Effective Asymptotics of Linear Recurrences
with Rational Coefficients

Xavier Gourdon™ Bruno Salvy*
Xavier.Gourdon@inria.fr Bruno.Salvy@inria.fr

Abstract
We give algorithms to compute the asymptotic expansion of solutions of linear recurrences with
rational coefficients and rational initial conditions in polynomial time in the order of the recurrence.

Introduction

We investigate sequences defined by a recurrence of the form

ApUntk + Ap—1Unth—1+ - -+ aou, =0, (1)

where the coefficients aj and the initial conditions belong to Q. This i1s probably the most simple type of
recurrence one may encounter. Recurrences of this type are ubiquitous in many fields of applications (see [3]
for numerous examples and references). Among the approximately 2300 sequences listed in Sloane’s book [18],
one can estimate that about 13% are of this type [13]. In the rest of this paper “linear recurrence” always
means “linear recurrence with rational coefficients” and we shall refer to u, as a “linear recurrent sequence”.

Surprisingly, some problems related to linear recurrences remain open [3], and specially problems related
to effectivity. Our aim in this paper is to describe an algorithm that computes an asymptotic expansion
of a sequence obeying (1) in polynomial time in the order k of the recurrence. It is quite simple to find
the asymptotic expansion of Fibonacci numbers with traditional tools, but these tools break down for ill-
conditioned recurrences. The algorithm we describe works without any limitation on the value of & or those
of the coefficients.

Given a recurrence such as (1), one usually computes its general term as a sum of exponential polynomials
of the form ch\;o prn® A", where A is an algebraic number. In Section 1 we shall describe an algorithm
computing the coefficients pp without factoring any polynomial. This general term does not solve the problem
of asymptotic behaviour. To form a proper asymptotic expansion one has to order the moduli of the algebraic
numbers A occurring in the general terms. The problem which will occupy most of this paper is: How can
one perform such an ordering ezactly, 1.e. we prove that the algorithms we propose work on the whole
class of recurrences (1). We shall use techniques from computer algebra to free ourselves from problems
of ill-conditioning related to the use of floating-point values. The result is an algorithm which, given a
positive integer p and a linear recurrence (1) together with its initial conditions—or equivalently a rational
function in Q(x) (see below)—outputs the p first exponential polynomials of the asymptotic expansion of
the solution wu, of (1) as n tends to infinity.

As an example consider the recurrence

14448u,, + 15136u, 11 — 5761t 42 — 990un 43 + 315u,14 = 0. (2)

Its characteristic polynomial has four simple roots:
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To compute the asymptotic behaviour of w,, it is necessary to decide which roots have the largest modulus.
In this example the roots are given explicitly and this make it possible (but not trivial) to sort them by
modulus. The techniques we develop do not require an explicit expression of the roots.

We describe two essentially different decision procedures to compute the asymptotic expansion. The first
approach, purely algebraic, completely avoids factorizations. It is made expensive by the increase of degrees
due to resultant computations. Currently this is the most natural computer algebra approach to the problem,
and the most easily implemented. However, as soon as p > 2, its cost becomes potentially exponential in the
order of the recurrence.

The second approach is perhaps more natural: it consists in using numerical approximations. In our
example, the approximations

a; = 3.601586702 ..., oy = —0.601586702 ..., a3 = 3.601586951 . ..

make it possible to conclude. This example also shows that these numerical approximations may require a
lot of precision. To avoid ill-conditioning, we use guaranteed numerical approximations and we show that
this can be done in polynomial time in the order of the recurrence. Numerical approximations have long been
banned from computer algebra because of the reluctance inherited from fixed precision routines. However,
with the arbitrary precision provided by most computer algebra systems, we feel that it is time for floating
point numbers to be rehabilitated in computer algebra.

The first step of the algorithm is to compute a suitable partial fraction decomposition of the generating
function of w,. Since factorization of polynomials is known to be polynomial-time but depressingly expen-
sive, we shall avoid factorization and rely instead on a recent decomposition algorithm [2]. This is described
in Section 1. In Section 2 and 3, we address the problem of comparing the moduli of the singularities (cor-
responding to the roots of the characteristic polynomial). As opposed to what happens usually in most
algorithms involving algebraic numbers, we have to distinguish between roots of a given polynomial. A first
method is described in Section 2, based on an algorithm [6] for comparing real algebraic numbers. At this
stage, we can produce the desired asymptotic expansion. Section 3 describes a numerical alternative to
the algebraic algorithms of Section 2, where we show how to get exact information from numerical values.
We prove that this can be done with a cost that is lower than that of the algebraic method. In Section 4,
we study optimizations that can be applied to subparts of our algorithm in practical cases. In particular
we show there how rough numerical estimates can be used fruitfully. We conclude in Section 5 with a few
examples taken from classical combinatorics.

1 Owutline of the algorithm

1.1 Generating function

One can translate (1) into the rational generating function Y u,z™ with O(k?) rational operations: the
generating function of the sequence (1) is

g Yoy 2P
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The reciprocal conversion 1s also easy.

