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Abstract

Holonomic functions and sequences have the property that they can be represented by
a �nite amount of information� Moreover� these holonomic objects are closed under
elementary operations like� for instance� addition or �termwise and Cauchy� multipli�
cation� These �and other� operations can also be performed �algorithmically�� As a
consequence� we can prove any identity of holonomic functions or sequences automati�
cally� Based on this theory� the author implemented a package that contains procedures
for automatic manipulations and transformations of univariate holonomic functions and
sequences within the computer algebra system Mathematica � This package is introduced
in detail� In addition� we describe some di�erent techniques for proving holonomic iden�
tities�

Zusammenfassung

Holonomische Funktionen und Folgen haben die Eigenschaft� da	 sie durch eine endliche
Menge an Information dargestellt werden k
onnen� Dar
uberhinaus sind diese holonomi�
schen Objekte unter elementaren Operationen wie z� B� Addition oder �gliedweise und
Cauchy�� Multiplikation abgeschlossen� Diese �und andere� Operationen k
onnen auch

�
algorithmisch� durchgef
uhrt werden� Als Konsequenz daraus� kann man jede Identit
at

holonomischer Folgen und Reihen automatisch beweisen� Basierend auf diese Theorie
implementierte der Autor ein Programmpaket� das Prozeduren zum automatischen Mani�
pulieren und Transformieren univariater holonomischer Funktionen und Folgen innerhalb
von Mathematica enth
alt� Dieses Paket wird im Detail vorgestellt� Zus
atzlich beschreiben
wir einige verschiedene Techniken zum Beweisen holonomischer Identit
aten�

Part of this work was supported by a sholarship of the Austrian ministry for science and research�



ii

F
ur Silvia� Theresa und Hannah



Contents

� Introduction �

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� Notation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Acknowledgements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The Holonomic Universe �

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Holonomic Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Holonomic Sequences � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Closure Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Multivariate Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� My Mathematica Package ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Installation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Classi�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Input Equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

����� Recurrence Equations � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Di�erential Equations � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Algebraic Equations � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Transformation Part � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� ListToList �L�L� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� ListToSeries �L�S� � � � � � � � � � � � � � � � � � � � � � � � � � �

���� SeriesToList �S�L� � � � � � � � � � � � � � � � � � � � � � � � � � �

����� SeriesToSeries �S�S� � � � � � � � � � � � � � � � � � � � � � � � � ��

�



CONTENTS �

����� Adding New Transformations � � � � � � � � � � � � � � � � � � � � � ��

����� RecurrenceEquationToDifferentialEquation �RE�DE� � � � � � ��

����� DifferentialEquationToRecurrenceEquation �DE�RE� � � � � � ��

����� RecurrenceEquationToList �RE�L� � � � � � � � � � � � � � � � � � ��

��� The Guessing Part � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� GuessRecurrenceEquation �GuessRE� � � � � � � � � � � � � � � � ��

����� GuessDifferentialEquation �GuessDE� � � � � � � � � � � � � � � ��

���� GuessRationalFunction �GuessRatF� � � � � � � � � � � � � � � � ��

����� GuessAlgebraicEquation �GuessAE� � � � � � � � � � � � � � � � � ��

��� The Closure Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� REPlus� REHadamard�RECauchy � � � � � � � � � � � � � � � � � � � � ��

����� DEPlus� DEHadamard�DECauchy � � � � � � � � � � � � � � � � � � � � ��

���� AlgebraicEquationToDifferentialEquation �AE�DE� � � � � � � �

����� AlgebraicCompose �ACompose� � � � � � � � � � � � � � � � � � � � ��

����� RecurrenceEquationSubsequence �RESubsequence� � � � � � � � ��

����� RecurrenceEquationShadow �REShadow� � � � � � � � � � � � � � � ��

����� RecurrenceEquationInterlace �REInterlace� � � � � � � � � � � ��

����� HomogenousRecurrenceEquation �HomogenousRE� � � � � � � � � ��

����� HomogenousDifferentialEquation �HomogenousDE� � � � � � � � ��

��� The Interface to the System � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� DefineSequence �DefineS� � � � � � � � � � � � � � � � � � � � � � ��

����� DefineFunction �DefineF� � � � � � � � � � � � � � � � � � � � � � �

���� RecurrenceEquationOut �REOut� � � � � � � � � � � � � � � � � � � ��

����� DifferentialEquationOut �DEOut� � � � � � � � � � � � � � � � � � ��

� Guesses� Proofs and Ore Polynomials ��

�� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Guessing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Ore Polynomials � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Three Methods to Prove Holonomic Identities � � � � � � � � � � � � � � � � ��

A Software and Availability ��

A�� Maple Packages � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� Mathematica packages � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��



Chapter �

Introduction

��� Summary

We want to give here a short summary of the contents of this thesis� This summary
contains many heuristics� exact de�nitions� problem speci�cations� and proofs can be
found in the subsequent chapters�

The context of all considerations in this thesis is the world of holonomic �or D��nite�
functions and holonomic �or P�recursive� P��nite� sequences� A holonomic function is
a solution of a linear di�erential equation with polynomial coe�cients� Examples of
holonomic functions are all algebraic functions� in particular polynomials and rational
functions� as well as the most important transcendental functions like sin�x�� cos�x�� ex�
Also �multivariate� functions like the classical orthogonal polynomials are holonomic� if
we view them as functions of the continuous variable�

A holonomic sequence satis�es a linear recurrence equation with polynomial coef�
�cients� Examples of holonomic sequences are the important family of hypergeometric
sequences or classical combinatorial sequences as the Fibonacci and the Catalan numbers�
Considered as sequences in the discrete variable� the classical orthogonal polynomials are
also holonomic�

There are two main reasons that motivate the work with holonomic functions and
sequences�

� Every holonomic object �function or sequence� has the property that it is uniquely
de�ned by a �nite amount of information� i�e�� by a holonomic �di�erential or
recurrence� equation and some initial conditions� �This implies that we can perform
zero recognition in the holonomic world�� This holonomic equation together with
a su�cient number of initial values can be regarded as a holonomic representation
for a holonomic object�
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� A lot of unary� binary and n�ary operations preserve holonomicity� Holonomic
functions are closed under addition� multiplication� integration� di�erentiation� and
composition with algebraic functions� Holonomic sequences are closed under addi�
tion� multiplication� shifts� di�erences� partial summation and interlacement�

Moreover� if we have the holonomic representations of some objects� we can use
algorithms �and therefore also computers� to give holonomic representations for ma�
nipulations and transformations of these holonomic objects� For instance� if we know
holonomic di�erential equations that are satis�ed by sin�x� and ex� respectively� it is
possible to come up with a holonomic di�erential equation that is satis�ed by sin�x�ex�
by sin�x�� ex or even by

R x
�

�t� � �� sin�t�� t�e�tdt� No need to say that the computer
is able to do these jobs�

Another consequence of these two properties is the fact that it is possible to �rou�
tinely� verify any identity involving holonomic functions or sequences that are manipu�
lated by operations that preserve holonomicity� All we have to do is� to bring everything
to one side of the equation� and perform zero recognition on the resulting object� For
example� we can automatically verify Cassini�s identity for the Fibonacci numbers�

Fn��Fn�� � F �
n � ����n�

Another simple identity� which can be proved automatically� is the binomial theorem

�� � x�n �
nX

k��

�
n

k

�
xk�

The organization of this thesis is as follows� In Chapter � we establish the theory of
holonomic functions and sequences� We take a look at the algebraic background� establish
a relation between holonomic functions and sequences� and give the closure properties�
which are a main motivation for the work with holonomic objects� In addition� we
give most of the proofs in a constructive way� in order to make it easy to extract the
relevant algorithms that are needed to automatize the manipulations and transformation
of holonomic objects� We also give a lot of examples �some of them containing solutions
to �real life� problems�� with respect to theory these examples should serve both as
motivation and illustration�

Based on the theoretical background that is established in Chapter �� the author im�
plemented the Mathematica package GeneratingFunctions� This package� which follows
the basic ideas of the Maple package gfun by B� Salvy and Paul Zimmermann� is intro�
duced in detail in Chapter �� We describe the functionality of GeneratingFunctions
as well as the syntactical structure of admissible input� Hence� this chapter may be
regarded as a manual for this Mathematica package� We also show how the procedures
in the package may be used in the process of problem solving�
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Given the �rst terms of a power series or sequence� it is possible to �guess� a holo�
nomic equation that is satis�ed by the whole function or sequence� In Chapter  we
present some ideas� how �guessing� can help in situtations where we are faced with op�
erations that do not satisfy the closure properties� Moreover we translate the theory of
holonomic functions and sequences into the operator algebra language of Ore polynomial
rings� This operator algebra is used to present some �more ore less e�cient� methods to
prove identies of holonomic sequences�

��� Notation

The symbols N� Z� Q� R and C stand for the sets of nonnegative integers� all integers�
rational� real and complex numbers� Throughout this thesis the symbol K denotes a
�eld of characteristic zero� For algorithmic purposes K should be computable� i�e�� every
element in the �eld should have a �nite representation and it should be possible to carry
out the �eld operations within a �nite amount of time� �Note� that neither C nor R have
this property�� K�x� stands for the ring of polynomials� K�x� for the quotient �eld of
rational functions over K� By �Kn� and �Kn� we denote the ring of polynomial sequences
and the �eld of rational sequences �with values in K�� respectively� K��x�� denotes the
ring of formal power series� K��x�� is the �eld of formal Laurent series over K�

For k � N� the symbol nk denotes the kth rising factorial of n� which is de�ned as
follows�

nk � n�n � �� � � � �n � k � ��� if k � ��

n� � ��

If f �
P

n�� anx
n� then the coe�cient of xn in f � is given by �xn�f � an�
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The Holonomic Universe

��� Introduction

This chapter is devoted to the discussion of holonomic functions �or more precisely�
power series� and sequences� A Holonomic function satis�es a linear di�erential equation
with polynomial coe�cients� a holonomic sequence is the solution of a linear recurrence
equation with polynomial coe�cients� The basic theory and algebraic background are
given in Sections ��� and ��� respectively� where we also present some famous members
of the holonomic family� The results discussed there and in Section ��� are well known�
a comprehensive exposition of the subject was given by Stanley �Sta����

In fact the algebraic properties of holonomic functions and sequences� presented in
Section ��� are the main motivation to work in the holonomic universe� Most elemen�
tary operations like addition� �termwise or Cauchy� multiplication and several univariate
transformations preserve holonomicity� These properties� together with the fact that
holonomic functions �and also sequences� are representable by a �nite amount of infor�
mation� make it possible to �compute� representations of functions or sequences that
are built from other �elementary� holonomic functions or sequences via these operations�
Moreover� any identity in this frame can be proved by performing some routine steps�

In Section ��� we brie�y discuss multivariate holonomicity� without going into details�
The interested reader may consult the literature we refer to�

We aimed to give most of the proofs in this chapter in a constructive way� which
should make it easy to extract algorithms from these proofs� Some of the algorithms
also can be found in �SZ����

In order to illustrate the theory we give a lot of examples� Since they often contain
solutions to �real life� problems� these examples shall also serve as a motivation for the
whole theory�

�
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��� Holonomic Functions

We are working with formal power series over a �eld K� A power series f�x� is an object
of the form f�x� �

P
n�� anx

n� where an � K for all n � N� One also says that f�x�
is the generating function of the sequence �an�n��� We want to note here that power
series are formal objects� rather than functions in the classical sense� i�e�� mappings from
the ground �eld K or from a subset of K into K� A power series may correspond to
a certain mapping from a subset of K� For example� let K � C�

P
n�� x

n corresponds

to the analytic function f � x � �� � x���� This function is rational and has a pole
at x � �� The power series is convergent if and only if jxj � �� Although the power
series and the function have di�erent analytic properties� we will not run into troubles�
since we regard the power series as a formal object and do not care about poles or other
analytic properties like radius of convergence� continuity� etc�

Every power series is the generating function of a sequence in the ground �eld� Hence
we will also use the word function to denote a formal power series�

Let f�x� �
P

n�� anx
n and g�x� �

P
n�� bnx

n be two power series� We de�ne
addition and �Cauchy� multiplication as follows�

f�x� � g�x� ��
X
n��

�an � bn�xn

f�x�g�x� ��
X
n��

�
nX

k��

akbn�k�xn

The domain of power series over K with addition and �Cauchy� multiplication is a
commutative ring without zero divisors� denoted by K��x��� The two functions f�x� and
g�x� are equal� written as f�x� � g�x�� if and only if an � bn for all n � N�

The derivative f ��x� is de�ned to be

f ��x� ��
X
n��

�n � ��an��x
n�

It follows immediately that

an � �xn�f�x� � �x��f �n��x��n � f �n�����n �

De�nition �	�	� 
holonomic functions� A function f � K��x�� is holonomic if and
only if f satis�es a linear di�erential equation with polynomial coe�cients �holonomic
di�erential equation�� i�e�� there exist d � N and polynomials p�� p�� � � � � pd in K�x��
pd �� �� such that

p��x�f�x� � p��x�f ��x� � � � �� pd�x�f �d��x� � �� �������
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The nonnegative integer d denotes the order of the holonomic equation� The degree of
equation ������� is given by maxfdeg�pi�x��j� � i � dg� In literature holonomic functions
are also called di�erentiably �nite� D��nite �Sta���� �Lip���� �GKP��� or simple functions
�Koe����

Subsequently� we will sometimes write f and p instead of f�x� and p�x�� if the inde�
terminate x is clear from the context�

If we extend our working domain from the ring K��x�� to K��x��� the �eld of formal
Laurent series� i�e� series of the form

P
n�n�

anx
n with n� � Z� we can multiply a power

series with any rational function� because those can be expanded as Laurent series� Thus
it makes sense to regard K��x�� as a vector space over K�x��

The following theorem �Sta��� gives alternatives for de�ning holonomic functions�

Theorem �	�	� For f � K��x�� the following three conditions are equivalent�

�i� There are d �N and polynomials q� p�� p�� � � � � pd in K�x�� pd �� �� such that

q�x� � p��x�f�x� � p��x�f ��x� � � � �� pd�x�f �d��x� � �� �������

�ii� f is holonomic�

�iii� The linear space spanned by ff �k��x�jk � Ng is a �nite dimensional subspace of
K��x�� over K�x��

Proof	

�i���ii�� Suppose f satis�es �������� Di�erentiate this equation to get� say� ���������
f clearly satis�es q��x���������q�x���������� which is a homogenous holonomic di�erential
equation of order d � ��

�ii���iii�� Let f satisfy equation �������� It is evident that f �d��x� lies in L ��
hf� f �� � � � � f �d���i� the linear hull of ff� f �� � � � � f �d���g� If we repeatedly di�erentiate
equation �������� it becomes clear that for every k � N� we have f �d�k� � L� Hence
hf� f �� � � �i � L� which has dimension less or equal d over K�x��

�iii���i�� Assume hf �k��x�jk �Ni has �nite dimension� say d� over K�x�� This means
that any d � � elements of ff �k��x�jk � Ng are linearly dependent� In fact equation
�������� with q�x� � �� is a linear dependence relation with cleared denominators� �

In view of Theorem ������ we also call an inhomogenous equation of type �������
holonomic� Whenever we want to emphasize distinctions between equations ������� and
�������� we will use the adjectives homogenous and inhomogenous� respectively�

We give some simple examples of holonomic functions�
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Example �	�	�

�� Let f�x� � p�x��q�x� where p�x�� q�x� are polynomials over K� Rational functions
are holonomic� They satisfy the holonomic di�erential equation

�p��x�q�x�� p�x�q��x��f�x� � ��p�x�q�x��f ��x� � ��

�� Let K � C� The trigonometric functions f�x� � sin�x�� g�x� � exp�x� and
h�x� � arctan�x� are holonomic since they satisfy the di�erential equations

f�x� � f ���x� � ��

g�x� � g��x� � ��

h��x� �
�

� � x�
�

�Note that the holonomicity of h�x� follows from Theorem �������

� The generating function f�y� �
P

n��C
�
n �x�yn of the Gegenbauer polynomials

C�
n �x� �see� e�g� �AS���� is given by f�y� � ��� �xy � y����� where � � R satis�es

� � ����� This function is a solution of the di�erential equation

���x � �y� f�y� �
�
�� �x y � y�

�
f ��y� � � ������

with the initial condition f��� � �y��f�y� � �� Considering � as an indeterminant
in R� we can set K � R��� x��

�

The simple functions in the previous example should not mislead us to assume that all
�elementary� functions are holonomic� For example� we can easily show that the tangent
function f�x� � tan�x� is not holonomic �See also �KS����� We know that tan�x� satis�es
the derivation rule

tan��x� � � � tan��x��

By an induction argument it follows that also higher derivatives of the tangent function
are polynomials in tan�x�� Now� suppose that tan�x� satis�es a holonomic di�erential
equation of the form �������� Replacing the derivatives of f�x� by the corresponding
polynomials in tan�x�� gives an algebraic equation for the tangent function� It is well
known that the tangent function is not algebraic� therefore it can not satisfy a holonomic
di�erential equation� �Analogous argumentations are used in Stanley�s �Sta��� proof that
sec�x� is not holonomic��
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��� Holonomic Sequences

In this section we brie�y discuss the discrete counterpart to holonomic functions�

De�nition �	�	� 
holonomic sequences� A sequence �an�n�� �KN is holonomic if
and only if �an�n�� satis�es a linear recurrence with polynomial coe�cients �holonomic
recurrence equation�� i�e�� there are polynomials p�� p�� � � � � pd in K�x�� pd �� �� such that
for all n �N�

p��n�an � p��n�an�� � � � �� pd�n�an�d � �� ������

The nonnegative integer d is the order of the holonomic recurrence� As in the case
of holonomic functions the integer maxfdeg�pi�x��j� � i � dg is called the degree of
recurrence ������� In literature holonomic sequences are sometimes called polynomially
recursive� P�recursive �GKP���� �Sta��� or P��nite �Zei����

Let �Kn� be the ring of polynomial sequences in K with addition and termwise
�Hadamard� multiplication� Since �Kn� has a unit element and no zero divisors� we
can de�ne �Kn�� the �eld of rational sequences� to be the set

