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Chapter �

General Introduction

The main topic of this thesis is the representation of fragments of intuitionistic and
modal propositional logic by �usually �nite� structures� called exact models� One of
the reasons for the interest in properties of fragments with such a �nite representation
is the possibility of designing computer programs to decide derivability within the
fragment� In general� this kind of program� based on checking the validity of formulas
in a model� is much more e�cient than traditional theorem proving� This e�ciency of
�model checking versus theorem proving� has in recent years attracted the attention
of researchers in arti�cial intelligence and knowledge representation �HV ����

For the bene�ts of model checking we have to pay a price� Theorem provers are
�general purpose� tools� accepting any formula in the language of the logic �obviously
with certain practical limitations�� However� �nite representations such as exact
models exist only when we cut down the expressive power of the language�

In this thesis we focus our attention on �nite fragments of propositional logics�
languages with restrictions on the use of atomic subformulas and connectives� that
have a �nite Lindenbaum algebra or diagram as we prefer to call it here�

The structure of these �nite diagrams can be calculated and studied using e��
cient computer programs based on model checking� Knowledge of the structure of
diagrams can be used in constructing new �nite complete models�

The history of this kind of research into the structure of �nite fragments can be
traced back to the calculation of diagrams by Skolem �Skolem ��� and Lindenbaum�s
suggestion to use �equivalence classes of� formulas in semantics �Mostowski ���� The
discovery of the lattice of the one�variable fragment of intuitionistic propositional
logic by Rieger �Rieger ��� and its rediscovery by Nishimura �Nishimura ��� proves
that� although perhaps not always very prominent� the interest in the subject re�
mained in the years after�

After the introduction of semantic tableaux by Beth �Beth ���� Kanger and Hin�
tikka� and the invention of Kripke semantics for modal as well as intuitionistic logic
by Kripke �Kripke ��� and others� a more systematic investigation of the semantical
�ne structure of fragments seemed possible�

�



� Chapter �� General Introduction

As Beth pointed out in �Beth ���� the strongly mechanical character of his seman�
tic tableau procedures suggests the possibility of constructing a logical machine� In
���� Beth imagined this futuristic �computer� to display its results using a crossbreed
of a tra�c light and a telegraph� A red light would announce a proof� to be produced
on a strip of paper� and a yellow light would announce the machine to print a �nite
counter�example�

The construction of the logical machine would of course depend on the logic used�
Only in those cases where the derivability of a formula from a �nite set of formulas is
decidable� one may expect the machine always to halt after a �nite amount of time�

In the case of predicate logic� adding a green light to the machine announcing
the construction of an in�nite tableau would make the implementation of the speci�
�cations impossible �if on every input the machine has to switch on one of the lights
after a �nite period of time��

Nowadays� at a time where there are probably more computers than tra�c lights
around� it is no problem to implement Beth�s logical machines as computer programs�
Of course� if we want the machine to halt on every input� such a computer program
is only possible for decidable logics� such as most propositional logics�

In the early sixties� as soon as computers came within the reach of university
scientists� Beth stimulated his students De Jongh and Kamp to develop computer
programs deciding derivability and compute diagrams in intuitionistic propositional
logic �IpL��

In ���� De Jongh and Kamp succeeded in making the computer decide correctly
whether a formula was derivable in IpL� If not� the program produced the description
of a Kripke model that served as a counter�example�

However� the program was too time�consuming to be of any practical use in
studying diagrams� In the late seventies� this line of research was picked up by the
author �Hendriks ��� who wrote Algol�� programs that could decide derivability in
IpL and compute small diagrams� Improved results were obtained by Van Riems�
dijk �Riemsdijk ��� with Pascal programs�

These computer programs� using algorithms based on the semantic tableaux
method� realized the kind of logical machine that Beth envisaged �� years earlier�

By that time the history of the subject had also made a detour in algebra�
Investigating the algebraic structure of diagrams of ��� fragments of IpL� Diego
proved that all diagrams of ��� with a �nite number of propositional variables are
�nite �Diego ����

Independently� Urquhart gave a simpler prove in �Urquhart ��� and in ����� De
Bruijn proved the same result for all diagrams of ����� �Bruijn ��a�� In this proof
De Bruijn introduced the notion of an exact model � An exact model is a part of
the Lindenbaum algebra� such that the lattice of upward closed subsets of the exact
model �ordered by inclusion� is isomorphic to the entire Lindenbaum algebra�

Let us write �����n for the IpL fragment with formulas generated from the
atomic formulas fp�� � � � � png and the connectives � and �� To construct the exact
model of the fragment ������� De Bruijn used a computer� He also published a



�

computer program that used this exact model in deciding derivability in the frag�
ment �Bruijn ��b��

In ���� De Jongh� Renardel de Lavalette and the author started working on
computer aided research into the structure of diagrams of IpL� With help from
Van Riemsdijk and Tromp new computer programs were developed based on exact
models� The present work re�ects the results of the research that started in this
group�
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�	 Figure� The lattice of fragments in IpL�

De Bruijn�s concept of exact model was reformulated in the more familiar con�
text of Kripke models� simpli�ed and generalized to compute exact models� not
only of ������� fragments �see �JHR ���� but also those of other fragments of
IpL �Hendriks ���� As a result we are now able to construct a �nite complete Kripke
model for every �nite fragment in the lattice of fragments depicted in �gure �� Each



� Chapter �� General Introduction

node in this diagram stands for a certain set of connectives and hence for an in�nity
of fragments� one for each number of atoms� Note that the double negation ���� is
treated as a primitive operator�

In �gure � the fragments with an in�nite diagram �at least for more than one
propositional variable� are denoted by an open circle� the others by a closed circle�
Whenever the fragment �again over a �nite set of atoms� has an exact model� the
closed circle of the fragment is surrounded by an open circle� Fragments with an
exact Kripke model are marked by a square�

As can be seen from the lattice� every fragment considered here with a �nite
diagram is a subfragment of a fragment with an exact Kripke model�

The fragments in the lattice above are obtained by simply deleting one or more
of the usual connectives �on top of the restriction to a �nite set of atoms�� For
several reasons� restricting the use of connectives in a more sophisticated way is an
interesting alternative� Observe for example that the interplay of implication and
disjunction cannot be studied in �nite fragments� since in every �nite fragment either
one of them will be absent� Nor is there a non�trivial sequence of these �simple� �nite
fragments which has IpLn as its union�

If we turn to modal logic� the situation is even worse� By simply deleting con�
nectives we will not� in general� obtain �nite fragments if the modal operators are
still available� and without them we are left with fragments of classical propositional
logic� CpL�

In modal logic� there are some well�known results concerning formulas with a
restricted modal depth� as the nesting of modal operators is usually called �see in
particular �Fine ����� In the context of an attempt to characterize formulas in prov�
ability logic using sets of worlds of a certain type in a Kripke model� these results
inspired the introduction of the notion of semantic type� The notion of semantic type
turned out to be a versatile tool also in intuitionistic propositional logic�

Just as the restriction of modal depth in modal logic� the restriction of nesting of
implications in IpL fragments with a �nite number of propositional variables yields
fragments with �nite diagrams that have exact Kripke models� The structure of
these exact models will be studied� in Chapter �� Intuitionistic propositional logic
can be obtained as the limit of a sequence of fragments with an increasing nesting
of implication and an increasing number of propositional variables�

The problem in provability logic� L� that brought us on the trail of the semantic
types was the computation of the exactly provable formulas� in the fragment L�

� �see
Chapter ��� According to Solovay�s theorem on provability interpretations for formu�
las of L �Solovay ���� the theorems of L are those modal formulas that are provable
in Peano arithmetic �PA� under arbitrary arithmetical interpretations �interpreting
� as the formalized provability predicate in PA�� If we �x the arithmetical interpre�
tation of one or more of the propositional variables� the interpreted formulas true in

�Some of the research was done in cooperation with Zwanenburg �Zwanenburg ����
�The term �exact� in �exactly provable� has no relation to its use in �exact models��
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PA form an interpretable theory	

f��p�� � � � � pn� j �PA ���A�� � � � � An�g

for certain arithmetic sentences A�� � � � � An�
There are only �nitely many interpretable theories in the fragment Ln

m� with n

atoms and a nesting of the provability operator less or equal m�
If we introduce the relation � �� � for � � �� � �� then we can reformulate the

condition� found by V� Shavrukov� that is both necessary and su�cient for a � in L
to be the axiom of an interpretable theory �Shavrukov ���	

for all �� � � �� �� ��� � � �� � or � �� ��

A � which is the axiom of an interpretable theory in the sense that there is an
interpretation such that	

� �� � � �PA ��

is called an exactly provable formula� The strong disjunction property above turns
out to have a characterization in semantical terms by means of which it is possible
to calculate the exactly provable formulas in the fragment L�

��
The results based on these ideas were �rst published in �HJ ����

��� Outline of the thesis

Each chapter starts with a short introduction and a preliminary section� The pre�
liminaries common to all chapters can be found in section ����

Chapter � is an introduction into the theory of semantic types and exact models�
Some related results� as from �Fine ���� �Jankov ��� and �De Jongh ���� are
presented in this framework�

Chapter � is an overview of �nite fragments of IpL with a restricted set of connec�
tives� For fragments with an exact model the construction of the exact model
is given� Part of these results were published in �JHR ��� and most of them
can also be found in �Hendriks ���� In this chapter these results are presented
for the �rst time within the framework of semantic types introduced in the
previous chapter�

Chapter � deals with the structure of exact Kripke models for fragments of IpL
with restricted nesting of implication�

Chapter � applies some of the techniques of the previous chapters to the computa�
tion of exactly provable formulas in provability logic� This chapter is a revised
version of �HJ ���� with an emphasis on the contributions of the present author�
viz� the introduction of semantic types and the computation of the exactly
provable formulas with no nesting of the provability operator�

Chapter � describes a family of theorem testers based on semantic tableaux� in�
cluding a tester for IpL and testers for several modal logics and contains a
description of the algorithms to compute diagrams and exact models�
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Appendix A contains some of the more important parts of the computer programs
�in the programming language C�� that are described in this thesis�

Appendix B is a collection of examples of the output of the computer programs
that calculated diagrams of fragments and the exactly provable formulas in L�

��
Appendix C contains tables of the number of equivalence classes computed for

several fragments of IpL�

��� General preliminaries

The language of classical propositional logic �CpL�� intuitionistic propositional logic
�IpL� and modal propositional logic used in the consecutive chapters consists of
the constants � and 	 and an in�nite stock of propositional variables fp�� p�� � � �g�
also called atomic formulas �or simply atoms�� together with the usual propositional
connectives f�������g �and sometimes ���� In the case of modal logic also � and

 are included� We will� in the case of classical �modal� logic� most of the time treat
��� and 
 as de�ned from ��� and � �but sometimes ��� and � de�ned from
��� and 
�� On the other hand� in IpL we will take �� to be de�ned as ����

To avoid a plethora of parentheses� in writing our formulas� we de�ne the order
in which the connectives take preference above each other as	


 � � � � ��

Hence� ���p�q � r � s is equivalent to �����p�����q � r� � s��
The derivability relation for a logic L will be denoted by �L or by � if the choice

of the logic is obvious from the context� Formulas � and � are called equivalent in
the logic L� � �L � �or � � � if L is obvious�� if they are interderivable	 � �L � and
� �L �� The derivability relations of the logics treated in the sequel are assumed to
be de�ned by the set of rules and axioms below� Let T and T � be sets of formulas
and �� � and � be formulas� We will de�ne � as a relation between sets of formulas
and formulas� but we will write T� � � �� where more formally T �f�g � � is meant�

The rules for intuitionistic propositional logic are	

�� � 
 T � T � �
�� T� � � � and T � � � � T � T � � �
�� T � � and T � � � T � � � �
�� T� � � � and T� � � � � T� � � � � �
�� T� � � � � T � ���

�� � 
 T � T � �

In the case of classical logic we add the axiom	

�� ��� � �

In the case of the classical modal logic K we add also	
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�� � � � � ��
�� ������ � �����

For classical and intuitionistic propositional logic� alternative axioms and rules can
also be found for example in �TD ��� and for �other� modal logics one may con�
sult �HC ����

A fragment is a sublanguage of a logic� obtained by restricting the set of atoms
or the application of connectives �or both�� In this thesis we will often restrict the
language to a �nite set of atoms p�� � � � � pn� Let F and G be fragments of a logic L�
Then G is called a subfragment of F � if every formula of G is a formula of F �which
will be denoted as G � F �� The diagram� Diag�F �� of a fragment F � is the set of
equivalence classes in F ordered by ��

Let hW��i be an ordered set �more traditionally	 a partially ordered set or poset��
A subset X � W will be called a closed subset of W if for all v and w in W � v 
 X

and v � w implies w 
 X� The set of closed subsets ofW will be denoted by P��W ��

The Kripke model theory used here is fairly standard and can be found� for
example� in �Benthem ���� A Kripke frame is a tuple hW�Ri� with a domain W �the
set of worlds or nodes� and R � W � a binary relation on W � The relation R is called
an accessibility relation� If the accessibility relation is known to be irre�exive� we
will often use � for R� If R is re�exive� we will use � and l � k �or k � l� will be
used as a shorthand for l � k and l �� k� lRk will sometimes also be written as k �Rl�
If k and l are nodes in W and kRl� then l is called a successor of k and k is called
a predecessor of l� A node l is a direct successor of k� kR�l �or k �� l�� if k �� l and
for all m such that kRm and mRl either m � k or m � l� A node k is the root of a
Kripke model K if k is the only node in K that has at most itself as a predecessor�
A node k is a terminal node if k has at most itself as a successor� So a terminal node
has only itself as a successor or no successors at all�

A Kripke model K � hW�R� atomi is a Kripke frame hW�Ri with a valuation
atom� mapping nodes of W to sets of propositional variables� As usual we will de�ne
k � �� the forcing of a formula � by a node k in a Kripke model K�

The Kripke models de�ned above will be used in �classical� modal logic� For
CpL and IpL we will de�ne special classes of Kripke models�

�	�	
	�	 Definition� Let K � hW�R� atomi be a Kripke model�
K is a CpL Kripke model if R is the identity relation�

K is an intuitionistic Kripke model IpL Kripke model for short� if

�� R is re�exive� transitive and anti�symmetric�
�� atom is order preserving�

We will use atomn for the restriction of atom to fp�� � � � � png �nowhere a q �

fp�� � � � � png is forced�� Note that K � hW�R� atomni is again a Kripke model�
which will be called an n�model�
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In the sequel we will write k 
 K to express that a world k is a node of Kripke
model K� instead of the more pedantic K � hW�R� atomi and k 
 W � If K �
hW�R� atomi and V � W then L � hV�R�V� atom�V i is called a submodel� The fact
that L is a submodel of K will be written as L � K�

Let us �rst recall the truth de�nition of classical propositional logic� CpL� in
terms of Kripke semantics�

�	�	
	�	 Definition� Let K � hW�R� atomi be a Kripke model and k 
 K� De�ne
k � �� the node k forces the formula �� inductively as	

� k � p � p 
 atom�k� 
p atomic��
� k � � � � � k � � and k � ��
� k � � � � � k � � or k � ��
� k � ��� � k � � or k � ��
� k � �� � k � � 
i�e not k � ���

We will say that K models � 
K � �� 
or � holds in K� if for all k 
 K it is true
that k � ��

To obtain the Kripke semantics for modal logic we need to add rules for the modal
operators to the rules de�ned for CpL�

�	�	
	�	 Definition� Let K � hW�R� atomi be a Kripke model and k 
 K�

� k � �� � �l 
 K�if kRl then l � ���
� k � 
� � �l 
 K�kRl and l � ���

Again K models � �K � �� �or � holds in K� if for all k 
 K it is true that k � ��
Next we de�ne the forcing relation on intuitionistic Kripke models� Note that in

the Kripke semantics of IpL implication and negation have non�local behaviour� like
the modal operators�

�	�	
	�	 Definition� Let K � hW�R� atomi be an intuitionistic Kripke model and
let k 
 K� De�ne k � �� inductively as	

� k � p � p 
 atom�k� 
p atomic��
� k � � � � � k � � and k � ��
� k � � � � � k � � or k � ��
� k � ��� � �l 
 K�if kRl then l � � or l � ���
� k � �� � �l 
 K�if kRl then l � ���

And as above� K models � �K � �� �or � holds in K� if for all k 
 K it is true that
k � ��

Let M be a class of Kripke models� A formula � is a local M�consequence of a
formula �� � j�M � � if for every K 
 M and every k 
 K such that k � � it is true
that k � �� A formula � is a global M�consequence of a formula �� � �� M�� if for
every K 
 M such that K � � it is true that K � ��

A propositional logic L is said to be sound for M if for all L�formulas � and �	
� �L � implies � j�M �� L is said to be complete for M� if for all L�formulas � and
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� such that � j�M � it is true that � �L �� If we restrict our attention to formulas in
a logic L with all atomic subformulas in the set fp�� � � � � png� we obtain the fragment
Ln� If L is sound and complete for a class of Kripke models M� one can� usually
with almost the same proof� obtain also a theorem stating that Ln is sound and
complete for the n�models in M �i�e� L is n�complete for M�� The following well
known soundness and completeness theorems are stated here as facts��

�	�	
	�	 Facts�

�� K is sound and complete for the class of �nite Kripke models�
�� CpL is sound and complete for the class of �nite CpL Kripke models�
�� IpL is sound and complete for the class of �nite IpL Kripke models�

For the proofs of these facts we refer to �HC ��� and �TD ����
If L � K then L is a generated submodel of K if the domain of L is a closed

subset of K� As a notation for the generated submodel above a node we will use
�k � fl j kRlg� For the smallest generated submodel including node k� we will use
the notation �k � fl j kRl or l � kg� If the accessibility relation is known to be
re�exive� then of course �k � �k for all nodes k 
 K� Occasionally we will use �k
for the set of nodes below node k� hence �k � fl j lRkg�

�	�	
	�	 Definition� Let K be a Kripke model� The nodes k�� � � � � kn 
 K form a
cycle in K of length n if knRk� and � � i � n implies kiRki���

K is called anticyclic if K contains no cycles of length more than ��

In a �nite anticyclic Kripke model K� we de�ne the depth of a node k 
 K as usual�

�	�	
	�	 Definition� If K is a �nite anticyclic Kripke model and k is a node of K�
then ��k�� the depth of k is de�ned as

��k� �

�
� if kRl implies k � l

maxf��l� j l �� k and kRlg 
 � otherwise�

Most of the models in this thesis will be Kripke models� The next de�nition however
introduces a more abstract notion of model� This allows us to call a �nite repre�
sentation of a fragment a model even if it is not a Kripke model� As we will see in
Chapter �� not all exact models are exact Kripke models�

�If we designate a proposition as a fact� we will not give a proof� either because it can be found
elsewhere� or because it is rather trivial�
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�	�	
	�	 Definition� A structure M � hW��� �i is called a model for fragment F
if hW��i is an ordered set and � 	 F �� P��W �� such that for all formulas �� � 
 F 	

� � � � ���� � �����

M is called a classical model if � is the identity relation 
and hence all subsets
of W are closed	 P��W � � P�W ���

A model M is complete for F if for all � and � in F

���� � ���� � � � ��

A model M is exact for F if M is complete for F and � is surjective�

Note that the de�nition the valuation of these abstract models does not require
recursion on the length of the formula �� The valuation � may be any kind of
mapping from formulas into closed subsets of W � as long as � is monotone in the
order of derivability�

A Kripke model corresponds to a model hW��� �i in the sense of the de�nition
above� In classical models the relation � will be the identity� and in intuitionistic
models � coincides with R� In both cases the function ����� � fk 
 K j k � �g will
map formulas onto �closed� subsets of K� in such a way� that � � � � ����� � ������

Suppose M � hW��� �i is a model for fragment F � For w 
 W and � 
 F we
de�ne w � �� in a natural way� by

w � � � w 
 �����

Obviously if � � � and w � � we may infer that w � ��
This de�nition includes models with W � F � � the restriction of a� the converse

of �� to W and � de�ned as ���� � f� 
 W j � � �g�
Note that if M � hW��� �i is an exact model of fragment F � then

hP��W ���i �� Diag�F ��

As it is our intention to use Kripke semantics as a general framework for the
semantics of CpL� IpL as well as modal logics� it may be worthwhile to de�ne
forcing of a formula by a node in a Kripke model with respect to a general language
containing the languages of these logics�

For example� in our computer programs for calculating diagrams of fragments
from exact models there is only a small di�erence between modal logic and intu�
itionistic logic� as will be pointed out in Chapter �� The rules for calculating the set
of worlds in the exact model that force a certain formula � can easily be explained
using the generalized language and its Kripke semantics�

This generalized language can be de�ned as a language of propositional modal
logic� with the connectives 
�������� and constants � and 	�

The de�nition of k � �� a node k forcing a formula �� is as de�nition ������� and
������� for 
�� and �� The de�nition below of forcing for � and � reveals that �
is the classical negation and � the intuitionistic implication	
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�	�	
	�	 Definition�

�� k � � � � � �l 
 K�if kRl then l � � or l � ���
�� k �� � � k � ��

where k � � is shorthand for not k � ��

We can turn our generalized language into the language of classical modal propo�
sitional logic� by removing �� de�ning � as � and de�ning ��� and � as usual
as �� � � and �
�� For the language of CpL we have to remove 
 and � from
the language of classical modal logic� Likewise we can de�ne the language of IpL
by removing 
 and � from the generalized language� de�ning � as � and de�ning
�� � ����





Chapter �

Semantic Types and Exact Models

��� Introduction

In this chapter we will introduce the notion of the semantic type of a world in a
Kripke model and explain the relation between semantic types� type formulas and
exact models� Within this framework we will restate some proofs of related classical
theorems about CpL� K and IpL� In the next chapters we will use semantic types
to obtain exact models of �nite fragments of IpL and calculate axioms of interpreted
theories of provability logic�

A semantic type� in some fragment F of modal or intuitionistic propositional
logic� is an abstract representation of a node in a Kripke model� The idea is that the
semantic type of a node k in a Kripke model contains exactly the information that
determine which formulas are forced in k� i�e� if a node l has the same semantic type
as k in F � then k and l force the same formulas in F � We will write ThF �k� for the
F �theory of k� de�ned by ThF �k� � f� 
 F j k � �g� In analogy to the situation in
model theory� cf� �CK ���� ThF �k� could be called the type of k �in the language of F ��
If F is �nite and closed under �� there is formula �F �k�� unique up to equivalence�
which is a conjunction of representatives of every equivalence class in ThF �k�� Such
a formula �F �k� is an axiom for ThF �k� and is written as �F �k� �

V
ThF �k�� Here

we will adopt the terminology of modal logic and call the formula �F �k� �or more
precisely its equivalence class� the F �type of k �or the type formula of k in F �� In
modal logic �especially in provability logic� types are also known as the character of
k �in �Bernardi ��� and �GG ��� or as an atom in �Bellissima ����� The term type was
used in �Shavrukov ����

For the relation between types and exact Kripke models� recall de�nition ��������
A Kripke model K is an exact Kripke model for a fragment F if K has the following
properties	

�� K is F �complete� i�e� for all �� � 
 F 	

� � � � ����� � ������

��
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�� Every closed subset of K is F �de�nable� i�e� for all closed X � K there is a
� 
 F such that	

X � ������

Observe that by property �� for every k in an exact Kripke model there is a type
formula for k in F �

For a �nite representation of the fragment F � the types in the exact Kripke
model of F would be su�cient� Recall the generalized notion of model from de�ni�
tion �������� The set of types T �ordered by derivability� is an exact model if we add
the mapping �� de�ned by

���� � f� 
 T j � � �g�

If a fragment F has an exact model� the type formulas in an exact model for F can
often be derived from some normal form for the formulas in F � But such an exact
model with a set of formulas as its universe� is less useful for our purpose than an
exact Kripke model� In the calculation of ���� in a general exact model� one uses
the derivability relation� instead of deciding the derivability of � from � by model
checking� as in an exact Kripke model�

On the other hand� the general exact model almost gives us an exact Kripke
model� We only have to construct a Kripke model K such that for each type � in
the general exact model there is a k 
 K such that � is the type of k �and such that
this mapping of types on worlds of K is � ��� The core question for this step in the
construction of an exact Kripke model is	 �which kind of world does realize type ���

The answer to this question is a semantic equivalent to the type formula of a
node k� and will be called the semantic type of k in F � The semantic type is an
abstract representation of the node� in such a way that identical semantic types in
F are equivalent in F �i�e� have the same F �theory��

To represent the essential information about a node k in a Kripke model we have
to know	

a� which atoms hold in k�
b� what happens in the successor nodes�

If we use 	F �k� for the semantic type of k in K� the general format of a semantic
type is

	F �k� � hatom
n�k�� T i

where T is a set of semantic types of successors� of k in K�

Of course� the semantic types of F have to ful�ll the condition	

	F �k� � 	F �l� � ThF �k� � ThF �l�

�As we will see in Chapter �� sometimes the information about a subset of the successors of k is
su	cient�
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for all k 
 K and l 
 L where K and L are Kripke models used in the semantics of
F � If there is a type formula for each node k in F � a �F �k� 
 F that is an axiom�

for ThF �k�� the condition above is equivalent to	

	F �k� � 	F �l� � �F �k� � �F �l��

Of course the distinction between the semantic types in F and the �F �k� is just
a matter of point of view�

Note that with the restrictions that apply to the fragment F � regarding the atoms
used and the applicability of connectives� the information we need in the semantic
type of k in K need not be a full description of the submodel of K generated by
k� Otherwise we would not have gained much in switching from Kripke models to
semantic types�

The approach in this thesis to the construction of the exact model of a fragment
F will be to �nd a minimal set of semantic types that is complete for F � First we
will de�ne what kind of objects the semantic types for F are �in some class of Kripke
models�� Next we will de�ne a set T of these semantic types such that for each �

and � in F with � � � there is a type t 
 T available� such that if for a node k in a
Kripke model K� 	F �k� � t� then k � � and k � ��

If we prove T to be minimal� the construction of our exact Kripke model is almost
complete because the semantic types usually carry in them a natural accessibility
relation� However in modal logic this order relation is not unique� the semantic types
may be ordered in various alternative ways to obtain an exact Kripke model�

Turning to intuitionistic propositional logic� a fragment F will have a �nite exact
model i� Diag�F � is isomorphic to a set of closed subsets ordered by inclusion� as
was pointed out in the preliminary section of the introduction� Hence� Diag�F � is a
�nite distributive lattice� Let us use �� � for the representative of the equivalence
class in Diag�F � that is the join of the classes represented by � and �� Note that if
� is one of the connectives of F then �� � � � � ��

�	�	
	�	 Definition� An equivalence class � will be called join�irreducible

orirreducible for short� in Diag�F � if � is not the bottom element of Diag�F � and
for all �� � 
 F we have

� � � � � � � � � or � � ��

Let us denote the set of join�irreducible classes in Diag�F � as I�F �� Then I�F �
may be regarded as an ordered set �with a� the reverse of �� as its order relation��
and hence the set of closed subsets P��I�F �� is de�ned� According to Birkho��s
representation theoremDiag�F � will be isomorphic to P��I�F �� ordered by inclusion�

�As is the case if F is 
nite�
�This is more convenient in case we want to turn I�F � into a Kripke model�
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�	�	
	�	 Theorem� �Birkho�� Any �nite distributive lattice is isomorphic to the
lattice of the closed sets of its join�irreducible elements�

Proof� A proof can be found in �DP ���� a

Hence I�F � will be a set of types that can be used for an exact model� However in
the intuitionistic case the order of the exact model� given by a� will in general not be
the identity relation� �In classical logic� where we deal with Boolean algebras instead
of Heyting algebras� the di�erent atoms of the algebra exclude each other	 if � and
� are irreducible� then � � � � � � ���

In intuitionistic propositional logic the general notion of exact model is closer
to that of an exact Kripke model than in classical modal logic� It is not di�cult
to turn an exact model for F into a Kripke model by stipulating the valuation
atom��� � fp atomic j � � pg�

However� these notions do not coincide� as we cannot prove in general for the
resulting Kripke model that the node corresponding to type � does indeed force the
formula �� As we will see in Chapter � the fragment �����n has for each n an exact
model� which is� for n � �� not an exact Kripke model�

As the order in an exact Kripke model of IpL is induced by the derivability
relation� the exact Kripke model of a fragment F � if it exists� is unique �that is�
isomorphic to the set of irreducibles I�F � ordered by derivability��

If� as in the case of the �����n fragments� an exact Kripke model is out of reach�
but we do have a minimal complete set of semantic types for the fragment F at hand�
we can at least try to �nd a minimal �nite model realizing all of the types in this
set� The resulting model is of course complete for the fragment F and will be called
a universal model for F �

��� Preliminaries

In this section we will introduce some useful notations for semantic types� introduce
the important notion of bisimulation between Kripke models and de�ne a layered
variant of this relation� These layered bisimulations are related to the model equiva�
lence in �Fine ��� and play a major r!ole in the semantics of fragments with restricted
nesting of modal operators or restricted nesting of implication�

We will take the liberty of using R for the accessibility relation even in those
cases where we are dealing with more than one model� Usually it is clear from the
context which model the relation belongs to�

�	�	
	�	 Definition� A relation S between two Kripke models K and L is said to
be a bisimulation i� for all k 
 K and l 
 L such that kSl	

�� atom�k� � atom�l��

�� �k� �Rk �l� �Rl �k�Sl���

�� �l� �Rl �k� �Rk �k�Sl���
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A bisimulation relation which is a function is called a p�morphism� If a p�morphism
from K to L is surjective� it is often called a reduction from K to L 
also known as
pseudo�epimorphism��

We will use the notation k �
�
�� l to denote that k and l bisimulate each other� that is�

there exists a non�empty bisimulation S such that kSl� That �
�
�� is an equivalence

relation between nodes in Kripke models is obvious�

�	�	
	�	 Theorem� �Bisimulation Theorem� If k �
�
�� l and k � � then l � ��

Proof� For propositional formulas �� both in modal logic and intuitionistic logic� the
theorem is easily proved by induction on the length of �� Note that we could use
the general language from the general preliminaries to prove this theorem for both
logics at once� a

An n�bisimulation is a bisimulation between two n�models �and hence with the �rst
condition of de�nition ������� changed into	 atomn�k� � atomn�l��� If k and l n�
bisimulate each other we will write k �

�
��n

l�
Spelling out the proof of the bisimulation theorem will reveal that it can easily

be transformed into a proof that if all propositional variables of � are in fp�� � � � � png�
then k �

�
��n

l � k � � then l � ��
Layered bisimulations also known as bounded bisimulations or n�m�bisimulations�

will be de�ned by induction on m�

�	�	
	�	 Definition� A relation S between two Kripke models K and L is said to
be an n� ��bisimulation i� for all k 
 K and l 
 L such that kSl it is true that
atomn�k� � atomn�l��

A relation S between two Kripke models K and L is said to be an n�m 
 ��
bisimulation i� there is a n�m�bisimulation S � such that� for all k 
 K and l 
 L

with kSl�

�� atomn�k� � atomn�l��
�� �k� �Rk �l� �Rl �k�S �l���
�� �l� �R l�k� �Rk �k�S �l���

We will write k �
�
��n

m l if there exists an n�m�bisimulation between k and l�

In the section on modal logic in this chapter� we will prove an n�m�bisimulation
theorem for fragments of modal logic with atomic formulas in fp�� � � � � png and modal
degree less than or equal to m� In Chapter � a similar theorem is proved for IpLn

m�
the fragment with atomic formulas in fp�� � � � � png and the nesting of implication
bounded by m� Fragments with this kind of restriction on the nesting of one of the
connectives are called layered fragments�

It will be clear from these de�nitions that k �
�
�� l implies k �

�
��n

l� which implies
k �
�
��n

m l for each m� Our notation may suggest that k �
�
��n

l if �m �k �
�
��n

m l�� In general
this is not true� as the following counter�example shows�
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�	�	
	�	 Example� In the Kripke model below the accessibility relation is irre�exive�
At the right hand side of l there is a copy of the natural numbers in descending order�
No atoms are forced in the nodes of this model� We have k �

�
��

n

m l for each n and m�
but not k �

�
��

n
l�

r r� �k l r r r r r r� � � � � �����
� � �

�	 Figure� A counter�example against �m �k �
�
��n

m l� � k �
�
��n

l�

In case k and l are nodes in �nite Kripke models� �m �k �
�
��n

m l� does imply k �
�
��n

l�

�	�	
	�	 Definition� A Kripke model K is called locally �nite if for every node
k 
 K the set �k � fl 
 K j kRlg is �nite�

�	�	
	�	 Theorem� For nodes k and l in locally �nite Kripke models	

�m �k �
�
��

n

m l� � k �
�
��

n
l�

Proof� Assume k �
�
��n

m l for all m� We will prove that the relation S between the
��nite� models of k and l de�ned as k�Sl� � �m�k� �

�
��n

m l�� is a bisimulation�
That atomn�k� � atomn�l�� is an immediate consequence of the de�nition of

n�m�bisimulation� As the other two conditions for a bisimulation are symmetric� we
only prove the �rst�

Suppose kRk� and let l�� � � � � lr be an enumeration of the successors of l� We will
prove that there is an i � r such that k� �

�
��n

m li for all m�
For every i � r such that not �m �k� �

�
��n

m li� there is a least m� say mi� with not
k� �
�
��n

mi
li�

If not �l� �Rl �m �k� �
�
��n

m l��� then let M � maxfmi j mi � minfm j not k� �
�
��n

m ligg�
Hence for no li it will be true that k

� �
�
��n

M li� for it is easy to prove from the de�nition
of n�m�bisimulation� that k� �

�
��n

M li would imply k� �
�
��n

m li for all m �M �
By assumption we know k �

�
��n

M�� l and hence for some l� �Rl it should be true

that k� �
�
��n

M l�� From this contradiction we infer that for some li �Rl it is true that
�m �k� �

�
��n

m li�� a

�	�	
	�	 Corollary� For nodes k and l in �nite Kripke models	

�m �k �
�
��

n
m l� � k �

�
��

n
l�

As stated in the introduction of this chapter� the semantic type of a node k in a
Kripke model K will in general be of the form 	�k� � hatom�k�� T i� where T a set
of types of successors of k� To point out the separate parts of a type we also de�ne
the projections j��t� and j��t� for a tuple t�
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�	�	
	�	 Definition� Let t be a tuple� t � hP�Qi� De�ne j��t� � P and j��t� � Q�

In layered fragments �with restricted nesting of modal operators or implication� we
will introduce hierarchies of types� fTm j m 
 INg� If t 
 T� then j��t� � � holds�
while for t 
 Tm�� we will have j��t� � Tm�

If 	F �k� � t� then k is said to realize the type t�

��� Types in CpL

The main point of introducing �semantic� types and exact models in classical propo�
sitional logic� CpL� is to illustrate the concepts de�ned in the introduction of this
chapter� Some facts about CpL and its types that appear in this section are also
useful in the next sections and chapters�

Recall that CpLn is the fragment of CpL formulas of which the atomic sub�
formulas belong to the set fp�� � � � � png� By the n�completeness theorem a CpLn

formula � is derivable in CpL i� � is valid in all �nite n�models K�

�	�	
	�	 Definition� Let Q � fp�� � � � � png be a �nite set of atoms� De�ne	

�nQ �
�
Q �

�
f�q j q 
 fp�� � � � � png nQg�

The de�nition of the formulas �nQ will also be useful in later chapters�

�	�	
	�	 Definition� The type �nCpL�k� of a world k in an n�model K is the for�
mula �natomn�k��

Only in this section we will write �n�k� for �nCpL�k�� In other fragments where the
CpL type of a node is used it will be necessary to distinguish the type �nCpL�k� from
the type �n�k� in the fragment at hand�

If k is a world in a CpL model� let us write Thn�k� for the CpLn theory of k�
de�ned by Thn�k� � f� 
 CpLn j k � �g�

�	�	
	�	 Lemma� Let k be a node in an n�model and let �n�k� be the type of k in
CpLn� Then

�� � is an irreducible formula in CpLn 
see de�nition ����
��� i� for all formulas
� 
 CpLn	

� � � � � � ���

�� �n�k� is irreducible� i�e�	

��� � 
 CpLn��n�k� � � � � � �n�k� � � or �n�k� � ���

�� if a CpLn formula � is irreducible 
in CpLn�� then � is equivalent to a type
of CpLn�

�� the Lindenbaum algebra of CpLn is a �nite Boolean algebra with the types of
CpLn as its atoms�
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�� if l is a node in an n�model K� then

l � �n�k� � atom�l� � atom�k��

�� �n�k� is an axiom for Thn�k��

Proof� �	 Let � 
 CpLn be irreducible� Then from � � � � �� infer that � � �

or � � ��� For the other direction� let � � � � �� If � � �� then by assumption�
� � ��� Hence we would have � � ��

�	 With a simple induction on the length of formula � 
 CpLn prove that
�n�k� � � or �n�k� � ���

�	 Let � 
 CpLn be irreducible� According to de�nition ������� � � �� Hence� for
some node k in a CpL n�model� we have k � �� Now note that obviously k � �n�k��
hence �n�k� � �� and � � ��n�k�� As both � and �n�k� are irreducible� this implies
� � �n�k��

�	 To prove �n�k� to be an atom in Diag�CpLn�� assume that � 
 CpLn� � �� �
and � � �n�k�� As �n�k� is irreducible� use � to infer from �n�k� � �� that �n�k� � ��

�	 By de�nition� if atomn�k� � atomn�l�� then �n�k� � �n�l�� For the other
direction� assume that l � �n�k�� Then both �n�k� � ��n�l� and �n�l� � ��n�k��
From the irreducibility of �n�k� and �n�l� infer� with �� that �n�k� � �n�l� and
hence� by de�nition� atomn�k� � atomn�l��

�	 As �n�k� is irreducible� use � to prove that k � � implies �n�k� � �� On the
other hand� as k � �n�k�� from �n�k� � � infer that � 
 Thn�k�� a

�	�	
	�	 Corollary� Every formula in CpLn is equivalent to a disjunction of ir�
reducible formulas in Cpln�

Proof� Obvious� as Diag�CpLn� is a Boolean algebra with the irreducible formulas
as its atoms� a

�	�	
	�	 Theorem� Let An be the set of types 
irreducible formulas� of CpLn� Then
An is an exact model of CpLn�

Proof� As every formula in CpLn is equivalent to a disjunction of irreducible for�
mulas� according to corollary �������� there is a unique correspondence between the
subsets of An and the equivalence classes of CpLn� a

