f[x]1]

CanRE: :denom:
Warning. The input equation will be multiplied by its
denominator.

2
Out[11]= {1 + (-1 + x) flx] + (-x + x ) £’[x] == 0, f£f[0] == 1}
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2.5.7 DifferentialEquationToRecurrenceEquation (DE2RE)

The procedure DE2RE[de, f[z],aln]] gives a holonomic recurrence equation in al[n],
satisfied by (an)n>0 the sequence of power series coeflicients of f(x), which is given by
the differential equation de in f[z].

Example.
In[12]:= DE2RE[{y[x]+3*xxy’ [x]+y’’ [x]==0,y[0]==0,y’ [0]==1},y[x],c[n]]
Out[12]= {(1 + 3 n) c[n] + (1 +n) (2 + n) c[2 + n] == 0, c[0] == 0,
c[1] == 1}

Rational functions yield recurrences with constant coefficients. A particular example is
the bivariate generating functions of the binomials:

Example.

In[13]:= DE2RE[f[yl==1/(1-y-x*y),f[y],aln]]

CanDE: :denom:
Warning. The input equation will be multiplied by its
denominator.

Out[13]= {(1 + x) aln] - all + n] == 0, al[0] == 1}

2.5.8 RecurrenceEquationToList (RE2L)

The procedure RE2L[re,al[n],ng]l computes the elements of a sequence (an)nzo, which
satisfies the recurrence re in aln], from ag to a,,, where ng € N.

Example. We compute an initial segment of the sequence of the Fibonacci numbers:
(Note that the initial values do not contain £[0].)

In[14] := RecurrenceEquationToList [{f [n]==f[n-1]+f[n-2],f[1]==f[2]==1},
f[n],10]

Solve::svars: Warning: Equations may not give solutions for all '"solve"
variables.

out[14]= {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55}
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(Mathematica gives a warning in this case, since the system does not know in advance
that the given initial values £[1] and £ [2] uniquely determine the sequence.)

Now we extend the recurrence to be valid for all integers, which makes it possible
to use negative indices, too: RE2L[re,aln],{no}] gives just one element a,, of the
sequence (as a list), where ng € Z:

Example.
In[15] := RE2L[{a[nl==n*aln-1],al0]==1},aln],{20}]
Out [15]= {2432902008176640000%}

RE2L[re,aln],{ng,n1}] computes the sequence from a,, up to an,, if ng < ny and
ng,n1 € 4.

Example.
In[16]:= RE2L[al[n]==n"2,aln],{5,10}]
out[16]= {25, 36, 49, 64, 81, 100}

If no singularties arise, we can compute a segment of the sequence containing negative
indices.

Example.
In[17]:= RE2L[{f [n]+f[1+n]-£ [n+2],£[0]==0,f[1]==1},f[n],{-5,5}]

RE2L: :negative:
Warning. The recurrence is extended to (some) negative
integers.

Out[17]= {5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5}

2.6 The Guessing Part

Sometimes it happens that we are given some elements of a sequence and we do not
know whether this sequence satisfies a holonomic recurrence.

In other cases we are faced with the problem that a holonomic sequence is given by
a recurrence equation that can not be solved in explicit terms and we we would like
to know whether the given sequence also satisfies a recurrence of a special type, which
allows us to get an explicit expression for the nth element.
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Perhaps, we are given a truncated power series, and we would like to know whether
1t might come from an algebraic function.

In these cases it may help, if we try to “guess” the desired equations. Following
an idea by Bergeron and Plouffe [BP92], my package contains procedures that perform
guessing.

Remark. The procedures described below, take lists as input. In order to get results,
the elements in the list must be constants or rational functions (in several variables). For
example, if the input list contains the Chebyshev polynomials of the first kind T,(x) =
cos(n arccos x), it is necessary to set up the input list by

list={1,x,2*%x"2-1,4*%x"3-3%x,...}
rather than by:

list={Cos[0],Cos[ArcCos[x]],Cos[2*ArcCos[x]],Cos[3*ArcCos[x]],...}

2.6.1 GuessRecurrenceEquation (GuessRE)

GuessRE[list,aln],{minorder, maxzorder},{mindeg,maxdeg?}, opts] tries to find a ho-
lonomic recurrence equation that is satisfied by the elements from the list [ist. The last
parameter opts is a (possibly empty) sequence of options. The procedure tries orders
from minorder to mazorder and degrees from mindeg to maxdeg. In case that a re-
currence 1s found, the output contains the recurrence in a[n] together with some initial
conditions and a transformation that had to be performed on the sequence in order to
obtain the recurrence. (See Section 2.5.) The output is "FAIL", if no recurrence was
found.

The default values minorder = 1, mazorder = 2, mindeg = 0, maxdeg = 3, are
applied, if one of the short forms GuessRE[list,a[n]] or GuessRE[list,an],mazorder,
maxdeg] is used.

GuessRE allows the following options (with the given default values):

e AdditionalEquations—>"A1ll" In order to avoid accidental results, "A11l" ele-
ments in the input list are used to build the equations for the coefficients of the
recurrence. Setting this parameter to a positive integer, say k, causes the procedure
to build d + k equations, where d is the number of indeterminants. This option
can be used in order to achieve a speed-up.

e Hypergeom->False If this parameter is set to be True, only m-hypergeometric re-
currences are searched for. An m-hypergeometric recurrence has the form pg(n)a,+
p1(n)antm = 0, from which it easy to extract a closed expression for a,,.
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e Transform->{"ogf","egf"} This parameter gives a list of the transformations
that are tried automatically. The option Transform->ListOfTransformations[]
tells the procedure to try all implemented transformations.

Examples.

In[18] := GuessRE[Table[ChebyshevT[n,x],{n,0,10}],T[n]l]

Out[18]= {{T[n] - 2 x T[1 + n] + T[2 + n] == 0, T[0] == 1,
T[1] == x}, ogf}

An example shows the usage of the option Hypergeom—->True: Suppose, we want to derive
a closed expression for the power series coefficients of sin(z) exp(z):

In[19]:

list=S2L[Series[Sin[x]*Exp[x],{x,0,40}],x];

In[20]:

GuessRE[list,aln]]
Out[20]= {{2 a[n] + (-2 - 2 n) al[1l + n] +

2
(2+3n+n) al2+n] ==0, alo] == 0, al1] == 1}, ogf}

Since this recurrence has no special form that allows us to extract a closed expression
for the coefficient a[n], we try to guess a recurrence equation of this “special form”, i.e,
an m-hypergeometric recurrence:

In[21] := GuessRE[list,a[n],Hypergeom->True]

Out[21]= FAIL

Perhaps a search for a recurrence of higher degree and order succeeds:

In[22] := GuessRE[list,a[n],5,5,Hypergeom->Truel

2 3 4
Out[22]= {{4 a[n] + (24 +50n +35n +10n +n ) al[4 + n] ==

1
0, al0] == 0, al[1] == 1, al[2] == 1, a[3] == -}, ogf}
3
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Although we can solve this recurrence for aln] (see, e.g. [Koe92]), yet we don’t know
whether the power series coefficients of sin(x) exp(z) are really determined by the guessed
recurrence. In Chapter 3 we will see how we can check the validity of a guessed holonomic
recurrence (or differential) equation.

It 1s also possible to use indeterminates:

In[23]:= GuessRE[{0,a[1],2,3,4,5,6,7,8,9,10},aln]]
Out[23]= {{(1 - n) aln] + 3 n al1 +n] - 2 n al[2 + n] == 0,

a[0] == 0, a[2] == 2}, ogf}

We have seen that the tangent function is not holonomic. GuessRE also can’t find a
holonomic recurrence:

In[24]:= 1list=S2L[Series[Tan[x],{x,0,20}],x]

1 2 17 62 1382
out[24]= {0, 1, 0, -, 0, --, 0, -——, 0, ————, 0, —————- , 0,
3 15 315 2835 155925
21844 929569 6404582 443861162
——————— , 0, ———======, 0, —=—=—===-—=, 0, ————-—-—-—-——, 0}
6081075 638512875 10854718875 1856156927625

In[25] := GuessRE[list,aln]]

Out [25]= FAIL

However, if we try all available transformations, a recurrence that is satisfied by the
power series coefficients of the compositional inverse of tan(z) is found:

In[26]:= GuessRE[list,aln],Transform—>List0fTransformations[]]
Out[26]= {{n aln] + (2 + n) al[2 + n] == 0, al[0] == 0,

al1] == 1}, revogf}

2.6.2 GuessDifferentialEquation (GuessDE)

GuessDE[list, fLx],{minorder,maxorder},{mindeg, maxdeg}, opts] tries to find a ho-
lonomic differential equation in f[x] that is satisfied by the generating function of a se-
quence that has the initial elements list. The last parameter opts is a (possibly empty)
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sequence of options. The procedure tries orders from minorder to mazxorder and de-
grees from mindeg to maxzdeg. If a differential equation is found, the output contains
this equation together with some initial conditions and a transformation that had to be
performed on the sequence in order to get the recurrence. (See Section 2.5.) The output
is "FAIL" if no differential equation was found.

The default values minorder = 1, mazorder = 2, mindeg = 0, maxdeg = 3, are
applied, if one of the short forms GuessDE[list, f [x]1] or GuessDE[list, f[x], maxorder,
maxdeg] is used.