From the asymptotic point of view, the generating function approach enables us to use tools from complex
analysis, like residue computation, which prove very effective. Because of the low cost of the conversion from
a linear recurrence to the generating function, from now on we shall be concerned with rational functions
only. Thus the input of our algorithm is a function f € Q(z) regular at the origin, together with a positive
integer p, and its output consists of the first p terms of the asymptotic expansion of [2*] f(z)—the nth Taylor
coefficient of f at the origin—as n tends to infinity.



1.2 Exact formula

In this section, we derive an exact formula for [2"]f(z), based on a partial fraction decomposition that does
not require factorization. This allows for both an efficient implementation and possible future extensions to
rational functions with parameters or non-rational coefficients.

Algorithm 1 (Exact formula) Let f(z) = P(2)/Q(z) € Q(z), with P and Q two relatively prime polyno-
mials and deg(P) < deg(Q). To compute [z"]f(z),

1. Compute @ = D1 D3 --- D7 the square-free decomposition of Q). (Each D; is a square-free polynomial.)
2. Using the decomposition algorithm [2], compute polynomials P; ; € Q[z] such that

P(x) <~y P j(a)
ERP PP M ey ©)
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f(z) =

with deg(P; ;) < deg(D;). This requires only ged computations.

3. For each (1,j) such that ged(P; j, D) # 1, write D; = G; H;, where G; = ged(P; 5, D;) and rewrite all
terms in (3) involving the polynomial D; as

Pijle) _ Aij(a) Bi j(a)
D,(Za)::o (z —a) G,(Za):IO (z—a)i + Hl(za):zo 7(,2 Y

where A; ; and B;; are obtmned by Fuclidian division of F;; by G; and H;. Repeat this process until
all ged’s are units. This gives a factorization of each D; in the form Dy = D;q -+ Ds n, and the partial
fraction decomposition has the form

n  n;

=YYy ¥ A (1

1=1j=1k=1D; ;j(a)=0
each P; ; i being a polynomial with rational coefficients, deg(P; ; ) < deg(D; ;).
4. From this we get the value of [2"]f(2):

n n;

FUE=N 3y B e S (5)

1=1j=1k=1D; ;(a)=0

Step 1 is computed by repetitively differentiating and computing ged’s. Step 3 guarantees that each
P; ; 1(«) in (4) is non zero. Step 4 is a consequence of the usual series expansion of (o —z)~F. It is clear that
Algorithm 1 runs in polynomial time. We do not worry about its complexity since the following algorithms
are much more expensive.
Example Let f(z) be the following input

224+ 2
(1—2)2(1 4 2 — 222 — 23 — 225)°

In this case, the square-free decomposition of the denominator @ of f is given by Dy = 1 — 2z, D1 =
1+2—22% — 23 —225 (note that D; is not irreducible). Step (2) of the algorithm then produces the following

decomposition
B 1 14/3 h(w)
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where h(a) = (11530a* — 77783 + 1132502 4 3889« — 8080)/93. Since h and D; are relatively prime, Step 3
does not do anything, and then Step 4 produces the result:

14
) =~ D=5+ 30 @)
Dg(Oz):O
To get an asymptotic expansion from this, we have to sort the moduli of the roots of Dy and compare them
to 1. This is addressed in the following sections.

1.3 Specification of the algorithm

As already mentioned, the asymptotic expansion 1s governed by the successive “layers” of singularities of the
rational function, sorted by increasing moduli. We shall need several ways to describe these moduli.

Notation For P(z) € Q[z], we note p1(P) < p2(P) < -+ < pp(P) the distinct moduli of the roots of P
wn increasing order. When there is no ambiguity, we simply denote these numbers p,,, 1 <m<k. We also
note Z, (P) the set of zeroes of P whose modulus is py,(P), and Z (P) the subset of Z,,(P) whose elements
have positive imaginary part.

We first state the form of the output on the example of f(z) from our previous section. The first four
terms of the asymptotic expansion of [2"]f(z) as given by our algorithm are
—(n+1) 14] 1
p3 31 ppt

+[ Z (h(ﬁ) + h(ﬁ)) cos[(n+1) arg(ﬁ)]] pzlﬁ 4 O(iﬂ) ’

pezt(Ds) <

together with the following information p1 = p1(D2), p2 = p2(Da2), ps = 1, pa = p3(D2) and |Z;'(D2)| =1.
If requested, we can also give numerical approximations of the p; and 3.

All the features of the general case are present in this example. We now state precisely the specification
of the algorithm, which we encourage the casual reader to skip. The input of our algorithm consists of f(z) =
P(2)/Q(z) € Q(z) and an integer p> 1. The output is the following asymptotic expansion of [2"]f(z):

Z o). (6)

=1 pp

where

co(n) = Heo(n) +(=1)"He1(n) + Z Z HZ’] k cos[(n + k) arg(8)]

iZ22pez}, (Dej) *

and explicit values are given for the coefficients of the polynomials Hy o and H, 1 (in Q(pe)[#]), D¢ ; (in Q[2])
and Hyjp (in Q(B, B)[2]), as well as for the number of elements of the Z+ involved and a definition of py
either explicit or as pg = pe/(D; ;) for some divisor of Q.