�Kn� � fp
q
j p � �p�n��n���q � �q�n��n�� � �Kn�g���

where p�q � p�q if and only if p�n�q�n� � q�n�p�n� for all n � N� In the given case of
rational sequences the relation � is equivalent to ��� where �an�n�� �� �bn�n�� if and
only if there is an n� � N such that an � bn for all n 	 n�� �Stanley �Sta��� called the
equivalence classes of �� the germs at in�nity�� Let r � p�q� with p�q � �Kn�� be a
rational sequence and let a � �an�n�� be an arbitrary K�sequence� Now we de�ne the
product r � a to be the equivalence class �w�r�t� ��� of the sequences that agree with

p�n��q�n� � an from some index n� on� Hence we can consider KN��� to be a vector
space over �Kn�� Subsequently we will use the symbol �a� to denote the equivalence class
w�r�t� �� of a sequence a�

Due to the similarities in the de�nitions of holonomic functions and holonomic se�
quences� the following result comes without surprise� Indeed this theorem �Sta��� as well
as its proof are quite similar to Theorem ������

Theorem �	�	� Let E be the shift operator on sequences� i�e�� Ean �� an��� For

a �� �an�n�� �KN the following three conditions are equivalent�

�i� There are d � N and polynomials q� p�� p�� � � � � pd in K�x�� pd �� �� such that for all
n �N�

q�n� � p��n�an � p��n�an�� � � � �� pd�n�an�d � �� ������

�ii� �an�n�� is holonomic�
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�iii� The linear space spanned by f�Eka�jk � Ng is a �nite dimensional subspace of

KN��� over �Kn��

Proof	

�i� � �ii�� Assume that �an�n�� satis�es the recurrence ������� Shifting this equation
by step � gives� say E������� which has the inhomogenous part q�n���� The homogenous
recurrence equation q�n � ��������� q�n�E������� which is of order d � �� is satis�ed
by �an�n���

�ii� � �iii�� Suppose a satis�es ������� We choose n� � N as follows� If pd has
nonnegative integer roots we take n� � maxfn �Njpd�n� � �g��� otherwise let n� � ��
Now we get

an�d �
d��X
i��

an�i
�pi�n�

pd�n�
for all n 	 n�� �����

Hence �Eda� lies in L �� h�a�� �Ea�� � � �� �Ed��a�i� By repeated shifts of ������ and sub�
stitutions according to ����� we �nd that for each k � N� �Ed�ka� lies in L and we get
h�a�� �Ea�� �E�a�� � � �i � L� which has �nite dimension�

�iii� � �i�� If h�Eka�jk �Ni has �nite dimension� then �by linear dependency� there
is an n� �N such that ������ with q � � holds for all n 	 n�� Multiply all polynomials
pi�n� by n�n � �� � � � �n� n� � �� and we get an equation of this type that holds for all
n � N� �

If q �� �� equation ������ will be called an inhomogenous holonomic recurrence�

Holonomic sequences have the nice property that they can be represented by a �nite
amount of information� i�e�� if we have a holonomic recurrence of type ������ and a
set of initial values fa�� a�� � � � � an�g we can compute the elements in the sequence with
little e�ort �and storage� by just applying the recurrence� The index n� up to which
the initial values must be supplied� depends on the order d of the recurrence and on
the maximum of the nonnegative integer roots of the polynomial pd� If pd�n� is not
equal to zero for all n � N� then n� � d � � is su�cient� Otherwise we have to take
n� � maxfn � Njpd�n� � �g� d�

We turn to some well known examples of sequences that are holonomic�

Example �	�	�

�� Let K � Q� The Fibonacci numbers Fn are recursively de�ned by

Fn�� � Fn � Fn�� for n 	 �� F� � �� F� � �� ������

In fact this recursive de�nition is a holonomic recurrence equation of order �� If
all polynomials pi�n� in a holonomic recurrence of type ������ are constants� as in
this case� we call the recurrence as well as the corresponding sequence C��nite or
C�recursive �NP����
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�� A sequence �tn�n�� is hypergeometric if and only if there exists a rational function
r�x� �K�x� such that for all n �N

tn��
tn

� r�n�� ������

Hypergeometric sequences are the class of sequences that satisfy a �rst order holo�
nomic recurrence� A simple example of a hypergeometric sequence are the factorials
n � For this sequence r�n� � n � ��

� Let K � C��� x�� The Gegenbauer polynomials C�
n �x� are de�ned by the recurrence

� �n � ���C�
n �x� � ��n � � � ��xC�

n���x�� �n � ��C�
n���x� � � ������

with the initial values C�
� �x� � � and C�

� �x� � ��x� Hence the sequence of the
Gegenbauer polynomials �C�

n �x��n�� is holonomic�

�

A lot of sequences we are faced with in �real� life are holonomic� But not all of them�
as the example of the Bernoulli numbers� which are well known to be not holonomic��
shows�

��� Closure Properties

Examples ������ and ����� have shown that both the sequence of the Gegenbauer
polynomials and their generating function are holonomic�

At the beginning of this section we make explicit that there is a one�to�one corre�
spondence �already observed by �Jun�� p������ between holonomic sequences and their
generating functions� Moreover� we will see that it is possible to �compute� this corre�
spondence� i�e�� given a holonomic sequence �an�n�� via a recurrence one can compute a
holonomic di�erential equation satis�ed by the generating function f�x� �

P
n�� anx

n�
and vice versa�

Theorem �	�	� A formal power series f�x� �
P

n�� anx
n � K��x�� is holonomic if and

only if �an�n�� is holonomic�

�LetBn denote the nth Bernoulli number� The exponential generating function �f�x� �
P

n��
Bn

x
n

n�

is given by �f�x� � x��ex � �� �see �GKP��	 p� 
���� An induction argument that is similar to the

one in the proof that tan�x� is not holonomic on page �	 tells us that �f�x� is not holonomic� Applying
some results of the following section �Theorem �����	 Theorem ������ proofs the non�holonomicity of the
Bernoulli numbers�
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Proof	 Assume that f�x� �
P

n�� anx
n is holonomic� We can easily check that

xkf �j� � xk
X
n��

�n � ��jan�jx
n �

X
n�k

�n � �� k�jan�j�kx
n�

We transform ������� according to this relation and� by equating coe�cients of same
powers of x on both sides of the resulting equation� we get a linear recurrence equation
with polynomial coe�cients� satis�ed by �an�n��� An appropriate shift of this recurrence
results in an equation of type �������

Suppose the sequence �an�n�� satis�es the holonomic recurrence ������� Multiply
this equation by xn and sum over all n 	 �� Let � be the operator de�ned by

�f � x
df

dx
�

If we replace the terms nkan�j according to the transformation rule

X
n��

nkan�jx
n � �k

X
n��

an�jx
n � �k

�f � a� � a�x� � � � � aj��x
j��

xj

�
we get an inhomogenous linear di�erential equation with coe�cients that are rational
functions in x� Clearing the denominator results in a �possibly inhomogenous� holonomic
di�erential equation� satis�ed by f � �

Assume a holonomic power series f�x� �
P

n�� anx
n is given by a holonomic di�er�

ential equation of order d and degree k� Following the proof of Theorem ������ it is easy
to see that the sequence �an�n�� satis�es a holonomic recurrence of order � d � k and
degree � d�

Conversely� if �an�n�� is a solution of a holonomic recurrence of order d and degree k�
then its generating function satis�es an �inhomogenous� holonomic di�erential equation
of order � k and degree � d � k�

Theorem ����� makes it easy to establish connections between some of the functions
and sequences in Example ����� and Example �����

Example �	�	�

�� �Cf� Example ������� and Example �������� Let �an�n�� be a C��nite sequence
over K� i�e�� �an�n�� satis�es a linear recurrence with constant coe�cients

c�an � c�an�� � � � �� cdan�d � �� �������

According to the rules presented in the proof of Theorem ������ this recurrence is
transformed into an inhomogenous di�erential equation of order zero� It is evident
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that the solution of this equation is a rational function� Hence C��nite sequences
have rational generating functions� A prominent example are the Fibonacci num�
bers Fn� Their generating function is given byX

n��

Fnx
n �

x

�� x� x�
�

�� In Example ����� we mentioned that the function f�x� � sin�x� is holonomic� since
it satis�es the di�erential equation

f � f �� � �� If f�x� �
P

n�� anx
n then the sequence �an�n�� is recursively de�ned

by
an � �n � ���n � ��an�� � �� a� � �� a� � ��

It is also possible to obtain a �closed� form for the coe�cients an and we �nd that

sin�x� �
X
n��

�����n��

��n� �� 
x�n���

� A hypergeometric function pFq is a formal power series that is de�ned by

pFq

� a�� � � � � ap
b�� � � � � bq

���x� �
X
n��

an� � � �anp
bn� � � �bnq

xn

n 
� �������

�The rising factorial nk is de�ned on page ��� None of the lower parameters bk is
allowed to be a negative integer� otherwise we would get a division by zero�

One can easily check �see �GKP��� Section ����� that the coe�cients tn of xn in
the power series expansion of a hypergeometric function� which is given by ��������
satisfy the recurrence

r�n�tn � s�n�tn��� ������

where we can split the polynomials r�n� and s�n� into linear factors as follows

r�n� � �n � a���n � a�� � � � �n � ap��

s�n� � �n � b���n � b�� � � � �n � bq��n � ���

We will now derive a di�erential equation satis�ed by the hypergeometric function
F � �For a shorter notation we will often omit all the parameters�� We start out
by multiplying the left hand side of ������ by xn and summing over all n 	 ��
Following the ideas presented in the proof of Theorem ����� we getX

n��

�n � a�� � � � �n � ap� tn x
n � �� � a�� � � � �� � ap�F�
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Similar transformations of the right hand side result inX
n��

�n � b�� � � � �n � bq��n � �� tn�� x
n �

x��
X
n��

�n � b� � �� � � � �n � bq � ��n tn x
n �

x���� � b� � �� � � � �� � bq � ���F�

Hence a hypergeometric function F � as given by �������� satis�es the di�erential
equation

x�� � a�� � � � �� � ap�F � �� � b� � �� � � � �� � bq � �� �F�

�

We want to mention here that Theorem ������ as a Theorem on formal power series�
allows us to compute a di�erential equation that is satis�ed by a power series� say f�x��
that analytically does not have a positive radius of convergence� For example� the series
f�x� �

P
n�� n xn does not converge if x �� �� Hence f�x� does not correspond to a

function in the analytical sense� However� as a formal power series� it can be de�ned to
be the �unique� solution of the di�erential equation ������x�f�x��x�f ��x� � �� with
the initial condition �x��f�x� � �� Note that sometimes we write f��� for �x��f�x��

So far� we have seen that a holonomic �or P�recursive� sequence has a holonomic �or
D��nite� generating function� Let us now consider the sequence of Catalan numbers Cn

��GKP��� p� ��!����� which is recursively de�ned by

Cn�� �
nX

k��

CkCn�k� C� � �� �������

If we are given the Catalan numbers up to index n� we have to perform O�n� multipli�
cations to compute Cn��� Hence� the computation of Cn needs O�n�� operations� if we
use recurrence �������� Let us see how the generating function C�x� �

P
n��Cn x

n helps
us to compute the sequence more e�ciently� For that multiply both sides of ������� with
xn and sum over all n 	 ��

X
n��

Cn�� x
n �

X
n��

nX
k��

CkCn�k x
n

Since the right hand side is the Cauchy product C�x�C�x�� we get

�C�x�� ���x � C��x��
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which results in the quadratic equation

xC��x�� C�x� � � � �� �������

The fact that C�x� satis�es a quadratic equation does not really help us now� however�
after we have proven constructively the following theorem"already given by Comtet
�Com��� in the ���s"this will help a lot�

Theorem �	�	� If f�x� � K��x�� is algebraic� then f�x� is holonomic�

Proof	 Assume f satis�es the algebraic equation

p��x� � p��x�f�x� � � � �� pd�x�fd�x� � �� �������

where pi � K�x� �� � i � d�� pd�x� �� �� Let the symbol A�f� x�"sometimes written
without the indeterminates f and x"denote the polynomial on the left hand side of
�������� Without loss of generality we may assume that A�f� x� is squarefree� We de�ne
two polynomials B and C by

B�f� x� � ��A�f� x�

�x
and C�f� x� �

�A�f� x�

�f
�

and get f ��x� � B�f� x��C�f� x��

The polynomial A is squarefree� hence A and C are relatively prime �w�r�t� f� and
the extended Euclidean algorithm �with respect to f� gives polynomials S�f� x�� T �f� x�
and g�x� such that S�f� x�A�f� x� � T �f� x�C�f� x� � g�x�� Now we get

f ��x� �
B�f� x�T �f� x�

C�f� x�T �f� x�
�

B�f� x�T �f� x�

g�x� �A�f� x�S�f� x�
�

B�f� x�T �f� x�

g�x�
� �������

�Note� that the last equality holds� since A�f� x� � ���

It is clear that f � and� by further di�erentiation and substitution of f � according
to �������� also higher derivatives of f can be expressed by a linear combination of
f�� f� f�� � � �g� Hence

dimh�� f� f �� f ��� � � �i � dimh�� f� f�� � � �i � dimh�� f� f�� � � � � fd��i � d

over K�x�� Now� by Theorem ������ f is holonomic� �

Remark	 If we are given a function by an algebraic equation� the proof above can be
used in a constructive way� This means� it also gives a method to compute a holonomic
di�erential equation� that is satis�ed by the function� We have to compute the functions
�� f� f �� f ��� � � � � f �d��� as linear combinations of �� f� f�� � � � � fd��� This should be done
by observing that� for arbitrary k� f �k��x� � Rk�f� x� � Rk�f� x�� where Rk�f� x� and
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Rk�f� x� are polynomial in f and rational in x� and R�f� x� � R�f� x� mod A�f� x�� �The
residues R are computed with respect to f ��

Substituting these linear combinations into an inhomogenous holonomic equation of
the form

q�x� � p��x�f�x� � p��x�f ��x� � � � �� pd���x�f �d����x� � �

and equating all powers of f to zero� results in a linear system of equations �with inde�
terminates q� p�� p�� � � � � pd���� that is guaranteed to have a non trivial solution� �

We apply this method to the the function C�x�� the generating function of the Catalan
numbers Cn� From ������� we deduce that

C� �
C�

�� �xC
�

By extended gcd computations we obtain

��� �x� �xC� �xC�� C � �� � ��� � �x�C � x�C� ��� � �xC� � �� �x

and we get

C� �
C� ���� � �x�C � x�C�

�� �x
mod �xC� � C � �� �

�� � C��� �x�

x��� � �x�
�

Now we have to solve the equation r�x� � p��x�C�x� � p��x�C��x� � �� which can be
written as

r � p�
x��� � �x�

� f

�
p� �

p���� �x�

x��� � �x�

�
� ��

for the rational functions r�x�� p��x�� p��x�� Equating all coe�cients of same powers of
f with zero� results in the di�erential equation

�� � ��� �x�C�x� � x��� �x�C��x� � ��

Following Theorem ������ we can transform this di�erential equation into a recurrence
that is satis�ed by the sequence of Catalan numbers�

��� � �n�Cn � �� � n�Cn�� � �� C� � � �������

This recurrence makes it possible to compute Cn by performing O�n� operations�
whereas the computation of the nth Catalan number via ������� requires O�n�� opera�
tions�

Moreover� equation ������� delivers the information that the sequence �Cn�n�� is
hypergeometric� We have

Cn��

Cn
�

��� � �n�

� � n
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and� remembering Example ������� it follows that

Cn �
�n��� �n

�n � �� 
�

�
�n

n

�
�

n � �
�

Remark	 We want to note that� due to the fact that the generating function of the
Catalan numbers satis�es a quadratic equation� the closed form representation for Cn

could also be derived by other means� See� for instance� �GKP��� p� ����

After we have proved that all algebraic functions are holonomic� we are going to show
that some elementary �binary� operations on sequences and their generating functions
preserve holonomicity� �Cf� for instance �Sta����� In fact� the following theorem contains
the main reason� why we work with holonomic functions and sequences�

Theorem �	�	� Let f�x� �
P

n�� anx
n and g�x� �

P
n�� bnx

n be holonomic power
series� Then

�a� f�x� � g�x� �
P

n���an � bn�xn� �sum�

�b� f�x� g�x� �
P

n���
Pn

k�� akbn�k�xn �convolution� Cauchy product�

�c� f�x� 
 g�x� ��
P

n�� anbnx
n� �termwise or Hadamard product�

are holonomic power series�

Proof	 We start the proof of the closure properties with the following observation�
Suppose f�x� satis�es a �possibly inhomogenous� holonomic di�erential equation of order
d� hence we can express f �d� as a linear combination of �� f� f �� � � � � f �d����

f �d� � pd�x� � qd���x�f � qd���x�f � � � � �� qd�d���x�f �d��� �������

with pd� qd�j �K�x�� We di�erentiate ������� with respect to x and replace the derivative
f �d� on the right hand side of the resulting equation according to ������� in order to ex�
press f �d��� in terms of �� f� f � � � � � f �d���� Hence� given k � N� repeated di�erentiations
and substitutions make it possible to �nd rational functions pk�j� qk � K�x� such that

f �k��x� � qk�x� �
Pd��

j�� pk�j�x�f �j��x��

Given a sequence �an�n�� that satis�es a holonomic recurrence of the form �������
let n� be the integer n� � maxfn � Njpd�n� � �g � � if pd has nonnegative integer
roots� Otherwise we set n� � �� For any k � N� by repeated shifts and substitutions
we �nd rational functions pk�j� qk � K�x� such that for all n 	 n�� an�k � qk�n� �Pd��

j�� pk�j�n�an�j �
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Now� let f and g satisfy �inhomogenous� holonomic di�erential equations of orders d�
and d�� respectively� To prove �a� and �b�� we assume that for every k �N the rational
functions pk�j� qk� rk�j� sk have the property that

f �k� � qk �

d���X
j��

pk�jf
�j� and g�k� � sk �

d���X
j��

rk�jg
�j��

where we omitted the function variable x�

�a� Let h � f � g and k � N� then we can express h�k� as a linear combination of
�� f� � � � � f �d����� g� � � � � g�d����� i�e��

h�k� � f �k� � g�k� � qk � sk �
d���X
j��

pk�jf
�j� �

d���X
j��

rk�jg
�j�� ��������

Now we search for the inhomogenous di�erential equation

t � u�h � u�h
� � � � �� udh

�d� � �� ��������

We plug �������� into �������� and get a homogenous system of d��d��� linear equations
in the d � � variables t� u�� � � � � ud� Hence� if we take d � d� � d�� we can be sure that
this linear system has a nontrivial solution�

�b� For h � fg and k �N we get �by the Leibniz rule�

h�k� �
kX

i��

�
k

i

�
f �i�g�k�i� �

kX
i��

�
k

i

��
qi�

d���X
j��

pi�jf
�j�
��

sk�i�

d���X
j��

rk�i�jg
�j�
�
� ��������

which tells us that we can write h�k� as a linear combination of �d�����d���� functions�
Therefore� a non trivial di�erential equation of type �������� exists� if we take d �
�d� � ���d� � ��� ��

�c� Let cn � anbn� Since cn�k � an�kbn�k for every k � N� an argument that
is similar to the one applied in the proof of part �b�� but which uses shifts instead of
derivatives� tells us that �cn�n�� is a holonomic sequence� hence

P
n�� cnx

n is holonomic�
�

Remark	 We will use the terminology� sum� Cauchy product �convolution� and Hada�
mard �or termwise� product both for sequences and for functions�

The proof of the previous theorem is constructive� i�e�� given two holonomic func�
tions �sequences� we can apply the presented proof to obtain the holonomic di�erential
�recurrence� equation that is satis�ed by their sum� Cauchy or Hadamard product� A
short example serves as an illustration�
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Example �	�	� Let f�x� � sin�x�� g�x� � arctan�x�� Following the proof of Theorem
����� we will derive a holonomic di�erential equation that is satis�ed by h�x� � f�x� �
g�x��

Step�� �Find an upper bound for the order of the desired di�erential equation��
We know that f and g are solutions of the di�erential equations

f � f �� � � and

�� �� � x�� g� � ��

respectively� Thus� h satis�es a holonomic di�erential equation of order �

Step�� �Express f� f �� f ��� f ��� in terms of �� f� f �� and g� g�� g��� g��� in terms of �� g��
If we repeatedly di�erentiate and substitute according to the two di�erential equations
that are satis�ed by f and g� we get�

f�f g�g

f ��f � g�� �
� � x�

f ����f g��� ��x
�� � x���

f �����f � g������ � �x�

�� � x���

Step�� �Solve the corresponding linear system��
The search for a di�erential equation of the form

q�x� � p��x�h�x� � p��x�h��x� � p��x�h���x� � p��x�h����x� � �

gives the linear system�BBB�
� � �

� � x�
��x

�� � x���
�� � �x�

�� � x���

� � � � �
� � � �� �
� � � � ��

	CCCA
�BBBB�

q
p�
p�
p�
p�

	CCCCA � �� �������

We solve ������� and �nd that h�x� is a solution of the di�erential equation

��� �x� � �x�� � �� � x���h��x� � �� � x���h����x� � ��

�
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We have seen that one step in the computation of a holonomic �recurrence or di�er�
ential� equation� satis�ed by a sequence or function that is built from other holonomic
sequences or functions via holonomicity preserving operations� is to solve a homogenous
system of linear equations� In other words� we have to compute the Nullspace of a cer�
tain matrix A� whose entries are rational functions� We assume now that A has d � �
rows and d� � columns� Every element in the Nullspace of A corresponds to a �possibly
inhomogenous� holonomic equation� whose order is less or equal d�

If the Nullspace of A has dimension� say k� with k � �� the resulting �recurrence or
di�erential� equation is not unique� �We regard two holonomic equations to be the same
if they coincide up to a common factor�� In this case� an element p � �q� p�� p�� � � � � pd�
in the Nullspace of A can be found� where the last k � � components of p are all equal
�� Then p gives a holonomic equation of order less or equal d� k� �� Since p is a linear
combination of the basis elements of the Nullspace of A� it can be computed by again
solving a system of linear equations�

We also want to mention here that in the process of solving a linear system �for
instance by Gaussian elimination�� the coe�cients of the elements in the solution space
grow rather fast� Assume that we are given two sequences a � �an�n�� and b � �bn�n���
where a satis�es a homogenous recurrence of order d� and degree k� and b is the solution
of a homogenous recurrence of order d� and degree k�� We know that c � a�b satis�es a
recurrence equation of order d��d�� Based on experimental results the author conjectures
that the degree of a recurrence that is satis�ed by c raises up to k��d� � �� � k��d� � ��
in the worst case� If we compute a recurrence for the termwise product of a and b�
it seems as if the result� which has order less or equal d�d�� may be of degree up to
�� � �d� � ���d� � ����d�k� � d�k��� �The same bounds were observed in the case of
di�erential equations�� Although we did not prove these conjectures� it is evident that
computations with holonomic objects that involve sums and products �and possibly other
operations� quickly become extremely time consuming as the number of these operations
increases�

Note also that the closure properties in the theorem above do not include fractions
of holonomic functions or sequences� As we have seen �page �� the function tan�x� �
sin�x�� cos�x� is not holonomic� though both sin�x� and cos�x� are�

Part �a� of the closure properties �or its proof� tells us how to compute a di�erential
equation that is satis�ed by f�x� � g�x�� the sum of arbitrary solutions of two given
holonomic di�erential equations� If these two equations are homogenous� it is clear that
any linear combination of f and g �over K� satis�es the computed equation� In particular
f � g has this property� and� by checking a �nite number of initial values of f � g to
be zero� we can �prove� whether these two functions are identical in the ring of formal
power series�

The same result holds for sequences� However� certain roots in the leading polynomial
of a holonomic di�erential or recurrence equation may cause problems� if we want to
perform zero recognition� This subject is discussed in more detail in Chapter �
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Indeed� the property that the families of holonomic functions and sequences are al�
gebras �with respect to addition and multiplication� together with the fact that zero
recognition can be done� is the most important strength of holonomicity� It is thus pos�
sible to prove identities like sin��x� � cos��x� � � or Cassini�s identity for the Fibonacci
numbers Fn��Fn��� F �

n � ����n �automatically�� �In real life� most identities will not
look that nice��

Let K � C� We know that the functions sin�x�� cos�x� are holonomic� Apply�
ing Theorem ����� we immediately deduce that for a constant a � C the function
sin�x� cos�a� � cos�x� sin�a�� which is identical to sin�x � a�� is holonomic� The follow�
ing theorem delivers the holonomicity of sin�x � a� �and many more functions� without
requiring the knowledge of this identity�

Theorem �	�	� Let g�x� � K��x�� be algebraic� let f�x� � K��x�� be holonomic� If
h�x� � f�g�x�� �K��x��� then h�x� is holonomic�

A theoretical argument for the holonomicity of h�x� was given by Stanley �Sta����
Here� we want to present a more constructive proof �SZ����

Proof	

Let g�x� satisfy the squarefree algebraic equation A�g� x� � � with A �K�x�� x�� and
degg�A� � d�� We suppose that f satis�es a homogenous holonomic di�erential equation
of order d��

q��x�f�x� � q��x�f ��x� � � � �� qd��x�f �d���x� � �� ��������

Now de�ne G�g� x� � gcd�A�g� x�� qd��g�� �w�r�t� g��

We start out by giving an argument that� without loss of generality� we may assume
that G�g� x� � �� It is clear that degx�G� � degx�qd��g�� � �� Now let A � G � T � we
know that g�x� is a root of A� hence G�g�x�� x� � � or T �g�x�� x� � �� If g�x� is a root
of G� then g�x� is constant� and� if f�g�x�� is de�ned� then h�x� is also constant and
hence holonomic� In the case that g�x� is a root of T � we observe that"note that A is
squarefree"gcd�T� qd� �g�� � � �w�r�t� g�� Now we can continue the proof assuming that
g�x� is a root of a polynomial� say A� with degg�A� � d� and� where A and qd��g� are
relatively prime�

�Assume g�x� satis�es the equation

c� � c�g � � � �� ckg
k � � ��������

with ci �K �� � i � k�� Di�erentiating �������� w�r�t x yields

�c� � 
c�g� � � �� kckg
k���g� � �� ��������

from �������� we deduce that g�x� satis�es an algebraic equation of order k � � or that g��x� � �� Now	
and induction argument proves that g�x� is constant�
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The chain rule tells us that for each k �N there are polynomials Pk�j such that

h�k��x� �
kX

j��

f �j��g� Pk�j�g� g
�� � � � � g�k���

Following the proof of Theorem ����� we �nd functions Rj�g� x� that are rational in x
and polynomial in g of degree less than d� such that for every j � N we have g�j��x� �
Rj�g� x�� Hence we can write

h�k��x� �
kX

j��

f �j��g�Bk�j�g� x�� ��������

where Bk�j �K�x��g��

We compute qj�g� � qj�g� mod A �w�r�t� g� and get

f �d� ��g� � �
� d���X

j��

qj�g�f �j��g�
�
�qd� �g�� ��������

Now we have G�g� x� � gcd�A�g� x�� qd��g�� � gcd�A�g� x�� qd��g�� �w�r�t� g��

Since degg�G� � �� we use the same argument as in the proof of Theorem ����� to get
rid of g in the denominator of �������� and to obtain functions Cd��j that are rational in
x and polynomial in g �of degree less than d�� such that

f �d���g� � Cd����g� x�f�g� � Cd����g� x�f ��g� � � � �� Cd��d����g� x�f �d�����g�� ��������

An induction argument makes it clear that"by repeatedly di�erentiating �������� and
representing as in ��������"for each k �N we can express f �k� as follows�

f �k��g� � Ck���g� x�f�g� � Ck���g� x�f ��g� � � � �� Ck�d����g� x�f �d�����g�� ��������

We put �������� and �������� together and see that

h�k��x� �
kX

j��

Bk�j�g� x�
d���X
i��

Ck�i�g� x�f �i��g��

We reduce this expression� which is polynomial in g� modulo A� The result are rational
functions ck�j�i in x such that

h�k��x� �
d���X
j��

d���X
i��

ck�j�i�x� gjf �i�� ��������
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Now we search for a holonomic equation of the form

q��x�h�x� � q��x�h��x� � � � �� qd�x�h�d��x� � �

by substituting according to �������� and equating the coe�cients of gjf �i� in this equa�
tion with zero� which gives a system of d�d� equations in d � � variables� This linear
system has a non trivial solution if d � d�d�� �

The properties of holonomicity that we have seen in the previous theorems �and their
proofs� in this section� enable us to solve the following combinatorial problem�

Example �	�	� �See �Wil��� p� �����
An undirected ��regular labeled graph is a graph in which each vertex has exactly degree
�� Hence an undirected labeled ��regular graph is a union of cycles� where each cycle has
at least  vertices� Let gn be the number of undirected ��regular labeled graphs with n
vertices� The exponential generating function G�x� of the sequence �gn�n�� is known to
be

G�x� �
X
n��

gn
xn

n 
�

e�
�

�
x� �

�
x�

p
�� x

�

Find a recurrence satis�ed by gn�

Considering the fact that the exponential function ex is in our holonomic knowledge
base� we can use the results of this section to solve this problem�

Step �� �Compute a holonomic di�erential equation satis	ed by e�x���x
�����

Let h�x� � f�g�x�� with f�x� � ex and g�x� � �x�� � x���� Following the proof of
Theorem ����� we get

h � f�g��

h� � f�g���� � x����

The search for a holonomic di�erential equation of order one gives

p�h � p�h
� � f�g�

�
p� � p�

��� � x�

�
� ��

which results in
�h�x� � �� � x�h��x� � ��

Step �� �Compute a holonomic di�erential equation satis	ed by ��
p

�� x��
Since a�x� � ��

p
�� x is a solution of the algebraic equation �� a��x��� � x� � �� �by

Theorem ������ we can �nd a holonomic equation that is satis�ed by a�x��

a�x� � ��x� ��a��x� � �
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Step �� �Compute a holonomic di�erential equation satis	ed by e�x���x
����

p
�� x��

We apply Theorem ���� �b� and obtain a di�erential equation for the Cauchy product
G�x� � h�x�a�x��

x�G�x� � ��x� ��G��x� � � ��������

Step 
� �Compute a holonomic recurrence equation satis	ed by gn�n ��
Let bgn � gn�n � We perform the transformations that are described in the proof of
Theorem ����� for �������� and get

bgn � ��n � �� bgn�� � ��n � � bgn�� � ��

Step �� �Compute a holonomic recurrence satis	ed by gn��
Remembering the proof of Theorem ���� �c� we �nd a recurrence for the Hadamard
product bgn n �

�n � ���n � �� gn � ��n � �� gn�� � � gn�� � �

�

It is important to note that the computations of each step in the previous example can
be done by a computer algebra system� For example� the Maple package gfun by Salvy
and Zimmermann �SZ��� is able to perform these �and many more� computations� With
Mathematica� the package GeneratingFunctions which has been implemented by the
author� does the calculations� This package is introduced in detail in Chapter �� Another
Mathematica package� called RComp� which was written by Nemes and Petkov�sek �NP����
provides tools for manipulations of C��nite sequences�

We will now extend the holonomic closure to some unary operations on formal power
series� To cause no confusion about integrals in �elds like C� we start out by de�ning
the inde�nite integral of a power series� Let f�x� �

P
n�� anx

n �K��x��� thenZ x

�

f�t�dt ��
X
n��

an��
n

xn� �������

Corollary �	�	 Let f�x� �
P

n�� anx
n �K��x�� be a holonomic power series� Then

�a�
R x
� f�t�dt �integral�

�b� f ��x� �derivative�

are holonomic�

Proof	 �See �KS����� �a� Let F �x� �
R x
� f�t�dt� and suppose f satis�es equation ��������

Since F ��x� � f�x�� we have to replace f �k��x� by F �k����x� in this di�erential equation
to get a holonomic equation that is satis�ed by F �x��
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�b� Let f satisfy �������� If p� � �� then g�x� � f ��x� is a solution of the di�erential
equation

q�x� � p��x�g�x� � p�g
��x� � � � �� pd�x�g�d����x� � ��

If p� �� �� we can express f as a linear combination of �� f �� f ��� � � � � f �d� in order to get a
holonomic di�erential equation where the coe�cient of f is �� Then we can proceed as
in the case that p� � �� �

Let f�x� �
P

n�� anx
n� It is a well known �and easily veri�ed� fact that

X
n��

a�nx
�n �

f�x� � f��x�

�
�

Hence X
n��

a�nx
n �

f�
p
x� � f��px�

�
�

and we immediately see that �a�n�n��� the sequence of the even elements of �an�n��� is
holonomic �Theorem ���� and Theorem ������� Besides other propositions� the following
corollary generalises this observation�

Corollary �	�	� Let �an�n��� �b
�j�
n �n�� �� � j � m� be holonomic K�sequences� If

�a� cn � an�h� where h �N� or �shift�

�b� cn �
Pn

k�� ak� or �partial sum�

�c� cn � #an �� an�� � an� or �forward di�erence�

�d� cn � adn�h� with d� h �N or �subsequence� multisection�

�e� cn � b
�r�
q with q �N� n � qm � r and � � r � m� �interlacement�

then the K�sequence �cn�n�� is holonomic�

Proof	 �a� If �an�n�� is the solution of a recurrence of type ������� then cn � an�h
clearly satis�es

q�n � h� � p��n � h�cn � p��n � h�cn�� � � � �� pd�n � h�cn�d � ��

�b� Let f�x� �
P

n�� anx
n� If cn �

P
k�� ak� we get

g�x� �
X
n��

cnx
n �

X
n��

nX
k��

akx
n �

�X
n��

anx
n
��X

n��

xn
�

�
f�x�

�� x
�
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By Theorem ����� g�x� and also �cn�n�� are holonomic�

�c� Follows immediately from Theorem ���� and �a��

�d� Because of �a�� we can assume h � �� Let f�x� �
P

n�� anx
n and assume that

� � C is a dth root of unity�� i�e��

�p � � � p � � �mod d�� for p �N� ��������

We de�ne

g�x� ��
X
n��

bnx
n ��

�

d

dX
j��

f��jx��

By de�nition we have

bn �
an
d

�
�n � ��n � � � �� �dn��

If n � � �mod d� we �nd that bn � an�

If n � p �mod d� �� � p � d�� we get bn � ans�d� where s � �p � ��p � � � �� �dp�
Since �pd � �� we observe that s � �p�� � �p � � � �� �p�d���� � �ps� With �������� we
have �p �� � and hence s � � and also bn � ��

Thus we have shown that g�x� �
P

n�� adnx
dn� Let

h�x� � g�x��d� �
X
n��

adnx
n �

X
n��

cnx
n�

By Theorem ���� and Theorem ������ both h�x� and �cn�n�� are holonomic�

�e� Assume fj�x� �
P

n�� b
�j�
n xn for �� � j � m� and g�x� �

P
n�� cnx

n� Now we
obtain

g�x� � f��x
m� � xf��x

m� � � � �� xm��fm���xm��

which is holonomic by Theorem ����� and ����� �

Remark	 The proof of Corollary ������d� tells us to compute the multisection cn � and
the following way� If f�x� �

P
n�� anx

n and h�x� �
P

n�� cnx
n� we get

h�x� �
�

d

dX
j��

f�aj �x���

where the algebraic functions aj�x� satisfy aj
d�x��x � � �� � j � d�� Hence h�x� is the

linear combination of d functions f�aj �x�� �� � j � d�� all of which satisfy a common
di�erential equation� which can be computed if we follow the proof of Theorem ������ It

�As we will see in the remark	 following this proof	 it is not necessary that � �K�
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is clear that h�x� is also a solution of this di�erential equation� and we need not compute
a di�erential equation that is satis�ed by the sum of d holonomic functions�

However� experimental results have shown that it is not advisable to do multisection
of a sequence via algebraic substitution� A more e�cient method would be as follows�

Suppose the sequence �an�n�� is a solution of a recurrence of order d��

q�n� � p��n�an � p��n�an�� � � � �� pd��n�an�d� � �

Thus we also have

q�nd� � p��nd�and � p��nd�and�� � � � �� pd� �nd�and�d� � �� ��������

Given k �N� we can use �������� to compute rational functions rk�j� sk such that

a�n�k�d � and�dk � sk�n� �

d���X
j��

rk�j�n�and�j �

Now� the search for an inhomogenous holonomic recurrence of order d�� that is satis�ed
by �cn�n�� with cn � and� corresponds to solving a system of d� � � homogenous linear
equations in d� � � variables� This system has a nontrivial solution� �

Example �	�	� �by Herta T� Freitag� �Rab�� p� �����
Let Fn be the nth Fibonacci number �page ���� Ln denotes the nth Lucas number� which
is recursively de�ned by Ln�� � Ln�� � Ln with L� � �� and L� � ��
Prove that for all positive integers n