GuessDE admits the following options (with the given default values):

e AdditionalEquations—>"A1ll" In order to avoid accidental results, "A11l" ele-
ments in the input list are used to build the equations for the coefficients of the
differential equation. Setting this parameter to a positive integer, say k, causes the
procedure to build d + k equations, where d is the number of indeterminants. This
option can be used to achieve a speed-up.

e Inhomog->False By default, the procedure searches for homogenous differential
equations only. If this parameter is set to be True, the search also includes inho-
mogenous differential equations of the form (1.2.2). A search with this option may
find a differential equation of lower order than the one delivered by a search with
the default option.

e Transform->{"ogf","egf"} This parameter gives a list of the transformations
that are tried. The option Transform->ListOfTransformations[] tells the pro-
cedure to try all implemented transformations.

Examples. We try to find a differential equation that is satisfied by £ [y], the generating
function of the Chebyshev polynomials of the first kind:

In[27]:

list=Table[ChebyshevT[n,x],{n,0,15}];

In[28]:

GuessDE[list,f[y]]
out[28]= {{2 £yl + 4 (-x + y) £’[y] +

2
(1-2xy+y) £yl ==0, £[0] == 1, £’[0] == x}, ogf}

If we set the option Inhomog->True, we get a much simpler differential equation of order
0 (instead of order 2).

In[29] := GuessDE[list,f[y],Inhomog->True]
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2
Out[29]={1 - xy+ (-1 +2xy -y ) £flyl == 0, ogf}

Now we conjecture that £[y] is a rational function over the field Q(z).

If we suspect a sequence to have a rational generating function, we can also use a
different (and faster) procedure to do the guessing:

2.6.3 GuessRationalFunction (GuessRatF)

GuessRatF [list,x,maxdeg] tries to guess a rational generating function in z for the se-
quence, whose initial terms are given in list. The maximum degrees of the numerator and
denominator are given by maxzdeg. Short form for the function call is GuessRatF [list, ],
where the default value mazdeg = 5 1s used. GuessRatF has the same options and default
values as GuessRE.

Example.

In[30]:= GuessRatF[{0,1,1,2,3,5,8,13,21},x]

Out[30]= {------—-—- , ogf}

2.6.4 GuessAlgebraicEquation (GuessAE)

GuessAE[list, z,{minorder,mazorder},maxdeg,opts] tries to guess an algebraic equa-
tion in f[z] for the generating function of the sequence, whose initial terms are given
in list. The parameter opts is a (possibly empty) sequence of options. The maximum
degrees of the polynomials in the algebraic equation are given by maxzdeg. The orders
(degree in fLx]) that are tried range from minorder to mazorder. Short forms for the
function call are GuessAE[list, f[x]], GuessAE[list, f[x], maxorder,maxdeg], where
the default values minorder = 1, mazxorder = 3, maxdeg = 3 are used.

GuessAE has the options AdditionalEquations and Transform, where the usage and
the default values are the same as in GuessRE.

Example. (Special instance of an m-Raney sequence with m = 3. See [GKP94, p.
360]) Let R, be the number of sequences (ag,ai,...,as,), where ap € {+1,—-2} for
(0 < k < 3n), whose partial sums are all positive and ZZZO ap = 1. We (somehow)
compute a list that contains the elements R, and try to guess an algebraic equation that
is satisfied by the generating function f(z) =) ., Rp2™:
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In[31]:= GuessAE[{1,1,3,12,55,273,1428,7752,43263,246675, 1430715,
8414640,50067108,300830572,1822766520,11124755664,
68328754959,422030545335,2619631042665,16332922290300%,
f[x]]

3
Out[31]= {{1 - £[x] + x £[x] == 0, £[0] == 1}, ogf}

2.7 The Closure Properties

The most important reason for working with holonomic functions and sequences are the
closure properties, discussed in Section 1.4. The results we obtained, have the conse-
quence that all manipulations of holonomic sequences containing additions, (termwise or
Cauchy) multiplications, partial (indefinite) summation, differences, shifts, subsequences
(with constant step width) and interlacements can be done completely “automatically”.

Holonomic functions may be manipulated by additions, (termwise or Cauchy) multi-
plications, indefinite integrations, differentiations, and compositions with algebraic func-
tions.

Moreover, the computer can “prove” any identity that is built from these manipula-
tions of holonomic functions and sequences.

2.7.1 RecurrenceEquationPlus (REPlus)
RecurrenceEquationHadamard (REHadamard)
RecurrenceEquationCauchy (RECauchy)

REPlus[rei,res,alnl] gives a recurrence equation that is satisfied by the sum of solu-
tions of the recurrences re; and res in alnl.

Example. Suppose two sequences (an)n>0 and (bp)n>0 are defined via the recurrences
(n+1)an + (n—1)apt1 —4ant2 —ans3 =0 and

(n+ 1) (n+2)by + (n+2)(n — b1 — (A0 +5)bpy2 — (n+ 1)bpys =0,

respectively. (The recurrences hold for all n € N.) Suppose that both sequences have
the same initial values ag = bg = 1, a; = b1 = 1 and as = b5 = —2. We inspect the first,
say, ten terms of both sequences and, since all a,;’s and b, s are identical for these small
values of n, we might conjecture that a, = b, for all n € N. The procedure REPlus
checks this identity:

rel is the recurrence satisfied by (an)n>0:
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In[32]:= rel={(n+1)*a[n]l+(n-1)*aln+1]-4*a[n+2]-al[n+3]==0,a[0]==al[1]==1,
a[2]==-2}
Out[32]= {(1 + n) a[n] + (-1 + n) a1 + n] - 4 a[2 + n] -
a[3 + n] == 0, a[0] == al[1] == 1, a[2] == -2}

re2 is a recursive definition of the sequence (_bn)n20~ (Since REP1lus takes as input two
recurrences in the same variable, we have to give re2 in a[n].)

In[33]:= re2={(n+1)*(n+2)*aln]+(n+2)*(n-2)*aln+1]1-(4n+5)*a[n+2]
-(n+1)*a[n+3]==0,al0]==al[1]==-1,al[2]==2}

Out[33]= {(1 + n) (2 +n) aln] + (-2 +n) (2 +n) all + n] -
(5+4n) al[2+1n] - (1 +n) al[3 + n] == 0, al0] == a[1] == -1,
a[2] == 2}

Finally REP1us computes a recurrence that is satisfied by the sequence (cn)n>0, where
Cp = ap — by

In[34]:

REPlus[rel,re2,al[n]]

Out [34]

{(-1 - n) a[n] + (-1 - 2 n) al[t +n] + (4 - n) a[2 + n] +
5 a[3 + n] + a[4 + n] == 0, a[0] == 0, a[1] == 0, a[2] == 0,
al3] == 0}

The initial values ¢g = ¢; = ¢35 = e¢3 = 0 of this fourth order recurrence tell us that
¢, = 0 for n € N.

REHadamard[re;,res,aln]] gives a recurrence equation that is satisfied by the Hada-
mard (or termwise) product of solutions of the recurrences re; and res.

RECauchy[rey,res,aln]] gives a recurrence equation that is satisfied by the Cauchy
product (or convolution) of solutions of the recurrences re; and res. All recurrences are
given in al[n].

Example. Evaluate the definite sum
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() - i

we can express the sum as f, = a, ZZ:O bibn_, where a, = (n1)? and b, = 1/(n!)%.

Since

First, we recursively define the factorials and their reciprocal via the recurrences
factre and factrcpre:

In[35]:= factre={aln+1]==(n+1)*al[n],al0]==1}
Out[35]= {al[1 + n] == (1 + n) aln], al0] == 1}
In[36]:= factrcpre={aln+1]*(n+1)-aln],al0]==13}

Out[36]= {-aln] + (1 + n) a[1 + n], al[0] == 1}

Next, we obtain recurrences rel and re2, which are satisfied by the sequences (an)n>o0
and (bn)n>0, respectively:

In[37] := rel=REHadamard[factre,factre,aln]]

2
Out[37]= {-((1 + n) aln]l) + al1 + n] == 0, al[0] == 1%}

In[38] := re2=REHadamard[factrcpre,factrcpre,aln]]

2
Out[38]= {aln] - (1 + n) all + n] == 0, al0] == 1}
Finally, we get the recurrence sumre, which is satisfied by f,:

In[39] := sumre=REHadamard[rel,RECauchy[re2,re2,aln]],alnl];

Out[39]= {-2 (1 + 2 n) aln] + (1 + n) all + n] == 0, al[0] == 1}

Since sumre is a hypergeometric recurrence, it is possible to obtain a closed expression
for f, and we find (see Example 1.4.1.3):

43" (2
ol \n

We want to mention here that, in the general situation, definite sums of the form
Jn =", 9(n, k), where the summand g(n, k) is hypergeometric in both variables, can be
systematically treated by Zeilberger’s algorithm (method of creative telescoping, see for

instance [Zei90] or [PWZ96, Chapter 6]). Zeilberger’s algorithm has been implemented
in Mathematica by P. Paule and M. Schorn [PS95].

fn
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2.7.2 DifferentialEquationPlus (DEPlus)
DifferentialEquationHadamard (DEHadamard)
DifferentialEquationCauchy (DECauchy)

DEPlus[dey,des, f[2]1] gives a differential equation that is satisfied by the sum of solu-
tions of the differential equations de; and de,.

DEHadamard[dey,des, f[2]] gives a differential equation that is satisfied by the
Hadamard product of solutions of the differential equations de; and des,.

