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Abstract

We give algorithms to compute the asymptotic expansion of solutions of linear recurrences with
rational coe�cients and rational initial conditions in polynomial time in the order of the recurrence�

Introduction

We investigate sequences de�ned by a recurrence of the form

akun�k � ak��un�k��� � � �� a�un � �� ���

where the coe�cients ak and the initial conditions belong to Q� This is probably the most simple type of
recurrence one may encounter� Recurrences of this type are ubiquitous in many �elds of applications �see 	
�
for numerous examples and references�� Among the approximately �
�� sequences listed in Sloanes book 	����
one can estimate that about �
� are of this type 	�
�� In the rest of this paper �linear recurrence� always
means �linear recurrence with rational coe�cients� and we shall refer to un as a �linear recurrent sequence��

Surprisingly� some problems related to linear recurrences remain open 	
�� and specially problems related
to e�ectivity� Our aim in this paper is to describe an algorithm that computes an asymptotic expansion
of a sequence obeying ��� in polynomial time in the order k of the recurrence� It is quite simple to �nd
the asymptotic expansion of Fibonacci numbers with traditional tools� but these tools break down for ill�
conditioned recurrences� The algorithm we describe works without any limitation on the value of k or those
of the coe�cients�

Given a recurrence such as ���� one usually computes its general term as a sum of exponential polynomials

of the form
PN

k�� pkn
k�n� where � is an algebraic number� In Section � we shall describe an algorithm

computing the coe�cients pk without factoring any polynomial� This general term does not solve the problem
of asymptotic behaviour� To form a proper asymptotic expansion one has to order the moduli of the algebraic
numbers � occurring in the general terms� The problem which will occupy most of this paper is� How can
one perform such an ordering exactly� i�e� we prove that the algorithms we propose work on the whole
class of recurrences ���� We shall use techniques from computer algebra to free ourselves from problems
of ill�conditioning related to the use of �oating�point values� The result is an algorithm which� given a
positive integer p and a linear recurrence ��� together with its initial conditions�or equivalently a rational
function in Q�x� �see below��outputs the p �rst exponential polynomials of the asymptotic expansion of
the solution un of ��� as n tends to in�nity�

As an example consider the recurrence

�����un � ���
�un��� ����un�� � ���un�� � 
��un�� � �� ���

Its characteristic polynomial has four simple roots�
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To compute the asymptotic behaviour of un� it is necessary to decide which roots have the largest modulus�
In this example the roots are given explicitly and this make it possible �but not trivial� to sort them by
modulus� The techniques we develop do not require an explicit expression of the roots�

We describe two essentially di�erent decision procedures to compute the asymptotic expansion� The �rst
approach� purely algebraic� completely avoids factorizations� It is made expensive by the increase of degrees
due to resultant computations� Currently this is the most natural computer algebra approach to the problem�
and the most easily implemented� However� as soon as p� �� its cost becomes potentially exponential in the
order of the recurrence�

The second approach is perhaps more natural� it consists in using numerical approximations� In our
example� the approximations

�� � 
���������� � � � � �� � ������������ � � � � �� � 
���������� � � �

make it possible to conclude� This example also shows that these numerical approximations may require a
lot of precision� To avoid ill�conditioning� we use guaranteed numerical approximations and we show that
this can be done in polynomial time in the order of the recurrence� Numerical approximations have long been
banned from computer algebra because of the reluctance inherited from �xed precision routines� However�
with the arbitrary precision provided by most computer algebra systems� we feel that it is time for �oating
point numbers to be rehabilitated in computer algebra�

The �rst step of the algorithm is to compute a suitable partial fraction decomposition of the generating
function of un� Since factorization of polynomials is known to be polynomial�time but depressingly expen�
sive� we shall avoid factorization and rely instead on a recent decomposition algorithm 	��� This is described
in Section �� In Section � and 
� we address the problem of comparing the moduli of the singularities �cor�
responding to the roots of the characteristic polynomial�� As opposed to what happens usually in most
algorithms involving algebraic numbers� we have to distinguish between roots of a given polynomial� A �rst
method is described in Section �� based on an algorithm 	�� for comparing real algebraic numbers� At this
stage� we can produce the desired asymptotic expansion� Section 
 describes a numerical alternative to
the algebraic algorithms of Section �� where we show how to get exact information from numerical values�
We prove that this can be done with a cost that is lower than that of the algebraic method� In Section ��
we study optimizations that can be applied to subparts of our algorithm in practical cases� In particular
we show there how rough numerical estimates can be used fruitfully� We conclude in Section � with a few
examples taken from classical combinatorics�

� Outline of the algorithm

��� Generating function

One can translate ��� into the rational generating function
P

unz
n with O�k�� rational operations� the

generating function of the sequence ��� isPk
i�� ai

Pi��
j�� ujz

k�i�jPk
i�� ak�iz

i
�

The reciprocal conversion is also easy�
From the asymptotic point of view� the generating function approach enables us to use tools from complex

analysis� like residue computation� which prove very e�ective� Because of the low cost of the conversion from
a linear recurrence to the generating function� from now on we shall be concerned with rational functions
only� Thus the input of our algorithm is a function f � Q�z� regular at the origin� together with a positive
integer p� and its output consists of the �rst p terms of the asymptotic expansion of 	zn�f�z��the nth Taylor
coe�cient of f at the origin�as n tends to in�nity�
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��� Exact formula