In practice, the program will be able to give numerical approximations of the moduli and the roots implic-
itly defined. Note that, because of the trigonometric functions involved in the coefficients, the expansion (6)
is not of Poincaré type. Instead, we resort to the extended definition of Schmidt [16] (see also [7]), according
to which an asymptotic expansion is a sum of the form

=Y a(n) - filn) +r(n) (7

=1

where as n tends to infinity fr41(n) = o[fis(n)], (1<k<p —1); r(n) = o[fp(n)]; and ar(n) are bounded
functions of n that do not tend to zero.

ol



1.4 Main algorithm

Starting from the partial fraction decomposition (4), we need to order the moduli of the roots of the D; ;
in (5) and find those roots that are purely real along with their signs. Our algorithm is based on the resolution
of the two following computational problems.

Task 1 (Ordering the moduli) Given @ = HMD;]» a square-free decomposition of @ € Q[z] and p
a non-negative integer, compute for each (i,j) and for each k, 1<k <p, the number of roots of D;; of
modulus pr(Q).

Task 2 (Real roots and their signs) Given P € Q[z] a square-free polynomial and k a non-negalive
integer, compute the number p € {0,1} (resp. n € {0,1}) of positive (resp. negative) real roots of P of
modulus py(P).

Most of the rest of this paper is devoted to algorithmic solutions to these tasks. Based on these, our
main algorithm is as follows.

Algorithm 2 (Main algorithm) Let f(z) = P(2)/Q(z) € Q(z) be a rational function, with deg(P) <
deg(Q). Let p be a non-negative integer. To compute the p first terms of the asymptotic expansion of the
coefficients of f(z),

1. Compute the partial fraction decomposition (4) by Algorithm 1.

2. Perform Task 1 to compute, for each (4, j) and for each £,1 <L p , the number m; ;o of roots of D; ;
of modulus p; = pe(Q).

3. Select those terms in the expansion (4) for which |« € {p1,...,pp}, and rewrite (4) in the form
=Y X X () e o
an+k pzr)z )

=1 (435) jle)=0 k=1
™y, 5,8 %0 chI:pz

4. Perform Task 2 to compute, for each (i,j) and for each £, 1 <L p, the number p; j o € {0,1} (resp.
ni ;) of positive (resp. negative) real roots of D; ; of modulus p;.
5. Rewrite relation (8) in the following form which is exactly the sought expansion (6):

o G VT

) Pe

™y, 5,8 %0

+ 2 (; (n +: - 1) (Pijk(pec®) + Piji(pee™)) M)] }é + o(é) .

D, j(pgei®)=0 ¢
sin >0

2 The algebraic method

To complete our main algorithm, there still remains to exhibit algorithms that perform Tasks 1 and 2. We
describe in this section how this can be done purely algebraically. We rely principally on three tools:

(1) amethod to order real algebraic numbers due to M. Coste and M.-F. Roy [6], based on Sturm sequences;

(2) a resultant computation that, given two polynomials P and @ produces a polynomial P ® ¢ whose
roots are the pairwise products of the roots of P and (. In particular the smallest non-negative real
root of P ® P is the square of p;(P) the smallest modulus of the roots of P;



(3) the Graeffe process: Gi(P) has for roots the kth power of the roots of P;

(4) the construction of a polynomial P;(P) whose roots are the products a;, - oy, for iy < -+ < g,
the «;’s being the roots of P.

Using (1) and (2) we can compare the smallest moduli p1 (P) and p1(Q) of the roots of two polynomials P
and @. This will be done in Section 2.1.1. Using (2) and (3), we can produce the polynomials Py (P) the
modulus of the smallest root of which is |a1|---|ag|. This in turn enables us to compare any pair of
moduli p;(P) and p; (@) as will be shown in Section 2.1.2.

Note that other methods than Coste-Roy’s algorithm are known to compare real algebraic numbers (see,
e.g. [14]). One of the reasons for our choice is that the complexity of Coste-Roy’s algorithm is known [15].

The polynomials mentioned above are computed by the formulas:

P ® Q(y) = Resultant, (P(z), zdeg(Q)Q(y/Z)) , gk(P)(Zk) = H P(ezijﬂ/kz)a
j=0
[(k-1)/2]
II Pe-cin(P) @ Gaiga(P)
Ve, 1<k<n,  [Pe(P)" = Z'IOLk/ZJ : (9)

H Pr—2(P) ® Gay(P)

where by convention we set Py(P)(z) = z — 1. Apart from the last one, these polynomials are well known.
That the last polynomial has the roots we expect is not difficult to check. All these polynomials have
coefficients in the same field as P and ).

2.1 Sorting the moduli

Given the polynomial @, its factors [); ; and an integer p, we need to determine the number of roots of each
factor belonging to Z3(Q), 1 <k <p. To simplify our description, we first concentrate on the case p = 1,
corresponding to the first order estimate of the asymptotic expansion.

2.1.1 First order estimate

In this case (p = 1), our task can be performed in polynomial time in the degree of @ by Algorithm 4
below (which is an extension of an algorithm communicated to us by M.-F. Roy, taking into account multi-
plicities). We first describe an algorithm to compute the number of roots of smallest modulus of a polynomial.