DECauchy [de;,des, f[z]] gives a differential equation that is satisfied by the product
of solutions of the differential equations de; and dey. All differential equations are given
in fLx]

Examples. We use these procedures to prove the identity sin(2z) = 2sin(x) cos(z).

First we define the sine and the cosine functions via holonomic differential equations:

In[43] := sinde={f[x]+f’’ [x]==0,f[0]==0,f’ [0]==1%}
Out[43]= {£f[x] + £’’[x] == 0, f[0] == 0, f’[0] == 1%}
In[44] := cosde={f[x]+f’’ [x]==0,f[0]==1,f’[0]==0%}

Out[44]= {f[x] + £°’[x] == 0, £[0] == 1, £°[0] == O}

Next we are going to prove

sin(2z) 4 (—2) sin(x) cos(x) = 0. (2.7.1)
——
fi(=) f2(=)

Since sin(2x) =3 5o @n2" 2", where sin(z) = >, o, anz”, we get a differential equation
for fi(x) via the Hadamard product of the functions sin(xz) and 1/(1—-2x) =", 5, 2"z™:

In[45] := fide=DEHadamard[sinde,f[x]==1/(1-2*x),f[x]1]
CanDE: :denom:
Warning. The input equation will be multiplied by its
denominator.

Out[45]= {4 f[x] + £’°[x] == 0, £[0] == 0, £’>[0] == 2}

A holonomic differential equation for fa(x) can be computed via the ordinary (Cauchy)
product of three functions:



CHAPTER 2. MY MATHEMATICA PACKAGE 53

In[46] := £2de=DECauchy[DECauchy[sinde,cosde,f [x]],f[x]==-2,f [x]]
(3)
Out[46]= {4 £’ [x] + £ [x] == 0, f[0] == 0, £’°[0] == -2,
£ [0] == 0}

We add the two functions £1 and £2 and get a third order differential equation:
In[47] := DEPlus[fide,f2de,f[x]]

(3)
Out[47]= {4 £’[x] + £ [x] == 0, £[0] == 0, £’[0] == 0,

£ [0] == 0}

The initial values f(0) = f/(0) = f”(0) = 0 tell us that this differential equation has the
unique solution f(#) = 0. Thus (2.7.1) is proved.

In Chapter 3 we will have a closer look at the process of proving holonomic identities.

2.7.3 AlgebraicEquationToDifferentialEquation (AE2DE)

AE2DE[ae, f[2]] computes a holonomic differential equation that is satisfied by the
algebraic function f(z), which is given by the algebraic equation ae in f[z].

Example. Let G, 1 be the number of plane unlabeled trees with » nodes and k leaves.
(A leaf of a tree is a node with degree one.) We try to evaluate m,,, the mean number
of leaves of the trees with n nodes. If s, = ZZ:O Gn k, then the generating function
J(z) =350 sn2™ is well-known ([FS93, p. 99]) to be

Fe) = gt s
)= -2+ - ———.
2 21—-4z
We call the procedures AE2DE and DE2RE to get a recursive definition of the sequence
(Sn)n20:

In[50] := de=AE2DE[{(f-z/2)"2==2"2/4/(1-4z),£[0]1==0},f[z]]

CanAE: :denom:
Warning. The input equation will be multiplied by its
denominator.
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2 2
Out[50]={z + (-1 + 2 z) fl[z]l] + (z -4 =z ) £’[z] == 0, £f[0] == 0%}

In[51]:= re=DE2RE[de,f[z],s[n]]

2 2
Out[51]={(2 -6n+4n ) sln] + (n - n ) s[1 +n] ==0, s[0] == 0%}

The recurrence re is hypergeometric and (although the initial conditions s; = 1 and
sz = 1, which are required for a unique reperesentation of the sequence, are missing,) we
can compute s, in closed form:

n if n<1
0= 24n-2 (”n__3{2) it on> 02

The total number of unlabeled plane trees with n nodes is the nth Catalan number
C, = (Zn”)/(n — 1) (, see page 15 and [FS93, page 23]). Now the mean number of leaves
My = s, /Ch is found to be

_ 1 if n=1
Mn = n/2 if n>2

(Since there is no tree with 0 nodes, myg is not defined.)

2.7.4 AlgebraicCompose (ACompose)

AComposel[de,ae, f[#]] computes a differential equation that is satisfied by a function
flg(x)), where f(x) is a solution of the differential equation de in f[x], g(«) is a solution
of the algebraic equation ae. (Note that both input equations as well as the output
equation are given in f[z].)

Example. We prove Gauss’s identity [GKP94, p. 222] for hypergeometric functions.
Using the notation introduced in Example 1.4.1.3, this identity reads as follows:

2F1( a—l—al’)lil—% ‘495(1_96)) - ZFl( a—QI—GIfE% ‘ )

Let ¢, be defined by

(2.7.2)

w=eni( 5 )

Via (1.4.3) we find a recurrence equation for the Taylor coefficients ¢,,, which we transform
into a differential equation that is satisfied by its generating function.
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In[52] := de=RE2DE[{t[n+1]/t[n]l==(n+a)*(n+b)/(n+at+b+1/2)/(n+1),
t[0]==1},t[n],F[x]1];

Now we derive the differential equation del, satisfied by the function on the left of (2.7.2),
via algebraic composition:

In[53]:= del=AComposel[de,F[x]==4*x*(1-x),F[x]]
Out[53]={8 ab Flx] + (-1 -2a-2b+2x+4ax+4bx)

2
FPlx] +2 (-x + x ) F’[x] == 0, F[0] == 1,

F?[0] == —--—----mm-- }
1+2a+20D

Similarly de2 is satisfied by the function on the right of (2.7.2).

In[54]:= de2=RE2DE[{t[n+1]/t [n]==(n+2a)*(n+2b)/(n+at+b+1/2)/(n+1),
t[0]==1},t[n],F[x]]
CanRE: :denom:
Warning. The input equation will be multiplied by its
denominator.

Out[64]={-8abFlx] + (1+2a+2b-2x-4ax-4Db x)

2
F'lx] +2 (x-x) F[x] ==0, F[0] == 1,

F?[0] == —--—----mm-- }
1+2a+20D

It is evident that the differential equations del and de2 define the same hypergeometric
function.
2.7.5 RecurrenceEquationSubsequence (RESubsequence)

RESubsequencel[re,aln],d*n+h] gives a recurrence that is satisfied by a subsequence
of the form (adn+h)n20 of every solution (a,)n>0 of the input recurrence re in alnl. d
and h are assumed to be a positive and an arbitrary integer, respectively.
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Example. (The American Mathematical Monthly, Problem 10473.) Prove that there
are infinitely many positive integers m such that

1 & /2 1
S (m+ )3
’ k=0

is an odd integer.

Suppose we already derived a recurrence for the sequence (s, )m>o (either by working
with the procedures described above, or via Zeilberger’s algorithm):

In[55] := re={s[m]-4*s[m+1]+s[m+2]==0,s[0]==1/5,s[1]==1}

1
Out[55]= {s[m] - 4 s[1 + m] + s[2 + m] == 0, s[0] == -, s[1] == 1%}
5
We look at the first terms of the sequence,
In[56]:= RE2L[re,s[m],10]
1 19 71 989 3691 51409 191861
out[56]= {-, 1, --, --, 53, -—-, ————, 2755, ————- , —————— , 143207}
5 5 5 5 5 5 5

and conjecture that all entries in the subsequence (53m+1)m20 are odd integers. This
conjecture is easily verified:

In[57] := RESubsequence[re,s[m],3m+1]

Out[57]= {s[m] - 52 s[1 + m] + s[2 + m] == 0, s[0] == 1, s[1] == 53}

Indeed, it is obvious that this recurrence (together with the given initial values) defines
a sequence of odd integers.

2.7.6 RecurrenceEquationShadow (REShadow)

REShadow([re,a[n]] gives a recurrence that is satisfied by the shadow of any solution of
the input recurrence, i.e., if the sequence agp, a1, as, . . ., satisfying the input recurrence re
in a[n], can be extended to be valid for all n € Z, then this procedure gives a recurrence,
which is satisfied by the sequence ag,a_1,a_o, .. ..

Example. The recurrence in this example defines a sequence, say (an)n>0, that starts
with 1,1,2, g, %, ... If we extend the validity of this recurrence from N to the set of all
integers, it is possible to come up with a recurrence that is satisfied by the sequence of
elements with nonpositive indices:
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In[58] := REShadow[{al[n]+(n+1)*a[n+1]-(2*n+1)*a[n+2]==0,
a[0]==a[1]==12},a[n]]

RE2L: :negative:
Warning. The recurrence is extended to (some) negative integers.

Out[58]= {(-1 - 2 (-2 = n)) aln] + (-1 - n) al1 + n] + a[2 + n] == 0,
al0] == 1, a[1] == -1}
The output recurrence is satisfied by the sequence (a_,)n>0 with the first terms 1,-1,

~4,-3,19,. ...

2.7.7 RecurrenceEquationInterlace (REInterlace)

REInterlacelrej,res,...,reg,alnl]] gives a recurrence that is satisfied by interlacing

solutions of the recurrences rey,rea,...,reg. This means, if (ai,)n>0, (@2,)n>0,- -,
(@K )n>0 satisfy the input recurrences (which are all given in a[nl), then the interlace-
ment of these sequences starts with ayq, azq, ..., @kg, @14, .- -, @k, d19 a.8.0.

