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Abstract
In 1960, C. Domb published a paper entitled On the theory of cooper-
ative phenomena in crystals in which he presented an expression for the
number of cycles of length [ in a triangular lattice. This expression was
erroneous. We present a correct expression and we show that it is linked,
in social choice theory, to the probability that all candidates are tied in
an election with the Borda rule.
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1 Introduction

In 1960, C. Domb published a massive paper (212 pages) entitled On the theory
of cooperative phenomena in crystals [Domb 60]. In this paper, he addressed
many different problems. One of them, related to the magnetic properties of
crystals, was the following. Consider the lattice! presented in Fig. 1.

A cycle in this lattice is a path starting from some node, travelling along some
edges and coming back to the same node. The length of a cycle is the number of
edges contained in it. E.g., the shortest cycle has length 2; it starts from some
node, travels along one edge and directly comes back along the same edge. The
next shortest cycle has length 3. It travels along the 3 edges delimiting a small
triangle. How many different cycles, with length [, starting from a given node,
are there?

The answer given by C. Domb (page 344) was
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*The research presented in this paper was done while the author was working at the Service
de Mathématiques de la Gestion, Université Libre de Bruxelles.

n classical graph theory, lattice has a different meaning. We use it here in its cristallog-
raphy meaning which is close to the concept of pavement in geometry




Figure 1: Triangular lattice

with s, = 0,1...1, satisfying the conditions (2s +¢) = [ and (¢ + q) even.
He called this number r;. On page 345, he also computed some values of r;
for I = 2 through 9. Unfortunately expression (1) for r; is incorrect although
numerical values given on page 345 are correct. In Section 2, we present a
correct expression for r;. In the last section, we present some links with social
choice theory.

2 A correct expression for the number of cycles

At each node, there are 6 possible edges. Let us call them =, —x,y, —y, 2z, —z as
in Fig. 2.

Figure 2: Names of the edges

In a cycle, an edge of any kind can be compensated by a corresponding edge
of the opposite sign. E.g., a x edge can be compensated by a —x edge; a —z edge
by a z edge, and so on. But an edge of any kind can also be compensated by two
other edges of different kinds and same sign. E.g., a y edge can be compensated
by a x edge and a z edge; a —z edge by a —x edge and a —y edge and so on.

Hence, in any cycle, we can sort the edges into two parts: (a) those compen-
sating 2 by 2 and (b) those that do not compensate 2 by 2 (thus compensating 3
by 3). In (a), we necessarily have 2s edges (s integer between 0 and //2). In (b),
we necessarily have 3t edges (¢ integer between 0 and [/3) and they have the
same sign, otherwise some of them could could compensate 2 by 2. Obviously,



254+ 3t = 1. In (a), s edges are positive, while s edges are negative. Among
the s positive edges, there is any repartition between x,y and z. Among the s
negative edges, there is the same repartition between —z, —y and —z. Hence, if
2s edges among [ are chosen, the number of possible configurations of these 2s
edges, such that they all compensate 2 by 2 (case (a)), is given by
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In this expression, ¢ represents the number of x edges, r the number of
y edges and (s — ¢ — r) the number of z edges. Let us come back to (b).
Among the 3t edges, we necessarily have the same number of z, y, z or (exclusive)
—x,—y, —z. Thus, if we choose 3t edges, the number of possible configurations
such that they compensate 3 by 3 and not 2 by 2, is given by
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where [t > 0] equals 1 if ¢ > 0 and 0 otherwise.

For given s and ¢, the number of possible cycles is not just the product of
expressions (2) and (3). It would be equivalent to considering as different some
cycles just because we arbitrarily separated some edges of the same kind and
sign in the (a) and (b) parts. Thus we have to take into account the number of
ways to choose ¢ edges of kind = (or —z) among the whole number of x edges.
And there are g+t such edges. The number of ways to make this choice is thus
( qjt ) For y and z edges, we must consider < Tjt ) and ( qu;”t )

Hence, for given s and ¢, the number of possible cycles is given by
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Finally, letting vary s and ¢ so that 2s + 3t = [, we obtain the following expres-
sion:
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After some simplification, r; is given by

s S—q 1

Z 2t>0]zz gri(s—q—r)l g+ (r+l(s—qg—r+t) (6)

2s5+3t=I q=0 r=0

Shortly after we found this expression, Domb (personal communication)
found the error in his expression: a multiplicative factor I! had disappeared



from his formula during the typing process! Therefore, an alternate expression

for (5) is
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whith s, =0,1...1, satisfying the conditions (2s+¢) = and (¢ + ¢) even. So,
Domb knew the right expression in 1960. But, due to the fact that a proof of
this expression has never been published and that this result finds some new
applications in social choice theory (see next section), we tkink that it is worth
publishing our proof.

3 Some links with social choice theory

A very classical problem in social choice is the following. Suppose that [ voters
{1,2...,1} must elect a president and there are k candidates {a,b,c,...}. Each
voter expresses his preferences about the candidates by mean of a complete
ranking, from best to worst. We call profile a vector containing the rankings of
each voter. E.g.,

a>b>c

b>c>a (8)

c>b>a

is a profile with 3 voters and 3 candidates such that voter 1’s most preferred
candidate is a, voter 1’s last candidate is ¢ and voter 2’s most preferred candidate
is b. How shall we derive from a profile which candidate should be elected? This
question has been at the heart of social choice theory since the end of the 18th
century. Many methods have been proposed. For example,

e choose the candidate with most first positions,
e or the candidate with least last positions,

e or compute the ranking which is at minimum distance of the [ rankings
in the profile (a metric needs to be defined over the set of the rankings).
Then choose the candidate in first position in this new ranking.

e A very popular method is the Borda method. A candidate receives one
point for each first position in the profile, 2 points for each 2nd position,
3 points for each 3rd position, ...and k points for each last position. The
candidate who has the fewest points is elected.