In this section� we derive an exact formula for 	zn�f�z�� based on a partial fraction decomposition that does
not require factorization� This allows for both an e�cient implementation and possible future extensions to
rational functions with parameters or non�rational coe�cients�

Algorithm � �Exact formula� Let f�z� � P �z��Q�z� � Q�z�� with P and Q two relatively prime polyno�
mials and deg�P � � deg�Q�� To compute 	zn�f�z��

�� Compute Q � D�D
�
� � � �Dn

n the square�free decomposition of Q� �Each Di is a square�free polynomial��

�� Using the decomposition algorithm ���� compute polynomials Pi�j � Q	z� such that

f�z� �
P �z�

Q�z�
�

nX
i��

iX
j��

X
Di�����

Pi�j���

�z � ��j
� �
�

with deg�Pi�j� � deg�Di�� This requires only gcd computations�

	� For each �i� j� such that gcd�Pi�j� Di� �� �� write Di � GiHi� where Gi � gcd�Pi�j� Di� and rewrite all
terms in �	� involving the polynomial Di asX

Di�����

Pi�j���

�z � ��j
�

X
Gi�����

Ai�j���

�z � ��j
�

X
Hi�����

Bi�j���

�z � ��j

where Ai�j and Bi�j are obtained by Euclidian division of Pi�j by Gi and Hi� Repeat this process until
all gcd
s are units� This gives a factorization of each Di in the form Di � Di�� � � �Di�ni and the partial
fraction decomposition has the form

f�z� �
nX
i��

niX
j��

iX
k��

X
Di�j�����

Pi�j�k���

�z � ��k
� ���

each Pi�j�k being a polynomial with rational coe�cients� deg�Pi�j�k� � deg�Di�j��

�� From this we get the value of 	zn�f�z�

	zn�f�z� �
nX
i��

niX
j��

iX
k��

X
Di�j�����

�n � �� � � � �n � k � ��

�k � ���
� Pi�j�k���

�n�k
� ���

Step � is computed by repetitively di�erentiating and computing gcds� Step 
 guarantees that each
Pi�j�k��� in ��� is non zero� Step � is a consequence of the usual series expansion of ���z��k� It is clear that
Algorithm � runs in polynomial time� We do not worry about its complexity since the following algorithms
are much more expensive�
Example Let f�z� be the following input

z� � �

��� z���� � z � �z� � z� � �z	�
�

In this case� the square�free decomposition of the denominator Q of f is given by D� � � � z� D� �
��z��z��z���z	 �note that D� is not irreducible�� Step ��� of the algorithm then produces the following
decomposition

f�z� � � �

��� z��
� ���


�� z
�

X
D������

h���

�� z
�






where h��� � ����
�������������
�����
������������
� Since h and D� are relatively prime� Step 

does not do anything� and then Step � produces the result�

	zn�f�z� � ��n � ��� ��



�

X
D������

h�����n���

To get an asymptotic expansion from this� we have to sort the moduli of the roots of D� and compare them
to �� This is addressed in the following sections�

��� Speci�cation of the algorithm

As already mentioned� the asymptotic expansion is governed by the successive �layers� of singularities of the
rational function� sorted by increasing moduli� We shall need several ways to describe these moduli�

Notation For P �z� � Q	z�� we note ���P � � ���P � � � � � � �k�P � the distinct moduli of the roots of P
in increasing order� When there is no ambiguity� we simply denote these numbers �m� ��m� k� We also
note Zm�P � the set of zeroes of P whose modulus is �m�P �� and Z�

m�P � the subset of Zm�P � whose elements
have positive imaginary part�

We �rst state the form of the output on the example of f�z� from our previous section� The �rst four
terms of the asymptotic expansion of 	zn�f�z� as given by our algorithm are�

����n��h�����
� �

�n��
�

�
�
h���� � ����n��h�����

� �

�n��
�

�

���n� ��

��
� ��




�
�

�n��
�

�
h X
��Z�

� �D��

�
h��� � h���

�
cos	�n� �� arg����

i �

�n��
�

� o

�
�

�n�

�
�

together with the following information �� � ���D��� �� � ���D��� �� � �� �� � ���D�� and jZ�
� �D��j � ��

If requested� we can also give numerical approximations of the �i and ��
All the features of the general case are present in this example� We now state precisely the speci�cation

of the algorithm� which we encourage the casual reader to skip� The input of our algorithm consists of f�z� �
P �z��Q�z� � Q�z� and an integer p� �� The output is the following asymptotic expansion of 	zn�f�z��

	zn�f�z� �

pX
���

c��n�

�n�
� o

�
�

�np

�
� ���

where

c��n� � H����n� � ����nH����n� �
X
j��

X
��Z�

n��j
�D��j �

X
k

H��j�k�n�

�k�
cos	�n� k� arg����

and explicit values are given for the coe�cients of the polynomialsH��� and H��� �in Q����	z��� D��j �in Q	z��
and H��j�k �in Q��� ��	z��� as well as for the number of elements of the Z� involved and a de�nition of ��
either explicit or as �� � ����Di�j� for some divisor of Q�

In practice� the program will be able to give numerical approximations of the moduli and the roots implic�
itly de�ned� Note that� because of the trigonometric functions involved in the coe�cients� the expansion ���
is not of Poincar�e type� Instead� we resort to the extended de�nition of Schmidt 	��� �see also 	���� according
to which an asymptotic expansion is a sum of the form

f�x� �

pX
k��

ak�n� � fk�n� � r�n� ���

where as n tends to in�nity fk���n� � o 	fk�n��� ��� k� p � ��� r�n� � o 	fp�n��� and ak�n� are bounded
functions of n that do not tend to zero�
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��� Main algorithm

Starting from the partial fraction decomposition ���� we need to order the moduli of the roots of the Di�j

in ��� and �nd those roots that are purely real along with their signs� Our algorithm is based on the resolution
of the two following computational problems�

Task � �Ordering the moduli� Given Q �
Q
i�jD

i
i�j a square�free decomposition of Q � Q	z� and p

a non�negative integer� compute for each �i� j� and for each k� ��k� p� the number of roots of Di�j of
modulus �k�Q��

Task � �Real roots and their signs� Given P � Q	z� a square�free polynomial and k a non�negative
integer� compute the number p � f�� �g �resp� n � f�� �g� of positive �resp� negative� real roots of P of
modulus �k�P ��

Most of the rest of this paper is devoted to algorithmic solutions to these tasks� Based on these� our
main algorithm is as follows�

Algorithm � �Main algorithm� Let f�z� � P �z��Q�z� � Q�z� be a rational function� with deg�P � �
deg�Q�� Let p be a non�negative integer� To compute the p �rst terms of the asymptotic expansion of the
coe�cients of f�z��

�� Compute the partial fraction decomposition ��� by Algorithm ��

�� Perform Task � to compute� for each �i� j� and for each �� �� �� p � the number mi�j�� of roots of Di�j

of modulus �� � ���Q��

	� Select those terms in the expansion ��� for which j�j � f��� � � � � �pg� and rewrite ��� in the form

	zn�f�z� �

pX
���

X
�i�j�

mi�j�� ���

X
Di�j�����

j�j���

iX
k��

�
n� k � �

n

�
Pi�j�k���

�n�k
� o

�
�

�np

�
� ���

�� Perform Task � to compute� for each �i� j� and for each �� �� �� p� the number pi�j�� � f�� �g �resp�
ni�j��� of positive �resp� negative� real roots of Di�j of modulus ���

�� Rewrite relation ��� in the following form which is exactly the sought expansion ���

pX
���

� X
�i�j�

mi�j�� ���

�
pi�j��

iX
k��

�
n� k � �

n

�
Pi�j�k����

�k�
� ����nni�j��

iX
k��

�
n� k � �

n

�
Pi�j�k�����
�����k

�
X

Di�j ���e
i����

sin ���

� iX
k��

�
n � k � �

n

��
Pi�j�k���e

i�� � Pi�j�k���e
�i��

� cos	�n� k�	�

�k�

��	
�

�n�
� o

�
�

�np

�
�

� The algebraic method

To complete our main algorithm� there still remains to exhibit algorithms that perform Tasks � and �� We
describe in this section how this can be done purely algebraically� We rely principally on three tools�

��� a method to order real algebraic numbers due to M� Coste and M��F� Roy 	��� based on Sturm sequences�

��� a resultant computation that� given two polynomials P and Q produces a polynomial P � Q whose
roots are the pairwise products of the roots of P and Q� In particular the smallest non�negative real
root of P � P is the square of ���P � the smallest modulus of the roots of P �

�



�
� the Grae�e process� Gk�P � has for roots the kth power of the roots of P �

��� the construction of a polynomial Pk�P � whose roots are the products �i� � � ��ik for i� � � � � � ik�
the �is being the roots of P �

Using ��� and ��� we can compare the smallest moduli ���P � and ���Q� of the roots of two polynomials P
and Q� This will be done in Section ������ Using ��� and �
�� we can produce the polynomials Pk�P � the
modulus of the smallest root of which is j��j � � � j�kj� This in turn enables us to compare any pair of
moduli �i�P � and �j�Q� as will be shown in Section ������

Note that other methods than Coste�Roys algorithm are known to compare real algebraic numbers �see�
e�g� 	����� One of the reasons for our choice is that the complexity of Coste�Roys algorithm is known 	����

The polynomials mentioned above are computed by the formulas�

P �Q�y� � Resultantz


P �z�� zdeg�Q�Q�y�z�

�
� Gk�P ��zk� �

k��Y
j��

P �e�ij��kz��

�k� ��k� n� 	Pk�P ��
k
�

b�k�����cY
i��

Pk���i����P �� G�i���P �

bk��cY
i��

Pk��i�P �� G�i�P �

� ���

where by convention we set P��P ��z� � z � �� Apart from the last one� these polynomials are well known�
That the last polynomial has the roots we expect is not di�cult to check� All these polynomials have
coe�cients in the same �eld as P and Q�

��� Sorting the moduli

Given the polynomialQ� its factors Di�j and an integer p� we need to determine the number of roots of each
factor belonging to Zk�Q�� �� k� p� To simplify our description� we �rst concentrate on the case p � ��
corresponding to the �rst order estimate of the asymptotic expansion�

����� First order estimate

In this case �p � ��� our task can be performed in polynomial time in the degree of Q by Algorithm �
below �which is an extension of an algorithm communicated to us by M��F� Roy� taking into account multi�
plicities�� We �rst describe an algorithm to compute the number of roots of smallest modulus of a polynomial�

Algorithm � �Number of roots of smallest modulus� Let P � Q	z��

�� Compute P�P
�
� � � �Pn

n the square�free decomposition of P � P �

�� Using Coste�Roy
s algorithm� �nd i� such that Pi� has the smallest non�negative real root�

	� Then jZ��P �j � i��

Proof� By construction� the smallest non�negative real root of P � P �z� is ����P �� Moreover� its order
of multiplicity is the number of roots of P of smallest modulus� Computing square�free decompositions in
Step � ensures that only one of the polynomials Pi has the smallest non negative real root� �

Algorithm � �Smallest moduli comparison� Let P and Q � Q	X��

�� Compute Pi� and Qj� as in Algorithm 	� Their smallest non�negative real roots are ����P � and ����Q��

�



�� Applying Coste�Roy
s algorithm to Pi� and Qj� � compare ����P � and ����Q��

	� The number of roots of P �resp� Q� of modulus ���PQ� � min����P �� ���Q�� is given by i� �resp� j��
if ���PQ� is equal to ���P � �resp� ���Q��� and � otherwise�

Proof� This algorithm works for the same reason as Algorithm 
� �

Applying this algorithm to the polynomials Di�j and Q gives the result we are after� Task � is therefore
solved for p � �� From the complexity estimates in 	���� it follows that the complexity of Algorithm �
is O�n���n � log jP j� log jQj���� where n � max�deg�P �� deg�Q�� and jP j denotes the sum of the absolute
values of the coe�cients of the polynomial P �

����� Ordering the p smallest moduli

We now want to compute for each k� �� k� p and each �i� j�� the number of roots of Di�j of modulus �k�Q��
Although all the j�ij� are roots of P �P � Algorithm � does not generalize well because in general P �P has
other non�negative real roots� We �rst give a generalization of Algorithm 
�

Algorithm � �Number of roots of a given modulus� Let P � Q	z�� Given an integer q� �� and mi �
jZi�P �j� for �� i� q� such that m� � � � ��mq � deg�P �� to compute mq�� � jZq���P �j� apply Algorithm 	

to the polynomial bP � Pm������mq���P ��

Proof� If P �z� �
Q
i�z��i�� then by ��� we have bP �

Q
i������ik��

�z ��i� � � ��ik���� where k � m��m��

� � ��mq� Since j��j � � � � � j�m�j � j�m���j � � � � � j�m��m� j � � � � � j�k��j � � � � � j�k�mq�� j � � � �� the
roots of smallest modulus of bP �z� are �k�jQk

i�� �i� �� j �mq��� �

We can now give the generalization of Algorithm ��

Algorithm � ��q � ��st smallest moduli comparison� Let P and Q � Q	z�� Given an integer q� �
and mi �resp� ni� the number of roots of P �resp� Q� of modulus �i�PQ� for �� i� q� such that �m� � � � ��
mq� � �n� � � � �� nq� � deg�P � � deg�Q�� to �nd the number mq�� �resp� nq��� of roots of P �resp� Q� of
modulus �q���PQ��

� If m�� � � ��mq � deg�P � �resp� n�� � � ��nq � deg�Q��� then mq�� �resp� nq��� is � and nq�� �resp�
mq��� is given by Algorithm ��

� Otherwise� these values are obtained by applying Algorithm � to eP � Pm������mq���P ��Pn������nq �Q�

and eQ � Pn������nq���Q�� Pm������mq
�P ��

Proof� The �rst part is obvious� Denote by �i the roots of P and by �j the roots of Q� Let Mp be
the number of roots of P whose modulus is the smallest �i�P � strictly greater than �q�PQ� and de�ne

similarlyMq� The second part follows from noticing that the polynomial eQ has been built so that it has Mq

roots of smallest modulus� namely �k
Qm������mq

i�� �i
Qn������nq
j�� �j� n�� � � ��nq��� k�n�� � � ��nq�Mq�

Writing similarly the Mp roots of smallest modulus of eP � one deduces the result� �

By induction on p� �� using Algorithm �� it is now easy to �nd for each �i� j� the number of roots of Di�j

of modulus ���Q�� ���Q�� � � � �p�Q� with Q �
Q
i�jD

i
i�j� Task � is thus solved�

Because k � m� � � � �� mq can take any value between � and n� and since the degree of Pm������mq

is
�
n
k

�
� Algorithm � runs in exponential time as soon as p� ��

��� Finding the real roots

We now attack Task �� given an integer k� �� k� p� we want to �nd for each Di�j the number and the sign
of the real roots of Di�j of modulus �k�Q�� The following algorithm solves this problem�

�



Algorithm 	 �Real roots and their sign� Let P � Q	z� be a square�free polynomial� Given an integer
q� the number mi � jZi�P �j and the number ni � f�� �g of real negative roots of P of modulus �i�P � for
�� i� q� with m� � � � ��mq � deg�P �� to compute the number pq�� � f�� �g �resp� nq��� of real positive
�resp� negative� roots of P of modulus �q���P ��

�� Compute the polynomial bP � Pm������mq���P � and mq�� by Algorithm ��

�� If mq�� is odd� then P has exactly one real root of modulus �q��� To �nd its sign� compare the smallest

positive real roots r of bP �z� and � of bP ��z� by Coste�Roy
s algorithm� If r 
 � or if bP �z� has no positive
real roots� then pq�� � n� � � � �� nq �mod �� and nq�� � � � n� � � � �� nq �mod ��� Otherwise�

either � 
 r or bP ��z� has no positive real roots� and then pq�� � � � n� � � � � � nq �mod �� and
nq�� � n� � � � �� nq �mod ���

	� If mq�� is even� compute R�z�� � gcd� bP �z�� bP ��z��� If its degree is � then pq�� � nq�� � �� otherwise

use Coste�Roy
s algorithm to compare the smallest positive real roots r of R and � of bP � bP � If R has
no positive real roots� then pq�� � nq�� � �� If r � � then pq�� � nq�� � �� Otherwise we must have
r 
 � and so pq�� � nq�� � ��

Proof� First� note that P being square�free� pq�� � f�� �g and nq�� � f�� �g� Let P �
Q
i�z � �i�� The

roots of P being either real or coming by pairs of conjugates� the number M �
Qm������mq

i�� �i is real and its

sign is the sign of ����n������nq � The polynomial bP has mq�� roots of smallest modulus� namely

M � �i� m� � � � ��mq � �� i�m� � � � ��mq �mq��� ����

so that if mq�� is odd� then P has exactly one real root of modulus �q���P � and bP �z� has only one real root
of smallest modulus� Step � is now obvious�

When mq�� is even� either pq�� � nq�� � � or pq�� � nq�� � � for conjugacy reasons� The roots of R�z��

are the roots � of bP such that �� is also a root of bP � Thus if deg�R� � � we cannot have pq�� � nq�� � �
because of ���� � Otherwise� the smallest positive real root of R is the square of the smallest real root � ofbP such that �� is also a root of bP � The smallest positive real root of bP � bP being the square of the moduli
of the roots ����� Step 
 is now clear� �

For the same reasons as Algorithm �� Algorithm � runs in exponential time as soon as p� ��
Tasks � and � have been solved� and we are now able to give the asymptotic expansion of the coe�cients

of a rational function by Algorithm ��

� The numerical method

In the last section� we solved Tasks � and � using only algebraic tools� which is currently the most natural
solution to our problem from the computer algebra point of view� We shall now present an alternative
method showing that numerical tools can be used reliably to perform our task in polynomial time� We only
need to order the moduli of the roots of a polynomial and �nd which of them are real� Although there
exists algorithms which achieve these tasks �for instance� we could use Grae�es method to approximate the
moduli of the roots of Q�� it is cheaper to �nd directly all the roots of Q with a su�ciently sharp bound on
their errors� Our numerical method will depend on a complex root �nding algorithm� that we �rst describe
brie�y�

��� A root �nding algorithm

We want to �nd the complex roots of a polynomial with rational coe�cients with arbitrary precision� Nu�
merous algorithms exist to achieve this task� but only few of them are reliable� Newtons method does not
always converge� Traub and Jenkins method 	��� usually used for root �nding in computer algebra systems�

�



converges theoretically but it turns out that precision control is badly handled in practical implementations�
Besides� its complexity is not known to be polynomial� We present here a root �nding algorithm for which
the precision control has been carefully studied� In the following� jP j � P

i jaij denotes the norm of the
polynomial P � a� � � � �� anz

n� An immediate consequence of a theorem from 	��� is the following result�

Proposition � �Pan� Let P � C 	z� be a monic polynomial� n � deg�P � 
 �� All the zeros of P can be
computed with absolute error � 
 � using O

�
n� logn�n log�n� � log�jP j����� arithmetic operations�

Unfortunately� the constant term in front of the time bound is very high and therefore the result seems to
be only of theoretical importance� For instance� this algorithm relies on FFT techniques� which makes it
e�cient only for very large degrees�

��� Necessary precision

The reason why we can rely on numerical methods to solve our task is that two di�erent roots of a polynomial
with integer coe�cients cannot be too close� The following result 	��� makes this precise�

Proposition � �Mahler� Let P �z� � a� � a�z � � � �� anz
n � an

Qn
i���z � �i� be a polynomial of degree

n 
 � with integer coe�cients� Then

�i �� �j �� j�i � �jj�
p

n��n�����M �P ���n�

where M �P � � janj
Qn
i��max��� j�ij��

From this we deduce the following theorem�

Theorem � Let P �z� be a polynomial with integer coe�cients� n � deg�P � 
 � and ��� � � � � �n its roots�
De�ne ��P � to be the following quantity

��P � �

p



�
	n�n � ������
n�n�������� �M �P ��n�n

���n������ ����

then j�ij �� j�jj ��
��j�ij � j�jj�����P � and j���i�j is either � or larger than ��P ��

Proof� Let C be the leading coe�cient of P � We �rst prove that the polynomialQ�z� � Cn��
Q

i� j�z��i�j�
has integer coe�cients� We can suppose that the polynomialP is primitive� i�e� the gcd of its coe�cients is ��
The polynomial P � P has for roots �i�j� �� i� j�n� its coe�cients are integers� and from classical results
on the resultant algorithm� its leading coe�cient is C�n� Since the polynomial G��P ��z� � C�

Q
i�z���

i � has
integer coe�cients� is primitive and divides P � P � we deduce that the quotient C��n���

Q
i��j�z � �i�j� �

	Cn��
Q
i�j�z � �i�j��

� has integer coe�cients and therefore� so has its square root� Finally Q�z� is the
product of this polynomial by G��P ��z� which implies it has integer coe�cients�

Next� let x and y be two distinct roots of Q� Since M �Q��M �P �n��� Mahlers result applied to Q yields

jx� yj�  �
p

 	n�n � ������
n�n��������

M �P ��n������n�n������� ����

If �i and �j are roots of P with distinct moduli� then j�ij� and j�jj� are two distinct roots of Q and
we have

��j�ij� � j�jj�
��� � hence

��j�ij � j�jj��� ��j�ij� j�jj�� As j�ij and j�jj are smaller than M �P �� we
�nally deduce ��j�ij � j�jj

��� 

�M �P �
� ��P ��

The last part of the theorem can be derived analogously from the inequality j�i�i � ��
i j� � �

A sharper lower bound on j���i�j can be derived by considering only the polynomial P � We do not need
this sharper bound since we need to compute the roots with an absolute error ��P � to sort their moduli�

�



��� Numerical algorithm

Using these results� we now give an algorithm which performs reliably Tasks � and � by purely numerical
methods�

Algorithm 
 �Numerical� Let Q �
Q
i�jD

i
i�j be a square�free decomposition of the polynomial Q� Our

aim is to compute� for each �i� j� and for each q the number of roots of Di�j of modulus �q�Q� and the number
of these that are real along with their signs�

�� For each �i� j�� compute the number i�j � inf�k������i�j� �Di�jDk��� where �Di�jDk��� is de�ned by

�Di�jDk��� �

p



�
	d�d� ������
d�d�������� � jQj�d�d���d������

with d � deg�Di�j� � deg�Dk���� �Take Dk�� � � if Di�j is the only polynomial��

�� Using Pan
s Algorithm ����� compute for each �i� j� the roots of the polynomial Di�j with an absolute
error �i�j � i�j���

	� Let � be a root of Di�j� � a root of Dk���  � and  � their approximations found at Step �� If
��j �j � j �j�� �

i�j��� then j�j � j�j� else the inequality between j�j and j�j is given by the inequality between j �j and
j �j� This way� all the moduli of the roots of Q are sorted�

�� Let � be a root of some Di�j � If its approximation  � satis�es j�� ��j 
 i�j��� then � is not real�
Otherwise � is real� and its sign is given by the sign of 	� ���

Proof� The validity of this algorithm results from Theorem � applied to each of the polynomials Di�jDk��

and Di�j� and from the inequalities�

�i� j� �� �k� �� �� M �Di�jDk����M �Q�� jQj�
��i� j�� M �Di�j��M �Q�� jQj�

The inequality M �Q�� jQj is due to Mahler 	���� In Step �� the fact that the sign of � �when � is real� is
the sign of 	� �� results from the inequality j�j�i�j � �This latter inequality can be derived� for example�
from the inequality j�j���M �Di�j� which is easily proved�� �

Proposition � Algorithm � runs in time O
�
n	 logn log jQj� where n is the degree of Q�

Proof� Apply Theorem � to each of the polynomials Di�j with � � �i�j� �

� Optimizations

In the last two sections� we presented two methods that achieve Tasks � and �� In practice� these two
methods are awfully expensive� We present here another algorithm� which works on most of the rational
functions� and which is much quicker� Another advantage of this new algorithm is that we can know whether
it works or not� When it does not� then we can revert to one of the previous methods� This method is
essentially numerical� We compute approximations of the roots of Q�z� using a root �nding algorithm� with
a relatively crude absolute error �compared to what it was in the previous section�� In most cases though�
everything can be deduced from these estimates�

In 	���� A� Sch!onhage gave a root �nding algorithm and demonstrated the following result�

Theorem � �Sch�onhage� Let P � C 	z� be a monic polynomial� n � deg�P �� and � 
 �� We can compute
n complex numbers v�� � � � � vn such that

jP � �z � v�� � � � �z � vn�j � � ��
�

within the time bound of O
�
�n� log�n� � log�jP j���n�� log�n log�jP j���� log log�n log�jP j����� �

��



Although this bound seems slightly weaker than the previous one in Proposition �� this one is in terms of bit
complexity� Note that this algorithm does not approach directly the roots with an absolute precision �� But
from inequality ��
� one can derive absolute error bounds on the roots of P � This algorithm was optimized
by Gourdon 	�� who implemented it in Maple� the program gives the right result in a reasonable time� We
shall rely on this method to approximate roots of polynomials�

Let Q�z� �
Q
i�jD

i
i�j be a square�free decomposition of the polynomial Q� Using Sch!onhages algorithm�

we compute for each �i� j� approximations  ��� � � � �  �p of the roots of Di�j such that jDi�j�z��
Q

k�z�vk�j � �
�we can assume Di�j monic�� with � � ���n� where n � deg�Q�� We have already seen that from this we can
compute for each root �k of Di�j an absolute error bound �k 
 � such that j �k � �kj � �k� Suppose that
the absolute bounds �k determine which roots are conjugates� which roots are real and what their sign is�
To achieve Tasks � and �� it then remains to compare the moduli of the non�conjugate roots� If again� the
absolute error bounds �k make it possible to decide these comparisons� then we have �nished� Otherwise� we
have a certain number of couples of non�conjugates and distinct roots ��� �� of Q such that� if  � and  � are
the approximations of � and � found and � and � � the absolute error bounds found for these approximations���j �j � j �j�� � � � � �� We call these couples candidates� In this case� we use Algorithm � �see below� to test
the equality of the moduli of the candidates� If all the candidates have the same modulus �this is often the
case�� then we have solved Tasks � and �� Else� this algorithm failed and we use one of the previous methods
discussed in Sections � and 
� The underlying idea is that it is very unlikely that two non�real roots of
distinct moduli have the same argument�

Algorithm � �Equality of candidates� Let P �
Qn
i���z � �i� be a square�free polynomial � Q	z�� We

are given approximations  �i� absolute error bounds �i such that j �i� �ij � �i� and for each j� �� j �n� the
number sj of elements of the set "j �


i�
��j �ij � j �jj

�� � �i � �j
�
�

�� Compute the square�free decomposition P � P � P�P
�
� � � �P r

r �

�� By Sturm sequences ����� compute for each k the number mk of non�negative real roots of Pk�

	� If �a� m� � �m� � � � � � rmr � n� �b� for all �i� j�� either "i 
 "j � � or "i � "j � �c� for all ��
�m� � j�si��"ij� then for all j� all the elements of "j have the same modulus�

Proof� Since P �P �
Q
i�j�z ��i�j�� the j�ij� are roots of it� If m� � �m�� � � �� rmr � n� then these are

its only positive roots� The result is now obvious� �

� Examples

Denumerants 	�� p� ����� the number of ways to make n francs with coins of �� �� �� and �� francs has
for generating function

f�z� �
�

��� z���� z���� � z	���� z���
�

The ten singularities have the same modulus� but � being a singularity of order � is isolated in the decom�
position ��� produced by Algorithm ��

�����

��� z��
�

�����

��� z��
�

������

��� z��
�

�����

�� z
�

X
��������������

��� � 
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����� � z�

�
X

�	�������������������

���� � ��� � ���� � �� �

�����z � ���
�
�� � ���� � ���� � 

�� 


����z � ��
�

From this we deduce easily the �rst terms of the asymptotic expansion of 	zn�f�z��

n�

���
�

�n�

���
�

�� ���

����
�

����n
��

�
X

��Z�
� �z

��z��z��z���

�� � �� � ���� �� � �

���
cos	�n� �� arg����

�An �O����

��



Sum of powers of Fibonacci numbers Since rational functions �when they are regular at in�nity�
are closed under Hadamard product� and the sum of a sequence is obtained by multiplying its generating
function by ���� � z�� many operations that can be applied to a linear recurrent sequence yield another
linear recurrent sequence� We consider here

Pn
k��F

p
k � It is not di�cult �tedious� rather� to show that the

generating function of F p
n has the following expression for �xed p�

�
��p
�

p��
�X

k��

�
p
k

�
Fp��kz

�� ����kLp��kz � z�
� if p is odd�

��p��

��p

���X
k��

�
p

k

�
����k �� ����kLp��kz

�� ����kLp��kz � z�
�

����p��� p
p��

�
�� ����p��z

�� � if p is even�

where Ln denote the Lucas numbers� From this we construct the generating function of the sum of the tenth
powers of the Fibonacci numbers� which we give in compact form to our algorithm�

z� � �� z� � ���� z� � ����	 z� � ��
	�� z� � ����	 z� � ���� z� � �� z� � z

z�����z�	����
z������
z��
��
�
z���
��
��z���
��
��z��
��
�
z������
z�����
z����z��
�

The �rst stage of the algorithm produces the decomposition f�z� �
P

Q�����P ������� z�� where Q is the

denominator of f and P is the following polynomial�

P z� � �

�������	�����

�	�	
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����
�
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����
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�����
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�
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This decomposition implies that all the singularities are simple poles� The next stage of the algorithm is to
determine the number of real and complex roots of each modulus for the �rst moduli of the roots� This is
done by a numerical evaluation of the roots with error bound ���� which shows that all the roots are real�
and yields their signs� For instance� the three �rst terms of the expansion are

	zn�f�z� �
P ����

�n��
�

� ����n��P �����
�n��
�

�
P ����

�n��
�

� o

�
�

�n�

�
�

with �� � �������� �� � ������ and �� � �����
�

A large problem This combinatorial problem was considered in 	��� Starting with �� we write down a
sequence of words by counting the number of contiguous identical digits in the previous word� Thus the
second word is �� because there is one � in ���� Then we have two �s� hence the third word is ��� and so
on� The �rst few words are� �� ��� ��� ����� ������� 
������ �
������� � � �We then consider the sequence of
lengths of these words� �� �� �� �� �� �� �� �� � � � � What happens is that this sequence is rational of degree ���
From the table in 	�� pp� ���#����� it is possible to compute this fraction by solving a linear system� The
numerator is found to be