Example.([GKP94, Exercise 5.64]) Evaluate s, = > ;_, (¢)/[52], given an integer
n> 0.

We can rewrite this sum as
- ar 1
sp=nly S —— (2.7.3)

where (an)n>0 is given by

117t L if p=2 N
N

2 #—I—P if n=2m+1, meN

Now, we get the recurrence re that is satisfied by the sequence (an)n>0, by interlacing
two (identical) rational sequences:

In[59] := re=REInterlace[al[n]==1/(n+1),aln]l==1/(n+1),aln]]

CanRE: :denom:
Warning. The input equation will be multiplied by its
denominator.
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CanRE: :denom:
Warning. The input equation will be multiplied by its
denominator.

2
Out[59]= {(2 + 3 n+n ) a[ln] -2 (3+ n) (4 +n) a[2 + n] +

(6 +n) (6 +n) al4 + n] == 0, al0] == 1, alt] == 1, a[2] == -,

1
a[3 == —}
2

Next, (2.7.3) tells us how to compute a recurrence for (s, )n>o:

In[60] := REHadamard [RECauchy [REHadamard [re,{(n+1)*a[n+1]==a[n],al[0]==1},
alnl]]l,{(n+1)*aln+1]==aln],al0]==1},alnl],{aln+1]==(n+1)*aln],
al0]==1},aln]]

2
Out[60]= {4 (1 + n) (2 + n) aln] -

8 (1 +n) (2+n1n) (3+n) altl +n] +
(3+1n) (4+m1n) (9+5n) al2+n] -

2
(4 +n) (5+n) al3+n] + (5 +n) (6+n) al4 + n] == 0,

al0] == 1, al1] == 2, a[2] == -, a[3] == 6}

It remains to find closed form solutions of this recurrence. We apply Petkovsek’s algo-
rithm HYPER, which i1s a method to find all hypergeometric solutions of a holonomic
recurrence (see [Pet92]), to obtain these solutions and, after some simplifications, we find
that
2(2n+L — 1)

n+2

Sp =
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2.7.8 HomogenousRecurrenceEquation (HomogenousRE)

HomogenousRE[re,a[n]] gives a homogenous recurrence equation that is satisfied by
any solution of the (possibly) inhomogenous recurrence re in al[n].

Example. In some cases, for example, if we want to find hypergeometric solutions of
a recurrence via Petkoviek’s algorithm HYPER [Pet92], it is necessary to represent a
sequence via a homogenous recurrence.

In[61] := HomogenousRE[b[k]==k*b[k-2]+1/k,b[k]]

CanRE: :denom:
Warning. The input equation will be multiplied by its
denominator.

2 2
Out[61]= (-4 - 4k -k ) blk] + (9 +6 k +k ) b[1 + k] +

(2 + k) b[2 + k] + (-3 -k) b[3 + k] ==

2.7.9 HomogenousDifferentialEquation (HomogenousDE)

HomogenousDE[de, f[2]] gives a homogenous differential equation that is satisfied by
any solution of the (possibly) inhomogenous differential equation de in f[z].

Example.
In[62] := HomogenousDE[{f’ [x]==1/(1+x"2),£[0]==02}, f [x]]

CanDE: :denom:
Warning. The input equation will be multiplied by its
denominator.

2
Out[62]= {-2 x £°[x] - (1 + x ) £2°[x] == 0, £[0] == 0, £°[0] == 1}

2.8 The Interface to the System

The procedures that were introduced in the previous sections are tools to work with and
to manipulate holonomic power series and sequences. These tools are powerful enough
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to solve a lot of problems that can be stated in the holonomic universe. In particular,
it 18 possible to check and prove holonomic identities. However, it i1s often not very
convenient to do the proofs by just using the so far introduced procedures.

We illustrate this point via a the following standard example: Suppose we want to
prove Cassini’s identity

Fpy1 By — F2=(-1)"  forn €N, (2.8.1)

where F), is the nth Fibonacci number given by (1.3.4). Using Mathematica together with
the procedures introduced so far, one might check (and hence also prove) this identity
as follows:

In[63]:= re={f[n]==f[n-1]+f[n-2],£[0]==0,£[1]==1} (* f[n] *)
Out[63]= {f[n] == £f[-2 + n] + £[-1 + n], £[0] == 0, £[1] == 1}
In[64]:= rei=RE2Subsequencelre,f[n],n+1] (* £n+1] *)
Out[64]= {-f[n] - £[1 + n] + £[2 + n] == 0, £[0] == 1, £[1] == 1}
In[65]:= re2=RE2Subsequence[re,f[n],n-1] (* £[n-1] *)
RE2L: :negative:

Warning. The recurrence is extended to (some) negative

integers.

Out[65]= {-f[n] - £[1 + n] + £[2 + n] == 0, £[0] == 1, £[1] == 0}
In[66] := lhs1=REHadamard[rel,re2,f [n]] (* fln+1]*f[n-1] *)
Out[66]= {f[n] - 2 £f[1 + n] - 2 £[2 + n] + £[3 + n] == O,

£[0] == 1, £[1] == 0, £[2] == 2}
In[67]:= 1hs2=REHadamard[ (¥ —f[n]"2 *)

REHadamard[re,re,f[n]],

f[n]==-1,
f[n]]
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Out[67]= {f[n] - 2 f[1 + n] - 2 f[2 + n] + f[3 + n] == 0,

£[0] == 0, £[1] == -1, £[2] == -1}
In[68]:= 1lhs3={f[n]==-f[n-1],f[0]==-13} (¥ =(-1)"n *)
Out[68]= {f[n] == -f[-1 + nl, f[0] == -1}
In[69]:= REPlus[ (¢ fn+1]*f[n-1]1-f[n]"2-(-1)"n *)
REPlus[lhs1,1hs2,f[nl],
1hs3,
f[n]]

Out[69]= {f[n] - 2 f[1 + n] - 2 f[2 + n] + f[3 + n] == 0,
f[0] == 0, f[1] == 0, f[2] == 0}

The last recurrence, which is satisfied by the sequence Fy,41F,_1 — F2 — (=1)", is of
order three and, since the first three initial values are equal to zero, identity (2.8.1) is
proved.

Considering the amount of work this (quite easy!) proof has required, one is probably
faster in doing the job with a pencil on a sheet of paper. However, this example gives
the motivation to use the generic programming facilities of Mathematica as follows: We
represent a holonomic sequence or power series by a certain data structure. If the system
knows how to carry out operations like addition, multiplication, etc., for an input that
matches this structure, it is possible to use the symbols +, *, a.s.0., for these and other
operations.

The package GeneratingFunctions provides tools to transform a recurrence or dif-
ferential equation into this data structure (and vice versa) and tells Mathematica how to
handle expressions containing the sequences and functions that are represented by such
a structure.

2.8.1 DefineSequence (DefineS)

Let re be the Mathematica expression for a recurrence equation of the form (1.3.2) in
aln]. Let ng be the highest index that occurs in the (possibly empty) list of ICR’s in
re.

The procedure DefineS[re,aln]] returns an internal representation of the sequence
or (in the case that the initial conditions do not define a unique sequence) of a family of
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sequences that is/are defined via re. The output is given as
RE[{{q(n),po(n),...,pa(n)},{ao,...,an,}},alnl]. (2.8.1)

If two sequences (an)n>0 and (b )m>o are represented by the Mathematica variables
A and B via A=DefineS[re;,alnl] and B=DefineS[res,b[m]], respectively, then all
the procedures that were introduced in the sections 2.5 and 2.7 and that have recurrence
equations in the input, may be called without giving the recurrence variable a[n]or
b[m]. For example REP1lus[A, B] is a valid procedure call, even if the recurrences are
given in different variables.

In the case that the input recurrence(s) is/are represented in the internal form (2.8.1),
all the procedures also return the output recurrences in this form. In addition, the fol-
lowing univariate and bivariate operations are available:

DeltalAl forward difference Ap41 — p

PSum[A] partial sum > om0 Wk
Shift[A,h] | shift an4n, h €Z

A”h hth power ab, heN

A+B, A-B sum, difference a, b,

A*B termwise or Hadamard product | a,b,

A==B evaluation of a, = b, for alln €¢ N

Concerning the bivariate operations, one of the input sequences may also be a rational
expression in n or m, respectively.

Examples. Using these additional tools, Cassini’s identity (2.8.1) can be quickly proved
as follows:

In[70] := F=DefineS[re,f[n]]
out[70]= RE[{{0, -1, -1, 1}, {0, 1}}, f[nl]

In[71] := Shift[F,1]1*Shift[F,-1]-F"2==
DefineS[{f[n]==-f[n-1],f[0]==1},f[n]]

RE2L: :negative:
Warning. The recurrence is extended to (some) negative

integers.

Out[71]= True
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In the following example we illustrate, how to prove a special function identity: Let
Lﬁf‘)(x) be the nth Laguerre polynomial, which is recursively defined by

(a3 1 (a3
Lia(e) = —— (~(n+ 1+ )LD (@) + 20+ 3+ a —2) LT, (2)),
where L(()a)(x) =1 and L(la)(x) = 14 a — 2. We want to prove the identity ([AS64], p.
783)

1
LEtD (z) = = ((x )L (@) + (o + n)Lﬁffl(x)) . (2.8.2)
x
This proof might be performed as follows (a will be replaced by al):

In[72]:= laglal_,x_]:=DefineS[{(1+al+n)*1[n]+(-3-al-2#n+x)*1[1+n]
+(2+n)*1[2+n]==0,1[1]==1+al-x,1[0]==1},1[n]]

In[73]:=1laglal+1,x]==1/x((x-n)*laglal,x]+(al+n)*Shift[laglal,x],-1])
//Simplify

RE2L: :negative:
Warning. The recurrence is extended to (some) negative integers.