According to lemma �������� the type of a world k in an n�model is determined by
the set atomn�k��

�	�	
	�	 Definition� Let k be a node in a CpL model� Then 	n�k�� the semantic
type of k in CpLn is de�ned by

	n�k� � hatomn�k�� �i�
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The following fact justi�es our choice for the de�nition of semantic type in
CpLn� It is a simple consequence of the de�nition of semantic type in CpLn and
lemma ��������

�	�	
	�	 Fact� Let k and l be nodes in CpL models� Then

	n�k� � 	n�l� � �n�k� � �n�l� � Thn�k� � Thn�l��

For K a CpL model� let K� be the set of n�types in K� K� may be treated as a CpL
model� with atomn�	n�k�� � atomn�k�� According to the facts above the models K
and K� force the same CpLn formulas� Of course the application of this reduction
to K� would yield K� itself and hence we call K� n�irreducible�
Let Exm�CpLn� be the set of all CpLn types� i�e�

Exm�CpLn� � fhQ� �i j Q � fp�� � � � � pngg�

To make Exm�CpLn� into a CpLn Kripke model� use j� as the atom
n� If we use kQ

to denote the world in Exm�CpLn� corresponding to the type hQ� �i� then obviously
atomn�kQ� � Q�

Clearly every kQ corresponds to the type �nQ de�ned above� Note that all subsets
of Exm�CpLn� are closed� as the accessibility relation is empty� Every subset X �
Exm�CpLn� corresponds to the disjunction of the �nQ such that kQ 
 X� which
proves that Exm�CpLn� is an exact Kripke model of CpLn�

The following facts summarize these conclusions�

�	�	
	�	 Facts� Let Exm�CpLn� be the model de�ned above�

�� Exm�CpLn� is 
isomorphic to� the exact model of CpLn�
�� Exm�CpLn� is an exact Kripke model of CpLn�
�� if K a CpL n�model that is an exact Kripke model of CpLn� then K is iso�

morphic to Exm�CpLn��
�� Exm�CpLn� has �n nodes and the Lindenbaum algebra of CpLn has ��

n

equiv�
alence classes�

u u

u u

p p q

q

�	 Figure� The exact Kripke model of CpL��

If K has the same set of worlds as Exm�CpLn�� but a non�empty accessibility
relation �hence K is not a CpL Kripke model�� then K is a universal model for
CpLn� As every subset of nodes in K corresponds uniquely to an equivalence class
in CpLn� K is also an exact Kripke model �where the set of �closed subsets� in the
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de�nition of exact model is taken to be the set of all subsets��� Hence there are �up
to isomorphism� ��

�n

exact Kripke models of CpLn�
Note that Exm�CpLn� would not have been a model if we had restricted the

de�nition of a CpLn model to single worlds k �or singleton sets�� as is usual�

��� Types in modal logic

In this section we will introduce fragments of modal logic with restricted nesting of
the box operator� Our logical framework will be the system K� the rules and axioms
of which were given in the general preliminary section of the introduction�

Recall the standard de�nition of modal depth of a formula� also known as modal
degree� which we here prefer to call the level of box nesting in analogy with the level
of nesting of the implication in IpL that will be used later on�

�	�	
	�	 Definition� The level of box nesting of a K formula is denoted by the
inductively de�ned function 
���	

p atom� 
�p� � ��
� � � � �� 
��� � maxf
���� 
���g if � 
 f�����g�
� � ��� 
��� � 
����
� � ��� 
��� � 
��� 
 ��

The fragment Kn
m will be the fragment with fp�� � � � � png as its set of propositional

variables and the nesting of the box operator restricted by the condition 
��� � m�

�	�	
	�	 Fact� The Lindenbaum algebra of Kn
m is a �nite Boolean algebra and the

Lindenbaum algebra of Kn is an in�nite Boolean algebra�

If L is an extension of K� that is� if L can be derived by adding axioms to K and
Ln
m is de�ned like Kn

m above� the above fact is also true for L�
As �nite Boolean algebras are atomic� both the diagrams of Kn

m and of Ln
m are

generated by their atoms� As in the case of CpL� treated in the previous section�
these atoms can be proved to be irreducible �see de�nition ���������

Clearly the set of irreducible formulas �or their equivalence classes to be precise�
in Kn

m is an exact model according to de�nition �������� Every formula in Kn
m is

equivalent to a disjunction of irreducible formulas and in this way we have a � �
correspondence between formulas and sets of irreducible formulas�

The Lindenbaum algebra of Kn is also an atomic Boolean algebra� but this is
not the case for the Ln of arbitrary extensions L of K �see �Bellissima ����� The
set of irreducible formulas in Kn is not an exact model� as there are in�nite sets of
irreducibles that do not correspond to a formula in Kn�

De�ne Thnm�k� � f� 
 Kn
m j k � �g� From the fact that Kn

m is �nite� we may
conclude that Thnm�k� is a �nite theory and hence we can de�ne a formula �nm�k� in
Kn

m as �nm�k� �
V
Thnm�k��

�Recall that in classical �modal� Kripke models the order of the general model of de
nition 
������
has nothing to do with the accessibility relation in the Kripke model�
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This formula �nm�k� will be recognized as the type of k in Kn
m and for every l in

a Kripke model L we have l � �nm�k� i� Thnm�k� � Thnm�l��
We will give a more explicit de�nition of the types of Kn

m in the sequel� First
we try to �nd the semantic types in Kn

m and a characterization of the exact Kripke
model of Kn

m� To do so we will rephrase a theorem in �Fine ��� using the layered
bisimulations introduced in the general preliminaries�

�	�	
	�	 Definition� Nodes k and l in Kripke models are called n�m�equivalent�
k �n

m l� if for all � 
 Kn
m

k � � � l � �


and hence Thnm�k� � Thnm�l���

�	�	
	�	 Theorem� Nodes k and l� in Kripke models K and L respectively� are
n�m�equivalent i� k �

�
��

n

m l�

Proof� By induction on m� For m � � note that k �
�
��n

� l i� atomn�k� � atomn�l��
and that Thn� �k� is the set of CpLn formulas forced by k� Hence also	 Thn� �k� �
Thn� �l� � atomn�k� � atomn�l��

Now assume the theorem proved for m� Let k �
�
��n

m�� l� We will prove k � � to
be equivalent with l � � for all � 
 Kn

m�� by showing k � � implies l � �� We use
induction on the length of ��

The cases in which � is atomic� a conjunction or a negation are obvious� So let
� � �� and k � ��� Note that as � 
 Kn

m�� we know that � 
 Kn
m� Let l� 
 L be

such that lRl�� From k �
�
��n

m�� l we infer that there is a k� 
 K such that kRk� and
k� �
�
��n

m l�� As k� � �� by our �rst induction hypothesis also l� � �� Which proves
l � ���

For the other direction� assume k �n
m�� l and kRk�� We have to prove the

existence of an l� �Rl such that l� �
�
��n

m k�� which� according to our induction hypothesis�
is equivalent to l� �

n
m k��

Now let �nm�k�� be the type of k� in Kn
m �as pointed out above� �nm�k�� �V

Thnm�k���� As k � 
�nm�k�� and k �n
m�� l we will have also l � 
�nm�k�� and

for some l� �Rl it must be true that l� � �nm�k��� As observed above this implies that
k� �

n
m l��

By interchanging the r!oles of k and l the n�m�bisimulation condition in the other
direction is proved in the same way� a

In �Fine ��� Fine only proved one direction of this theorem� i�e�

k �
�
��n

ml � Thnm�k� � Thnm�l��

Fine did not use layered bisimulation� but m�equivalence� a notion that is easily
proved equivalent with our notion of n�m�bisimulation�� The analogy with results of

�That is k and l are m�equivalent according to the de
nition in �Fine ���� i� k and l n�m�
bisimulate each other�
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Fra��ss"e and Ehrenfeucht for �rst order theories� that was mentioned in Fine�s article�
will be taken up in the last section of this chapter�

As a simple corollary of theorem �������� for each n and m k �
�
��n

m l will be equiva�
lent to k �n

m l �or Thnm�k� � Thnm�l��� In general �m�k �n
m l� does not imply k �

�
��n

l�
as example ������� provides us with a counter�example�

The semantic types that we will de�ne for Kn
m are quite natural characterizations

of the equivalence classes of the n�m�bisimulations�

�	�	
	�	 Definition� Let k be a node in a �nite n�model� Then the semantic n�m�
type of k 
in K�� 	nm�k�� is de�ned by	

� 	n� �k� � hatom
n�k�� � i�

� 	nm���k� � hatom
n�k�� f 	nm�l� j kRlgi�

The set of all semantic n�m�types 	nm�k� is written T n
m�

This de�nition is justi�ed by the following lemma�

�	�	
	�	 Lemma� If k� l are nodes in �nite Kripke models then

	nm�k� � 	nm�l� � k �n
m l�

Proof� We will apply theorem ������� and prove 	nm�k� � 	nm�l� � k �
�
��n

m l� We
will proceed by introducing a relation �n

m between K and L� de�ned as k �n
m

l � 	nm�k� � 	nm�l�� and prove �n
m to be an n�m�bisimulation� using induction

on m�
By the de�nition of the semantic n�m�types� k �n

m l implies atomn�k� �
atomn�l�� This proves the case that m � � and the �rst condition for an n�m�
bisimulation in general� To prove the other conditions for an n�m 
 ��bisimulation�
assume k �n

m�� l and kRk�� From 	nm���k� � 	nm���l� it follows that 	nm�k
�� 


j��	
n
m���l�� and hence there is an l� �Rl such that 	nm�k

�� � 	nm�l
��� As by de�nition

	nm�k
�� � 	nm�l

�� � k� �n
m l� this proves the �rst condition of n�m�bisimulation�

The second condition is proved in the same way� interchanging the r!oles of k and l

and k� and l��
For the proof of the other direction we will also use induction on m� The case

m � � is again trivial� so suppose k �
�
��n

m�� l� Then obviously it will be true that
atomn�k� � atomn�l�� To prove that also j��	

n
m���k�� � j��	

n
m���l��� let kRk

�� By the

de�nition of �
�
��n

m�� there should be an l� �Rl such that k� �
�
��n

m l�� Using the induction
hypothesis� it follows that 	nm�k

�� � 	nm�l
��� Which proves j��	

n
m���k�� � j��	

n
m���l���

For the other direction of the inclusion� interchange the r!oles of k and l� a

In �Bellissima ���� �nm�k�� the Kn
m type of k �n�m�types for short�� is de�ned as

follows�	 �Recall de�nition ������� for �nCpL�k���

�This de
nition is essentially the same as that of an m� �p�type in �Shavrukov ����
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�	�	
	�	 Definition� Let k be a node in a �nite n�model� De�ne �nm�k�� the K
n
m

type of k inductively as	

� �n� �k� � �nCpL�k��

� �nm���k� � �nCpL�k� �
V
f
�nm�l� j kRlg � �

W
f�nm�l� j kRlg�

Let An
m be the set of 
equivalence classes of� n�m�types�

�	�	
	�	 Fact� If k is a a node in a �nite n�model� then for all m

k � �nm�k��

The proof of this fact is obvious�
The next lemma shows that �nm�k� indeed is an axiom for Thnm�k� �using theorem

�������� and hence is a type�

�	�	
	�	 Lemma� Let k and l be nodes in �nite n�models� If k � �nm�l�� then 	
n
m�k� �

	nm�l��

Proof� We will use induction on m� If m � �� then k � �nCpL�l� implies atomn�k� �
atomn�l� and hence 	n� �k� � 	n� �l�� So assume k � �nm���l�� Then k � �nCpL�l� and we
may infer that atomn�k� � atomn�l�� To prove that also j��	

n
m���k�� � j��	

n
m���l���

we show j��	
n
m���k�� � j��	

n
m���l���

Let kRr and hence 	nm�r� 
 j��	
n
m���k��� From k � �nm���l�� by de�nition ��������

infer that r �
W
f�nm�s� j lRsg� So� for some s �Rl we have r � �nm�s� and� by the

induction hypothesis� 	nm�r� � 	nm�s�� Which proves 	nm�r� 
 j��	
n
m���l���

To prove j��	
n
m���l�� � j��	

n
m���k��� let lRs and hence 	nm�s� 
 j��	

n
m���l��� As

k � �nm���l�� by de�nition �������� we may infer that k � 
�nm�s�� Hence� for some

r �Rk� r � �nm�s�� By the induction hypothesis� this implies 	nm�r� � 	nm�s�� which
proves 	n�s� 
 j��	

n
m���k��� a

The lemmas ������� and ������� combine into	

�	�	
	�
	 Theorem� The set T n
m of semantic n�m�types corresponds exactly to the

set An
m of types in Kn

m� in the sense that	

�l 
 K� l � �nm�k� � 	nm�l� � 	nm�k���

Lemma �������� immediately leads to	

�	�	
	��	 Corollary� If K is a Kripke model such that each n�m�type occurs ex�
actly once in K� then the subsets of K correspond exactly to the equivalence classes
of Kn

m� That is� the following function ����� is an isomorphism	

����� � fk 
K j k � �g�

It can be proved that such an exact model� in which each subset corresponds to a
formula and vice versa� exists for each Kn

m�
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�	�	
	��	 Theorem� For each n and m there exists an exact Kripke�model
K for Kn

m� i�e�� for each U �K� there is a formula � in Ln
m such that

fk
K j k � �g�U � and K is n�m�complete� in the sense that for all
�� � 
 Ln

m� fk
K j k � �g � fk
K j k � �g i� � �� ��

Proof� We apply the so�called Henkin method to the �up to equivalence� �nite set of
formulas in Kn

m� which is closed under taking subformulas� This gives one a Kripke�
model with the maximal consistent sets as its worlds� with #R $ de�ned by	 for
each �� 
#� � is an element of $ and # � pi by	 pi 
#� The maximal consistent sets
can be replaced by their conjunctions which are exactly the irreducible elements of
Kn

m� So a subset of the model will correspond to a disjunction of irreducibles� i�e� an
arbitrary formula of Kn

m� Obviously� non�equivalent formulas are forced on di�erent
subsets of the model� a