P z� � � � z � z
�
� z

�
� z

� � z
�
� 
z� � 	z� � �z�	 � ��z�� � 
z�� � z

�� � �z�� � z
�� � �z�� � �z��

��z�� � �z�	 � ��z�� � ��z�� � �z�� � 
�z�� � ��z�� � ��z�� � 	�z�� � ��z�� � ��z�� � ��z�	

���z�� � ��z�� � �
z�� � 
�z�� � ��z�� � ��z�� � ��z�� � ��z�� � ��z�� � ��z�	 � ��z�� � ��z��

���z�� � z
�� � �	z�� � ��z�� � ���z�� � ��z�� � ��z�	 � 
	z�� � ��z�� � ��z�� � ��z�� � ��z��

���z�� � ��z�� � ��z�� � ��z�� � 
�z�	 � ��z�� � ��z�� � �z�� � ��z�� � ��z�� � ��z�� � ��z��

��z�� � �z�� � ��z�	 � ��z�� � ��z�� � ��z�� � ��z�� � ��z�� � ��z���

��



and the denominator is

Qz� � �� z � z
�
� z

� � z
� � �z� � z

�
� �z� � �z�� � �z�� � �z�� � 
z�� � �z�� � �z�� � z

�� � �z�	

� 
z�� � �z�� � ��z�� � �z�� � z
�� � ��z�� � �z�� � �z�	 � ��z�� � �z�� � ��z�� � ��z�� � ��z��

� 	z�� � �z�� � ��z�� � �z�� � �z�	 � �z�� � �z�� � �z�� � 
z�� � �z�� � ��z�� � ��z�� � ��z��

� �z�� � �z�	 � �	z�� � 	z�� � �z�� � 	z�� � �z�� � ��z�� � 
z�� � 
z�� � ��z�� � �z�	 � �z��

� �z�� � 
z�� � z
��
� �z�� � ��z�� � ��z�� � �	z�� � ��z�� � �z�	 � �z�� � 	z���

One of the nice theorems in 	�� states that this denominator is actually independent of the starting string�
provided it di�erent from ����� Thus in the leading term of the asymptotic expansion� only the constant
factor depends on the initial string�

Despite the large degree of this denominator� it turns out that the asymptotic expansion is not too
di�cult to �nd� For the sequence we consider� the decomposition of P�Q is

P �z�

Q�z�
� R�z� �

X
Q�����

F ���

z � �
�

where R is a polynomial induced by the �rst terms� and F is a polynomial of degree �� with ����digit
rational coe�cients� This means that all the singularities are simple poles� If one is only interested in the
�rst order estimate� it then remains to determine the number of roots of smallest modulus� As expected since
the coe�cients of the generating function are positive� one of these roots is a positive real number� Using
the program of X� Gourdon based on A� Sch!onhages algorithm 	��� we get that the two smallest moduli are
approximately ����� and ������ with error bounds of the order ������ which shows that the root of smallest
modulus is alone �and therefore real�� Thus� 	zn�f�z�  F �����

�n��
� � �� � �������� and F ���� � ������ All

the �� moduli belong to the interval �������������� showing the need for caution with numerical estimates�

Conclusion

Algorithm � should not be implemented blindly� Although its complexity is polynomial� the constant implied
in the O�� of Proposition � is very large� Thus in our last example above� the precision needed to compute
the roots would be approximately ������ digits� Instead� one should use this algorithm as an upper bound
in an adaptative program based on a good numerical program such as 	�� and Algorithm �� increasing the
precision if necessary�

Note also that we have never used the fact that in combinatorial contexts� the generating functions have
only positive coe�cients and thus by Pringsheims theorem �see 	����� one of their singularities of smallest
modulus is real positive� the other ones having arguments commensurable with �� The computation of the
�rst�order estimate could take advantage of this extra information�

This very simple problem of linear recurrences with rational coe�cients is not yet completely solved� It
would be useful in practice to have some control over the periodicities that may occur in the asymptotic
expansions� This problem is exempli�ed with the following generating function�

z� � �z � �

��� �z���� � z��
�

or equivalently un � �un���un����un����un��� u� � u� � �� u� � �� u� � �� The �rst few terms are �� ��
�� �� �� �� ��� �� ��� ��� � � � � The �rst�order asymptotic approximation obtained from this generating function
is �� � cos n���n�� � o��n�� What happens is that although valid for all positive n� this expression reduces
to o��n� when n is odd� Better precision necessitates to look for further terms in the expansion� The ideal
algorithm outputs a list of asymptotic expansions depending on arithmetic properties of n� Cancellation in
this context is not a trivial problem� For instance� no algorithm is known to determine whether a linear
recurrent sequence takes the value � for some index� It is known that when such a sequence cancels in�nitely

�




often� the indices where it cancels asymptotically form a �nite union of arithmetic progressions that can be
computed 	��� but our problem is di�erent since we are only concerned with inde�nite cancellation of the
dominant part� which does not satisfy a linear recurrence in general�
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