Algorithm 3 (Number of roots of smallest modulus) Let P € Qlz].
1. Compute P PZ---P" the square-free decomposition of P @ P.
2. Using Coste-Roy’s algorithm, find 1y such that P;, has the smallest non-negative real root.
3. Then |Z1(P)| = .

Proof. By construction, the smallest non-negative real root of P @ P(z) is p}(P). Moreover, its order
of multiplicity is the number of roots of P of smallest modulus. Computing square-free decompositions in
Step 1 ensures that only one of the polynomials P; has the smallest non negative real root. a

Algorithm 4 (Smallest moduli comparison) Let P and @) € Q[X].

1. Compute P;, and Q;, as in Algorithm 3. Their smallest non-negative real roots are pi(P) and p(Q).



2. Applying Coste-Roy’s algorithm to Py, and Qj,, compare pi(P) and p3(Q).

3. The number of roots of P (resp. Q) of modulus p1(PQ) = min(p1(P), p1(Q)) is given by iy (resp. jo)
if p1(PQ) is equal to pr(P) (resp. p1(Q)), and 0 otherwise.

Proof. This algorithm works for the same reason as Algorithm 3. O

Applying this algorithm to the polynomials D; ; and @ gives the result we are after. Task 1 is therefore
solved for p = 1. From the complexity estimates in [15], it follows that the complexity of Algorithm 4
is O(n?°(n + log |P| + log |@])?), where n = max(deg(P),deg(Q)) and |P| denotes the sum of the absolute
values of the coefficients of the polynomial P.

2.1.2 Ordering the p smallest moduli

We now want to compute for each k, 1 <k <p and each (¢, j), the number of roots of D; ; of modulus p;(Q).
Although all the |a;|? are roots of P @ P, Algorithm 4 does not generalize well because in general P @ P has
other non-negative real roots. We first give a generalization of Algorithm 3.

Algorithm 5 (Number of roots of a given modulus) Let P € Q[z]. Given an integer ¢ > 1, and m; =
|Zi(P)|, for 1<i<q, such that my + --- 4+ my < deg(P), to compute mgp1 = |Zg41(P)|, apply Algorithm 3
to the polynomial P = P 4. ym, +1(P).

Proof. If P(z) = [[,(# — a;), then by (9) we have P= Hi1<m<ik+1(z — g, Qg ), where k = my 4+ ma +
+m‘] Since |a1| == |am1| < |am1+1| == |am1+m2| << |ak+1| == |ak+mq+1| < the
roots of smallest modulus of P(z) are agy; Hle o, 1< j<mgy. O

We can now give the generalization of Algorithm 4:

Algorithm 6 ((¢ 4 1)st smallest moduli comparison) Let P and Q € Q[z]. Given an integer ¢>1
and m; (resp. n;) the number of roots of P (resp. Q) of modulus p;(PQ) for 1 <i<gq, such that (m;+ -+
mg)+ (n1 + -+ ny) < deg(P) + deg(Q), to find the number myy1 (resp. ngy1) of roots of P (resp. Q) of
modulus pyyq1(PQ),

—Ifmi+4- -+ my = deg(P) (resp. n1+---+n, = deg(Q)), then myyp1 (resp. ngiq1) is 0 and ngqq (resp.
Mgt1) s given by Algorithm 5.

- Otherwise, these values are obtained by applying Algorithm 4 to pP= Pt amg+1(P) O Priggn, (Q)
and Q = Pn1+~~~+nq+1(Q) ® Pm1+...+mq (P)

Proof. The first part is obvious. Denote by «; the roots of P and by f; the roots of ). Let M, be
the number of roots of P whose modulus is the smallest p;(P) strictly greater than p,(PQ) and define
similarly M,. The second part follows from noticing that the polynomial @) has been built so that it has M,
roots of smallest modulus, namely 3 Hzn:11+~~+mq oy H?;_-I_nq Biyni+-ng+1<k<ni+-+ny+ M,
Writing similarly the M, roots of smallest modulus of P, one deduces the result. a

By induction on p > 1, using Algorithm 6, it is now easy to find for each (¢, j) the number of roots of D; ;
of modulus p1(@), p2(Q), ... pp(Q) with Q = Hi]’ nyj. Task 1 is thus solved.

Because k = my + ---+ my can take any value between 1 and n, and since the degree of Py 4. ym,
is (Z), Algorithm 6 runs in exponential time as soon as p > 2.

2.2 Finding the real roots

We now attack Task 2: given an integer k, 1 <k < p, we want to find for each D; ; the number and the sign
of the real roots of D; ; of modulus pg(Q). The following algorithm solves this problem.



Algorithm 7 (Real roots and their sign) Let P € Q[z] be a square-free polynomial. Given an inleger
q, the number m; = |Z;(P)| and the number n; € {0,1} of real negative roots of P of modulus p;(P) for
1<i<yq, withmy +---+my < deg(P); to compute the number popq € {0,1} (resp. ngy1) of real positive
(resp. negative) roots of P of modulus py11(P),

1. Compute the polynomial P = Pt tma+1(P) and mgy1 by Algorithm 5.

2. If mgyq1 1s odd, then P has exactly one real root of modulus pg11. To find its sign, compare the smallest
positive real roots r ofls(z) and p ofﬁ(—z) by Coste-Roy’s algorithm. If r > p or zf]s(z) has no positive
real Toots, then pgy1 = 1+ -+ ny (mod 2) and ngy1 =14+ n1 +---+n, (mod2). Otherwise,
either p > r or ]3(—,2) has no positive real roots, and then pgy1 = 1+ n1 4+ ---+ny (mod 2) and
Ngy1 =M1+ ---+ny (mod 2).