EqualRE: :IntegerRoots:
Warning. The result is correct, provided that the polynomial
$LeadingPolynomial=
3 2
(3+n) (4+<<1>>) (al - al + 7 x +<<7>> +2n x )

contains no integer root greater -1.

Out[73]= True

The global variable $LeadingPolynomial is the leading coefficient of a recurrence satis-
fied by the sequence which is obtained by subtracting the right hand side from the left
hand side of the input equation. To verify that all the elements in this sequence are iden-
tical zero, it is sufficient to check that a finite number of| say ng, initial values are 0. The
number ng depends on the maximum integer for which $LeadingPolynomial vanishes,
hence it remains to determine the nonnegative integer roots of $LeadingPolynomial.
We do not perform this step here. The problem is discussed in more detail in Chapter

3.

2.8.2 DefineFunction (DefineF)

Let de be the Mathematica expression for a differential equation of the form (1.2.2) in
fLzl. Let ng be the highest index that occurs in the (possibly empty) list of ICD’s in
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de.

The procedure DefineF[de, f[x]] returns an internal representation of the function
or (in the case that the initial conditions do not define a unique function) of a family of
functions that is/are defined via de. The output is given as

DEL{{g(z),po(x),...,pa(x)},{F(0),. .., F")(0)}}, FLx]]. (2.8.2)

If two power series f(#) and g(y) are represented by the Mathematica variables F'
and G via F'=DefineF[dey, f[2]] and G=DefineF[des,g[yl], respectively, then all the
procedures that were introduced in the sections 2.5 and 2.7 and that have differential
equations in the input, may be called without giving the function variable f[z] or g[y].
For example DEPlus[F', (] is a valid procedure call, even if the equations are given in
different variables.

In the case that the input differential equation(s) is/are represented in the internal
form (2.8.2), the procedures also return the output differential equations in this form.
In addition, the following univariate and bivariate operations are available:

DLF] derivative (%)

Integrate[F] | indefinite integral fo f(t)dt

Series[F,n¢] | truncated series expansion | > .2, F0)/n! 2™, ng €N
F~h hth power f2)', heN

'+G, F-G sum, difference flx) £ g(x)

'*G Cauchy product f(x)g(x)

F==G evaluation of: f(z) = g(x) forall x € K

Concerning the bivariate operations, one of the input functions may also be a rational
expression in x or y, respectively.

Examples. We prove the identity sin(2z) = 2sin(«) cos(x): The first step is to define
the sine and the cosine function:

In[74]:= si=DefineF[{f [x]+f’’ [x]==0,£[0]==0,f’[0]==1},f [x]]
Out[74]1= DE[{{0, 1, 0, 1}, {0, 1}}, £[x]]

In[75]:= co=D[sil

Out[75]= DE[{{0, 1, 0, 1}, {1, 0}}, £[x1]

It remains to type in the specified equation:
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In[76]:= AComposel[si,f==2x]==2#%si*co

Out[76]= True

As in the case of sequences, the leading polynomial of a differential equation that is
satisfied by the difference of the left and the right hand side of the input equation, may
cause troubles in the proof process. If this leading polynomial vanishes at « = 0, then
zero recognition can not be performed directly. In this case the proof must be done by
comparing the power series coeflicients, i.e., one has to go via the recurrences.

2.8.3 RecurrenceEquationOut (REOut)

Let A be a holonomic sequence that is given in the internal representation (2.8.1). The
procedure REOut[A] outputs the recurrence equation in a format that is readable by
other Mathematica procedures like, for instance, RSolve.

Example.

In[77]:= A=DefineS[{al[n]==4*al[n-1]+(n"2-4)*a[n-21,
al0]==1,al[1]1==2%},aln]]

2
Out[77]= RE[{{0, -4 n - n , -4, 1}, {1, 2}}, a[n]]

In[78] := REOut[PSum[A]]

2 3
Out[78]= {(20+ 34 n+ 16 n + 2 n ) aln] +

2 3
(-62 - 70n -28n -3n ) all +n] +

2 3
(12 +30n+12n +n ) a[2 +n] + (24 + 7 n) al[3 + n] +

(-4 - n) al[4 + n] == 0, a[0] == 1, al1] == 3, al[2] == 11,

al[3] == 563}

2.8.4 DifferentialEquationOut (DEQut)

Let F' be a holonomic power series that is given in the internal representation (2.8.2).
The procedure DEOut [F] outputs the differential equation in a format that is readable
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by other Mathematica procedures like, for instance, DSolve.

Example. Let si represent the function sin(z). The output line in this example is a
differential equation that is satisfied by sin(z? — z).

In[79]:= DEOut[ACompose[si,f==x*(x-1)]]

2 3
Out[79]={(-1+ 6 x-12x +8x ) flx] - 2 £°[x] +

(-1 +2x) £°[x] == 0, £[0] == 0, £’[0] == -1}



Chapter 3

Guesses, Proofs and Ore
Polynomials

3.1 Introduction

Holonomic functions and sequences are closed under most standard unary, binary and
n-ary operations. Unfortunately the closure properties discussed in Section 1.4 do not
include objects like reciprocals, square roots or other rational powers of functions or
sequences. Nevertheless, if we follow an idea presented in [BP92], an approach that is
based on “guessing” might be able to handle problems involving these object types.

Moreover, it 1s sometimes possible to guess a “nice” equation that is satisfied by a
given sequence or function. We call a recurrence or differential equation nice if it can be
solved algorithmically. The process of guessing is discussed in Section 3.2.

To solve a problem via guessing, it is necessary to prove that the guessed (differential
or recurrence) equation is correct. The theoretical background for some proof methods
is given in Section 3.3, where we translate parts of the holonomic universe into operator
algebra language or, more precisely, into the language of Ore polynomials.

Finally, we present some methods for proving holonomic identities in Section 3.4.

3.2 Guessing

We consider the following example.

67
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Example 3.2.1 (The American Mathematical Monthly, Problem 10356.) Let X, be
defined by X =0, X1 =1, Xo =0, X3 =1 and forn > 1

n?+n+1)(n+1) n4+1

n

Xn+3 = Xn+2 + (77,2 +n +) Xn+1 + Xy,
Prove that X, is the square of an integer for n > 0.

We want to illustrate how this problem can be solved by using my Mathematica package
GeneratingFunctions, which is introduced in Chapter 2: We define the sequence X via
the given recurrence and compute the square root of the first terms:

In[1]:= X=DefineS[{x[n+3]==(n"2+n+1)*(n+1)/n*x[n+2]+
(n~2+n+1)*x[n+1]-(n+1) /n*x[n],
x[0]==x[2]==0,x[1]==x[3]==1},x[n]]

2 3 2 3
Out[1]=RE[{{0, 1 +n, n-n -n,-1-2n-2n -n, n},

{0, 1, 0, 1}}, x[n]]

In[2]:= Sqrt[RE2L[X,20]]

Out[2]= {0, 1, 0, 1, 2, 7, 30, 157, 972, 6961, 56660, 516901,
5226670, 57999271, 701216922, 9173819257, 129134686520,
1946194117057, 31268240559432, 533506283627401,

9634381345852650}

Hence it looks as if the elements in the sequence are indeed squares of integers. We check
this conjecture by “guessing” a recurrence that is satisfied by the first elements of the
sequence (dn)n>0, where al = X, forn e N:

In[3]:= GuessRE[Y%,aln]]
Out[3]= {{-aln] - n al[1 + n] + a[2 + n] == 0, al0] == 0,
al1]l == 1}, ogf}

It remains to check that the elements in (Xn)nzo are the squares of the elements in
(@n)n>o (which is a sequence of integers):
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In[4]:= A=DefineS[%[[1]1],aln]]

Out[4]= RE[{{0, -1, -n, 1}, {0, 1}}, alnl]
In[5]:= A~2==X

Out [5]= True

O

The crucial step in the solution of this problem is to come up with a recurrence for the
square root of the original sequence (X,)n>0. This problem can not be solved directly
within the holonomic universe, since the closure properties discussed in Section 1.4.3 do
not include (multiplicative) powers of the form (al,),>0, where (an)n>0 is a holonomic
sequence and r is a rational number. (In our example we had r = 1/2._)

However, given a holonomic sequence (a,)n>0, an approach that is performed in two
basic steps, might help to compute a recurrence for the sequence (bn)n>0 = (a},)n>o0,

where r € Q:

1. (Guess a holonomic equation.)
We use the recursive definition of (a,)n>0 to compute a number of initial values
bo =ag”, ..., bp, = an,”. Next we try to “guess” a holonomic recurrence equation
that is satisfied by the initial terms of the sequence (b,)n>0. To do so, the order
and the degree of the desired recurrence must be fixed. Then indeterminates for
the coefficients of the polynomials in the recurrence are used to build a system
of linear equations. A solution of this system might contain a candidate for the
recurrence, we are looking for.