The Henkin construction above also works for fragments Ln
m� where L is an extension

of K� The result in each case is called the canonical exact model � But the frame of
the resulting model is not necessarily a frame for the logic L�

Unlike the exact models of fragments of intuitionistic propositional logic �see
�JHR ���� �Hendriks ����� not all the exact models of Ln

m are necessarily isomorphic�
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�	 Figure� Two exact models for K�
��

The formulas in the exact models of K�
�	

�� �p ��� �� �p � 
p ��p
�� p � �� �� p � 
p � �p
�� �p � 
�p � ��p �� �p � 
p � 
�p
�� p � 
�p � ��p �� p � 
p � 
�p

The accessibility relation de�ned in a canonical exact model corresponds to the
relation between irreducible elements � and 
 of Ln

m de�ned as	

�R
 � ��

 � ��

It is often possible to restrict this relation� For example in such a way that the Kripke
exact model belongs to a certain subclass of the class of Kripke models �the re�exive
models� well�founded models and so on�� Note that in this way the completeness
theorems for K and some of its extensions can be proved �see for example �HC �����
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For the in�nite fragmentKn there is no exact model in which all subsets determine
a formula� but there is a �in�nite� model which is n�complete� We will give the
construction of such a model and call it ExKn� Our ExKn is comparable to the
n�complete model given in �Grigolia ��� and �Rybakov ��� for provability logic
�

�	�	
	��	 Definition� ExKn with its R and � is de�ned as the union of inductively
de�ned ExKn

m for m
��

� ExKn
� � P�fp�� � � � � png�� the elements of ExKn

� are all
R�incomparable� and Q � p � p 
 Q�

� ExKn
m�� � fhQ�Xi j Q � fp�� � � � � png� X �

S
i�mExKn

i � X � ExKn
m �� �g�

hQ�XiR Y � Y 
X� and hQ�Xi � p � p
Q�
� ExKn �

S
i�� ExK

n
i �

u u
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�	 Figure� The model ExK�
� � ExK

�
� �

From this picture it can be calculated that ExK�
� will have ��� nodes�

It is obvious from the construction that each n�m�type will be realized by some
k 
ExKn� This ensures the n�completeness of ExKn�

The above de�nition is such that each node in ExKn
i is the root of a �nite reverse

well�founded �and hence irre�exive� Kripke model�

�	�	
	��	 Fact� K is complete for �nite reverse well�founded Kripke models�

Let us use the completeness of K for �nite and reverse well�founded Kripke models
to de�ne semantic types in K�

�	�	
	��	 Definition� For a node k in a �nite reverse well�founded Kripke model
de�ne the semantic type in K	

	n�k� � hatomn�k�� f	n�l� j kRlgi�

As we are dealing with �nite reverse well�founded models we may use ��k�� the depth
of node k� to show that de�nition �������� is sound� Obviously 	n�k� �
 j��	

n�k���
Observe that in ExKn all semantic n�types of nodes in �nite� reverse well�founded

Kripke models are realized�
The de�nition of semantic types for Kn would not be of any use without the

following lemma� stating its relation with bisimulation�

�Similar constructions for fragments in K�Grz and S� may be found in �Shehtman ����
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�	�	
	��	 Lemma� If k and l are nodes in �nite� irre�exive and reverse well�founded
models� then	

	n�k� � 	n�l� � k �
�
��

n
l�

Proof� De�ne d � maxf��k�� ��l�g� We will proceed by induction on d� In case d � ��
both k and l are terminal nodes� and then the lemma is trivial as both sides of the
equivalence sign are equivalent to atomn�k� � atomn�l��

So suppose d � �� If k �
�
��n

l then trivially atomn�k� � atomn�l�� To prove
j��	

n�k�� � j��	
n�l��� assume kRk�� As k and l bisimulate each other there is an

l� �Rl such that k� �
�
��l�� The maximum of the depth of k� and l� is less than d and

hence� by the induction hypothesis� 	n�k�� � 	n�l��� So 	n�k�� 
 j��	
n�l��� which

proves j��	
n�k�� � j��	

n�l��� As the proof of j��	
n�l�� � j��	

n�k�� is similar� we may
conclude that 	n�k� � 	n�l��

If 	n�k� � 	n�l� then again trivially atomn�k� � atomn�l�� Assume kRk�� Then
	n�k�� 
 j��	

n�l�� and so there is an l� �Rl such that 	n�l�� � 	n�k��� By applying the
induction hypothesis infer that k� �

�
��n

l�� As the other condition for bisimulation is
proved likewise� we conclude that k �

�
��n

l� a

In general� to be able to construct a universal model �a minimal complete model�
from the semantic types of nodes inM �models� there should not be too many models
in M �

For example� Kn is complete for the class of �nite n�models� but also for the
subclass of �nite reverse well�founded n�models� Assume that we would have de�
�ned a semantic type 	n�k� for nodes k in �nite n�models �in general�� such that
lemma �������� holds� Then clearly the set of these new semantic types would con�
tain too many semantic types to be the universe of a minimal complete model for
Kn�

To prove that ExKn is a universal model for Kn �and hence that the class of
�nite reverse well�founded models is small enough� we will de�ne a type �n�k� �in
Kn� for every node in ExKn� in such a way that ���n�k��� � fkg�

The de�nition of these types seems to belong to modal logic folklore �see for
example �Bellissima ���� and is very similar to the de�nition of the n�m�types above�

�	�	
	��	 Definition� Let k be a node in a �nite reverse well�founded Kripke
model� De�ne �n�k�� the type of k in Kn� by	

�n�k� � �nCpL�k� � f
��l� j kRlg ��
W
f��l� j kRlg�

De�ne
V
� � � and

W
� � 	� and observe that if k is a terminal node� �n�k� �

�nCpL � ��� That the types we de�ned for Kn correspond exactly to the semantic
types of Kn is a corollary of the next theorem�

�	�	
	��	 Lemma� If k and l are nodes in �nite reverse well�founded Kripke models�
then k � �n�l� implies 	n�k� � 	n�l��

Proof� We will use lemma �������� and prove k � �n�l� implies k �
�
��n

l� We will use
induction on ��k�� the depth of k� Note that� as �n�l� implies �nCpL�l�� we may infer
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that atomn�k� � atomn�l�� Now assume k � �n�l�� In case ��k� � ��we know that k
is a terminal node and k � ��� Note that l will also be a terminal node� For lRl�

would imply k � 
�n�l�� which would make Thn�k� inconsistent� For terminal nodes
atomn�k� � atomn�l� implies k �

�
��n

l�
So let ��k� � �� If k� �Rk� then �n�l� � �� and hence k� �

W
�n�li� �where the

li are the successors of l�� Hence� for some l� �Rl� k� � �n�l��� Using the induction
hypothesis we may conclude that k� �

�
��n

l��
Now let lRl�� Then k � 
�n�l�� and hence for some k� �Rk we have k� � �n�l���

Again by the induction hypothesis we conclude k� �
�
��n

l�� Which proves k �
�
��n

l� a

�	�	
	��	 Theorem� If k and l are nodes in �nite reverse well�founded Kripke mod�
els� then

k � �n�l� � 	n�k� � 	n�l� � Thn�k� � Thn�l��

Proof� By lemma �������� 	n�k� � 	n�l� is equivalent with k �
�
��n

l and �by the
bisimulation theorem� hence implies Thn�k� � Thn�l�� As �n�l� 
 Thn�l�� from
Thn�k� � Thn�l� we may infer that k � �n�l�� On the other hand� by lemma ���������
k � �n�l� implies 	n�k� � 	n�l�� a

��� Types and reductions in IpL

In the semantics of IpL we con�ne our attention mainly to �nite� transitive� re�exive
and anti�symmetric Kripke models �the �nite IpL models��

�	�	
	�	 Definition� Let k be a node in a �nite IpL model� The semantic type of
k in IpL� 	n�k�� is de�ned by induction on ��k�� the depth of k�

	n�k� � hatomn�k�� f	n�l� j k � l and if atomn�k� � atomn�l�

then �k� � k�	n�k�� �� 	n�l� � 	n�k�� �
 j��	
n�l���gi�

De�ne the order of semantic types in IpL as	

t � t� � t � t� or t� 
 j��t��

Observe that� as a special case of this de�nition� we have 	n�k� � hatomn�k�� �i if
��k� � �� De�nition ������� is rather complex in comparison to de�nition ���������
due to the fact that the accessibility relation is re�exive in this case�

�	�	
	�	 Lemma� Let k and l be nodes in a �nite IpL model and k � l� Then

�� if atomn�k� �� atomn�l� then 	n�l� 
 j��	
n�k���

�� j��	
n�l�� � j��	

n�k���
�� 	n�k� �� 	n�l� � 	n�l� 
 j��	

n�k���
�� 	n�k� � 	n�l��
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Proof� �	 This is a simple consequence of de�nition ��������
�	 Let l � l� in such a way that 	n�l�� 
 j��	

n�l��� As obviously k � l�� if
atomn�k� �� atomn�l�� then 	n�l�� 
 j��	

n�k��� Now suppose that atomn�k� �
atomn�l��� From k � l � l� infer that atomn�l� � atomn�l��� From de�ni�
tion �������� infer that �k� � l�	n�k�� �� 	n�l�� � 	n�k�� �
 j��	

n�l����� As k � l

also �k� � k�	n�k�� �� 	n�l�� � 	n�k�� �
 j��	
n�l���� and from de�nition ������� infer

that 	n�l�� 
 j��	
n�k��� which proves j��	

n�l�� � j��	
n�k���

�	 Obviously 	n�k� �
 j��	
n�k��� from which the � part follows trivially�

To prove the � part� suppose that 	n�l� �
 j��	
n�k��� From the �rst part of the

lemma we may conclude that atomn�k� � atomn�l�� According to de�nition ��������
for every k� � k it will be the case that 	n�k�� � 	n�l� or 	n�k�� 
 j��	

n�l��� Hence�
if k� � k and 	n�k�� 
 j��	

n�k�� then� by the assumption that 	n�l� �
 j��	
n�k���

	n�k�� �� 	n�l� and so we may conclude that 	n�k�� 
 j��	
n�l��� Which proves

j��	
n�k�� � j��	

n�l��� In combination with the second part of the lemma� we con�
clude that j��	

n�k�� � j��	
n�l�� and hence 	n�k� � 	n�l��

�	 Observe that from 	n�k� �� 	n�l� � 	n�l� 
 j��	
n�k�� we may infer that

	n�k� � 	n�l� or 	n�l� 
 j��	
n�k�� and hence 	n�k� � 	n�l�� a

To prove that the semantic types introduced above do indeed satisfy the condition
that 	n�k� � 	n�l� implies Thn�k� � Thn�l�� we will use a theorem stating in e�ect
that the semantic types are equivalence classes for n�bisimulation�

�	�	
	�	 Theorem� For nodes k and l in �nite IpL models� we have

	n�k� � 	n�l� � k �
�
��

n
l�

Proof� �	 We will prove that the relation k �n l� de�ned as 	n�k� � 	n�l�� is an
n�bisimulation� It is trivial that the �rst condition for bisimulation� atomn�k� �
atomn�l�� will apply� As the two remaining conditions are symmetric� we will prove
only the �rst�

Suppose we know that 	n�k� � 	n�l� and k � k�� We have to show that there
is an l�  l such that 	n�k�� � 	n�l��� In case we have 	n�k�� � 	n�k� of course
l� � l will do� So assume that 	n�k�� �� 	n�k�� Using lemma �������� infer that
	n�k�� 
 j��	

n�k�� and hence� as 	n�k� � 	n�l�� 	n�k�� 
 j��	
n�l��� So� for some

l� � l we have 	n�k�� � 	n�l���
�	 Let k �

�
��n

l and de�ne d � maxf��k�� ��l�g� With induction on d we will prove
	n�k� � 	n�l�� Note that from k �

�
��n

l we may infer that atomn�k� � atomn�l�� We
will prove j��	

n�k�� � j��	
n�l��� The proof of j��	

n�l�� � j��	
n�k�� is essentially the

same� interchanging the r!oles of k and l� As atomn�k� � atomn�l�� we may conclude
that 	n�k� � 	n�l��

Suppose that k � k� and 	n�k�� 
 j��	
n�k��� As k �

�
��n

l� there is a l�  l

with k� �
�
��n

l�� Assume that 	n�l�� � 	n�l�� Using the� already proved� �rst part
of the theorem� then l �

�
��n

l� and hence also k� �
�
��n

k� From k� �
�
��n

k we may infer
that atomn�k�� � atomn�k�� As 	n�k�� 
 j��	

n�k��� there is� according to de�ni�
tion �������� a k� � k such that 	n�k�� �� 	n�k�� and 	n�k�� �
 j��	

n�k���� The
fact that k� �

�
��n

k implies that there is a k�  k� with k� �
�
��n

k�� Note that both
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k � k� and k � k�� Hence by the induction hypothesis we have 	n�k�� � 	n�k��� So�
	n�k�� �� 	n�k�� and 	n�k�� �
 j��	

n�k���� contradicting lemma re�emt��� applied to
k� � k��

From this contradiction we infer that 	n�l�� �� 	n�l�� As l � l�� again by
lemma ���������� we conclude that 	n�l�� 
 j��	

n�l��� Hence� we have l � l� and
k � k�� By the induction hypothesis we infer from k� �

�
��n

l� that 	n�k�� � 	n�l�� and
so 	n�k�� 
 j��	

n�l��� what had to proved� a

�	�	
	�	 Corollary� Let k be a node in a �nite IpL model and k � l� Then

	n�k� � hatomn�k�� f	n�l� j k � l � ��k �
�
��

n
l�gi�

Proof� We prove that for k � l we have 	n�l� 
 j��	
n�k�� i� ��k �

�
��n

l�� By
lemma ���������� If k � l� then 	n�l� 
 j��	

n�k�� is equivalent to 	n�k� �� 	n�l��
Now apply theorem �������� a

Let us write Thn�k� for the IpLn theory of a node k in a �nite IpL model� Hence�
Thn�k� � f� 
 IpLn j k � �g�

�	�	
	�	 Lemma� Let k and l be nodes in �nite IpL models� If 	n�k� � 	n�l� then
Thn�k� � Thn�l��

Proof� Let 	n�k� � 	n�l�� If 	n�k� � 	n�l�� then by the bisimulation theorem� theo�
rem �������� Thn�k� � Thn�l�� On the other hand� if 	n�k� �� 	n�l� then there is a
k� � k such that 	n�k�� � 	n�l� and hence Thn�k�� � Thn�l�� In an IpL model� from
k� � k infer Thn�k� � Thn�k��� a

By ordering the semantic types in an IpL model K we will construct a new model�
K� � a maximal reduction� of K�

�	�	
	�	 Definition� Let K be a �nite IpL model� De�ne K� � the maximal reduc�
tion of K� by	

K� � hf	n�k� j k 
 Kg��� j�i�

If K and K� are isomorphic� K is called an irreducible model�

The proofs of the following facts are straightforward�

�	�	
	�	 Facts� Let K be a �nite IpL Kripke model�

�� K� is a Kripke model 
note that atomn�	n�k�� � j��	
n�k����

�� 	n is a reduction from K to K� �
�� K� is irreducible�

�The reader familiar with �Hendriks ��� will recognise the analogy with the ��reduction intro�
duced there�
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As in modal logic� the semantic types in IpLn correspond to formula types� The
de�nition of the n�type of a node k in a �nite �IpL� Kripke model K is a result of
a theorem of de Jongh �in �De Jongh ���� �De Jongh ��� and �JC �����

�	�	
	�	 Definition� Let k be a node in a �nite irreducible IpL model� De�ne both

n�k� and �n�k� inductively over ��k�� the depth of k�
Let

�� Newatomn�k� � fq 
 fp�� � � � � png j k � q and �l � k�l � q�g�
�� %n�k� �

W
f�n�l� j k �� lg�

�� &n�k� �
W
f
n�l� j k �� lg�

Then for

��k� � �� 
n�k� � �nCpL�k�� �
n�k� � �
n�k��

��k� � �� 
n�k� �
V
atomn�k� � �

W
Newatomn�k� �%n�k��&n�k���

�n�k� � 
n�k��&n�k��

�	�	
	�	 Theorem� �Jankov�De Jongh� If k and l are nodes in irreducible �nite
IpL n�models then	

�� l � 
n�k� � k � l�
�� l � �n�k� � l � k�

Proof� We will prove � and � simultaneously by induction on the depth of k� In
case ��k� � �� both � and � are obvious� Assume the lemma for ��k� � m and let
��k� � m 
 ��

�� �	 Let l � 
n�k�� If l � &n�k� then for some h such that k �� h we have
l � 
n�h�� By the induction hypothesis this would imply k �� h � l and hence k � l�

On the other hand� we will show that l � &n�k� implies k � l� From l � 
n�k�
we may conclude that l �

V
atomn�k�� As l � &n�k�� we also may conclude l �W

Newatomn�k� and l � %n�k�� By the induction hypothesis we infer that l � h

for all h such that k �� h� So if q 
 atomn�l� n atomn�k�� then we would have
q 
 Newatomn�k�� contradicting l �

W
Newatomn�k�� Hence atomn�l� � atomn�k��

To prove that l also has the same successors as k� let g have a minimal depth
such that l � g and for all h with k �� h� h �� h� From the induction hypothesis
it follows that g � &n�k�� As g is a successsor of l� we have also g � 
n�k�� In the
same way as we proved for l� we may prove for g that atomn�g� � atomn�k� and
g � h for all h such that k �� h� For g there is no proper successor g� which is not
a successor of k� Otherwise g� would be a successor of l with ��g�� � ��g�� l � g and
for all h with k �� h� h �� h� contradicting the minimality of �the depth� of g� From
the irreducibility of the model conclude g � k and hence l � g implies k � g� Again
by the irreducibility of the model infer k � l�

�� �	 We �rst prove that k � 
n�k�� As obviously k �
V
atomn�k� we still have

to prove k �
W
Newatomn�k� � %n�k��&n�k�� Observe that if k �� h then by our

induction hypothesis k � �n�h�� Hence we may conclude that k � %n�k�� Of course�
by the de�nition of Newatomn�k�� also k �

W
Newatomn�k�� So� if we assume k � g

with g �
W
Newatomn�k� � %n�k�� then k � g� Hence� g � 
n�h� for some h such
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that k �� h and hence g � &n�k� So infer that k � 
n�k� and apply lemma ������� to
conclude that if k � l� then l � 
n�k��

�� �	 Assume that l � �n�k�� Then for some g such that l � g� g � 
n�k� and
g � &n�k�� From the �rst part of this proof infer that k � g and h �� g for all h such
that k �� h� Hence conclude that � k� which proves l � k�

�� �	 As k is a node in an irreducible model� we have 	n�k� �� 	n�h� for all h
such that k �� h and� by induction hypothesis� k � 
n�h�� Hence� as k � 
n�k� it
should be true that k � %n�k�� A fortiori� for l � k it is true that l � �n�k�� a

Recall that 	n is a reduction from K to K� � as de�ned in ��������

�	�	
	�
	 Definition� For k a node in a �nite IpL model de�ne

�n�k� � 
n�	n�k��

and

�n�k� � �n�	n�k���

�	�	
	��	 Theorem� If k and l are nodes in �nite IpL n�models then	

�� l � �n�k� � 	n�k� � 	n�l��
�� l � �n�k� � 	n�l� � 	n�k��

Proof� Assume k 
 K and l 
 L and let� in K� � k� � 	n�k� and l� � 	n�l�� Use
lemma ������� to conclude that Thn�k� � Thn�k�� and Thn�l� � Thn�l���
�	 Observe that l � �n�k� � l� � �n�k�� and hence l � �n�k� � k� � l��
�	 Likewise� from l � �n�k� � l� � �n�k�� conclude l � �n�k� � l� � k�� a

�	�	
	��	 Corollary� If k is a node in a �nite n�model and � is an IpL�formula�
then	

k � � � �n�k� � ��

Let K� � hf�n�k� j k 
 Kg��i� then it is easily veri�ed that K�� with the obvious
valuation �n�k� � p � �n�k� � p� is a Kripke model� Recall that by de�ni�
tion �������� K� is the maximal reduction of K� Now we are ready to state another
important �and easy to prove� corollary from theorem ��������

�	�	
	��	 Corollary� The model K� is isomorphic to the model K��

Readers familiar with �Jankov ��� may wonder why Jankov�s name has been con�
nected to theorem �������� The following corollary about �nite frames presents what
is usualy known as Jankov�s theorem�

Let us call a re�exive� transitive and anti�symmetric frame an IpL frame for short�
To de�ne bisimulation between frames� we simply use de�nition ������� leaving out
the condition on the atoms forced� Likewise we may de�ne k �

�
��l between nodes k

and l in frames in the obvious way�
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�	�	
	��	 Corollary� For every �nite rooted IpL frame �k there is a formula �k
such that for any �nite IpL frame F we have	 F � �k i� for some l 
 F it is true
that k �

�
��l�

Proof� De�ne a valuation on �k on the set of atoms fpi j � � i � j�kjg� in such a
way that there is a � � mapping � 	 �k �� fpi j � � i � j�kjg and for l 
 �k we have
l � ��m� � l � m� For the formula �k in the corollary take �n�k� �assuming
j�kj � n�� If F � �n�k� then for some model K based on F we will have for some
l� 
 F that l� � �n�k�� Now apply the theorem to infer that for some l � l� we will
have �in K� that 	n�k� � 	n�l� and hence� by theorem �������� also k �

�
��l� a

The Jankov theorem was independently proved by De Jongh in his disserta�
tion �De Jongh ���� In modal logic Fine in �Fine ��� introduced subframe formulas
for �nite transitive frames for which he proved the modal analogue of the Jankov
theorem� apparently without being aware of theorems in intuitionistic propositional
logic proved by Jankov and De Jongh�

Obviously there are in�nitely many types �and semantic types� in fragments IpLn

if n  ��

The diagram of the fragment IpL�� see �gure �� is known as the Rieger�Nishimura
lattice �see �Nishimura ���� and the ordered set of all non�derivable irreducible types
is the exact Kripke model of this fragment �the set of all elements will correspond to
	��

Note that all semantic types in IpL� are realized in this model� Hence it will be
complete for IpL�� As every semantic type corresponds to an irreducible formula �its
type� every �nite closed set of irreducible formulas corresponds to an IpL� formula
�the disjunction of the set of irreducibles�� As the set of all elements is the only
in�nite closed subset of the model and is assigned to 	� this proves the model to be
the exact model of IpL��

For n � � the fragment IpLn will not have an exact model as the diagram of IpLn

is not a complete distributive lattice for n � �� For example� let f�n�p� j n 
 INg
be a set of representatives of the irreducible equivalence classes in IpL� and q an
atomic formula� Then fq � �n�p� j � �n�p�g is a closed set of irreducible formulas�
that does not correspond to a formula in IpL��

�	�	
	��	 Fact� For n � � the fragment IpLn does not have an exact model�
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�	 Figure� The diagram� of IpL� 
left� and its exact Kripke model 
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��� Calculations in exact models

As explained in the introduction of this chapter and illustrated by the examples
of exact models in the previous sections� the proof of the construction of an exact
Kripke model K for some fragment F is accompanied by a mapping ����� of formulas
in F to �closed� subsets of K� A �nite exact Kripke model K and its mapping �����
together provide us with a decision method for formulas in F � The restriction to
closed subsets is necessary only in the case of fragments of IpL� In dealing with
classical propositional logics �CpL or modal systems extending K� all subsets of K
will be considered to be closed� So in topological terms� in classical logic we use the
discrete topology and in intuitionistic logic the topology of upwardly closed subsets
induced by the order of K� Recall the de�nition of the interior operation �rephrased
in the context of Kripke models�	

�	�	
	�	 Definition� Let K be a Kripke model and X � K� Then X�� the interior
of X is de�ned as	

X� �
S
fY � X j Y is closedg�

�Or its dual� according to our de
nition of Diag�F � in Chapter 
�
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In addition the following de�nition turns out to be useful�

�	�	
	�	 Definition� Let K be a Kripke model and X � K� Then X�� the prede�
cessor set of X is de�ned as	

X� � fk 
 K j �l 
 X�kRl�g�

It is easily veri�ed that� writing X for the complement of set X� in IpL models the
interior can be calculated as	

X� � X nX
�
�

�	�	
	�	 Facts� Let K be a �nite Kripke model for fragment F and let ����� � fk 

K j k � �g� For all formulas � and � of F 
and as far as the connectives are
applicable in F �	

�� ��� � ��� � ����� � ������
�� ��� � ��� � ����� � ������
�� ������� � ��K n ������ � ��������
�� ������ � �K n ��������
�� ��
��� � �������
�� � � � ����� � K�
�� � � � � ����� � ������

All of these facts can be proved by writing out the de�nitions and using well�known
facts about Kripke semantics�

In case K is an exact Kripke model for the fragment F � the implications in the
last two facts above can be changed into equivalences�

Hence ����� can be calculated using set theoretic and topological operations on the
exact model�

A computer program to calculate ����� on an exact Kripke model will need the
relevant information about the exact model to calculate the set operations and the
predecessor sets� Clearly this can be done in linear time� which makes testing of
formulas using exact models such an e�cient decision procedure�

For exact models of the fragments of CpLn we do not need predecessor sets and
the calculation of ����� is very much like constructing a truth table for ��

The testing of formulas by calculations in an exact Kripke model of a fragment
F can be used to calculate the diagram of F and all its subfragments� Let G be
a subfragment of F and let KF be a �nite exact model of F � To calculate the
diagram of G the algorithm mkDiag is given the ��p�� of all atomic formulas in G�
These atomic formulas are taken as the representatives of their equivalence classes
and the start of a list of elements of the diagram to be constructed� From this list �of
formulas representing equivalence classes already found� the algorithm systematically
picks one or two representatives to make a new formula according to the connectives
available in G� Such a new formula � is taken as a candidate representative of a class
not yet in the list� Using the rules explained above ����� is calculated and compared
with the sets corresponding to the classes already found� If � does represent an
equivalence class not yet in the list� � is added to the list of representatives and



���� Games and bisimulations ��

����� to the list of sets corresponding to the representatives� As the diagram of G is
�nite� this procedure terminates� In fact� by testing for each representative � both
����� � ����� and ����� � ����� the algorithm does not only determine whether � represents
a new class or not� but also keeps track of the relations in the diagram�

��� Games and bisimulations

Let us �nish this chapter with the introduction of Ehrenfeucht games and their
relation to �layered� bisimulations and to semantic types in general� In the next
chapter we will occasionally use this kind of game to decide the equivalence of nodes
in Kripke models for formulas in certain fragments of IpL� For an application of
Ehrenfeucht games to second�order and intensional logic see �Doets ����

In the present context an Ehrenfeucht game is a game with two Kripke models�
played by two players �player I and player II�� At the start player I makes a choice
between the two models� by pointing to a world in one of the models� After this
start of the game� each of the players in turn will point to a world in the player�s
model� If a player has chosen world l as the previous move� the l� for the present
move has to ful�ll the condition that l � l�� If player I made a move by choosing
world k� the world l in the move of player II will also have to meet the condition
that atom�k� � atom�l��

The game is �nished is one of the players is unable to come up with a satisfactory
world� A player that cannot make a valid move in turn has lost�

The idea behind this kind of game is simple� Player II will win the game if able
to simulate each of the moves of player I� As player I may choose models �rst� a
winning strategy for player II is only possible if there is a simulation relation between
the models�

We will use G�K�L� for the Ehrenfeucht game with models K and L de�ned by
the rules above� For player II having a winning strategy we introduce the notation
j� G�K�L��

�	�	
	�	 Fact� Let G�K�L� be an Ehrenfeucht game for Kripke models K and L�
Then j� G�K�L� i� there exists a bisimulation S between K and L and S is full

dom�S� � K and ran�S� � L��

This fact is a simple consequence of the similarity between the de�nition of an Ehren�
feucht game above and the de�nition of a bisimulation in the preliminaries of this
chapter�

In the sequel the Ehrenfeucht games all will be played on �nite n�models� Our
�rst �simple� re�nement of this general scheme of Ehrenfeucht games will be the
introduction of two starting worlds�

In a game G�K�L� hk� li� with starting worlds k 
 K and l 
 L �and K and L

�nite n�models� the �rst move of each player has to be either k or l� As an easy
corollary of fact ������� we have j� G�K�L� hk� li� i� k �

�
��n

l�
Other re�nements of the scheme of Ehrenfeucht games will be introduced in

Chapter ��





Chapter �

Exact Models in IpL

��� Introduction

In this chapter we will describe all non�trivial �nite fragments of intuitionistic propo�
sitional logic with atoms in some �nite set fp�� � � � � png and connectives in the set
f����������g� Each of these fragments will be denoted by the number of atoms
and the set of connectives used� like ������ for the fragment with two atoms and
conjunction and disjunction as its only connectives� Not included are the descrip�
tions of the trivial fragments ���n� ����n and the fragment with n atomic formulas
and no connectives�

Our main task in this chapter will be to show how to construct exact Kripke mod�
els for fragments of IpLn� using the notion of semantic type introduced in Chapter
�� In some cases �i�c� the fragments �����n and fragments with �� without �� there
exists an exact model� but no exact Kripke model� For these fragments we will show
to construct� via a completion of the exact model� a universal model that can be used
to calculate the diagram �and subdiagrams�� Such a completion of the exact model
will be called a Kripke completion�

In the sequel we will de�ne� for each of the fragments F in IpLn with an exact
model� semantic types 	F �k� and corresponding types �F �k� for nodes k in a Kripke
model� As it should be clear from the context which is the fragment in question� we
will most often drop the index F �

The fragments of IpL with connectives in the set f����������g can be pictured
as a lattice �using the inclusion of fragments de�ned in the preliminaries of the
introduction��

The lattice of fragments in the picture below �which was also given in the general
introduction in Chapter �� provides us with an overview of the �non�trivial� fragments
that can be obtained by restricting the set of connectives�

Recall that fragments with an in�nite diagram �at least in case of more than one
propositional variable� are denoted by an open circle� Finite fragments �in IpLn�
are pictured as closed circles and fragments with an exact model have a closed circle

��
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surrounded by an additional open circle� Fragments with an exact Kripke model are
marked by a square�
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�	 Figure� The lattice of fragments in IpL�

As was pointed out in Chapter �� the diagrams of fragments with an exact Kripke
model can be calculated very e�ciently if the model is given� The same is true for the
subfragments of fragments with an exact Kripke model �just restrict the calculations
of formulas and sets according to the restrictions in the subfragment��

As observed in the introduction of Chapter �� a fragment of IpL has a �nite exact
model i� its diagram is a �nite� distributive lattice�

This criterion may be necessary and su�cient for the existence of an exact model
for a fragment of IpLn� but it does not reveal how to obtain an exact model for a
particular fragment�

If we knew the irreducible formulas in a fragment F � we could order them with a
to obtainExm�F �� the exact model of F � But determining the irreducible formulas in
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F may be far from easy� For example in fragments not containing the disjunction �like
the ������� fragments� it is not immediately clear which formulas are irreducible
in the lattice of Diag�F ��

In the sequel of this chapter we will construct exact models for fragments F by
de�ning an appropriate semantic type and a �straightforward� ordering�

Except for the preliminaries� this chapter has four sections� In the �rst subsection
of each section we describe one of the fragments with an exact Kripke model� The
other subsections deal with subfragments that do not have an exact Kripke model
of their own�

��� ����� ���� �����

���� �����

��� ������� ������ �����

������� �����

��������� �����

������ �����

������� �����

��� ������� ������ �����

��������� �����

������� �����

��� ����� ���� �����

�	 Figure� The structure of this chapter�

The general structure of a subsection about fragment F is �rst to de�ne a class
of Kripke models M� for which the fragment is complete� We then de�ne semantic
types 	F �k� and type formulas �F �k� for the nodes k in the Kripke models in M�
In general� this set of semantic types in F can be turned into a �minimal� complete
model for F � This universal model for F will contain an exact model� if such a model
exists for F � In case F has an exact Kripke model� the exact Kripke model and the
universal model will coincide�

��� Preliminaries

If F is a fragment of IpL with a �nite exact model� the elements in such a model
correspond to the irreducible formulas in Diag�F �� as observed in Chapter �� For
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IpL fragments F this implies that if an exact model exists� it is unique �up to
isomorphism��

To prove this� we will show that the order in the exact model is determined
by the derivability relation� Let � and � be irreducible formulas in F and let k�
and k� denote the corresponding nodes in an exact model Exm�F �� If � is the
correspondence between formulas and closed subsets in Exm�F � then clearly	

� � � � ���� � ���� � k� � k��

A fortiori this is true if F has an exact Kripke model�

�	�	
	�	 Fact� If F is a fragment in IpL and F has an exact 
Kripke� model� then
this model is unique up to isomorphism�

Because of this fact we will in the sequel� when dealing with exact models in IpL
fragments� simply write �the� exact �Kripke� model instead of �an� exact �Kripke�
model�

As an example of the relationship between the diagram and the exact �Kripke�
model of a fragment� �gure � shows the diagram and the exact Kripke model of the
fragment ��������� where the irreducible elements in the diagram are marked with
an extra circle�
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�	 Figure� The diagram of �������� 
left� and its exact Kripke model 
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In case � is in the IpL fragment F � � will naturally act as the join in the diagram of
F � Hence the irreducibles in F will be the ��irreducible formulas �i�e� those formulas
� in F such that for all � and � in F � � � � � � implies � � � or � � ���

To characterize the ��irreducible formulas in IpL we will use the Aczel slash �see
for example �TD �����

�	�	
	�	 Definition� �Aczel slash� Let # be a set of IpL formulas� For an IpL
formula � de�ne # j � inductively as	

�� # j p � # � p for p atomic or p � ��
�� # j � � � � # j � and # j ��
�� # j � � � � # j � or # j ��
�� # j ��� � # � ��� and �# j � � # j ���
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�	�	
	�	 Facts� Let # be a set of IpL formulas and let � and � be IpL formulas�

�� 
�Kleene ���� If � �� � then � is ��irreducible i� � j ��
�� If # j � then # � ��
�� If # � ��� and # � � then # j ����
�� All formulas in ������� are either equivalent to � or ��irreducible�
�� All formulas �� not equivalent to � are ��irreducible�

Especially the last two of the above facts will be useful in this chapter�
In the rest of this chapter the Kripke models used will be IpL models �re�exive�

transitive and anti�symmetric�� In particular� if we mention n�models in this section
we mean IpL n�models�

��� The ����� fragments

The structure of the �����n fragments is relatively well known �see �DP ��� for ex�
ample�	

�	�	
	�	 Facts� Let �c be the derivability relation in CpL�

�� The �����n fragments in IpL and CpL coincide� For formulas � and � in
�����	

� � � � � �c ��

�� The diagram of �����n is isomorphic to the free distributive lattice over n gen�
erators�

�� Each � 
 �����n is equivalent to a �nite disjunction of ���n formulas�
�� All ���n formulas are ��irreducible�
�� The diagram of ���n is dual to the diagram of ���n�
�� For all � 
 �����n we have

V
fp�� � � � � png � ��

From �� it follows that the diagram of ���n is almost the exact model of �����n�
Almost� as the empty set does not correspond to a formula in �����n� On the other
hand� the conjunction of all atoms in �����n is the bottom element of the diagram�
By removing this bottom element from the diagram of ���n we get the exact model
of �����n �where the empty subset of the exact model corresponds to the bottom of
the diagram��
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The model above has �� closed subsets� from which we may infer that the diagram
of ������ has �� elements�

Note that for a node k in a Kripke model K the formula
V
atomn�k� will be the

�����n�type of k� an axiom of Thn�k�� the �����n theory of k�

�	�	
	�	 Definition� Let k be a node in a Kripke model� The semantic type of k
in �����n� 	n�k� is de�ned as	

	n�k� � hatomn�k�� �i�

If t and t� are semantic types in �����n� de�ne	

t � t� � j��t� � j��t
���

The type formula of k in �����n� �n�k� is de�ned as	

�n�k� �
V
j��	

n�k���

The following lemma states that the above de�ned types are indeed semantic types
in �����n as described in Chapter ��

�	�	
	�	 Lemma� If k and l are nodes in Kripke models� then

l � �n�k� � 	�k� � 	�l� � Thn�k� � Thn�l� � �n�l� � �n�k��

Proof� Obvious� a

It is also obvious that if k and l are nodes in an IpL Kripke model K� then k � l

implies 	�k� � 	�l��
Note that the type hfp�� � � � � png� �i is a special one in �����n in that a node with

such a type will force all formulas in the fragment� We will encounter such bottom
types again in the sequel and they will be disregarded in the construction of the exact
Kripke model �or the universal model in some cases�� The reason has been stated
above already� for including such a type would prevent the empty set in the exact
model to correspond to the bottom of the diagram�

�	�	
	�	 Theorem� The set of types in �����n� with exception of the bottom type�
i�e� hfp�� � � � � png� �i� ordered by � and taking atomn�t� � j��t� for a type t� is the
exact Kripke model of �����n�

Proof� From the lemma above and the observations following it� it should be clear
that in the intended model each t realizes its own type� �i�e� 	n�t� � t�� Moreover�
we have t � t� i� for all formulas in �����n it is true that t � � � t� � �� Hence
����� � ft j t � �g is a �! � correspondence between closed subsets of the model and
formulas in �����n� a