3. If myqq is even, compute R(z?) = gcd(ﬁ(z), ]3(—,2)) If its degree is 0 then pyp1 = ngqy1 = 0, otherwise
use Coste-Roy’s algorithm to compare the smallest positive real roots r of R and p ofﬁ @ P. If R has
no positive real roots, then pgy1 = ngp1 = 0. If r = p then pgy1 = ngp1 = 1. Otherwise we must have
> p and so pgp1 = ngy1 = 0.

Proof. First, note that P being square-free, ps41 € {0,1} and ng4q € {0,1}. Let P = [[,(z — ;). The

m1++q

roots of P being either real or coming by pairs of conjugates the number M =[], a; 18 real and its

sign is the sign of (—1)"** " *7¢ The polynomial P has Myy1 roots of smallest modulus, namely
M'aia ml+"'+mq+1<i<ml+"'+m(]+mg+la (10)

so that if m,41 is odd, then P has exactly one real root of modulus py41(P) and ]S(z) has only one real root
of smallest modulus. Step 2 1s now obvious.

When mg41 is even, either py41 = ngq1 = 0or Pg41 = Ng41 = 1 for conjugacy reasons. The roots of R(z?%)
are the roots o of P such that —a is also a root of P. Thus if deg(R) = 0 we cannot have py11 = ng41 =1
because of (10) . Otherwise, the smallest positive real root of R is the square of the smallest real root g of
P such that — 3 1s also a root of P. The smallest positive real root of PaP being the square of the moduli
of the roots (10), Step 3 is now clear. O

For the same reasons as Algorithm 6, Algorithm 7 runs in exponential time as soon as p> 2.
Tasks 1 and 2 have been solved, and we are now able to give the asymptotic expansion of the coefficients
of a rational function by Algorithm 2.

3 The numerical method

In the last section, we solved Tasks 1 and 2 using only algebraic tools, which is currently the most natural
solution to our problem from the computer algebra point of view. We shall now present an alternative
method showing that numerical tools can be used reliably to perform our task in polynomial time. We only
need to order the moduli of the roots of a polynomial and find which of them are real. Although there
exists algorithms which achieve these tasks (for instance, we could use Graeffe’s method to approximate the
moduli of the roots of @), it is cheaper to find directly all the roots of @ with a sufficiently sharp bound on
their errors. Our numerical method will depend on a complex root finding algorithm, that we first describe
briefly.

3.1 A root finding algorithm

We want to find the complex roots of a polynomial with rational coefficients with arbitrary precision. Nu-
merous algorithms exist to achieve this task, but only few of them are reliable. Newton’s method does not
always converge; Traub and Jenkins” method [9], usually used for root finding in computer algebra systems,



converges theoretically but it turns out that precision control 1s badly handled in practical implementations.
Besides, its complexity is not known to be polynomial. We present here a root finding algorithm for which
the precision control has been carefully studied. In the following, |P| = >, |a;| denotes the norm of the
polynomial P = ag + - - -+ a,2". An immediate consequence of a theorem from [12] is the following result.

Proposition 1 (Pan) Let P € C[z] be a monic polynomial, n = deg(P) > 0. All the zeros of P can be
computed with absolute error € > 0 using O [n?log n(nlog(n) + log(|P|/¢))]| arithmetic operations.

Unfortunately, the constant term in front of the time bound is very high and therefore the result seems to
be only of theoretical importance. For instance, this algorithm relies on FFT techniques, which makes it
efficient only for very large degrees.

3.2 Necessary precision

The reason why we can rely on numerical methods to solve our task is that two different roots of a polynomial
with integer coefficients cannot be too close. The following result [11] makes this precise.

Proposition 2 (Mahler) Let P(z) = ag+ a1z + -+ + a,2" = a, [[1=,(z — o;) be a polynomial of degree
n > 0 with integer coefficients. Then

oo = o — o> V3~ D2\ (Yo
where M(P) = |a,|[[i—, max(1, |a).
From this we deduce the following theorem.

Theorem 1 Let P(z) be a polynomial with integer coefficients, n = deg(P) > 0 and a1, ..., ay ils roots.
Define k(P) to be the following quantity

K(P) = ? [n(n + 1)/2]—[n(n+1)/4+1] .M(P)—n(n2+2n—1)/2’ (11)

then |o;| # |aj| = ||0zi| - |ozj|| > k(P) and |S(ey)| is either 0 or larger than (P).