The problem here is, that no bounds for the order and the degree of a holonomic
recurrence that is satisfied by (b,)n>0 are known, nor do we have a (general)
guarantee that this sequence is holonomic at all. Hence we do not know up to
which order and degree, a recurrence should be searched and it might happen that
the search terminates too early and that the approach fails. However, if we succeed,
it is no problem to verify (or falsify) whether the guessed equation is correct.

2. (Verify the guessed equation.)
If the search for a holonomic recurrence succeeded, we have to prove that the
guessed equation is correct. This may be done as follows: Let » = p/q, with p € Z,
q € N and let (b,)n>0 be the unique solution of the guessed recurrence equation.
To prove N
al!? = b, for n € N,

we can show
al =bl forne N, if p> 0 or (3.2.1)
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1=2a,%b] forne N, if p <0, (3.2.2)

which is no problem, if we consider Theorem 1.4.3. (To complete the proof, we also

have to check a finite number of initial values of (aﬁ/q)nzo and (b, )n>0 to agree,
since (3.2.1) and (3.2.2), respectively, are necessary but not sufficient conditions.)

In Example 3.2.1 the final step proves a2 = X,,, for n € N. This is done by computing
a recurrence equation satisfied by the sequence (@2 — X, ),,>0 and by checking a sufficient
number of initial values of the two sequences to be equal. In Section 3.4 we also discuss
different methods for proving identities of holonomic sequences.

It is evident that an approach that is analogous to the one, which is described above,
may be used to compute holonomic differential equations that are satisfied by rational
powers of holonomic power series.

We have seen that the process of guessing is useful for working with transformations of
holonomic functions and sequences, if we can prove the validity of the guessed equations
by using some kind of “inverses” of these transformations.

Guessing might also help in the following situation: Given a holonomic power series
or sequence via a holonomic equation, it is sometimes desirable to know whether this
holonomic object also satisfies a differential or recurrence equation of a certain form,
which allows us to extract a closed expression for the sequence or function. Of special
interest in this case are m-hypergeometric recurrences, which are a generalisation of the
classical hypergeometric sequences introduced in Example 1.3.1 and Example 1.4.1: A
sequence (t,)n>0 18 m-hypergeometric if there is a rational function r(x) € K(z) and an
integer m > 1 such that for all n € N

t”}% = r(n). (3.2.3)

In this case, the sequence (t,)n>0 is the interlacement (see Corollary 1.4.6.e ) of m hy-
pergeometric sequences, and we can—at least in principle—give an “explicit” expression
for the nth element. We illustrate this point by an example:

Example 3.2.2 (See [Han75], (5.8.17), p. 42.) Suppose, we want to compute a closed
form for the coefficients a,, of the power series

f(z)= Z anpr” = é((x_z —1)log (i—i) +2(1 + =7 %) arctan(z)).

If we have a holonomic knowledge base that contains differential equations satisfied
by arctan(z) and log((1—#)/(1 4+ ), we can apply the theory discussed in Section 1.4.3
and find that the sequence (an)HZO 1s a solution of the recurrence

—n(n+ 1)(n+2)(n+3)a, +2(n+4)(n+6)(n? + 10n + 33)a, 44—
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(n+7)(n+8)(n+9)(n+ 10)an+s = 0. (3.2.4)

It turns out that the Mathematica procedure RSolve can not solve this recurrence, so
we have to enter a little bit of human insight: An inspection of the recurrence and some

iitial values show that
f(l‘) — Z anxn — Z bnl‘4n+1,
n>0 n>0

where b, = @4n41, and where the sequence (bn)HZO satisfies the second order recurrence
(n+1)2n+1)(dn+ 1)(4n + 3)b, — (4n + 5)(4n + 7)(4712 + 12n+ 11)by 41

(n42)(2n 4 5)(4n + 9)(4n + 11)by 4. (3.2.5)

(Note that (3.2.5) is obtained from (3.2.4) by substituting 4n 4+ 1 for n in the polynomial
coefficients of (3.2.4).) Next we apply (3.2.5) to compute some initial values of (b,)n>0.
These values may be used to guess another holonomic recurrence equation for the se-
quence. This guessed equation should have a special form that allows us to extract a
closed expression for the coefficients b,,.

Indeed, a guessing procedure (as performed by the function GuessRE introduced in

Section 2.6.1) finds:
(=16n? — 16n — 3)by, + (16n% + 481 4+ 35)b, 41 = 0 (3.2.6)

This recurrence equation is easily solved and, after we have proved that the guessed
recurrence 1s correct, we conclude that

1 4n+1
J) =2, (4n+ D(dn +3)" .

n>0

O

Remark. Due to the fact that first order (inhomogenous) differential equations are used
to represent the functions log((1 — z)/(1 + z)) and arctan(z), the recurrences (3.2.4)
and (3.2.5) in the previous example have nice shapes that help in solving the problem.
Moreover it would also be possible to find all hypergeometric solutions of (3.2.5) by
performing Petkovsek’s algorithm HYPER, [Pet92]. So, the process of “guessing” is not
really necessary in this case.

However, if we rewrite log((1 — 2)/(1 + #)) as log(1 — z) — log(1 + ) and represent
both summands by homogenous second order differential equations, we finally come up
with a recurrence of order 16 and degree 5. We do not recommend to try HYPER
on this recurrence. In this case it seems as if “guessing” is the only way to solve the
problem. In addition, this example shows that the sequence (ay,)n>0 does not satisfy a
unique recurrence and that the “size” of the final recurrence depends on the differential
equations that are used from the holonomic knowledge base. ad
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3.3 Ore Polynomials

In this and in the following section we translate the theory of holonomic functions and
sequences into operator language. More precisely, we translate holonomic objects (and
some of the operations that may be applied to them) into the operator language of Ore
polynomial rings:

For the rest of this chapter we make the following assumptions:

1. The mapping ¢ : K — K is an injective endomorphism.
2. The mapping J : K — K has the property that for all a,b € K:

(a) d(a+b)=46d(a) +d(b) and
(b) d(ab) = a(a)é(b) + d(a)b.

We call § to be a pseudo-derivation with respect to o.

Definition 3.3.1 (Ore Polynomial Ring) An Ore polynomial ring w.r.t. o and § is
the noncommutative (or skew) ring of polynomialsin X over K, where addition is defined
as usual, and multiplication is given by

Xa=oc(a)X +d(a) for a € K. (3.3.1)

This polynomial ring is denoted by K[X, &, 4]. It’s members are called Ore polynomials.

Note that any Ore polynomial can be written uniquely in expanded form ZZ:O e X5,
¢y € K; relation (3.3.1) serves to represent the noncommutative product of two Ore
polynomials in this canonical form.

The canonical form can be achieved by recursively applying the associativity rule for
monomials:

(aX™)(bX™) = (aX" ) (XO)X™ = (aX" ") (a(b)X™ T 4 5(b)X™), (3.3.2)

where a,b € K, m;n € N and n > 1. Then two Ore polynomials are multiplied by car-
rying over the distributivity law into the noncommutative world of the Ore polynomials.

The following examples show that holonomic differential and recurrence equations
correspond to elements in certain Ore polynomial rings.

Example 3.3.1 Let § be the derivation operator on K(z) w.r.t 2z, and let 1 be the
identity on K. Then K(z)[D,1,4] is the ring of polynomial differential operators. Let
A= ZZ:O ag(z)D* and B =5 _, by (2) D* be two Ore Polynomials in this ring. Using

the Leibniz rule .

n
Db = I Dk for b e K(z),n € N
> (1) (@
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we derive that the product of A and B is given by

AB:(iaiDi)(ibiDi):iiai(Di ZZZ( ) M piti=k,

i=0 j=0 =0 j=0k=0
(3.3.3)

It is obvious that multiplication is not commutative, for instance, we have the commu-
tation rule

Dz =zD+1. (3.3.4)
AB may be regarded as the composition of the two differential operators A and B. 0O

Example 3.3.2 Let o be the automorphismo : n — n+1 on (K, ); the ring (K, ) [, 7, 0]
contains the set of linear recurrence operators with polynomial coefficients. For A =

ZZ:O ag(n)E* and B =Y, _ by(n)E*, we have the product

Z > aj(n)bs_j(n + ) E*. (3.3.5)

Again this ring is noncommutative, for instance, we have

En=(n+1)E. (3.3.6)

Remark. It i1s possible to define an Ore polynomial ring over a commutative ring
rather than over a field. Subsequently we will sometimes work with the restriction of
(K,)[E,0,0] to [K,][FE, 0,0], (where o is defined as in Example 3.3.2) and abbreviate
the domains with (K, )[E] and [K,][F], respectively.

It is the purpose of this section to introduce the amount of theory that is required to
discuss and compare different techniques for proving identities of holonomic sequences
and power series. Since proofs of the latter ones can always be transformed to proving
identities of sequences (see Theorem 1.4.1), we now focus our considerations on the ring
of linear recurrence operators. General discussions may be found in [Ore33],[BP94] or in
[Li96]. A thorough treatment of multivariate Ore polynomial rings is presented in [CS].