�nX
k��

F	k��L	k � � �mod ��� ��������

Via multisection we �nd that

F	�n����� � ��F	�n����� � F	n�� and L	�n��� � ��L	�n��� � L	n�

Now� the Hadamard product Gn � F	n��L	n satis�es

Gn�� � ���Gn�� � ���Gn�� �Gn�

and going via a di�erential equation� satis�ed by the generating function
P

n��Gnx
n

�see proof of Corollary ������b��� we see that Hn �
Pn

k��F	k��L	k is a solution of the
recurrence

Hn�� � ��Hn�� � ��Hn�� �Hn�

and we get for the subsequence H�n

H��n��� � �����H��n���� �����H��n��� � H�n�

This recurrence and the initial conditions H� � �� H� � ���� and H� � ��������
prove ��������� �
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In Chapter � we will apply the theory discussed in this chapter to a lot of �real
life� examples� We will see that a number of problems concerning identities between
functions and sequences� summation� combinatorial enumeration� a�s�o�� are covered by
the holonomic universe� Therefore they can be solved almost completely �automatically��
i�e�� the computer does the routine jobs and we can concentrate on the creative parts�

��� The Multivariate Case

Zeilberger �Zei��� generalised the concept of univariate holonomic functions and se�
quences to the multivariate case� However� his de�nition does not preserve the one�to�one
correspondence between holonomic �multivariate� sequences and their �multivariate� gen�
erating functions� Lipshitz �Lip��� pointed at this shortcoming and cured this de�ciency
by adjusting the de�nition of holonomic �or in his notation P�recursive� sequences in
several variables appropriately�

Holonomic systems are obtained� if we consider multivariate functions of one or more
continuous and$or discrete variables� �An instance of a holonomic system are the Gegen�
bauer polynomials C�

n �x� given in Example ������

Since this thesis concentrates on holonomic univariate functions� we omit exact def�
initions of multivariate holonomicity� Detailed descriptions and discussions were given�
for example� by Chyzak �Chy���� Gessel �Ges���� Lipschitz �Lip��� and Zeilberger �Zei����



Chapter �

My Mathematica Package

��� Introduction

In Chapter � we discussed some properties of holonomic sequences and their generating
functions� A closer look at the proofs of these properties reveals the fact that these
proofs contain algorithms to compute holonomic di�erential or recurrence equations for
functions or sequences that are built from other holonomic functions or sequences via
holonomicity preserving operations� For example� if two holonomic functions are given
by di�erential equations they satisfy� a holonomic di�erential equation for their sum can
be computed� if we follow Theorem ���� and its proof� Considering also the property
that holonomic functions and sequences are completely determined by a �nite amount of
information� i�e�� a di�erential or recurrence equation together with �nitely many initial
values� it is evident that we have a machinery consisting of systematic methods to handle
manipulations of holonomic functions and sequences�

Since it is possible to perform zero recognition� in the holonomic universe� we can au�
tomatically proof any identity that contains holonomicity preserving manipulations� In
the case of sequences� these manipulations are additions� �termwise or Cauchy� multipli�
cations� partial �inde�nite� summation� di�erences� shifts� subsequences �with constant
step width� and interlacements� Holonomic power series may be manipulated by addi�
tions� �termwise or Cauchy� multiplications� inde�nite integrations� di�erentiations� and
compositions with algebraic functions�

These computations can be performed if the power series and sequences are de�ned
over a computable �eld K� where K is Q or a �nitely generated extension of Q �pos�
sibly containing complex algebraic numbers� or the �eld of rational functions in several

�The problem of verifying that f�x� � � for all x � R is not in general decidable as shown by
Richardson �Ric���

�
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indeterminates over Q or its extension� respectively��

B� Salvy and P� Zimmermann �SZ��� �INRIA Paris� France� implemented these ma�
nipulations in Maple � Their package gfun� also contains procedures that perform guess�
ing�

Based on the ideas and the philosophy of gfun the author implemented the Math�

ematica package GeneratingFunctions�� The implementation of some easy�to�use and
user�friendly interfaces was inspired by I� Nemes� and M� Petkov�sek�s Mathematica pack�
age RComp �NP���� which contains procedures for manipulating and computing with
C��nite or C�recursive sequences� i�e� holonomic sequences that satisfy recurrences with
constant coe�cients� A great part of the procedures require the solution of systems of
linear equations where the coe�cients are rational functions �in possibly more than one
indeterminate�� These linear systems are solved by a Nullspace procedure which has
been implemented by E� Aichinger�

In this chapter we want to describe the structure and the functionality of the package
GeneratingFunctions� hence it may be regarded as a manual� Moreover� the examples
that are given� shall illustrate how the package may be used as an assistant that does
the �routine jobs� in the process of solving problems�

��� Installation

The implementation consists of the following three �les�

GeneratingFunctions�m The Mathematica source code
examples�txt A Mathematica session containing examples
readme�txt Information about previous and current versions

By typing the Mathematica command ��GeneratingFunctions�m the whole package
is installed� �Be sure that Mathematica �nds the directory where this �le is located��
If your operating system does not allow �le names with more than eight characters �or
if you don�t want to type this lengthy name�� simply rename the �le that contains the
source code into� for instance� GF�m� Then the package can be loaded by the command
��GF�m�

��� Classi�cation

To describe the procedures� we split the package GeneratingFunctions into four basic
parts�

�Though Mathematica is able to handle transcendental constants like � or e in most cases	 non
algebraic extensions of Q should be used carefully�

�See Appendix A for the availability of this package�
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�� Transformation part� A holonomic sequence is characterized by a recurrence to�
gether with some initial values� A holonomic function �or power series� may be
de�ned by a di�erential equation and initial values� Some of the procedures in this
part transform a recurrence into a di�erential equation for the generating function
of the sequence� and vice versa� We also provide tools to switch between the �rst
terms of a sequence� which are given by a list� and the truncated power series of a
certain type of generating function�

Procedures 
Aliases�	

ListToList �L�L�

ListToSeries �L�S�

SeriesToList �S�L�

SeriesToSeries �S�S�

RecurrenceEquationToDifferentialEquation �RE�DE�

DifferentialEquationToRecurrenceEquation �DE�RE�

RecurrenceEquationToList �RE�L�

�� Guessing part� Given the initial terms of a sequence or power series� these proce�
dures try to guess a holonomic sequence or function �sometimes of a special type�
that has these initial terms�

Procedures 
Aliases�	

GuessRecurrenceEquation �GuessRE�

GuessDifferentialEquation �GuessDE�

GuessRationalFunction �GuessRatF�

GuessAlgebraicEquation �GuessAE�

� Closure properties� This part is the �heart� of the package� It is an implementation
of the results that are proved in Section ����

Procedures 
Aliases�	

RecurrenceEquationPlus �REPlus�

RecurrenceEquationHadamard �REHadamard�

RecurrenceEquationCauchy �RECauchy�

DifferentialEquationPlus �DEPlus�

DifferentialEquationHadamard �DEHadamard�

DifferentialEquationCauchy �DECauchy�

AlgebraicEquationToDifferentialEquation �AE�DE�

AlgebraicCompose �ACompose�

RecurrenceEquationSubsequence �RESubsequence�

RecurrenceEquationShadow �REShadow�
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RecurrenceEquationInterlace �REInterlace�

HomogenousRecurrenceEquation �HomogenousRE�

HomogenousDifferentialEquation �HomogenousDE�

�� Interface to the system� In principle� the procedures in the parts �! contain enough
tools to work with holonomic sequences and their generating functions �in the scope
of the closure properties�� However� these computations might demand some typing
e�ort from side of the user� Therefore we provide some user interfaces that make
it possible to de�ne sequences and functions via holonomic equations� Once these
de�nitions are performed� we can add� subtract� multiply� verify identities� a�s�o��
just by typing �� �� �� ��� etc�

Procedures 
Aliases�	

DefineSequence �DefineS�

DefineFunction �DefineF�

RecurrenceEquationOut �REOut�

DifferentialEquationOut �DEOut�

Additional �short form� operations for sequences	

�	 �	 �	 ��	 PSum	 Delta	 Shift

Additional �short form� operations for functions	

�	 �	 �	 ��	 Integrate	 D	 Series

Remark	 Following a Mathematica philosophy� the names given to the procedures in
this package are fully spelt out� i�e�� the words in the procedure calls are not abbreviated�
However� the user has to do a lot of typing� whenever he calls some of these procedures�
For this reason� the author supplied aliases for the procedure names that are easier typed
and still descriptive enough to understand their actions�

In order to avoid ugly and lengthy Mathematica expressions� we subsequently will
also use the shorter aliases in most cases�

��� The Input Equations

Most of the procedures in GeneratingFunctions take recurrence� di�erential and$or
algebraic equations as input� In this section we discuss the structure of the input equa�
tions�
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����� Recurrence Equations

We characterize a recurrence in a
n�� �a and n are symbols��

� A recurrence equation �RE� may be a single recurrence relation �RR� or a list
consisting of exactly one RR and an arbitrary number of initial conditions for an
RE �ICR��

� An RR is a Mathematica expression R of the form

R�n���a
n�b���a
n�b� � ���� � � � a
n�b� � d���

where b� is any integer� d any nonnegative integer� and R is rational in n and linear
with respect to the other variables� We will refer to this expression as R�a� n� b�� d��
�Note� that this de�nition allows inhomogenous recurrences of the form ��������

Alternatively� an RR may be given as an equation of the form

lhs��rhs�

where this expression can be transformed into

R�a� n� b�� d���

just by moving rhs to the left and clearing denominators� �Note� that this may
cause troubles if the common denominator vanishes for some nonnegative integer�
Hence� in the case that this denominator is not free of the variable n� a warning
message is given��

If b� 	 �� the equation R�a� n� b�� d� � � is interpreted to be valid for all n 	 ��

If b� � �� then R�a� n� b�� d� � � is assumed to hold for all n 	 �b� or� equiva�
lently� R�a� n� �� d� � � for n 	 �� where R is obtained from R by replacing every
occurrence of n by n� b��

� An ICR is an equation �containing possibly more than one �����sign� that involves
at least one of the expressions a
�� a
���� � � �a
n��� where n� is a nonnegative
integer �which does not necessarily depend on b� or d�� The ICR must not contain
the variable n�

Following these rules� the sequence of Fibonacci numbers �see �������� which starts
with ���������������etc�� might be de�ned in several di�erent ways�

�f
n�����f
n��f
n���	 f
���	 f
������

�f
n����f
n��f
n���	 f
����f
������

�f
�����	 f
n���f
n����f
n���	 f
����f
�����
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Possible recurrences for n � the sequence of factorials� would be�

�a
n���n�a
n���	 a
�����

�a
n����a
n���n��	 a
�����

�a
n����a
n������n����n	 a
���a
������

A recursive de�nition of the Gegenbauer polynomials C�
n �x� �see Example ����� might

be given by�

�c
n��������n���al��c
n�����n���al��x�c
n������n���	c
����	c
�����al�x�

�We used the variable al for ���

The recurrences may also be given without initial conditions� for instance� f
n�����
f
n��f
n��� is an RE that represents the whole solution space of this recurrence� Other
admissible input forms show up in the subsequent sections of this chapter�

Finally� we want to give a few examples of recurrences that are not accepted�
a
��n�����a
n� �This recurrence is not holonomic��
�a
n�����a
n��a
�	a
����� �Initial values must not show up in the RR��
�b
n���b
n����n�	b
����� �The inhomogenous part is not rational in n��

����� Di�erential Equations

We characterize a di�erential equation in f
x�� �f and x are symbols��

� A di�erential equation �DE� may be a single di�erential relation �DR� or a list
consisting of exactly one DR and an arbitrary number of initial conditions for a
DE �ICD��

� A DR is an expression D of the form

D�x���f
x��f�
x��� � �� Derivative
d�
f�
x�� �

where d is a nonnegative integer� and D is rational in x and linear with respect to
the other variables� We will refer to this expression as D�f� x� d�� �Note� that this
de�nition allows inhomogenous di�erential equations of the form ���������

Alternatively� a DR may be given as an equation of the form

lhs��rhs�

where this expression can be transformed into

D�f� x� d���

ust by moving rhs to the left and clearing denominators� �Note� that this may
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cause troubles if the common denominator vanishes at the origin� Hence� in the
case that this denominator is not free of the variable x� a warning message is given��

The equation D�f� x� d� � � is assumed to be valid for all x in the ground domain�

� An ICD is an equation �containing possibly more than one �����sign� that involves
at least one of the variables f
��f�
��� � � � Derivative
n��
f�
�� where n� is
a nonnegative integer �which does not necessarily depend on d�� The ICD must
not contain the variable x�

Following these rules� the generating function of the sequence of Fibonacci numbers
might be de�ned in several di�erent ways�

f
x���x����x�x���

����x����f
x����x�x���x����f�
x�	f
���	f�
�����

For example� we can de�ne the sine function sin�x� via�

�s��
x����s
x�	s
���Sin
�	s�
���Cos
��

The generating function f�y� �
P

n��C
�
n �x�yn of the Gegenbauer polynomials C�

n �x�
�see Example ������ might be given by�

���al��x�y��f
y�������x�y�y����f�
y�	f
�����

�We used the variable al for ���

The di�erential equations may also be given without initial conditions� Other ad�
missable input forms show up in the subsequent sections of this chapter�

The following examples are equations that are not accepted�
f
x�����f�
x��� �This equation is not holonomic��
�f�
x���f
x�	f
������ �Initial values must be given at ���
�f��
x��f
x��Exp
x�	f
����� �The inhomogenous part is not rational in x��

����� Algebraic Equations

We characterize an algebraic equation in f
x�� �f and x are symbols��

� An algebraic equation �AE� may be a single algebraic relation �AR� or a list con�
sisting of exactly one AR and at most one initial condition for an AE �ICA��

� An AR is an expression A�f� x�� that is rational in x and polynomial in f
x�� �For
f
x� the abbreviation f is allowed��
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Alternatively a AR may be given as an equation of the form

lhs��rhs�

where this expression can be transformed into

A�f� x���

just by moving rhs to the left and clearing denominators� �Note� that this may
cause troubles if the common denominator vanishes at the origin� Hence� in the
case that this denominator is not free of one of the variables f
x� or x� a warning
message is given��

The equation A�f� x� � � is assumed to be valid for all x in the ground domain�

� An ICA is an equation that involves the variable f
�� The ICA must not contain
the variable x�

Following these rules� the generating function of the sequence of Catalan numbers
�see page ��� might be de�ned in one of the following ways�

��c
x�����x��c
x���	c
�����

�x�c���c��	c
�����

The algebraic equations may also be given without initial conditions� Other admiss�
able input forms show up in the subsequent sections of this chapter�

The following examples are algebraic equations that are not accepted�
f
x�����f
x��� �This equation is not algebraic��
�f
x���Sqrt
��x�	f
����� �This equation does not de�ne the

algebraic function via an algebraic equation��

��� The Transformation Part

Holonomic sequences have the nice property that the elements can be quickly computed
�a�ording little computer memory�� A procedure that is described below does this job�
i�e�� it takes a holonomic recurrence as input and returns some elements of the sequence�

Sometimes we try to solve a problem with holonomic sequences via their generating
functions or vice versa�

In other cases we are given the �rst terms of a sequence and we want to get a truncated
power series of the exponential generating function of this sequence�

The procedures that are described in this section perform these �and other� transfor�
mations�

We introduce some di�erent types of generating functions� Let �an�n�� be an arbi�
trary sequence� We de�ne
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�a� f�x� �
P

n�� anx
n� �ordinary generating function�

�b� bf �x� �
P

n�� anx
n�n � �exponential generating function�

�c� f��x�� where f��f�x�� � x and �reverse ordinary generating function�

�d� bf ��x�� where bf �� bf �x�� � x� �reverse exponential generating function�

We note that the reverse ordinary and reverse exponential generating functions are formal
power series if and only if a� � � and a� �� ��

����� ListToList �L�L�

The procedure L�L
list	transf� computes the initial terms of a sequence that is obtained
after performing the transformation transf to a sequence �or more precisely� to its
generating function�� which is given by its �rst terms list��a�	a�	� � �	ak��

The built�in transformations are �ogf�� �ordinary generating function�� �egf� �ex�
ponential generating function� and �revogf� �reverse ordinary generating function�
�revegf� �reverse exponential generating function�� which means that the elements in
the input list are regarded as power series coe�cients of the ordinary generating func�
tion� and the elements in the output list are the �rst coe�cients of the type of generating
function that is speci�ed by transf �

Examples	

In
���� ListToList
�	�	�	�	�	�	��	�egf��

� � � �

Out
��� �	 �	 �	 �	 �	 ��	 ����

� � �� ��

In
���� L�L
�	�	a	a��	a��	a���	�revogf��

� � �

Out
��� �	 �	 �a	 a 	 �a 	 a �

We mention that the transformation �ogf� is the identity� and hence input and output
list are equal� The same �result� is obtained� if no transformation is given�
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����� ListToSeries �L�S�

The procedure L�S
list	x	transf� performs a transformation� as described above� to
the input list list� The output is given as a truncated power series expansion in x� If
the third parameter is omitted� the procedure takes the default value transf��ogf��

Examples	

In
���� ListToSeries
��	�	�	�	�	��	x�

� � � � �

Out
��� � � � x � � x � � x � � x � � x � O
x�

In
���� L�S
�	�	a	a��	a��	a���	x	�revogf��

� � � � � � � �

Out
��� x � a x � a x � a x � a x � O
x�

����� SeriesToList �S�L�

Given a truncated power series� the procedure S�L
series	x	transf� outputs a list of the
�rst coe�cients of the power series� which is obtained after performing the transformation
transf to the function� In case that the third parameter is omitted� no transformation
is done� The input variable series may be given as a Taylor series �around the point ��
or as a polynomial in x�

Examples	

In
���� SeriesToList
Series
ArcSin
x�	�x		���	x�

� � �

Out
��� �	 �	 	 �	 	 ��	 	 ���	 �

� � ���

In
����S�L
x�x�����x�����x�����x�����x������x��	x	�revegf��

� � � � �� ��

Out
��� �	 �	 ����	 �	 ��	 �����	 ��	 ��������

� � �� �� � ��
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����� SeriesToSeries �S�S�

The command S�S
series	x	transf� gives the same output as performing S�L� The
output given here is a series instead of a list�

Example	

In
���� SeriesToSeries
Series
Sin
x�	�x		���	x	�revogf��

� � �

x � x � x �

Out
��� x � �� � ���� � ���� � O
x�

� � ���

����� Adding New Transformations

The command ListOfTransformations
� gives a list of the currently implemented
transformations that may be chosen in the procedure calls for L�L� L�S� S�L� S�S�

In
���� ListOfTransformations
�

Out
��� �ogf	 egf	 revogf	 revegf�

�Note that this output is a list of strings� i�e�� to refer to a transformation we have to
put it between quotes� for example �revogf���

In Section ��� we describe how all the supplied transformations may be used in
the process of guessing� In some circumstances it might be desireable to have more
transformations available� We explain in an example how the user can expand the
system� Suppose we�d like to have a transformation� which� given the initial terms of
a function �or series� f � outputs the initial terms of the reciprocal ��f � Let�s call this
transformation �rcpogf� �for reciprocal ordinary generating function��

We proceed in two steps� First� we de�ne a procedure Li�Li
list�	�rcpogf���
which does this transformation for the input list� Here� we can use the fact that Math�

ematica automatically computes the reciprocal of a series� if we type ��SeriesData
���
However� we must not forget to check wheter the input list �series� in fact has a reciprocal�

�� Case �� Series has reciprocal power series �coeff of x����� ��

Li�Li
list�	�rcpogf����Module
�x�	

CoefficientList
��SeriesData
x		list		Length
list�	��	x�

���list

�������

�� Case �� Series has no reciprocal power series �coeff of x����� ��

Li�Li
list�	�rcpogf����

Print
�Reciprocal is no power series�����list

�������
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�We note that due to the internal structure of the package the procedure name Li�Li

must not be replaced by a di�erent one�� The second step is to rede�ne the command
ListOfTransformations
�� �This step may be skipped� if we do not want to use this
command��

ListOfTransformations
�����ogf�	�egf�	�revogf�	�revegf�	�rcpogf���

Now we can use the transformation �rcpogf� just like the built in ones�

In
���� L�S
Table
ChebyshevT
n	x�	�n		���	y	�rcpogf�� ��Simplify

� � � � � � � �

Out
��� � � x y � �� � x � y � �x � x � y � �x � x � y � O
y�

����� RecurrenceEquationToDifferentialEquation �RE�DE�

The procedure RE�DE
re	a
n�	f
x�� gives a holonomic di�erential equation in f
x��
which is satis�ed by f�x�� the ordinary generating function of a sequence �an�n��� which
satis�es the recurrence re in a
n��

Example	 Let Dn be the number of derangements of n letters� �A derangement is a
permutation that has no �xed points�� If an � Dn�n � then the sequence �an�n�� is
recursively de�ned by

an � �n � ��an�� � �n � ��an�� � �� and a� � �� a� � ��

We compute a di�erential equation that is satis�ed by the exponential generating func�
tion f�x� �

P
n�� anx

n of the sequence �Dn�n���

In
���� RE�DE
�a
n���n����a
n�����n����a
n�����	a
����	a
�����	f
x��

Out
��� �x f
x� � ��� � x� f�
x� �� 	 f
� �� ��

Inhomogenous recurrences are also handled�

Example	

In
����� RE�DE
a
n������n���	a
n�	f
x��

CanRE��denom�

Warning� The input equation will be multiplied by its

denominator�

�

Out
���� �� � ��� � x� f
x� � ��x � x � f�
x� �� 	 f
� �� ��



CHAPTER �� MY MATHEMATICA PACKAGE ��

����� DifferentialEquationToRecurrenceEquation �DE�RE�

The procedure DE�RE
de	f
x�	a
n�� gives a holonomic recurrence equation in a
n��
satis�ed by �an�n�� the sequence of power series coe�cients of f�x�� which is given by
the di�erential equation de in f
x��

Example	

In
����� DE�RE
�y
x����x�y�
x��y��
x���	y
���	y�
�����	y
x�	c
n��

Out
���� ��� � � n� c
n� � �� � n� �� � n� c
� � n� �� 	 c
� �� 	

c
�� �� ��

Rational functions yield recurrences with constant coe�cients� A particular example is
the bivariate generating functions of the binomials�

Example	

In
����� DE�RE
f
y��������y�x�y�	f
y�	a
n��

CanDE��denom�

Warning� The input equation will be multiplied by its

denominator�

Out
���� ��� � x� a
n� � a
� � n� �� 	 a
� �� ��

����	 RecurrenceEquationToList �RE�L�

The procedure RE�L
re	a
n�	n�� computes the elements of a sequence �an�n��� which
satis�es the recurrence re in a
n�� from a� to an� � where n� �N�

Example	 We compute an initial segment of the sequence of the Fibonacci numbers�
�Note that the initial values do not contain f
���

In
����� RecurrenceEquationToList
�f
n���f
n����f
n���	f
����f
������	

f
n�	��

Solve��svars� Warning� Equations may not give solutions for all �solve�

variables�

Out
���� �	 �	 �	 �	 �	 �	 �	 ��	 ��	 ��	 ���
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�Mathematica gives a warning in this case� since the system does not know in advance
that the given initial values f
�� and f
�� uniquely determine the sequence��

Now we extend the recurrence to be valid for all integers� which makes it possible
to use negative indices� too� RE�L
re	a
n�	�n��� gives just one element an� of the
sequence �as a list�� where n� � Z�

Example	

In
����� RE�L
�a
n���n�a
n���	a
�����	a
n�	����

Out
���� ��������������

RE�L
re	a
n�	�n�	n��� computes the sequence from an� up to an� � if n� � n� and
n�� n� � Z�

Example	

In
����� RE�L
a
n���n��	a
n�	��	���

Out
���� ���	 ��	 ��	 ��	 ��	 ��

If no singularties arise� we can compute a segment of the sequence containing negative
indices�

Example	

In
����� RE�L
�f
n��f
��n��f
n���	f
���	f
������	f
n�	���	���

RE�L��negative�

Warning� The recurrence is extended to �some� negative

integers�

Out
���� ��	 ��	 �	 ��	 �	 	 �	 �	 �	 �	 ��

��� The Guessing Part

Sometimes it happens that we are given some elements of a sequence and we do not
know whether this sequence satis�es a holonomic recurrence�

In other cases we are faced with the problem that a holonomic sequence is given by
a recurrence equation that can not be solved in explicit terms and we we would like
to know whether the given sequence also satis�es a recurrence of a special type� which
allows us to get an explicit expression for the nth element�
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Perhaps� we are given a truncated power series� and we would like to know whether
it might come from an algebraic function�

In these cases it may help� if we try to �guess� the desired equations� Following
an idea by Bergeron and Plou�e �BP���� my package contains procedures that perform
guessing�

Remark	 The procedures described below� take lists as input� In order to get results�
the elements in the list must be constants or rational functions �in several variables�� For
example� if the input list contains the Chebyshev polynomials of the �rst kind Tn�x� �
cos�n arccos x�� it is necessary to set up the input list by

list���	x	��x����	��x�����x	����

rather than by�

list��Cos
�	Cos
ArcCos
x��	Cos
��ArcCos
x��	Cos
��ArcCos
x��	����

����� GuessRecurrenceEquation �GuessRE�

GuessRE
list	a
n�	�minorder	maxorder�	�mindeg	maxdeg�	opts� tries to �nd a ho�
lonomic recurrence equation that is satis�ed by the elements from the list list� The last
parameter opts is a �possibly empty� sequence of options� The procedure tries orders
from minorder to maxorder and degrees from mindeg to maxdeg� In case that a re�
currence is found� the output contains the recurrence in a
n� together with some initial
conditions and a transformation that had to be performed on the sequence in order to
obtain the recurrence� �See Section ����� The output is �FAIL�� if no recurrence was
found�

The default values minorder � �� maxorder � �� mindeg � �� maxdeg � � are
applied� if one of the short forms GuessRE
list	a
n�� or GuessRE
list	a
n�	maxorder	
maxdeg� is used�

GuessRE allows the following options �with the given default values��

� AdditionalEquations���All� In order to avoid accidental results� �All� ele�
ments in the input list are used to build the equations for the coe�cients of the
recurrence� Setting this parameter to a positive integer� say k� causes the procedure
to build d � k equations� where d is the number of indeterminants� This option
can be used in order to achieve a speed�up�

� Hypergeom��False If this parameter is set to be True� only m�hypergeometric re�
currences are searched for� An m�hypergeometric recurrence has the form p��n�an�
p��n�an�m � �� from which it easy to extract a closed expression for an�
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� Transform����ogf�	�egf�� This parameter gives a list of the transformations
that are tried automatically� The option Transform��ListOfTransformations
�

tells the procedure to try all implemented transformations�

Examples	

In
����� GuessRE
Table
ChebyshevT
n	x�	�n		���	T
n��

Out
���� ��T
n� � � x T
� � n� � T
� � n� �� 	 T
� �� �	

T
�� �� x�	 ogf�

An example shows the usage of the option Hypergeom��True� Suppose� we want to derive
a closed expression for the power series coe�cients of sin�x� exp�x��

In
����� list�S�L
Series
Sin
x��Exp
x�	�x		���	x��

In
���� GuessRE
list	a
n��

Out
��� ��� a
n� � ��� � � n� a
� � n� �

�

�� � � n � n � a
� � n� �� 	 a
� �� 	 a
�� �� ��	 ogf�

Since this recurrence has no special form that allows us to extract a closed expression
for the coe�cient a
n�� we try to guess a recurrence equation of this �special form�� i�e�
an m�hypergeometric recurrence�

In
����� GuessRE
list	a
n�	Hypergeom��True�

Out
���� FAIL

Perhaps a search for a recurrence of higher degree and order succeeds�

In
����� GuessRE
list	a
n�	�	�	Hypergeom��True�

� � �

Out
���� ��� a
n� � ��� � � n � �� n � � n � n � a
� � n� ��

�

	 a
� �� 	 a
�� �� �	 a
�� �� �	 a
�� �� ��	 ogf�

�
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Although we can solve this recurrence for a
n� �see� e�g� �Koe����� yet we don�t know
whether the power series coe�cients of sin�x� exp�x� are really determined by the guessed
recurrence� In Chapter  we will see how we can check the validity of a guessed holonomic
recurrence �or di�erential� equation�

It is also possible to use indeterminates�

In
����� GuessRE
�	a
��	�	�	�	�	�	�	�	�	��	a
n��

Out
���� ���� � n� a
n� � � n a
� � n� � � n a
� � n� �� 	

a
� �� 	 a
�� �� ��	 ogf�

We have seen that the tangent function is not holonomic� GuessRE also can�t �nd a
holonomic recurrence�

In
����� list�S�L
Series
Tan
x�	�x		���	x�

� � �� �� ����

Out
���� �	 �	 	 �	 	 ��	 	 ���	 	 ����	 	 ������	 	

� �� ��� ���� ������

����� ������ ������ ���������

�������	 	 ���������	 	 �����������	 	 �������������	 �

����� ��������� ���������� �������������

In
����� GuessRE
list	a
n��

Out
���� FAIL

However� if we try all available transformations� a recurrence that is satis�ed by the
power series coe�cients of the compositional inverse of tan�x� is found�

In
����� GuessRE
list	a
n�	Transform��ListOfTransformations
��

Out
���� ��n a
n� � �� � n� a
� � n� �� 	 a
� �� 	

a
�� �� ��	 revogf�

����� GuessDifferentialEquation �GuessDE�

GuessDE
list	f
x�	�minorder	maxorder�	�mindeg	maxdeg�	opts� tries to �nd a ho�
lonomic di�erential equation in f
x� that is satis�ed by the generating function of a se�
quence that has the initial elements list� The last parameter opts is a �possibly empty�
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sequence of options� The procedure tries orders from minorder to maxorder and de�
grees from mindeg to maxdeg� If a di�erential equation is found� the output contains
this equation together with some initial conditions and a transformation that had to be
performed on the sequence in order to get the recurrence� �See Section ����� The output
is �FAIL�� if no di�erential equation was found�

The default values minorder � �� maxorder � �� mindeg � �� maxdeg � � are
applied� if one of the short forms GuessDE
list	f
x�� or GuessDE
list	f
x�	maxorder	
maxdeg� is used�

GuessDE admits the following options �with the given default values��

� AdditionalEquations���All� In order to avoid accidental results� �All� ele�
ments in the input list are used to build the equations for the coe�cients of the
di�erential equation� Setting this parameter to a positive integer� say k� causes the
procedure to build d� k equations� where d is the number of indeterminants� This
option can be used to achieve a speed�up�

� Inhomog��False By default� the procedure searches for homogenous di�erential
equations only� If this parameter is set to be True� the search also includes inho�
mogenous di�erential equations of the form �������� A search with this option may
�nd a di�erential equation of lower order than the one delivered by a search with
the default option�

� Transform����ogf�	�egf�� This parameter gives a list of the transformations
that are tried� The option Transform��ListOfTransformations
� tells the pro�
cedure to try all implemented transformations�

Examples	 We try to �nd a di�erential equation that is satis�ed by f
y�� the generating
function of the Chebyshev polynomials of the �rst kind�

In
����� list�Table
ChebyshevT
n	x�	�n		�����

In
����� GuessDE
list	f
y��

Out
���� ��� f
y� � � ��x � y� f�
y� �

�

�� � � x y � y � f��
y� �� 	 f
� �� �	 f�
� �� x�	 ogf�

If we set the option Inhomog��True� we get a much simpler di�erential equation of order
� �instead of order ���

In
����� GuessDE
list	f
y�	Inhomog��True�



CHAPTER �� MY MATHEMATICA PACKAGE ��

�

Out
���� �� � x y � ��� � � x y � y � f
y� �� 	 ogf�

Now we conjecture that f
y� is a rational function over the �eld Q�x��

If we suspect a sequence to have a rational generating function� we can also use a
di�erent �and faster� procedure to do the guessing�

����� GuessRationalFunction �GuessRatF�

GuessRatF
list	x	maxdeg� tries to guess a rational generating function in x for the se�
quence� whose initial terms are given in list� The maximumdegrees of the numerator and
denominator are given by maxdeg� Short form for the function call is GuessRatF
list	x��
where the default value maxdeg � � is used� GuessRatF has the same options and default
values as GuessRE�

Example	

In
���� GuessRatF
�	�	�	�	�	�	�	��	���	x�

x

Out
��� �����������	 ogf�

�

� � x � x

����� GuessAlgebraicEquation �GuessAE�

GuessAE
list	x	�minorder	maxorder�	maxdeg	opts� tries to guess an algebraic equa�
tion in f
x� for the generating function of the sequence� whose initial terms are given
in list� The parameter opts is a �possibly empty� sequence of options� The maximum
degrees of the polynomials in the algebraic equation are given by maxdeg� The orders
�degree in f
x�� that are tried range from minorder to maxorder� Short forms for the
function call are GuessAE
list	f
x��� GuessAE
list	f
x�	maxorder	maxdeg�� where
the default values minorder � �� maxorder � � maxdeg �  are used�

GuessAE has the options AdditionalEquations and Transform� where the usage and
the default values are the same as in GuessRE�

Example	 �Special instance of an m�Raney sequence with m � � See �GKP��� p�
���� Let Rn be the number of sequences �a�� a�� � � � � a�n�� where ak � f�����g for

�� � k � n�� whose partial sums are all positive and
P�n

k�� ak � �� We �somehow�
compute a list that contains the elements Rn and try to guess an algebraic equation that
is satis�ed by the generating function f�x� �

P
n��Rnx

n�
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In
����� GuessAE
��	�	�	��	��	���	����	����	�����	������	������	

������	�����	������	���������	�����������	

�����������	����������	������������	������������	

f
x��

�

Out
���� ��� � f
x� � x f
x� �� 	 f
� �� ��	 ogf�

��	 The Closure Properties

The most important reason for working with holonomic functions and sequences are the
closure properties� discussed in Section ���� The results we obtained� have the conse�
quence that all manipulations of holonomic sequences containing additions� �termwise or
Cauchy� multiplications� partial �inde�nite� summation� di�erences� shifts� subsequences
�with constant step width� and interlacements can be done completely �automatically��

Holonomic functions may be manipulated by additions� �termwise or Cauchy� multi�
plications� inde�nite integrations� di�erentiations� and compositions with algebraic func�
tions�

Moreover� the computer can �prove� any identity that is built from these manipula�
tions of holonomic functions and sequences�

����� RecurrenceEquationPlus �REPlus�
RecurrenceEquationHadamard �REHadamard�
RecurrenceEquationCauchy �RECauchy�

REPlus
re�	re�	a
n�� gives a recurrence equation that is satis�ed by the sum of solu�
tions of the recurrences re� and re� in a
n��

Example	 Suppose two sequences �an�n�� and �bn�n�� are de�ned via the recurrences

�n � ��an � �n � ��an�� � �an�� � an�� � � and

�n � ���n � ��bn � �n � ���n� ��bn�� � ��n � ��bn�� � �n � ��bn�� � ��

respectively� �The recurrences hold for all n � N�� Suppose that both sequences have
the same initial values a� � b� � �� a� � b� � � and a� � b� � ��� We inspect the �rst�
say� ten terms of both sequences and� since all an�s and bn�s are identical for these small
values of n� we might conjecture that an � bn for all n � N� The procedure REPlus

checks this identity�

re� is the recurrence satis�ed by �an�n���
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In
����� re����n����a
n���n����a
n������a
n����a
n�����	a
���a
�����	

a
�������

Out
���� ��� � n� a
n� � ��� � n� a
� � n� � � a
� � n� �

a
� � n� �� 	 a
� �� a
�� �� �	 a
�� �� ���

re� is a recursive de�nition of the sequence ��bn�n��� �Since REPlus takes as input two
recurrences in the same variable� we have to give re� in a
n���

In
����� re����n�����n����a
n���n�����n����a
n������n����a
n���

��n����a
n�����	a
���a
������	a
������

Out
���� ��� � n� �� � n� a
n� � ��� � n� �� � n� a
� � n� �

�� � � n� a
� � n� � �� � n� a
� � n� �� 	 a
� �� a
�� �� ��	

a
�� �� ��

Finally REPlus computes a recurrence that is satis�ed by the sequence �cn�n��� where
cn � an � bn�

In
����� REPlus
re�	re�	a
n��

Out
���� ���� � n� a
n� � ��� � � n� a
� � n� � �� � n� a
� � n� �

� a
� � n� � a
� � n� �� 	 a
� �� 	 a
�� �� 	 a
�� �� 	

a
�� �� �

The initial values c� � c� � c� � c� � � of this fourth order recurrence tell us that
cn � � for n � N�

REHadamard
re�	re�	a
n�� gives a recurrence equation that is satis�ed by the Hada�
mard �or termwise� product of solutions of the recurrences re� and re��

RECauchy
re�	re�	a
n�� gives a recurrence equation that is satis�ed by the Cauchy
product �or convolution� of solutions of the recurrences re� and re�� All recurrences are
given in a
n��

Example	 Evaluate the de�nite sum

fn ��
nX

k��

�
n

k

��

�
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Since �
n

k

��

�
�n ��

�k ����n � k� ��
�

we can express the sum as fn � an
Pn

k�� bkbn�k� where an � �n �� and bn � ���n ���

First� we recursively de�ne the factorials and their reciprocal via the recurrences
factre and factrcpre�

In
����� factre��a
n������n����a
n�	a
�����

Out
���� �a
� � n� �� �� � n� a
n�	 a
� �� ��

In
����� factrcpre��a
n�����n����a
n�	a
�����

Out
���� ��a
n� � �� � n� a
� � n�	 a
� �� ��

Next� we obtain recurrences re� and re�� which are satis�ed by the sequences �an�n��
and �bn�n��� respectively�

In
����� re��REHadamard
factre	factre	a
n��

�

Out
���� ����� � n� a
n�� � a
� � n� �� 	 a
� �� ��

In
����� re��REHadamard
factrcpre	factrcpre	a
n��

�

Out
���� �a
n� � �� � n� a
� � n� �� 	 a
� �� ��

Finally� we get the recurrence sumre� which is satis�ed by fn�

In
����� sumre�REHadamard
re�	RECauchy
re�	re�	a
n��	a
n���

Out
���� ��� �� � � n� a
n� � �� � n� a
� � n� �� 	 a
� �� ��

Since sumre is a hypergeometric recurrence� it is possible to obtain a closed expression
for fn and we �nd �see Example ��������

fn �
�n��� �n

n 
�

�
�n

n

�
We want to mention here that� in the general situation� de�nite sums of the form

fn �
P

k g�n� k�� where the summand g�n� k� is hypergeometric in both variables� can be
systematically treated by Zeilberger�s algorithm �method of creative telescoping� see for
instance �Zei��� or �PWZ��� Chapter ���� Zeilberger�s algorithm has been implemented
in Mathematica by P� Paule and M� Schorn �PS����
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����� DifferentialEquationPlus �DEPlus�
DifferentialEquationHadamard �DEHadamard�

DifferentialEquationCauchy �DECauchy�

DEPlus
de�	de�	f
x�� gives a di�erential equation that is satis�ed by the sum of solu�
tions of the di�erential equations de� and de��

DEHadamard
de�	de�	f
x�� gives a di�erential equation that is satis�ed by the
Hadamard product of solutions of the di�erential equations de� and de��

DECauchy
de�	de�	f
x�� gives a di�erential equation that is satis�ed by the product
of solutions of the di�erential equations de� and de�� All di�erential equations are given
in f
x�

Examples	 We use these procedures to prove the identity sin��x� � � sin�x� cos�x��

First we de�ne the sine and the cosine functions via holonomic di�erential equations�

In
����� sinde��f
x��f��
x���	f
���	f�
�����

Out
���� �f
x� � f��
x� �� 	 f
� �� 	 f�
� �� ��

In
����� cosde��f
x��f��
x���	f
����	f�
����

Out
���� �f
x� � f��
x� �� 	 f
� �� �	 f�
� �� �

Next we are going to prove

sin��x�
 �z �
f��x�

� ���� sin�x� cos�x�
 �z �
f��x�

� �� �������

Since sin��x� �
P

n�� an�nxn� where sin�x� �
P

n�� anx
n� we get a di�erential equation

for f��x� via the Hadamard product of the functions sin�x� and ������x� �
P

n�� �nxn�

In
����� f�de�DEHadamard
sinde	f
x����������x�	f
x��

CanDE��denom�

Warning� The input equation will be multiplied by its

denominator�

Out
���� �� f
x� � f��
x� �� 	 f
� �� 	 f�
� �� ��

A holonomic di�erential equation for f��x� can be computed via the ordinary �Cauchy�
product of three functions�
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In
����� f�de�DECauchy
DECauchy
sinde	cosde	f
x��	f
x�����	f
x��

���

Out
���� �� f�
x� � f 
x� �� 	 f
� �� 	 f�
� �� ��	

f��
� �� �

We add the two functions f� and f� and get a third order di�erential equation�

In
����� DEPlus
f�de	f�de	f
x��

���

Out
���� �� f�
x� � f 
x� �� 	 f
� �� 	 f�
� �� 	

f��
� �� �

The initial values f��� � f ���� � f ����� � � tell us that this di�erential equation has the
unique solution f�x� � �� Thus ������� is proved�

In Chapter  we will have a closer look at the process of proving holonomic identities�

����� AlgebraicEquationToDifferentialEquation �AE�DE�

AE�DE
ae	f
x�� computes a holonomic di�erential equation that is satis�ed by the
algebraic function f�x�� which is given by the algebraic equation ae in f
x��

Example	 Let Gn�k be the number of plane unlabeled trees with n nodes and k leaves�
�A leaf of a tree is a node with degree one�� We try to evaluate mn� the mean number
of leaves of the trees with n nodes� If sn �

Pn
k��Gn�k� then the generating function

f�z� �
P

n�� snz
n is well�known ��FS�� p� ���� to be

f�z� �
�

�
z �

�

�

zp
�� �z

�

We call the procedures AE�DE and DE�RE to get a recursive de�nition of the sequence
�sn�n���

In
���� de�AE�DE
��f�z�������z���������z�	f
����	f
z��

CanAE��denom�

Warning� The input equation will be multiplied by its

denominator�
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� �

Out
��� �z � ��� � � z� f
z� � �z � � z � f�
z� �� 	 f
� �� �

In
����� re�DE�RE
de	f
z�	s
n��

� �

Out
���� ��� � � n � � n � s
n� � �n � n � s
� � n� �� 	 s
� �� �

The recurrence re is hypergeometric and �although the initial conditions s� � � and
s� � �� which are required for a unique reperesentation of the sequence� are missing�� we
can compute sn in closed form�

sn �

��
n if n � �

� �n��
�
n� ��
n� �

�
if n 	 �

The total number of unlabeled plane trees with n nodes is the nth Catalan number
Cn �

��n
n

�
��n� �� �� see page �� and �FS�� page ���� Now the mean number of leaves

mn � sn�Cn is found to be

mn �

�
� if n � �

n�� if n 	 �
�

�Since there is no tree with � nodes� m� is not de�ned��

����� AlgebraicCompose �ACompose�

ACompose
de	ae	f
x�� computes a di�erential equation that is satis�ed by a function
f�g�x��� where f�x� is a solution of the di�erential equation de in f
x�� g�x� is a solution
of the algebraic equation ae� �Note that both input equations as well as the output
equation are given in f
x���

Example	 We prove Gauss�s identity �GKP��� p� ���� for hypergeometric functions�
Using the notation introduced in Example ������� this identity reads as follows�

�F�

� a� b
a � b � �

�

����x��� x�
�

� �F�

� �a� �b
a � b � �

�

���x� �������

Let tn be de�ned by

tn � �xn��F�
� a� b

a � b � �
�

���x��
Via ������ we �nd a recurrence equation for the Taylor coe�cients tn� which we transform
into a di�erential equation that is satis�ed by its generating function�
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In
����� de�RE�DE
�t
n����t
n����n�a���n�b���n�a�b�������n���	

t
�����	t
n�	F
x���

Now we derive the di�erential equation de�� satis�ed by the function on the left of ��������
via algebraic composition�

In
����� de��ACompose
de	F
x�����x����x�	F
x��

Out
���� �� a b F
x� � ��� � � a � � b � � x � � a x � � b x�

�

F�
x� � � ��x � x � F��
x� �� 	 F
� �� �	

� a b

F�
� �� ��������������

� � � a � � b

Similarly de� is satis�ed by the function on the right of ��������

In
����� de��RE�DE
�t
n����t
n����n��a���n��b���n�a�b�������n���	

t
�����	t
n�	F
x��

CanRE��denom�

Warning� The input equation will be multiplied by its

denominator�

Out
���� ��� a b F
x� � �� � � a � � b � � x � � a x � � b x�

�

F�
x� � � �x � x � F��
x� �� 	 F
� �� �	

� a b

F�
� �� ��������������

� � � a � � b

It is evident that the di�erential equations de� and de� de�ne the same hypergeometric
function�

����� RecurrenceEquationSubsequence �RESubsequence�

RESubsequence
re	a
n�	d�n�h� gives a recurrence that is satis�ed by a subsequence
of the form �adn�h�n�� of every solution �an�n�� of the input recurrence re in a
n�� d
and h are assumed to be a positive and an arbitrary integer� respectively�
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Example	 �The American Mathematical Monthly� Problem ������ Prove that there
are in�nitely many positive integers m such that

sm �
�

� � �m
mX
k��

�
�m � �

�k

�
k

is an odd integer�

Suppose we already derived a recurrence for the sequence �sm�m�� �either by working
with the procedures described above� or via Zeilberger�s algorithm��

In
����� re��s
m����s
m����s
m�����	s
������	s
������

�

Out
���� �s
m� � � s
� � m� � s
� � m� �� 	 s
� �� �	 s
�� �� ��

�

We look at the �rst terms of the sequence�

In
����� RE�L
re	s
m�	��

� �� �� ��� ���� ���� ������

Out
���� ��	 �	 ��	 ��	 ��	 ���	 ����	 ����	 �����	 ������	 ������

� � � � � � �

and conjecture that all entries in the subsequence �s�m���m�� are odd integers� This
conjecture is easily veri�ed�

In
����� RESubsequence
re	s
m�	�m���

Out
���� �s
m� � �� s
� � m� � s
� � m� �� 	 s
� �� �	 s
�� �� ���

Indeed� it is obvious that this recurrence �together with the given initial values� de�nes
a sequence of odd integers�

����� RecurrenceEquationShadow �REShadow�

REShadow
re	a
n�� gives a recurrence that is satis�ed by the shadow of any solution of
the input recurrence� i�e�� if the sequence a�� a�� a�� � � �� satisfying the input recurrence re
in a
n�� can be extended to be valid for all n � Z� then this procedure gives a recurrence�
which is satis�ed by the sequence a�� a��� a��� � � ��

Example	 The recurrence in this example de�nes a sequence� say �an�n��� that starts
with �� �� �� 	� �



� � � � � � If we extend the validity of this recurrence from N to the set of all

integers� it is possible to come up with a recurrence that is satis�ed by the sequence of
elements with nonpositive indices�
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In
����� REShadow
�a
n���n����a
n�������n����a
n�����	

a
���a
������	a
n��

RE�L��negative�

Warning� The recurrence is extended to �some� negative integers�

Out
���� ���� � � ��� � n�� a
n� � ��� � n� a
� � n� � a
� � n� �� 	

a
� �� �	 a
�� �� ���

The output recurrence is satis�ed by the sequence �a�n�n�� with the �rst terms ��!��
!��!����� � ��

����� RecurrenceEquationInterlace �REInterlace�

REInterlace
re�	re�	� � �	rek	a
n�� gives a recurrence that is satis�ed by interlacing
solutions of the recurrences re�� re�� � � � � rek� This means� if �a�n�n��� �a�n�n��� � � � �
�akn�n�� satisfy the input recurrences �which are all given in a
n��� then the interlace�
ment of these sequences starts with a��� a��� � � � � ak�� a��� � � � � ak�� a�� a�s�o�

Example	��GKP��� Exercise ������ Evaluate sn �
Pn

k��

�
n
k

�
�dk��� e� given an integer

n 	 ��

We can rewrite this sum as

sn � n 
nX

k��

ak
k 

�

�n� k� 
� ������

where �an�n�� is given by

an �

�
n � �

�

���
�

�
�

m�� � if n � �m� m �N
�

m�� � if n � �m � �� m �N �

Now� we get the recurrence re that is satis�ed by the sequence �an�n��� by interlacing
two �identical� rational sequences�

In
����� re�REInterlace
a
n������n���	a
n������n���	a
n��

CanRE��denom�

Warning� The input equation will be multiplied by its

denominator�



CHAPTER �� MY MATHEMATICA PACKAGE ��

CanRE��denom�

Warning� The input equation will be multiplied by its

denominator�

�

Out
���� ��� � � n � n � a
n� � � �� � n� �� � n� a
� � n� �

�

�� � n� �� � n� a
� � n� �� 	 a
� �� �	 a
�� �� �	 a
�� �� �	

�

�

a
�� �� ��

�

Next� ������ tells us how to compute a recurrence for �sn�n���

In
���� REHadamard
RECauchy
REHadamard
re	��n����a
n�����a
n�	a
�����	

a
n��	��n����a
n�����a
n�	a
�����	a
n��	�a
n������n����a
n�	

a
�����	a
n��

�

Out
��� �� �� � n� �� � n� a
n� �

� �� � n� �� � n� �� � n� a
� � n� �

�� � n� �� � n� �� � � n� a
� � n� �

�

�� � n� �� � n� a
� � n� � �� � n� �� � n� a
� � n� �� 	

�

a
� �� �	 a
�� �� �	 a
�� �� �	 a
�� �� ��

�

It remains to �nd closed form solutions of this recurrence� We apply Petkov�sek�s algo�
rithm HYPER� which is a method to �nd all hypergeometric solutions of a holonomic
recurrence �see �Pet����� to obtain these solutions and� after some simpli�cations� we �nd
that

sn �
���n�� � ��

n � �
�
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����	 HomogenousRecurrenceEquation �HomogenousRE�

HomogenousRE
re	a
n�� gives a homogenous recurrence equation that is satis�ed by
any solution of the �possibly� inhomogenous recurrence re in a
n��

Example	 In some cases� for example� if we want to �nd hypergeometric solutions of
a recurrence via Petkov�sek�s algorithm HYPER �Pet���� it is necessary to represent a
sequence via a homogenous recurrence�

In
����� HomogenousRE
b
k���k�b
k������k	b
k��

CanRE��denom�

Warning� The input equation will be multiplied by its

denominator�

� �

Out
���� ��� � � k � k � b
k� � �� � � k � k � b
� � k� �

�� � k� b
� � k� � ��� � k� b
� � k� �� 

����
 HomogenousDifferentialEquation �HomogenousDE�

HomogenousDE
de	f
x�� gives a homogenous di�erential equation that is satis�ed by
any solution of the �possibly� inhomogenous di�erential equation de in f
x��

Example	

In
����� HomogenousDE
�f�
x��������x���	f
����	f
x��

CanDE��denom�

Warning� The input equation will be multiplied by its

denominator�

�

Out
���� ��� x f�
x� � �� � x � f��
x� �� 	 f
� �� 	 f�
� �� ��

��
 The Interface to the System

The procedures that were introduced in the previous sections are tools to work with and
to manipulate holonomic power series and sequences� These tools are powerful enough
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to solve a lot of problems that can be stated in the holonomic universe� In particular�
it is possible to check and prove holonomic identities� However� it is often not very
convenient to do the proofs by just using the so far introduced procedures�

We illustrate this point via a the following standard example� Suppose we want to
prove Cassini�s identity

Fn��Fn�� � F �
n � ����n for n �N� �������

where Fn is the nth Fibonacci number given by ������� Using Mathematica together with
the procedures introduced so far� one might check �and hence also prove� this identity
as follows�

In
����� re��f
n���f
n����f
n���	f
���	f
������ �� f
n� ��

Out
���� �f
n� �� f
�� � n� � f
�� � n�	 f
� �� 	 f
�� �� ��

In
����� re��RE�Subsequence
re	f
n�	n��� �� f
n��� ��

Out
���� ��f
n� � f
� � n� � f
� � n� �� 	 f
� �� �	 f
�� �� ��

In
����� re��RE�Subsequence
re	f
n�	n��� �� f
n��� ��

RE�L��negative�

Warning� The recurrence is extended to �some� negative

integers�

Out
���� ��f
n� � f
� � n� � f
� � n� �� 	 f
� �� �	 f
�� �� �

In
����� lhs��REHadamard
re�	re�	f
n�� �� f
n����f
n��� ��

Out
���� �f
n� � � f
� � n� � � f
� � n� � f
� � n� �� 	

f
� �� �	 f
�� �� 	 f
�� �� ��

In
����� lhs��REHadamard
 �� �f
n��� ��

REHadamard
re	re	f
n��	

f
n�����	

f
n��
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Out
���� �f
n� � � f
� � n� � � f
� � n� � f
� � n� �� 	

f
� �� 	 f
�� �� ��	 f
�� �� ���

In
����� lhs���f
n����f
n���	f
������ �� ������n ��

Out
���� �f
n� �� �f
�� � n�	 f
� �� ���

In
����� REPlus
 �� f
n����f
n����f
n���������n ��

REPlus
lhs�	lhs�	f
n��	

lhs�	

f
n��

Out
���� �f
n� � � f
� � n� � � f
� � n� � f
� � n� �� 	

f
� �� 	 f
�� �� 	 f
�� �� �

The last recurrence� which is satis�ed by the sequence Fn��Fn�� � F �
n � ����n� is of

order three and� since the �rst three initial values are equal to zero� identity ������� is
proved�

Considering the amount of work this �quite easy � proof has required� one is probably
faster in doing the job with a pencil on a sheet of paper� However� this example gives
the motivation to use the generic programming facilities of Mathematica as follows� We
represent a holonomic sequence or power series by a certain data structure� If the system
knows how to carry out operations like addition� multiplication� etc�� for an input that
matches this structure� it is possible to use the symbols �� �� a�s�o�� for these and other
operations�

The package GeneratingFunctions provides tools to transform a recurrence or dif�
ferential equation into this data structure �and vice versa� and tells Mathematica how to
handle expressions containing the sequences and functions that are represented by such
a structure�

��	�� DefineSequence �DefineS�

Let re be the Mathematica expression for a recurrence equation of the form ������ in
a
n�� Let n� be the highest index that occurs in the �possibly empty� list of ICR�s in
re�

The procedure DefineS
re	a
n�� returns an internal representation of the sequence
or �in the case that the initial conditions do not de�ne a unique sequence� of a family of
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sequences that is$are de�ned via re� The output is given as

RE
��q�n�	p��n�	� � �	pd�n��	�a�	� � �	an���	a
n��� �������

If two sequences �an�n�� and �bm�m�� are represented by the Mathematica variables
A and B via A�DefineS
re�	a
n�� and B�DefineS
re�	b
m��� respectively� then all
the procedures that were introduced in the sections ��� and ��� and that have recurrence
equations in the input� may be called without giving the recurrence variable a
n�or
b
m�� For example REPlus
A	B� is a valid procedure call� even if the recurrences are
given in di�erent variables�

In the case that the input recurrence�s� is$are represented in the internal form ��������
all the procedures also return the output recurrences in this form� In addition� the fol�
lowing univariate and bivariate operations are available�

Delta
A� forward di�erence an�� � an
PSum
A� partial sum

Pn
k�� ak

Shift
A	h� shift an�h� h � Z
A�h hth power ahn� h � N
A�B�A�B sum� di�erence an  bn
A�B termwise or Hadamard product anbn
A��B evaluation of an � bn for all n �N

Concerning the bivariate operations� one of the input sequences may also be a rational
expression in n or m� respectively�

Examples	 Using these additional tools� Cassini�s identity ������� can be quickly proved
as follows�

In
���� F�DefineS
re	f
n��

Out
��� RE
��	 ��	 ��	 ��	 �	 ���	 f
n��

In
����� Shift
F	���Shift
F	����F����

DefineS
�f
n����f
n���	f
�����	f
n��

RE�L��negative�

Warning� The recurrence is extended to �some� negative

integers�

Out
���� True
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In the following example we illustrate� how to prove a special function identity� Let

L
���
n �x� be the nth Laguerre polynomial� which is recursively de�ned by

L
���
n���x� �

�

n � �

�
��n � � � ��L���

n �x� � ��n �  � �� x�L
���
n���x�

�
�

where L
���
� �x� � � and L

���
� �x� � � � � � x� We want to prove the identity ��AS���� p�

���

L�����
n �x� �

�

x

�
�x� n�L���

n �x� � �� � n�L
���
n���x�

�
� �������

This proof might be performed as follows �� will be replaced by al��

In
����� lag
al�	x����DefineS
����al�n��l
n������al���n�x��l
��n�

����n��l
��n���	l
������al�x	l
�����	l
n��

In
�����lag
al��	x�����x��x�n��lag
al	x���al�n��Shift
lag
al	x�	����

��Simplify

RE�L��negative�

Warning� The recurrence is extended to �some� negative integers�

EqualRE��IntegerRoots�

Warning� The result is correct	 provided that the polynomial

 LeadingPolynomial�

� �

�� � n� �� � ������ �al � al � � x � ����� � � n x �

contains no integer root greater ���

Out
���� True

The global variable  LeadingPolynomial is the leading coe�cient of a recurrence satis�
�ed by the sequence which is obtained by subtracting the right hand side from the left
hand side of the input equation� To verify that all the elements in this sequence are iden�
tical zero� it is su�cient to check that a �nite number of� say n�� initial values are �� The
number n� depends on the maximum integer for which  LeadingPolynomial vanishes�
hence it remains to determine the nonnegative integer roots of  LeadingPolynomial�

We do not perform this step here� The problem is discussed in more detail in Chapter
�

��	�� DefineFunction �DefineF�

Let de be the Mathematica expression for a di�erential equation of the form ������� in
f
x�� Let n� be the highest index that occurs in the �possibly empty� list of ICD�s in
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de�

The procedure DefineF
de	f
x�� returns an internal representation of the function
or �in the case that the initial conditions do not de�ne a unique function� of a family of
functions that is$are de�ned via de� The output is given as

DE
��q�x�	p��x�	� � �	pd�x��	�f���	� � �	f �n�������	f
x��� �������

If two power series f�x� and g�y� are represented by the Mathematica variables F
and G via F�DefineF
de�	f
x�� and G�DefineF
de�	g
y��� respectively� then all the
procedures that were introduced in the sections ��� and ��� and that have di�erential
equations in the input� may be called without giving the function variable f
x� or g
y��
For example DEPlus
F	G� is a valid procedure call� even if the equations are given in
di�erent variables�

In the case that the input di�erential equation�s� is$are represented in the internal
form �������� the procedures also return the output di�erential equations in this form�
In addition� the following univariate and bivariate operations are available�

D
F� derivative f ��x�
Integrate
F� inde�nite integral

R x
� f�t�dt

Series
F	n�� truncated series expansion
Pn�

n�� f
�n�����n xn� n� �N

F�h hth power f�x�h� h �N
F�G�F�G sum� di�erence f�x�  g�x�
F�G Cauchy product f�x�g�x�
F��G evaluation of� f�x� � g�x� for all x � K

Concerning the bivariate operations� one of the input functions may also be a rational
expression in x or y� respectively�

Examples	 We prove the identity sin��x� � � sin�x� cos�x�� The �rst step is to de�ne
the sine and the cosine function�

In
����� si�DefineF
�f
x��f��
x���	f
���	f�
�����	f
x��

Out
���� DE
��	 �	 	 ��	 �	 ���	 f
x��

In
����� co�D
si�

Out
���� DE
��	 �	 	 ��	 ��	 ��	 f
x��

It remains to type in the speci�ed equation�
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In
����� ACompose
si	f���x�����si�co

Out
���� True

As in the case of sequences� the leading polynomial of a di�erential equation that is
satis�ed by the di�erence of the left and the right hand side of the input equation� may
cause troubles in the proof process� If this leading polynomial vanishes at x � �� then
zero recognition can not be performed directly� In this case the proof must be done by
comparing the power series coe�cients� i�e�� one has to go via the recurrences�

��	�� RecurrenceEquationOut �REOut�

Let A be a holonomic sequence that is given in the internal representation �������� The
procedure REOut
A� outputs the recurrence equation in a format that is readable by
other Mathematica procedures like� for instance� RSolve�

Example	

In
����� A�DefineS
�a
n�����a
n�����n������a
n���	

a
����	a
������	a
n��

�

Out
���� RE
��	 �� n � n 	 ��	 ��	 ��	 ���	 a
n��

In
����� REOut
PSum
A��

� �

Out
���� ��� � �� n � �� n � � n � a
n� �

� �

���� � � n � �� n � � n � a
� � n� �

� �

��� � � n � �� n � n � a
� � n� � ��� � � n� a
� � n� �

��� � n� a
� � n� �� 	 a
� �� �	 a
�� �� �	 a
�� �� ��	

a
�� �� ���

��	�� DifferentialEquationOut �DEOut�

Let F be a holonomic power series that is given in the internal representation ��������
The procedure DEOut
F� outputs the di�erential equation in a format that is readable
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by other Mathematica procedures like� for instance� DSolve�

Example	 Let si represent the function sin�x�� The output line in this example is a
di�erential equation that is satis�ed by sin�x� � x��

In
����� DEOut
ACompose
si	f��x��x�����

� �

Out
���� ���� � � x � �� x � � x � f
x� � � f�
x� �

��� � � x� f��
x� �� 	 f
� �� 	 f�
� �� ���



Chapter �

Guesses� Proofs and Ore

Polynomials

��� Introduction

Holonomic functions and sequences are closed under most standard unary� binary and
n�ary operations� Unfortunately the closure properties discussed in Section ��� do not
include objects like reciprocals� square roots or other rational powers of functions or
sequences� Nevertheless� if we follow an idea presented in �BP���� an approach that is
based on �guessing� might be able to handle problems involving these object types�

Moreover� it is sometimes possible to guess a �nice� equation that is satis�ed by a
given sequence or function� We call a recurrence or di�erential equation nice if it can be
solved algorithmically� The process of guessing is discussed in Section ���

To solve a problem via guessing� it is necessary to prove that the guessed �di�erential
or recurrence� equation is correct� The theoretical background for some proof methods
is given in Section �� where we translate parts of the holonomic universe into operator
algebra language or� more precisely� into the language of Ore polynomials�

Finally� we present some methods for proving holonomic identities in Section ���

��� Guessing

We consider the following example�

��
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Example �	�	� �The American Mathematical Monthly� Problem ������ Let Xn be
de�ned by X� � �� X� � �� X� � �� X� � � and for n 	 �

Xn�� �
�n� � n � ���n � ��

n
Xn�� � �n� � n �� Xn�� �

n � �

n
Xn�

Prove that Xn is the square of an integer for n 	 ��

We want to illustrate how this problem can be solved by using my Mathematica package
GeneratingFunctions� which is introduced in Chapter �� We de�ne the sequence X via
the given recurrence and compute the square root of the �rst terms�

In
���� X�DefineS
�x
n������n���n�����n����n�x
n����

�n���n����x
n�����n����n�x
n�	

x
���x
����	x
����x
������	x
n��

� � � �

Out
��� RE
��	 � � n	 �n � n � n 	 �� � � n � � n � n 	 n�	

�	 �	 	 ���	 x
n��

In
���� Sqrt
RE�L
X	���

Out
��� �	 �	 	 �	 �	 �	 �	 ���	 ���	 ����	 ����	 �����	

������	 ��������	 ��������	 ����������	 �����������	

������������	 �������������	 �������������	

����������������

Hence it looks as if the elements in the sequence are indeed squares of integers� We check
this conjecture by �guessing� a recurrence that is satis�ed by the �rst elements of the
sequence �an�n��� where a�n � Xn for n �N�

In
���� GuessRE
!	a
n��

Out
��� ���a
n� � n a
� � n� � a
� � n� �� 	 a
� �� 	

a
�� �� ��	 ogf�

It remains to check that the elements in �Xn�n�� are the squares of the elements in
�an�n�� �which is a sequence of integers��
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In
���� A�DefineS
!

���	a
n��

Out
��� RE
��	 ��	 �n	 ��	 �	 ���	 a
n��

In
���� A����X

Out
��� True

�

The crucial step in the solution of this problem is to come up with a recurrence for the
square root of the original sequence �Xn�n��� This problem can not be solved directly
within the holonomic universe� since the closure properties discussed in Section ���� do
not include �multiplicative� powers of the form �arn�n��� where �an�n�� is a holonomic
sequence and r is a rational number� �In our example we had r � �����

However� given a holonomic sequence �an�n��� an approach that is performed in two
basic steps� might help to compute a recurrence for the sequence �bn�n�� � �arn�n���
where r � Q�

�� �Guess a holonomic equation��
We use the recursive de�nition of �an�n�� to compute a number of initial values
b� � a�

r � � � � � bn� � an�
r� Next we try to �guess� a holonomic recurrence equation

that is satis�ed by the initial terms of the sequence �bn�n��� To do so� the order
and the degree of the desired recurrence must be �xed� Then indeterminates for
the coe�cients of the polynomials in the recurrence are used to build a system
of linear equations� A solution of this system might contain a candidate for the
recurrence� we are looking for�

The problem here is� that no bounds for the order and the degree of a holonomic
recurrence that is satis�ed by �bn�n�� are known� nor do we have a �general�
guarantee that this sequence is holonomic at all� Hence we do not know up to
which order and degree� a recurrence should be searched and it might happen that
the search terminates too early and that the approach fails� However� if we succeed�
it is no problem to verify �or falsify� whether the guessed equation is correct�

�� �Verify the guessed equation��
If the search for a holonomic recurrence succeeded� we have to prove that the
guessed equation is correct� This may be done as follows� Let r � p�q� with p � Z�
q � N and let �bn�n�� be the unique solution of the guessed recurrence equation�
To prove

ap�qn � bn for n �N�

we can show
apn � bqn for n �N� if p 	 � or ������
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� � a�pn bqn for n � N� if p � �� ������

which is no problem� if we consider Theorem ����� �To complete the proof� we also

have to check a �nite number of initial values of �a
p�q
n �n�� and �bn�n�� to agree�

since ������ and ������� respectively� are necessary but not su�cient conditions��

In Example ���� the �nal step proves a�n � Xn� for n �N� This is done by computing
a recurrence equation satis�ed by the sequence �a�n�Xn�n�� and by checking a su�cient
number of initial values of the two sequences to be equal� In Section �� we also discuss
di�erent methods for proving identities of holonomic sequences�

It is evident that an approach that is analogous to the one� which is described above�
may be used to compute holonomic di�erential equations that are satis�ed by rational
powers of holonomic power series�

We have seen that the process of guessing is useful for working with transformations of
holonomic functions and sequences� if we can prove the validity of the guessed equations
by using some kind of �inverses� of these transformations�

Guessing might also help in the following situation� Given a holonomic power series
or sequence via a holonomic equation� it is sometimes desirable to know whether this
holonomic object also satis�es a di�erential or recurrence equation of a certain form�
which allows us to extract a closed expression for the sequence or function� Of special
interest in this case are m�hypergeometric recurrences� which are a generalisation of the
classical hypergeometric sequences introduced in Example ���� and Example ������ A
sequence �tn�n�� is m�hypergeometric if there is a rational function r�x� � K�x� and an
integer m 	 � such that for all n �N

tn�m
tn

� r�n�� �����

In this case� the sequence �tn�n�� is the interlacement �see Corollary ������e � of m hy�
pergeometric sequences� and we can"at least in principle"give an �explicit� expression
for the nth element� We illustrate this point by an example�

Example �	�	� �See �Han���� ��������� p� ���� Suppose� we want to compute a closed
form for the coe�cients an of the power series

f�x� �
X
n��

anx
n �

�

�

�
�x�� � �� log

�
�� x

� � x

�
� ��� � x��� arctan�x�

�
�

If we have a holonomic knowledge base that contains di�erential equations satis�ed
by arctan�x� and log���� x���� � x�� we can apply the theory discussed in Section ����
and �nd that the sequence �an�n�� is a solution of the recurrence

�n�n � ���n � ���n � �an � ��n � ���n � ���n� � ��n� �an���
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�n � ���n � ���n � ���n � ���an�� � �� ������

It turns out that the Mathematica procedure RSolve can not solve this recurrence� so
we have to enter a little bit of human insight� An inspection of the recurrence and some
initial values show that

f�x� �
X
n��

anx
n �

X
n��

bnx
�n���

where bn � a�n��� and where the sequence �bn�n�� satis�es the second order recurrence

�n � ����n � ����n � ����n � �bn � ��n � ����n � ����n� � ��n� ���bn��

�n � ����n � ����n � ����n � ���bn��� ������

�Note that ������ is obtained from ������ by substituting �n�� for n in the polynomial
coe�cients of �������� Next we apply ������ to compute some initial values of �bn�n���
These values may be used to guess another holonomic recurrence equation for the se�
quence� This guessed equation should have a special form that allows us to extract a
closed expression for the coe�cients bn�

Indeed� a guessing procedure �as performed by the function GuessRE introduced in
Section ������ �nds�

����n� � ��n� �bn � ���n� � ��n � ��bn�� � � ������

This recurrence equation is easily solved and� after we have proved that the guessed
recurrence is correct� we conclude that

f�x� �
X
n��

�

��n � ����n � �
x�n��

�

Remark	 Due to the fact that �rst order �inhomogenous� di�erential equations are used
to represent the functions log��� � x���� � x�� and arctan�x�� the recurrences ������
and ������ in the previous example have nice shapes that help in solving the problem�
Moreover it would also be possible to �nd all hypergeometric solutions of ������ by
performing Petkov�sek�s algorithm HYPER �Pet���� So� the process of �guessing� is not
really necessary in this case�

However� if we rewrite log��� � x���� � x�� as log��� x� � log�� � x� and represent
both summands by homogenous second order di�erential equations� we �nally come up
with a recurrence of order �� and degree �� We do not recommend to try HYPER
on this recurrence� In this case it seems as if �guessing� is the only way to solve the
problem� In addition� this example shows that the sequence �an�n�� does not satisfy a
unique recurrence and that the �size� of the �nal recurrence depends on the di�erential
equations that are used from the holonomic knowledge base� �
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��� Ore Polynomials

In this and in the following section we translate the theory of holonomic functions and
sequences into operator language� More precisely� we translate holonomic objects �and
some of the operations that may be applied to them� into the operator language of Ore
polynomial rings�

For the rest of this chapter we make the following assumptions�

�� The mapping � � K�K is an injective endomorphism�

�� The mapping 	 � K�K has the property that for all a� b �K�

�a� 	�a � b� � 	�a� � 	�b� and

�b� 	�ab� � ��a�	�b� � 	�a�b�

We call 	 to be a pseudo�derivation with respect to ��

De�nition �	�	� 
Ore Polynomial Ring� An Ore polynomial ring w�r�t� � and 	 is
the noncommutative �or skew� ring of polynomials in X over K� where addition is de�ned
as usual� and multiplication is given by

Xa � ��a�X � 	�a� for a � K� �����

This polynomial ring is denoted by K�X��� 	�� It�s members are called Ore polynomials�

Note that any Ore polynomial can be written uniquely in expanded form
Pd

k�� ckX
k�

ck � K� relation ����� serves to represent the noncommutative product of two Ore
polynomials in this canonical form�

The canonical form can be achieved by recursively applying the associativity rule for
monomials�

�aXn��bXm� � �aXn����Xb�Xm � �aXn������b�Xm�� � 	�b�Xm�� �����

where a� b � K� m�n � N and n 	 �� Then two Ore polynomials are multiplied by car�
rying over the distributivity law into the noncommutative world of the Ore polynomials�

The following examples show that holonomic di�erential and recurrence equations
correspond to elements in certain Ore polynomial rings�

Example �	�	� Let 	 be the derivation operator on K�x� w�r�t x� and let � be the
identity on K� Then K�x��D��� 	� is the ring of polynomial di�erential operators� Let

A �
Pd

k�� ak�x�Dk and B �
Pe

k�� bk�x�Dk be two Ore Polynomials in this ring� Using
the Leibniz rule

Dnb �
nX

k��

�
n

k

�
b�k�Dn�k� for b �K�x�� n �N
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we derive that the product of A and B is given by

AB �
� dX
i��

aiD
i
�� eX

i��

biD
i
�

�
dX

i��

eX
j��

ai�D
ibj�D

j �
dX

i��

eX
j��

iX
k��

�
i

k

�
aib

�k�
j Di�j�k�

����
It is obvious that multiplication is not commutative� for instance� we have the commu�
tation rule

Dx � xD � �� �����

AB may be regarded as the composition of the two di�erential operators A and B� �

Example �	�	� Let � be the automorphism� � n� n�� on �Kn�� the ring �Kn��E� ����
contains the set of linear recurrence operators with polynomial coe�cients� For A �Pd

k�� ak�n�Ek and B �
Pe

k�� bk�n�Ek� we have the product

AB �
d�eX
k��

� kX
j��

aj�n�bk�j�n � j�
�
Ek� �����

Again this ring is noncommutative� for instance� we have

En � �n � ��E� �����

�

Remark	 It is possible to de�ne an Ore polynomial ring over a commutative ring
rather than over a �eld� Subsequently we will sometimes work with the restriction of
�Kn��E� ���� to �Kn��E� ����� �where � is de�ned as in Example ���� and abbreviate
the domains with �Kn��E� and �Kn��E�� respectively�

It is the purpose of this section to introduce the amount of theory that is required to
discuss and compare di�erent techniques for proving identities of holonomic sequences
and power series� Since proofs of the latter ones can always be transformed to proving
identities of sequences �see Theorem ������� we now focus our considerations on the ring
of linear recurrence operators� General discussions may be found in �Ore���BP��� or in
�Li���� A thorough treatment of multivariate Ore polynomial rings is presented in �CS��

From now on we assume that � is de�ned as in Example ���� Let A and B be two
nonzero polynomials in �Kn��E� with the respective degrees d and e in E� Without loss
of generality we assume that d 	 e� Let a and b be the leading coe�cient �lc� of A and
B� respectively� If we set Q� to be the monomial

Q� �
a�n�

b�n � d� e�
Ed�e�
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it is easily seen that the leading monomial of Q�B is aEd� which implies that A� Q�B
has degree less than d� In anology to the case of the usual commutative polynomials� we
can use this observation to perform right Euclidean division as follows�

Algorithm� Right Euclidean division
Input� A�B � �Kn��E�� with deg�A� � d� deg�B� � e
Output� Q�R � �Kn��E� such that A � QB � R� with deg�R� � e

let R � A� let Q � ��
let d� � d� let b �lc�B��
while deg�R� 	 e do

let Q� ��lc�R���d
��eb� Ed��e�

let R � R�Q�B�
let d� � deg�R��
let Q � Q � Q��

end while�
return Q�R�

We call Q to be the right quotient of A and B� R is the right remainder of these two
polynomials� If R � �� then B is a right divisor of A�

De�nition �	�	� For k �Nnf�g and r � �Kn� the kth rising factorial �r�k is de�ned as

�r�k �
n��Y
i��

�ir �
n��Y
i��

r�n � i��

�r�� is de�ned to be ��

If we want to work in �Kn��E� only� we have to de�ne pseudo division in this domain�
Let A�B � �Kn��E� have the respective degrees d and e with d 	 e� then the polynomials
Q and R with deg�R� � e� b �lc�B� and

�b�d�e��A � QB � R

are called the right pseudo quotient �Q �rpquot�A�B�� and the right pseudo remainder
�R �rprem�A�B�� of A and B�

A greatest common right divisor �gcrd� of A and B is a polynomial of highest degree
that divides both A and B on the right� A gcrd of A and B can be computed by applying
an analog to the Euclidean algorithm�

Running the extended Euclidean algorithm �with right division or right pseudo di�
vision� gives a least common left multiple �lclm� of A and B� which is a left multiple of
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least order of both A and B� One can show �see for instance �BP���� that this algorithm
does compute a nonzero multiple of least order� Moreover� the following relation between
the degrees of the polynomials holds� Let G be a gcrd and let L be an lclm of A and B�
Then

deg�A� � deg�B� � deg�G� � deg�L�� �����

A proof for this result can be found in �Ore��

It is well known that during the computation of a gcrd via the Euclidean algorithm�
the coe�cients of the �pseudo� remainders grow rather fast and that extraneous factors
might be cancelled in order to keep the coe�cients small� In commutative algebra� the
subresultant algorithm by G�E� Collins �see e�g� �BT���� slows down this growth� though
still no greatest common divisors of the coe�cients need to be computed�

This subresultant algorithm has been recently generalised to the noncommutative
case of Ore polynomial rings by Ziming Li �Li���� It would lead too far to discuss here
the theory behind this generalisation in detail� instead we only want to present here the
relevant algorithm ��

Theorem �	�	� 
Subresultant Algorithm� Let A�B � �Kn��E�� with deg�A� � d�
deg�B� � e� d 	 e� Let A�� A�� � � � � Ak �� �� Ak�� � � be a sequence that is computed as
follows� Initialize

A� � A� A� � B� a� � �� a� � lc�A��� b� � �� b� � �lc�B��d�e� l� � d� e���

For i 	  let

li � deg�Ai��� � deg�Ai� � �� ai � lc�Ai�� bi � �ai�
li�����bi���

li��

and
Ai � rprem�Ai��� Ai����ei�

where
ei � ����li�� ��bi���

li����ai���

Then for � � i � k we have Ai � �Kn��E�� Moreover Ak is a gcrd of A and B�

Proof	 See �Li��� Lemma ����� and Theorem ������� where the proof is given for general
Ore polynomials rings over commutative rings� �

Computing a least common left multiple of two Ore polynomials is in general much
more time consuming than computing just a greatest common right divisor� This is due
to the fact that the extended Euclidean algorithm requires two additional multiplications
of Ore polynomials in every step of a while�loop� where the coe�cients of the polynomials

�Ziming Li and Istv�an Nemes provide a modular algorithm to compute gcrd�s in the case thatK � Z�
See �Li��	 Chapter � or �LN���
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that are involved in these multiplications grow rather fast during the execution of the
algorithm� Theorem ��� may also be used to slow the growth of these coe�cients� �See
also �Li��� Theorem �������

If we want to prove holonomic identities we are very often just interested in the
leading coe�cient of an lclm� The following corollary is useful in this case�

Corollary �	�	� Let A�B � �Kn��E� with deg�A� � d and deg�B� � e� Let g be the
degree of the gcrd�s of A and B� Then there is a lclm L � �Kn��E� of A and B with

lc�L� � ��d�g lc�B����e�g lc�A��b� �����

where b � bk� which is computed as in Theorem ����

Proof	 The proposition follows from �Li��� Lemma ������ Theorem ������ Proposition
���� and Corollary ������ �

��� Three Methods to Prove Holonomic Identities

We are going to establish a link between holonomic sequences and the Ore polynomial
ring �Kn��E��

De�nition �	�	� Let A �
Pd

i�� pi�n�Ei � �Kn��E� and a � �an�n�� � KN� Then A
induces an action on a as follows�

Aa � N�K� n ��
dX

i��

pi�n�an�i�

If Aa � � and A �� �� we say that A annihilates a or a is a zero of A�

It is now evident that holonomic sequences are exactly those sequences that are
annihilated by some �nonzero� polynomial in �Kn��E�� Conversely� every holonomic re�
currence corresponds to an Ore polynomial in �Kn��E� that annihilates the solutions of
this recurrence�

Example �	�	� Let c � �Cn�n�� be the sequence of Catalan numbers� de�ned by
�������� In operator language� we would say that Ac � �� where

A � ��� � �n�� �� � n�E�

�
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Theorem �	�	� For a � �an�n�� �KN and A�B � �Kn��E� the following propositions
hold�

�a� �AB�a � A�Ba��

�b� If Aa � �� then �BA�a � ��

�c� If G is a gcrd of A and B� then Aa � Ba � � if and only if Ga � �

Proof	 See �BP���� �

From Theorem ���� we immediately deduce that a least common left multiple L of
two operators A and B annihilates both the zeros of A and the zeros of B� Using the
terminology introduced in Chapter �� we would say that L corresponds to a homogenous
holonomic recurrence equation whose solution space contains all linear combinations of
sequences a and b� where a�b satisfy the recurrences that correspond to A and B�
respectively�

Lemma �	�	� �Zero condition� Let a be a zero of A � �Kn��E� with deg�A� � d� Let
p be the leading coe�cient of A� We de�ne the integer n� as follows� If p�n� �� � for all
n � N� then n� �� d� �� Otherwise n� �� maxfn �Njp�n� � �g� d� Then

a � � if and only if an � �� for each n � f�� �� � � �� n�g�

Proof	 Trivial� �

Convention	 For the rest of this section� we assume that the two holonomic sequences
a and b are annihilated by the operators A and B� respectively� with deg�A� � d and
deg�B� � e�

Lemma ���� and Theorem ���� suggest the following method to prove �an�n�� �
�bn�n���

Method �	 Compute a lclm� say C� of A and B� �Note that C annihilates both a and
b as well as any linear combination of these sequences� in particular C annihilates a�b�
C can be computed either by an extended Euclidean algorithm� where Theorem ���
could be applied� or by following the constructive proof of Theorem ������ According
to Lemma ���� we can verify or falsify the identity by comparing a number of initial
terms of �an�n�� and �bn�n��� This number depends on the degree of C in E and on
the integers for which the leading coe�cient of C vanishes�

Example �	�	� Let �an�n�� and �bn�n�� be solutions of the respective recurrences

���n � ��an � ��an�� � � and
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�n � ��bn � bn�� � ��

The sequence �cn�n�� with cn � an � bn satis�es the second order recurrence

���n� ����n � ���n � ��cn � ���n� � ���n� ����cn�� � ���n� ���cn�� � ��

To prove �cn�n�� � �� it is su�cient �and also necessary� to check if c� � c� � � � � �
c�� � �� �

It is tempting to believe that a quick method to prove a holonomic identity might
be as follows� Compute an upper bound for the maximum integer root of C� where this
bound depends on the degrees and coe�cients of A and B only� which means that no
�extended� Euclidean algorithm has to be performed�

However� at the time this thesis is written� no suitable bounds are known� Lily Yen
�Yen�� gave analogous bounds for the case of proofs of hypergeometric sum identities�
But these bounds are"even for small examples"extremely high and it seems� as if useful
bounds �i�e�� bounds that save time in the process of proving� can hardly be found�

Nevertheless it is not necessary to compute least common left multiples� We present
two methods that basically work with greatest common right divisors�

Method �	 �Reported in private communication to the author by Marko Petkov�sek in
a slightly di�erent form�� Let G be a gcrd of A and B� By right pseudo division of

G and A we compute F such that pA � FG� where p divides �lc�G��d�deg�G���� Let
c � �cn�n�� � Ga� Now we have

Fc � FGa � pAa � ��

Hence the sequence c is annihilated by F and� following Lemma ����� we can check
whether c � � by inspecting some starting terms of this sequence�

If c � �� then Ga � � and� since B is a left multiple of G� we get Ba � �� Now we
know that B annihilates both a and b� therefore we also have

B�a � b� � ��

It remains to check a �nite number of initial values of a and b to agree� where� according
to Lemma ����� this number depends on the order of B and on the maximum integer
root of lc�B��

Example �	�	� Let a and b be two sequences that are annihilated by the operators A
and B� respectively� where

A � �n�� � n� � �� � ��n� n��E � ��� n� n��E� � ���� � n�E��
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B � �� � n� � ��� � n � n��E � ���� n��� � n�E�

and both sequences start with a� � b� � �� � � � � a� � b� � �� a� � b� � �� We compute
G� which is a gcrd of A and B�

G � n � �� ��n� �E�

By right division of A and G we �nd

F � �n � �n � ��E � E��

where A � FG� Now c � Ga� which is a zero of F starting with c� � c� � �� and we
deduce that c � �� It follows that a is annihilated by B� and after observing that the
�rst four values of a and b agree� we can conclude that a � b� �

Method �	 Compute a gcrd of A and B via the subresultant algorithm �Theorem
����� Let g be the degree of this gcrd� Then every lclm of A and B has degree d�e�g�
Moreover� we can apply Corollary ��� and conclude that there is a lclm of A and B�
whose leading coe�cient� say p� is given by ������

Let n� be the maximum integer root of p�n�� �If p has no integer roots we set
n� � ���� By Lemma ����� we can conclude that a � b� if �and only if� these sequences
agree up to index n� � n� � d � e� g� i�e�� if a� � b�� a� � b�� � � � � an� � bn� �

Example �	�	� Let

A � ��� � �n��� � n� � �� � n���� � ��n� �n��E � � � n��� � n�E��

�� � �n��� � n�E� � �� � n��� � n��� � �n�E�

and

B � ��� n� �� � n�� � n�E � ��� � n��� � n��E� � �� � n��� � n��� � n��E��

We apply the subresultant algorithm �Theorem ���� to compute a gcrd of A and B�
which has degree one� As a byproduct we get

b � �� � n�� � n���� � n���� � n���� � n���� � n�

����� � ����n� ���n� � ����n� � ���n� � ���n	 � ���n � ���n� � ��n���

Now we can conclude that there is an operator L � �Kn��E� of degree � that annihilates
the zeros of A as well as the zeros of B� and whose leading coe�cient is given by

lc�L� � ���lc�B�����lc�A��b�

We can easily see that this polynomial does not have any nonnegative integer root� Hence�
if we want to check whether two sequences that are annihilated by A and B� respectively�
are identical� it is su�cient to check the �rst � elements of the two sequences to agree� �
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We know that an lclm� say L� of A and B has degree less or equal d � e� We have
also seen the number of elements of a and b that have to be compared� if we want to
prove a � b� depends on the degree of L and on the nonnegative integer roots of lc�L��
In Example ���� we had the case that the L vanished at n � ��� though the leading
coe�cients of both A and B were constants� Hence� it would be necessary to check
whether � initial values of A and B agree�

Now the question arises� whether any two sequences that are not identical� must di�er
already at one of the �rst d � e initial values� Then we would not have to go so far to
verify or falsify a � b� The following example gives a negative answer to this question�

Example �	�	 Let the sequences a and b be zeros of the operators

A � ��� � ����n� ����n� � ������ ��n� ����n��E � ����� � ����n�E�

and
B � �� � ��n � ���n� � ���� ���n� ���n��E � ���� � ���n�E��

respectively� The sequences start with a� � b� � � and a� � b� � �� and are therefore
both uniquely de�ned zeros of these two operators� Moreover we have a� � b� and
a� � b� and we conjecture that a � b�

If we compute a gcrd� say G� of A and B� we �nd that G has degree � in E� From
Theorem ���� we can conclude that A and B have no nontrivial common zero� hence
a �� b�

Although both a and b are solutions of second order recurrences� it is not su�cient
to check four initial conditions of the sequences to match� This is due to the fact that
the leading coe�cient of any lclm of A and B vanishes at n � �� It follows that we also
have to compare a� � ��� and b� � ��� Now it is evident that a and b are di�erent
sequences� �



Appendix A

Software and Availability

The Mathematica package GeneratingFunctions that is introduced in Chapter � is
available via anonymous ftp at

ftp�risc�uni�linz�ac�at�pub�combinatorics�mathematica�GeneratingFunctions

or at the web address�

http���info�risc�uni�linz�ac�at���labs�info�comblab�software�

Sequences�index�html

The package can also be retrieved by sending a request via email to the author�

Christian�Mallinger"risc�uni�linz�ac�at

A lot of problems can be easily solved if the package GeneratingFunctions is used
together with related software products� Thus we also point to other packages containing
procedures that may interact with the procedures of our software� The list of packages�
we refer to� is by far not complete� It should only be considered as a list of suggestions�

Although GeneratingFunctions is a Mathematica package� we also list some Maple

packages that cover similar areas�

A�� Maple Packages

EKHAD
Author� Doron Zeilberger �Temple University� Philadelphia� PA� USA�

Scope� Among others� the package EKHAD contains procedures that perform Zeilbergers
method of creative telescoping�

Availability� The reader may consult the web page

��
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http���www�math�temple�edu�#zeilberg

FormalPowerSeries 
FPS�

Author� Dominik Gruntz �ETH Z
urich� Switzerland�

Scope� The function FPS tries to �nd a formal power series expansion for a function in
terms of a formula for the coe�cients�

Availability� FPS is a part of the Maple share library in the analysis directory�

gfun

Authors� Bruno Salvy� Paul Zimmermann and �since Jan� ����� Eithne Murray� �IN�
RIA Paris� France�

Scope� The package contains functions for manipulating holonomic sequences� gener�
ating functions� holonomic recurrence and di�erential equations� It can be regarded as
the Maple forefather of the Mathematica package GeneratingFunctions� which is indeed
based on the philosophy of gfun�

Availability� gfun is a part of the Maple share library in the analaysis directory� The
latest version can be obtained via anonymous ftp from

ftp�inria�fr�INRIA�Projects�algo�programs�gfun�

A�� Mathematica packages

ENullSpace

Author� Erhard Aichiniger �Universit
at Linz� Austria�

Scope� ENullSpace is a procedure that computes the nullspace of a matrix� whose
entries are rational functions in several variables� This linear equation solver is consider�
ably faster than the procedure Nullspace� which is built�in in the Mathematica kernel�
�In fact many procedures in GeneratingFunctions use ENullSpace to solve systems of
linear equations��

Availability� A �le with the source code is part of the package fastZeil �see below�
and can be retrieved via ftp from the directory� where fastZeil is located�

fastZeil

Authors� Peter Paule and Markus Schorn �RISC� Universit
at Linz� Austria�

Scope� D� Zeilberger�s method of creative telescoping for proving binomial coe�cient
identities is implemented� The package also contains an implementation of Gosper�s
algorithm for inde�nite hypergeometric summation�

Availability� The program may be obtained via anonymous ftp from�
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ftp�risc�uni�linz�ac�at�pub�combinatorics�mathematica�PauleSchorn�

or from the web address�

http���info�risc�uni�linz�ac�at���labs�info�comblab�software�

Summation�index�html

HYPER

Author� Marko Petkov�sek �University of Ljubljana� Slovenia�

Scope�This package contains procedures that �nd hypergeometric solutions of holonomic
recurrence equations� Additionally� there are procedures to perform certain computations
in the Ore polynomial ring �Kn��E�� �See Chapter ��

Availability� The package is available at the web address�

http���www�mat�uni�lj�si�ftp�pub�math�HYPER�M

PowerSeries

Author� Wolfram Koepf �ZIB Berlin� Germany�

Scope� Given a holonomic function� the main procedure in the package tries to �nd a
closed expression for the power series coe�cients of this function� Another procedure
that is a part of the package� tries to reverse this process� i�e� compute the generating
function of a sequence�

Availability� The package can be retrieved from�

ftp�zib�berlin�de�Pub�PowerSeries�

RComp

Authors� Istv�an Nemes �RISC� Universit
at Linz� Austria� and Marko Petkov�sek �Univer�
sity of Ljubljana� Slovenia�

Scope� RComp is a package for computing with the subfamily of holonomic sequences
that satisfy recurrences with constant coe�cients� Many operations with these sequences
are implemented in a user friendly way� The design of the easy�to�use interfaces in
this package inspired the author of this thesis to provide similar tools in his package
GeneratingFunctions�

Availability� The program may be obtained from the ftp address�

ftp�risc�uni�linz�ac�at�pub�combinatorics�mathematica�RComp�
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RSolve

Author� Marko Petkov�sek �University of Ljubljana� Slovenia�

Scope� RSolve is an implementation of the method of generating functions for solving
�systems of� linear recurrences� There are also tools that help in computing solutions of
partial recurrence equations� �nding power series expansions of analytic functions� and
proving combinatorial identities�

Availability� RSolve is located in the DiscreteMath library of Mathematica �

Remark	 After submitting the �nal version of this thesis� we have been informed that
W� Koepf is preparing a package similar to GeneratingFunctions�
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