Proof. Let C be the leading coefficient of P. We first prove that the polynomial Q(z) = C"* ], <j(z—oziozj)
has integer coefficients. We can suppose that the polynomial P is primitive, i.e. the ged of its coefficients is 1.
The polynomial P @ P has for roots a;a;, 1< ¢, j < n, its coefficients are integers, and from classical results
on the resultant algorithm, its leading coefficient is C*". Since the polynomial Go(P)(z) = C*[];(z —a?) has
integer coefficients, is primitive and divides P @ P, we deduce that the quotient C*(*~1) Hi#(z —ooy) =
[cn—t HK]» (z — ajaj)]? has integer coefficients and therefore, so has its square root. Finally Q(z) is the
product of this polynomial by G2(P)(z) which implies it has integer coefficients.

Next, let # and y be two distinct roots of Q. Since M(Q) < M(P)"*T1, Mahler’s result applied to @ yields

|z —y|>v = \/g[n(n + 1)/2]—[n(n+1)/4+1] M(P)(n+1)(1—”(”+1)/2). (12)
If o; and o are roots of P with distinct moduli, then |a;|* and |a;|? are two distinct roots of @ and

we have ||0zi|2 - |ozj|2| >+, hence ||0zi| - |ozj|| 27/(Joi| + |oj]). As |e;] and |o;]| are smaller than M(P), we
finally deduce

T _
The last part of the theorem can be derived analogously from the inequality |a;a; — a?] > 7. a

A sharper lower bound on |$(«;)| can be derived by considering only the polynomial P. We do not need
this sharper bound since we need to compute the roots with an absolute error x(P) to sort their moduli.



3.3 Numerical algorithm

Using these results, we now give an algorithm which performs reliably Tasks 1 and 2 by purely numerical
methods.

Algorithm 8 (Numerical) Let Q) = Hi]’ D;j be a square-free decomposition of the polynomial Q). QOur
aim is to compute, for each (1,7) and for each q the number of roots of D; ; of modulus py(Q) and the number
of these that are real along with their signs.

1. For each (i,j), compute the number v; ; = inf(y, 0y2(:,5) Y(Di j Dr o) where ¥(Dy j Dy o) is defined by

(Dis D) = L2 (a4 1) /2] W] g a1y
) ) 2 )

with d = deg(D; ;) + deg(Dy o). (Take Dy o =1 if D;; is the only polynomial).

2. Using Pan’s Algorithm [12], compute for each (i,j) the roots of the polynomial D;; with an absolute
error € ; = v ; /4.

3. Let o be a root of D; ;, 5 a root of Dy 4, & and B their approzimations found at Step 2. If ||a| — |B|| <
Yi /2, then |a| = |5, else the inequality between |«| and |G| is given by the inequality between |&| and
|B3|. This way, all the moduli of the roots of Q are sorted.

4. Let « be a root of some D; ;. If ils approzimation & satisfies |3(&)| > 7;;/2, then « is not real
Otherwise o is real, and its sign is given by the sign of R(&).

Proof. The validity of this algorithm results from Theorem 1 applied to each of the polynomials D; ; Dy, »
and D; ;, and from the inequalities:

(i,0) # (k1) =  M(Di;Dre) <M(Q)<|Q,

The inequality M(Q) <|@] is due to Mahler [10]. In Step 4, the fact that the sign of o (when « is real) is
the sign of N(&) results from the inequality || =7, ;. (This latter inequality can be derived, for example,
from the inequality || > 1/M(D; ;) which is easily proved). a

Proposition 1 Algorithm 8 runs in time O [n5lognlog |Q|] where n 1s the degree of ).
Proof. Apply Theorem 1 to each of the polynomials D); ; with € = ¢; ;. a

4 Optimizations

In the last two sections, we presented two methods that achieve Tasks 1 and 2. In practice, these two
methods are awfully expensive. We present here another algorithm, which works on most of the rational
functions, and which is much quicker. Another advantage of this new algorithm is that we can know whether
it works or not. When 1t does not, then we can revert to one of the previous methods. This method is
essentially numerical. We compute approximations of the roots of Q(z) using a root finding algorithm, with
a relatively crude absolute error (compared to what it was in the previous section). In most cases though,
everything can be deduced from these estimates.
In [17], A. Schénhage gave a root finding algorithm and demonstrated the following result.

Theorem 2 (Schénhage) Let P € Clz] be a monic polynomial, n = deg(P), and € > 0. We can compute
n complex numbers vy, ---, v, such that

|P—(z—wv1) - (z—vy)| <e¢ (13)
within the time bound of O [(n®log(n) + log(|P|/e)n?)log(nlog(|P|/€))loglog(nlog(|P|/€))] .
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Although this bound seems slightly weaker than the previous one in Proposition 1, this one is in terms of bit
complexity. Note that this algorithm does not approach directly the roots with an absolute precision €. But
from inequality (13) one can derive absolute error bounds on the roots of P. This algorithm was optimized
by Gourdon [8] who implemented it in MAPLE; the program gives the right result in a reasonable time. We
shall rely on this method to approximate roots of polynomials.