From now on we assume that o is defined as in Example 3.3.2. Let A and B be two
nonzero polynomials in (K,)[E] with the respective degrees d and e in E. Without loss
of generality we assume that d > e. Let a and b be the leading coefficient (Ic) of A and
B, respectively. If we set (g to be the monomial

_ a(n) d—e
O rd—a
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it is easily seen that the leading monomial of Qo B is a £, which implies that A — QB
has degree less than d. In anology to the case of the usual commutative polynomials, we
can use this observation to perform right Fuclidean division as follows:

Algorithm: Right Euclidean division
Input: A, B € (K,)[F], with deg(A4) = d, deg(B) = ¢
Output: @, R € (K,)[E] such that A = @B + R, with deg(R) < e

let R=A; let Q@ =0;
let d' = d; let b =lc(B);
while deg(R) > e do
let Qo =(Ic(R)/o® ~¢b) E¥~¢;
let R=R—QuB;
let d' = deg(R);
let @ = Q + Qo;
end while;
return @, R;

We call ) to be the right quotient of A and B, R 1s the right remainder of these two
polynomials. If R = 0, then B is a right divisor of A.

Definition 3.3.2 For k € N\{0} and r € (K,,) the kth rising factorial [r]* is defined as

[r]° is defined to be 1.

If we want to work in [K,][F] only, we have to define pseudo division in this domain:
Let A, B € [K,,][E] have the respective degrees d and e with d > e, then the polynomials
@) and R with deg(R) < e, b =lc(B) and

[b]d—e-l—lA — QB 4 R
are called the right pseudo quotient () =rpquot(A, B)) and the right pseudo remainder

(R =rprem(A4, B)) of A and B.

A greatest common right divisor (gcrd) of A and B is a polynomial of highest degree
that divides both A and B on the right. A gcrd of A and B can be computed by applying
an analog to the Euclidean algorithm.

Running the extended Euclidean algorithm (with right division or right pseudo di-
vision) gives a least common left multiple (Iclm) of A and B, which is a left multiple of
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least order of both A and B. One can show (see for instance [BP94]) that this algorithm
does compute a nonzero multiple of least order. Moreover, the following relation between
the degrees of the polynomials holds: Let GG be a gerd and let L be an lclm of A and B.
Then

deg(A) + deg(B) = deg(G) + deg(L). (3.3.7)

A proof for this result can be found in [Ore33].

It is well known that during the computation of a gcrd via the Euclidean algorithm,
the coefficients of the (pseudo) remainders grow rather fast and that extraneous factors
might be cancelled in order to keep the coefficients small. In commutative algebra, the
subresultant algorithm by G.E. Collins (see e.g. [BT71]) slows down this growth, though
still no greatest common divisors of the coefficients need to be computed.

This subresultant algorithm has been recently generalised to the noncommutative
case of Ore polynomial rings by Ziming Li [Li96]. Tt would lead too far to discuss here
the theory behind this generalisation in detail, instead we only want to present here the
relevant algorithm !.

Theorem 3.3.1 (Subresultant Algorithm) Let A, B € [K,][F], with deg(A) = d,
deg(B) =e,d >e. Let Ay, Aa,..., Ap # 0, A1 = 0 be a sequence that is computed as
follows: Initialize

Ar=A, As=B, ar=1, ay=lc(As), by =1, by=[c(B)]"° l=d—e+l.
For ¢ > 3 let
li = deg(Ai—1) —deg(Ai) +1,  a; =le(A), b =[] /[obii]?
and
A; = rprem(A;_o, Ai_1) /e,

where
e; = (—l)l’_l [O’bi_z]l’_l_lai_z.

Then for 1 < i < k we have A; € [K,][E]. Moreover A is a gerd of A and B.

Proof. See [Li96, Lemma 1.4.6 and Theorem 1.4.7], where the proof is given for general
Ore polynomials rings over commutative rings. ad

Computing a least common left multiple of two Ore polynomials is in general much
more time consuming than computing just a greatest common right divisor. This is due
to the fact that the extended Euclidean algorithm requires two additional multiplications
of Ore polynomials in every step of a while-loop, where the coefficients of the polynomials

1 Ziming Li and Istvdn Nemes provide a modular algorithm to compute gcrd’s in the case that K = Z.
See [Li96, Chapter 3] or [LN96].
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that are involved in these multiplications grow rather fast during the execution of the
algorithm. Theorem 3.3.1 may also be used to slow the growth of these coefficients. (See

also [Li96, Theorem 2.3.6].)

If we want to prove holonomic identities we are very often just interested in the
leading coefficient of an lclm. The following corollary is useful in this case.

Corollary 3.3.2 Let A, B € [K,][E] with deg(A) = d and deg(B) = e. Let g be the
degree of the gerd’s of A and B. Then there is a lclm L € [K,][E] of A and B with

le(L) = (%= 91c(B)) (0~ 91c(A))b, (3.3.8)
where b = by, which is computed as in Theorem 3.3.1.

Proof. The proposition follows from [Li96, Lemma 1.4.6, Theorem 1.4.7, Proposition
2.2.3 and Corollary 2.3.4]. O

3.4 Three Methods to Prove Holonomic Identities

We are going to establish a link between holonomic sequences and the Ore polynomial

ring [K,]|[E]:

Definition 3.4.1 Let A = Zfzo pi(n)E' € [K,][F] and a = (an)n>o0 € KN, Then A
induces an action on a as follows:

d
Aa:N = K, nHZpi(n)an_H.
i=0

If Aa=0and A # 0, we say that A annihilates a or a is a zero of A.

It is now evident that holonomic sequences are exactly those sequences that are
annihilated by some (nonzero) polynomial in [K,][E]. Conversely, every holonomic re-
currence corresponds to an Ore polynomial in [K,][F] that annihilates the solutions of
this recurrence.

Example 3.4.1 Let ¢ = (Cp)n>0 be the sequence of Catalan numbers, defined by
(1.4.8). In operator language, we would say that Ac = 0, where

A=2(142n)— (2+n)E.
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Theorem 3.4.1 For a = (an)n>0 € KN and 4, B € [K,,][E] the following propositions
hold:

(a) (AB)a = A(Ba).
(b) If Aa =0, then (BA)a = 0.
(c) If G is a gerd of A and B, then Aa = Ba = 0 if and only if Ga =0

Proof. See [BP94]. O

From Theorem 3.4.1 we immediately deduce that a least common left multiple L of
two operators A and B annihilates both the zeros of 4 and the zeros of B. Using the
terminology introduced in Chapter 1, we would say that L corresponds to a homogenous
holonomic recurrence equation whose solution space contains all linear combinations of
sequences a and b, where a,b satisfy the recurrences that correspond to A and B,
respectively.

Lemma 3.4.2 (Zero condition) Let a be a zero of A € [K,][F] with deg(A4) = d. Let
p be the leading coefficient of A. We define the integer ng as follows: If p(n) # 0 for all
n € N, then ng :=d — 1. Otherwise ng := max{n € N|p(n) =0} +d. Then

a=0 if and only if ap, =0, foreach ne{0,1,...,np}.

Proof. Trivial. O

Convention. For the rest of this section, we assume that the two holonomic sequences
a and b are annihilated by the operators A and B, respectively, with deg(A) = d and
deg(B) = e.

Lemma 3.4.2 and Theorem 1.4.3 suggest the following method to prove (an)n>0 =
(bn)rLZO:

Method 1. Compute a lclm, say €', of A and B. (Note that C' annihilates both a and
b as well as any linear combination of these sequences; in particular C' annihilates a —b.
C' can be computed either by an extended Euclidean algorithm, where Theorem 3.3.1
could be applied, or by following the constructive proof of Theorem 1.4.3.) According
to Lemma 3.4.2 we can verify or falsify the identity by comparing a number of initial
terms of (ap)n>0 and (by)p>o. This number depends on the degree of €' in £ and on
the integers for which the leading coefficient of €' vanishes.

Example 3.4.2 Let (ay)n>0 and (bn)n>0 be solutions of the respective recurrences

11(n+ 1)ap, — 10ap4+1 =0 and
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(n + 4)[)” - bn+1 =0.

The sequence (Cn)HZO with ¢, = a,, — b,, satisfies the second order recurrence
11(n—28)(n+ 1)(n + 4)e, + 3(—7712 + 1797 + 586)cp 41 + 10(n — 29)cpq2 = 0.

To prove (¢n)n>0 = 0, it is sufficient (and also necessary) to check if ¢g = ¢; = -+ =
C31 = 0. O

It is tempting to believe that a quick method to prove a holonomic identity might
be as follows: Compute an upper bound for the maximum integer root of C', where this
bound depends on the degrees and coefficients of A and B only, which means that no
(extended) FEuclidean algorithm has to be performed.

However, at the time this thesis is written, no suitable bounds are known. Lily Yen
[Yen93] gave analogous bounds for the case of proofs of hypergeometric sum identities.
But these bounds are—even for small examples—extremely high and it seems, as if useful
bounds (i.e., bounds that save time in the process of proving) can hardly be found.

Nevertheless it is not necessary to compute least common left multiples. We present
two methods that basically work with greatest common right divisors.

Method 2. (Reported in private communication to the author by Marko Petkovéek in
a slightly different form.) Let G be a gerd of A and B. By right pseudo division of

G and A we compute F such that pA = FG, where p divides [lc(G)]9- 3G+ Let
¢ = (¢n)n>0 = Ga. Now we have

Fe=FGa=pAa=0.

Hence the sequence c¢ is annihilated by F' and, following Lemma 3.4.2, we can check
whether ¢ = 0 by inspecting some starting terms of this sequence.

If ¢ = 0, then Ga = 0 and, since B is a left multiple of GG, we get Ba = 0. Now we
know that B annihilates both a and b, therefore we also have

B(a—b)=0.