Let us illustrate the Borda method by an example. In the profile shown in
(8), a has 7 points, b, 5 points and ¢, 6 points. Hence, b is elected. In some cases
the Borda method doesn’t help much as all candidates have the same number
of points and are tied, as in profile (9) where they all have 6 points.

a>b>c
b>c>a . (9)
c>a>b



Of course, most methods that have been devised lead to different results. Which
one should we choose? Many criteria have been proposed to assess the merits of
a method. Hundreds of axiomatic studies have been conducted, characterizing
the various methods by a set of axioms.

A possible criterion to compare different methods, is the probability that
a method yields a tie (by this, we mean a complete tie of all candidates). A
method with a high probability of tie might be considered as less interesting
than a method with a low probability because it more often fails to designate
a winner. Of course, if the difference of the probabilities is not very large, this
disadvantage might be compensated by other advantages. Hence, this criterion
should be taken into account only for very large differences of probabilities. We
are going to show now that the probabilty that the Borda method yields a tie
is related to ;.

3.1 The case of three candidates

For three candidates, there are 3! = 6 possible rankings and each voter can
choose any of the 6 rankings. Let us associate each ranking to one of the 6
different kinds of edges of our triangular lattice (see Fig. 2).

a>b>c : T
b>c>a : Y
c>a>b z
c>b>a : —zx (10)
a>c>b : —y
b>a>c : —z

Then any profile corresponds to a path in the triangular lattice. For example,
the profile in (9) corresponds to a path ,y, z. Remark that this path is in fact
a cycle. It is not difficult to see that it is not a coincidence. A profile will yield
all candidates tied (under the Borda method) if and only if the corresponding
path in the triangular lattice is a cycle. Hence, the number of profiles yielding
all candidates tied under the Borda method is ;. And the probability we were
looking for is just 7; divided by the number of different profiles, i.e. (3!)!. Some
numerical values of the probability of ties are given in table 1.

l 2 3 4 5 6 7 8
Pr. of ties | .1667 .0556 .0694 .0463 .0437 .0360 .0326
Pr. of Condorcet paradox .0556 .0694 .0750
l 9 19 29 39 49
Pr. of ties | .0288 .0141 .0093 .0070 .0056
Pr. of Condorcet paradox | .0780 .0832 .0848 .0856 .0860

Table 1: Numerical values of the probability of ties for three candidates

The Condorcet method selects the candidate that beats every other candi-
dates in pairwise comparisons. It is well known that the Condorcet method can



also fail to produce a winner (Condorcet paradox) but for very different reasons:
the candidates are not tied, the method just doesn’t work. Nevertheless, from
a practical point of view, if all candidates win (tied), using the Borda method,
or no candidate wins, using the Condorcet one, the president of the committee
where such an election happens is very embarassed: he doesn’t know what to
choose. Therefore, it seems interesting to us to compare the probabilities of ties
for the Borda method to those of Condorcet paradox for the Condorcet method
(see table 1), taken from [Gehrlein 83]. The proportion of profiles such that the
president of the committee is not helped is larger with the Condorcet method.
Furthermore, the probability of ties decreases with [ while the probability of
Condorcet paradox increases with . From this viewpoint, the Borda method
seems more interesting that the Condorcet one. In fact, for very large number
of voters and candidates, the probability that the Condorcet method designates
no winner approaches 1 [Bell 81].

3.2 The case of two candidates

Let us consider the lattice of Fig. 3 , consisting of edges aligned on a straight
line.

Figure 3: Linear lattice

At each node of this lattice, there are 2 possible edges. Let us call them x
and —zx. It is clear that we can describe any profile with two candidates by a
path in our linear lattice. We just need to associate a > b rankings to an edge,
say z, and b > a rankings to the other edge, i.e. —z. It is obvious as well that
all profiles such that a and b are tied correspond to cycles in the linear lattice

and the number of different cycles of length [ is given by ( l/lQ ) for I even and

0 for [ odd. Some values of the probability of ties are given in table 2.

l 2 4 6 8 10 20 50 00
Pr. of ties | .5000 .3750 .3125 .2734 2461 .1762 .1123 O

Table 2: Numerical values of the probability of ties for two candidates

For larger number of candidates, other lattices must be used but they can
no longer be represented in two dimensions. Derivation of explicit formulas for
r; is much more difficult.

In our computations of the probabilities, we considered that any profile is as
likely as any other one (this condition is known as the impartial culture condi-
tion). Therefore, it is obvious that our results must be taken with a pinch of salt
for, in reality, such an assumption is clearly questionable [Fishburn and Gehrlein 80].
Nevertheless, they provide some hint.



Note that I discovered the similarity between the two problems thanks to
the amazing Encyclopedia of integer sequences [Sloane and Plouffe 95], sequence

M4101.

References

[Bell 81]

[Domb 60]

[Fishburn and Gehrlein 80]

[Gehrlein 83]

[Sloane and Plouffe 95]

Bell, C.E. (1981) ”A random voting graph almost
surely has a hamiltonian cycle when the number
of alternatives is large” Fconometrica 49/6, 1597-
1603.

Domb, C. (1960) “On the theory of cooperative
phenomena in crystals” Advances in Physics 9, 149-
361.

Fishburn, P.C. and Gehrlein, W.V. (1980) “The
paradox of voting. Effects of individual indifference
and intransitivity” Journal of Public Economics 14,
83-94.

Gehrlein, W.V. (1983) “Condorcet’s paradox” The-
ory and Decision 15, 161-197.

Sloane, N.J.A. and Plouffe, Simon. (1995) The en-
cyclopedia of integer sequences Academic Press.