Let Q(z) = Hi,j D;j be a square-free decomposition of the polynomial (). Using Schonhage’s algorithm,
we compute for each (¢, j) approximations &, . . ., &, of the roots of D; ; such that |D; ;j(z) =[], (z —vk)| < €
(we can assume D; ; monic), with € = 1077, where n = deg()). We have already seen that from this we can
compute for each root ay of D;; an absolute error bound 7, > 0 such that |&; — ap| < 7. Suppose that
the absolute bounds 75, determine which roots are conjugates, which roots are real and what their sign is.
To achieve Tasks 1 and 2, it then remains to compare the moduli of the non-conjugate roots. If again, the
absolute error bounds 75, make 1t possible to decide these comparisons, then we have finished. Otherwise, we
have a certain number of couples of non-conjugates and distinct roots (o, f) of @ such that, if & and B are
the approximations of @ and @ found and 7 and 7’ the absolute error bounds found for these approximations,
|| — |B|| < 174 7'. We call these couples candidates. In this case, we use Algorithm 9 (see below) to test
the equality of the moduli of the candidates. If all the candidates have the same modulus (this is often the
case), then we have solved Tasks 1 and 2. Else, this algorithm failed and we use one of the previous methods
discussed in Sections 2 and 3. The underlying idea is that i1t 1s very unlikely that two non-real roots of
distinct moduli have the same argument.

Algorithm 9 (Equality of candidates) Let P = [[_,(z — a;) be a square-free polynomial € Q[z]. We
are given approzimalions &;, absolule error bounds 7; such that |&; — «;| < 7, and for each j, 1 <j<n, the
number s; of elements of the set I'; = {3, ||o?Z| - |07j|| <7+

1. Compute the square-free decomposition P@ P = PyPZ...Pr.

r

2. By Sturm sequences [19], compule for each k the number my of non-negative real roots of Py.

3. If (a) m1 4+ 2mo + -+ rm, = n, (b) for all (i,j), either T; NT; = & or I; =Ty, (¢) for all £,
by = |Us,=eT5|, then for all j, all the elements of T; have the same modulus.

Proof. Since PQ P = Hm»(z — ajaj), the |a;|? are roots of it. If mq 4+ 2may + - -+ rm, = n, then these are
its only positive roots. The result is now obvious. a

5 Examples

Denumerants [4, p. 108]: the number of ways to make n francs with coins of 1, 2, 5, and 10 francs has
for generating function

1
I&) = T - =)
The ten singularities have the same modulus, but 1 being a singularity of order 4 is isolated in the decom-
position (4) produced by Algorithm 1:
1/100 7/100 91/400  21/50 n Z 433 —33% + 28 -6
— )4 — )3 — .2 _ _
(1-2) (1-2) (1-2) 1—=z g B 1m0 100(5 — z)

Z 17a* 4+ 903+ 17a? +a+1  o*—270® - 14a® — 330 +3

2000(z — a)? 500(z — «) '

_|_

aS+2a442a34+20242a+4+1=0

From this we deduce easily the first terms of the asymptotic expansion of [27]f(z):

n3 On2 491 (_1)71 Z ad 4@+ 2(04 + a) +4 COS[(n + 2) arg(a)] n -+ 0(1)

500 T 200 1200 80 250
ozEZf'(z4+z3+z2+z+1)
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Sum of powers of Fibonacci numbers Since rational functions (when they are regular at infinity)
are closed under Hadamard product, and the sum of a sequence is obtained by multiplying its generating
function by 1/(1 — z), many operations that can be applied to a linear recurrent sequence yield another
linear recurrent sequence. We consider here > ;_, FF. It is not difficult (tedious, rather) to show that the
generating function of F? has the following expression for fixed p:

if p 1s odd;

if p is even;

=0

= —1)yp/2(p
5—P/2 p (_1)k 2— (=D Ly _|_( 1) (p/Z)

k=0 L= (—1)FLp_ogz+ 22 1—(=1p/2z |’

where L,, denote the Lucas numbers. From this we construct the generating function of the sum of the tenth
powers of the Fibonacci numbers, which we give in compact form to our algorithm:

2% — 8725 — 4047 27 + 42186 2° + 205690 2> + 42186 2* — 4047 2% — 87 2% + =z
2118910 489529 48321528 +58250527 — 151451326 —15145132° +5825052% + 8321523 — 489522 —89z+1

The first stage of the algorithm produces the decomposition f(z) = ZQ(Q):O P(a)/(a — z), where @ is the
denominator of f and P is the following polynomial:

P(2) 1088331670771 147618897967 25161090223051 473498073791 5
z) =

© 46065550781250000 + 128854687500000 it 98535937500000 i 4692187500000 ?
48654728411 4 178616503 & 2060862361 ¢ 4685959559 7

T 541406250000 ~ ' 8789062500 - 541406250000 - 4692187500000
383607377 & 1645213621 . 496515521 o

7579687500000 = 1675110937500000 T 46065550781250000 ?

This decomposition implies that all the singularities are simple poles. The next stage of the algorithm is to
determine the number of real and complex roots of each modulus for the first moduli of the roots. This is
done by a numerical evaluation of the roots with error bound 10~* which shows that all the roots are real,
and yields their signs. For instance, the three first terms of the expansion are

[Zn]f(z) — P,(Lﬁ_ll) (_1)n+1 P(_pZ) + Pr(lﬁi) +o (L) ’

i patt ol

with p; ~ 0.00812, py ~ 0.0212 and pz ~ 0.0753.