It remains to check a finite number of initial values of a and b to agree, where, according
to Lemma 3.4.2, this number depends on the order of B and on the maximum integer
root of le(B).

Example 3.4.3 Let a and b be two sequences that are annihilated by the operators A
and B, respectively, where

A=2n(1+3n)+ (4 +19n - n?)E+ (=3 —n—n?)E? + 2(=1+n)E>,
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B=3(1+3n)+ (22+n+3n*)E+2(2—-n)(1+n)E?

and both sequences start with ag = bg = 0,...,a3 = b3 = 0,a4 = by = 1. We compute

G, which is a gerd of A and B:
G=3n+1-2(n-3)F.
By right division of A and G we find
F=2n+n+1)E-E?

where A = FG. Now ¢ = (Ga, which is a zero of F' starting with ¢y = ¢; = 0, and we
deduce that ¢ = 0. It follows that a is annihilated by B, and after observing that the
first four values of a and b agree, we can conclude that a = b. ad

Method 3. Compute a gerd of A and B via the subresultant algorithm (Theorem
3.3.1). Let g be the degree of this gerd. Then every lclm of A and B has degree d+e—g.
Moreover, we can apply Corollary 3.3.2 and conclude that there is a lclm of A and B,
whose leading coefficient, say p, is given by (3.3.8).

Let ny be the maximum integer root of p(n). (If p has no integer roots we set
n; = —1.) By Lemma 3.4.2, we can conclude that a = b, if (and only if) these sequences
agree up to index ng =n1 +d+e—g,1e. if ag =bo,a1 =b1,...,an, = by,.

Example 3.4.4 Let
A=2(1+42n)(443n)+ (1 +n)(19 + 18n + 4n*)E + (3 + n)(4 + n) B>+
(=3 +2n)(13 4 3n) E® + (5 + n)(6 + n)(—3 + 2n)E*
and
B=—-4=3n—(2+n)3+n)E+(10+3n)(4+n*)E* + (4+n)(5+n)(4 +n*)E°.

We apply the subresultant algorithm (Theorem 3.3.1) to compute a gerd of A and B,
which has degree one. As a byproduct we get

b=(24+n)(3+n)*(4+n)*(5+n)*(6 + n)*(7T+n)
(1906 + 68081 + 8623n? 4+ 6982n> + 4203n* + 1832n° 4 604n° 4 128n" 4 16n%).

Now we can conclude that there is an operator L € [K,][E] of degree 6 that annihilates
the zeros of A as well as the zeros of B, and whose leading coefficient is given by

le(L) = (USIC(B))(O'ZIC(A))E.

We can easily see that this polynomial does not have any nonnegative integer root. Hence,
if we want to check whether two sequences that are annihilated by A and B, respectively,
are identical, it is sufficient to check the first 6 elements of the two sequences to agree. O



CHAPTER 3. GUESSES, PROOFS AND ORE POLYNOMIALS 80

We know that an Iclm, say L, of A and B has degree less or equal d + e. We have
also seen the number of elements of a and b that have to be compared, if we want to
prove a = b, depends on the degree of L and on the nonnegative integer roots of lc(L).
In Example 3.4.2 we had the case that the L vanished at n = 29, though the leading
coefficients of both A and B were constants. Hence, it would be necessary to check
whether 32 initial values of A and B agree.

Now the question arises, whether any two sequences that are not identical, must differ
already at one of the first d 4 e initial values. Then we would not have to go so far to
verify or falsify a = b. The following example gives a negative answer to this question.

Example 3.4.5 Let the sequences a and b be zeros of the operators
A =187 4 1859n + 1672n* 4 (2800 — 3379n — 1672n%) E 4 (—1350 + 1520n) £*

and
B = 316 4 503n 4 106n” + (56 — 609n — 106n°)E 4 (—27 + 106n) E?,

respectively. The sequences start with ag = bg = 0 and a; = by = 135 and are therefore
both uniquely defined zeros of these two operators. Moreover we have as = bs and
az = bz and we conjecture that a = b.

If we compute a gerd, say G, of A and B, we find that (G has degree 0 in £. From
Theorem 3.4.1 we can conclude that A and B have no nontrivial common zero, hence
a#b.

Although both a and b are solutions of second order recurrences,; it is not sufficient
to check four initial conditions of the sequences to match. This is due to the fact that
the leading coefficient of any lclm of A and B vanishes at n = 0. It follows that we also
have to compare a4 = 3001 and b4 = 3830. Now it is evident that a and b are different
sequences. O



Appendix A

Software and Availability

The Mathematica package GeneratingFunctions that is introduced in Chapter 2 is
available via anonymous ftp at

ftp.risc.uni-linz.ac.at:pub/combinatorics/mathematica/GeneratingFunctions
or at the web address:

http://info.risc.uni-linz.ac.at:70/labs-info/comblab/software/
Sequences/index.html

The package can also be retrieved by sending a request via email to the author:
Christian.Mallinger@risc.uni-linz.ac.at

A lot of problems can be easily solved if the package GeneratingFunctions is used
together with related software products. Thus we also point to other packages containing
procedures that may interact with the procedures of our software. The list of packages,
we refer to, is by far not complete. It should only be considered as a list of suggestions.

Although GeneratingFunctions is a Mathematica package, we also list some Maple
packages that cover similar areas.

A.1 Maple Packages

EKHAD
Author: Doron Zeilberger (Temple University, Philadelphia, PA, USA)

Scope: Among others, the package EKHAD contains procedures that perform Zeilbergers
method of creative telescoping.

Availability: The reader may consult the web page
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http://wuw.math.temple.edu/ zeilberg

FormalPowerSeries (FPS)
Author: Dominik Gruntz (ETH Ziirich, Switzerland)

Scope: The function FPS tries to find a formal power series expansion for a function in
terms of a formula for the coefficients.

Availability: FPS is a part of the Maple share library in the analysis directory.

gfun

Authors: Bruno Salvy, Paul Zimmermann and (since Jan. 1996) Eithne Murray. (IN-
RIA Paris, France)

Scope: The package contains functions for manipulating holonomic sequences, gener-
ating functions, holonomic recurrence and differential equations. It can be regarded as
the Maple forefather of the Mathematica package GeneratingFunctions, which is indeed
based on the philosophy of gfun.

Availability: gfun is a part of the Maple share library in the analaysis directory. The
latest version can be obtained via anonymous ftp from

ftp.inria.fr:INRIA/Projects/algo/programs/gfun/

A.2 Mathematica packages

ENullSpace
Author: Erhard Aichiniger (Universitdt Linz, Austria)

Scope: ENullSpace is a procedure that computes the nullspace of a matrix, whose
entries are rational functions in several variables. This linear equation solver is consider-
ably faster than the procedure Nullspace, which is built-in in the Mathematica kernel.
(In fact many procedures in GeneratingFunctions use ENullSpace to solve systems of
linear equations.)

Availability: A file with the source code is part of the package fastZeil (see below)
and can be retrieved via ftp from the directory, where fastZeil is located.

fastZeil
Authors: Peter Paule and Markus Schorn (RISC, Universitit Linz, Austria)

Scope: D. Zeilberger’s method of creative telescoping for proving binomial coefficient
identities is implemented. The package also contains an implementation of Gosper’s
algorithm for indefinite hypergeometric summation.

Availability: The program may be obtained via anonymous ftp from:
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ftp.risc.uni-linz.ac.at:pub/combinatorics/mathematica/PauleSchorn/
or from the web address:

http://info.risc.uni-linz.ac.at:70/labs-info/comblab/software/
Summation/index.html

HYPER
Author: Marko Petkovsek (University of Ljubljana, Slovenia)

Scope: This package contains procedures that find hypergeometric solutions of holonomic
recurrence equations. Additionally, there are procedures to perform certain computations
in the Ore polynomial ring [K,][E]. (See Chapter 3.)

Availability: The package is available at the web address:

http://www.mat.uni-1j.si/ftp/pub/math/HYPER.HY

PowerSeries
Author: Wolfram Koepf (ZIB Berlin, Germany)

Scope: Given a holonomic function, the main procedure in the package tries to find a
closed expression for the power series coefficients of this function. Another procedure
that is a part of the package, tries to reverse this process, i.e, compute the generating
function of a sequence.

Availability: The package can be retrieved from:

ftp.zib-berlin.de:Pub/PowerSeries/

RComp
Authors: Istvan Nemes (RISC, Universitat Linz, Austria) and Marko Petkoviek (Univer-
sity of Ljubljana, Slovenia)

Scope: RComp is a package for computing with the subfamily of holonomic sequences
that satisfy recurrences with constant coefficients. Many operations with these sequences
are implemented in a user friendly way. The design of the easy-to-use interfaces in
this package inspired the author of this thesis to provide similar tools in his package
GeneratingFunctions.

Availability: The program may be obtained from the ftp address:

ftp.risc.uni-linz.ac.at:pub/combinatorics/mathematica/RComp/
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RSolve
Author: Marko Petkovsek (University of Ljubljana, Slovenia)

Scope: RSolve is an implementation of the method of generating functions for solving
(systems of) linear recurrences. There are also tools that help in computing solutions of
partial recurrence equations, finding power series expansions of analytic functions, and
proving combinatorial identities.

Availability: RSolve is located in the DiscreteMath library of Mathematica .

Remark. After submitting the final version of this thesis, we have been informed that
W. Koepf is preparing a package similar to GeneratingFunctions.
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