A large problem This combinatorial problem was considered in [5]. Starting with 1, we write down a
sequence of words by counting the number of contiguous identical digits in the previous word. Thus the
second word is 11 because there 1s one 1 in “1”. Then we have two 1s, hence the third word is 21, and so
on. The first few words are: 1, 11, 21, 1211, 111221, 312211, 13112221,... We then consider the sequence of
lengths of these words: 1,2, 2,4, 6, 6,6, 8,.... What happens is that this sequence is rational of degree 72!

From the table in [5, pp. 177-178], it is possible to compute this fraction by solving a linear system. The
numerator 1s found to be

Pz)=14z— 22—t 2 5T 4 62° 48210 — 1022 — 5210 M 41 210 T 7t
4927 — 457° — 222 — 39272 4 427 45257 438277 4+ 1747 — 68277 — 2827% 4 22577 — 125%°
413271 — 372 4 4527 4 5457 — 1227 — 3457 — 82:°7 £ 172 4 895 41320 — 342%% — 89"
+732% 4 2% 262" 4 312% — 1282 — 142" 4+ 492°° 4+ 5651 + 742°2 — 99277 — 2057 — 435°°
+332°% +472°7 — 412°% +182°° +505%° — 102" — 13252 — 925% — 17.%* 4 382%° — 42,%¢ 4 37,°7
+82%% —42%7 — 20270 —19:™ 428272 430277 — 2227 — 1827 412277,
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and the denominator 1s

15 16

_ 8Z17 4 7Z18 4 Z19 4 8Z20

— 72" 41927 — 142 + 1427
48

Q(z):l—z—z2—z3—|—z4—|—3z5—z7—2z8—|—3z13—|—3z14—2z
— 5272 48227 — 1227 — 427 — 2% 11827 — 427 42270 — 132
— 6% — 477 + 132°8 — 9,79 _ 7,40 + 44 _ g2 + 744 + 5t + T 124 + 17247 — 92925
+82% — 7% 116250 —62°% — 7250 — 625 13250 £ 192°% — 5257 — 5258 — 142%° 18250 4 2.
47252 - 525 4 2% 8% £ 14250 11257 £ 162%° — 1829 49270 — 9™ 46572,

— 5z
31

39

52

One of the nice theorems in [5] states that this denominator is actually independent of the starting string,
provided it different from “22”. Thus in the leading term of the asymptotic expansion, only the constant
factor depends on the initial string.

Despite the large degree of this denominator, it turns out that the asymptotic expansion is not too
difficult to find. For the sequence we consider, the decomposition of P/@ is

Q=0

where R 1s a polynomial induced by the first terms, and F' is a polynomial of degree 71 with 250-digit
rational coefficients. This means that all the singularities are simple poles. If one is only interested in the
first order estimate, it then remains to determine the number of roots of smallest modulus. As expected since
the coefficients of the generating function are positive, one of these roots is a positive real number. Using
the program of X. Gourdon based on A. Schénhage’s algorithm [8], we get that the two smallest moduli are
approximately 0.767 and 0.861, with error bounds of the order 10~4° which shows that the root of smallest
modulus is alone (and therefore real). Thus, [2"]f(z) ~ F(p1)p;" ™", p1 =~ 0.767119 and F(p;) ~ 1.566. All

the 72 moduli belong to the interval (0.767,1.151), showing the need for caution with numerical estimates.

Conclusion

Algorithm 8 should not be implemented blindly. Although its complexity is polynomial, the constant implied
in the O() of Proposition 1 is very large. Thus in our last example above, the precision needed to compute
the roots would be approximately 522000 digits. Instead, one should use this algorithm as an upper bound
in an adaptative program based on a good numerical program such as [8] and Algorithm 9, increasing the
precision if necessary.

Note also that we have never used the fact that in combinatorial contexts, the generating functions have
only positive coefficients and thus by Pringsheim’s theorem (see [20]), one of their singularities of smallest
modulus is real positive, the other ones having arguments commensurable with #. The computation of the
first-order estimate could take advantage of this extra information.

This very simple problem of linear recurrences with rational coefficients is not yet completely solved. It
would be useful in practice to have some control over the periodicities that may occur in the asymptotic
expansions. This problem is exemplified with the following generating function:

224 22—2
(1—222)(1 —2)%’

or equivalently u, = 2u,_1+up_2—4Un_3+2Un_q, g = u1 = 2,us = 5, uzg = 4. The first few terms are 2, 2,
5,4,9,6, 15,8, 25,10, .... The first-order asymptotic approximation obtained from this generating function
is (1 + cosnm)2"~1 + o(2™). What happens is that although valid for all positive n, this expression reduces
to 0(2") when n is odd. Better precision necessitates to look for further terms in the expansion. The ideal
algorithm outputs a list of asymptotic expansions depending on arithmetic properties of n. Cancellation in
this context is not a trivial problem. For instance, no algorithm is known to determine whether a linear
recurrent sequence takes the value 0 for some index. It is known that when such a sequence cancels infinitely

13



often, the indices where it cancels asymptotically form a finite union of arithmetic progressions that can be
computed [1], but our problem is different since we are only concerned with indefinite cancellation of the
dominant part, which does not satisfy a linear recurrence in general.
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