In general the exact Kripke model of �����n will have �n ! � nodes �as there are
�n ! � nonempty proper subsets of a set of n elements��
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Obviously the types in ����� are just sets of atoms if we disregard the general
format of semantic types� Hence the exact Kripke model above is isomorphic to the
set of proper nonempty subsets of fp�� � � � � png� ordered by inclusion�

As the characteristic functions of closed sets in the exact Kripke model of �����n

are the monotonic functions into f�� �g� theorem ������� establishes the correspon�
dence between formulas of �����n and monotonic functions of �n �� �� The prob�
lem of determining the number D�n� of these functions �for each n� goes back to
Dedekind and is known in a di�erent� but equivalent� form as the Sperner problem
�see �Kleitman ���� �Kisielewicz �����

In �Sloane ��� there is a table� �nr� � ���� for D�n�	

n D�n�

� �
� �
� ��
� ���
� � ���
� � ��� ���
� � ��� ��� ��� ���

Although there is no simple formula known to calculate the number D�n� there is a
simple construction for the exact model of �����n�� from the exact model of �����n�

Let En be the exact model of �����n� To obtain the exact modelEn��� take a copy
of En� denoted as En

n��� and connect every k 
 En with its twin in k� 
 En
n�� �hence

k � k��� Now change the valuation on En
n��� so that in every node l 
 En

n�� also the
atom pn�� is forced� Next add a new root below En

n�� where only pn�� is forced and
add a new node k above all nodes in En in such a way that atom�k� � fp�� � � � � png�

Clearly the new model exactly realizes all types in �����n��� but for the bottom
type �where all atoms in the fragment would be forced��

The procedure is illustrated in the �gure below� where the exact Kripke model
of ������ is constructed from the exact Kripke model of �������
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�It is convenient to de
ne D��� � ��
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Note that from this construction it simply follows that the exact Kripke model of
�����n is the n�dimensional hypercube without its top and bottom elements�

����� 	�
 and 	�
 fragments

The diagram of ���n� and dually ���n� is of course isomorphic to the powerset of the
nonempty subsets of a set of n elements� ordered by inclusion� Hence the diagram of
���n �or ���n� will be isomorphic to the n�dimensional hypercube without its bottom
element and have �n ! � elements�

��� The ������� fragments

Let us start the treatment of the ������� fragments by de�ning an Ehrenfeucht game
for this fragment �see de�nition �����

�	�	
	�	 Definition� Let K and L be �nite Kripke models� k 
 K and l 
 L� The
Ehrenfeucht game for �������n with starting worlds k and l� Gn�K�L� hk� li�� is a
game between two players� I and II� who each make exactly one move� in turn�

Player I starts by choosing a terminal node mI above either k or l� Player II
replies by choosing a terminal node mII above k� if l �L mI � or above l� if k �K mI�

Player II has won the game if atomn�k� � atomn�l� and atomn�mI� �
atomn�mII��
j� Gn�K�L� hk� li� will denote that there is a winning strategy for player II in the

game Gn�K�L� hk� li��

Let Thn�k� denote the �������n theory of node k� For �nite Kripke models K
and L �and k 
 K� l 
 L�� we have the following theorem�

�	�	
	�	 Theorem� j� Gn�K�L� hk� li� � Thn�k� � Thn�l�

Proof� �	 By induction on the length of � 
 �������n we will prove that k �

� � l � �� The cases where � is either atomic� a conjunction or a disjunction are
trivial� Assume � � �� and k � �� Then for no terminal node m above k it will
be true that m � �� Suppose mI is a terminal node such that l � mI � If mI � �

then� as II has a winning strategy for the game G�K�L� hk� li�� there is a terminal
node mII  k such that atomn�mI� � atomn�mII�� Which would imply mII � ��
a contradiction� This proves that for no terminal node mI  l mI � �� and hence
l � ���
�	 Note that Thn�k� � Thn�l� implies atomn�k� � atomn�l�� Suppose player I

choosesmI �say inK� above k�� Recall the de�nition of �nCpL�mI� �de�nition ���������
Then k � ��nCpL�mI� and� as ��CpL�mI� is equivalent to a formula in �������n

and Thn�k� � Thn�l�� l � ��nCpL�mI�� So� for some terminal node mII  l�
mII � �nCpL�mI�� which implies atomn�mI� � atomn�mII�� Hence there is a winning
strategy for II in the game G�K�L� hk� li�� a
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The proof of the theorem above contains both a suggestion for the de�nition of
	n�k�� the semantic type in �������n� and of �n�k�� the type in �������n �i�e� an
axiom for Thn�k��� Recall the de�nition of �nCpL�k� from de�nition ��������

�	�	
	�	 Definition� Let k be a node in a �nite Kripke model and let Ter�k� denote
the set of terminal nodes above k	

Ter�k� � fm  k j m is a terminal nodeg�

De�ne	

	n�k� �

���
��
hatomn�k�� �i if �l � k� atomn�l� � atomn�k�

hatomn�k�� f	n�l� j l 
 Ter�k�gi otherwise�

For semantic types t and t� in �������n de�ne	

t � t� � t � t� or t� 
 j��t� or �j��t� � j��t
�� and � �� j��t

�� � j��t��

�n�k� �

������
�����

�nCpL�k� if �l � k� atomn�l� � atomn�k�

V
j��	

n�k���
��
W
f�nCpL�l� j 	

n�l� 
 j��	
n�k��g otherwise�

Observe that in particular 	n�k� � hatomn�k�� �i if k is a terminal node�
The next lemma shows we are on the right track with these characterizations of

the �������n theory of a node in a Kripke model�
But let us �rst state as a fact the following simple consequence of the de�nition

of a semantic �������n type�

�	�	
	�	 Fact� If k 
 K and l 
 L are nodes in �nite Kripke models and 	n�k� �
	n�l�� then j� G�K�L� hk� li��

The next lemma� in combination with theorem �������� has as a consequence that
for nodes k 
 K and l 
 L in �nite Kripke models K and L also j� G�K�L� hk� li�
implies 	n�k� � 	n�l��

�	�	
	�	 Lemma� Let k and l be nodes in �nite Kripke models� Then the following
statements are equivalent	

�� l � �n�k��
�� 	n�k� � 	n�l��
�� Thn�k� � Thn�l��
�� �n�l� � �n�k��

Proof� We will prove �� �� �� �� ��
� � �	 Assume l � �n�k�� If �n�k� � �nCpL�k�� then clearly for all m  l

we have atomn�m� � atomn�k� and hence 	n�l� � hatomn�k�� �i � 	n�k�� On the
other hand� if 	n�k� � hatomn�k�� f	n�l� j l 
 Ter�k�gi� then for l� 
 Ter�l� we can
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prove that 	n�l�� 
 j��	
n�k��� Let l� 
 Ter�l�� Then we have� by the de�nition of

�n�k�� that l� �
W
f�nCpL�m� j 	n�m� 
 j��	

n�k��g� Hence l� � �nCpL�m� for some
m 
 Ter�k� and� as above� infer that 	n�l�� � 	n�m�� Note that either 	n�l� � 	n�l��
for some l� 
 Ter�l� and thus 	n�l�� 
 j��	

n�k��� or j��	
n�l�� �� � and we proved

j��	
n�l�� � j��	

n�k��� In both cases we may conclude 	n�k� � 	n�l� as trivially
atomn�k� � atomn�l� holds if l � �n�k��

� � �	 Assume 	n�k� � 	n�l�� Note that if for all m � k we have atomn�m� �
atomn�k�� then from 	n�k� � 	n�l� we may infer that 	n�k� � 	n�l� � hatomn�k�� �i
and hence by fact ������� j� G�K�L�� hk� li�� Which proves Thn�k� � Thn�l�� using
theorem ��������

So assume there is a k� 
 Ter�k� with atomn�k�� �� atomn�k�� Let l 
 L and let L�

be the model constructed from L by adding a new node l� with atom
n�l�� � atomn�k�

and placed below l and all terminal nodes above k� Note that such a construction
of L� as a �nite Kripke model is possible as atomn�k� � atomn�l�� which we may
infer from the assumption� Also from the assumption that 	n�k� � 	n�l� we may
conclude that 	n�l�� � 	n�k�� By fact ������� this implies j� G�K�L�� hk� l�i� and
hence by theorem �������� Thn�k� � Thn�l��� From the construction of L� infer that
as a consequence we have Thn�k� � Thn�l��

�� �	 Note that from the two previous steps we may conclude that �n�m� is an
axiom of Thn�m� �for any node m in a �nite Kripke model�� For suppose � 
 Thn�k�
and l � �n�k�� Then by combining the �rst and the second part of this proof we
have Thn�k� � Thn�l� and hence l � �� Which� by the completeness theorem� proves
�n�k� � ��
From the fact that �n�m� is an axiom for Thn�m� one easily proves that the inclusion
of the theories Thn�k� � Thn�l� implies the interderivability of their axioms	 �n�l� �
�n�k��

�� �	 As �n�l� is the axiom of Thn�l�� we know that l � �n�l�� And hence from
�n�l� � �n�k� we infer l � �n�k�� a

From the de�nition of semantic types in �������n it is clear that there are only
�nitely many of these types� It is also easy to prove that all tuples of the form hS� T i
such that	

�� T is a set of types hU� �i� where U � fp�� � � � � png�
�� if T �� � then S �

T
fj��t� j t 
 Tg�

�� if T � fhU� �ig then S �� U �

are types in �������n�
As each semantic type of ������� can be realized in a rooted IpL model with

depth less than two� we have established the following fact�

�	�	
	�	 Fact� ������� is complete for rooted IpL models of depth less than two�

An intermediate logic is a conservative extension of a fragment of IpL if for any two
formulas � and � in the fragment � is a consequence of � in the intermediate logic i�
� �IpL �� The intermediate logic IpL 
 ��p����q�r��q��q���p��p� complete
for models of depth less than two� can be proved to be a maximal conservative
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extension of �������� But it is not unique� A� Chagrov announced a proof for
the existence of continuum of maximal conservative extensions of �������n for each
n � ��

Ordering the types in �������n� putting hS� T i � hS �� T �i if S � S � and T � � T

will yield a Kripke model Exm��������n� �with atomn�t� � j��t���
Note that as Exm��������n� realizes all semantic types in Exm��������n�� it is

a complete Kripke model for this fragment� As a consequence of the above lemma
also ���n�k��� � �k� Hence every closed subset of Exm��������n� can be obtained as
the valuation of a formula in �������n� Which proves the following theorem�

�	�	
	�	 Theorem� The model Exm��������n� de�ned above is the exact Kripke
model of �������n�

As an example� in �gure �� we give the exact Kripke model of ���������
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��	 Figure� The exact Kripke model of ���������

As all types in �������n are formulas in �����n� we have the following corollary�

�	�	
	�	 Corollary� �The ����� normal form� In �������n each formula is equiv�
alent to a disjunction of formulas in �����n�

Note that as each formula in �����n which is not equivalent to � is irreducible �use
fact ����������� each of these formulas will be �equivalent to� a type in �������n� As
a result� we may state the following fact�

�	�	
	�	 Fact� By leaving out �� the diagram of �����n becomes the exact Kripke
model of �������n�
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We will use the exact Kripke model of �������n in the proof of the characterization
of the ������� formulas in IpL� First we introduce the terminal reduction of a rooted
Kripke model�

�	�	
	�
	 Definition� For a �nite Kripke model K with root k� the submodel ��k�T �
with domain fkg�Ter�k� and the accessibility relation and valuation inherited from
K is called the terminal reduction of K�

Obviously� for a node k in a �nite Kripke model K� the semantic type �in �������n�
of k in K and in ��k�T � the terminal reduction of the submodel �k� are the same�

Hence� a rooted Kripke model and its terminal reduction force the same �������
formulas �have the same ������� theory��

�	�	
	��	 Theorem� An IpL formula � is equivalent to a ������� formula i� for
every node k in a �nite Kripke model	

k � � � ��k�T � ��

Proof� As observed above� the node k in a �nite Kripke model K and the root
of the terminal reduction ��k�T � have the same semantic type in �������n� By
lemma ������� this implies that k and ��k�T force the same ������� formulas� Which
proves one direction of the theorem�

For the other direction� assume � is a formula in IpLn and for every k in a �nite
Kripke model it is true that k � � � ��k�T � �� Let � be the ������� formula
with ����� � ����� in Exm��������n��

We will show that � is equivalent to � by showing �for k a node in a �nite Kripke
model� k � � � k � �� We �rst use the assumption that k � � is equivalent to
��k�T � �� The root k in ��k�T clearly bisimulates the node 	n�k� in the terminal re�
duction ��	n�k��T of the submodel �	n�k� in the exact Kripke model Exm��������n�
Hence� ��k�T � � is equivalent to ��	n�k��T � �� Which� by the assumption about �
is equivalent to 	n�k� � � �in the exact Kripke model� and by de�nition of � also to
	n�k� � �� As � is a �������n formula� 	n�k� � � � k � �� which proves k � �

to be equivalent to k � �� a

����� The 	���
 fragments

We will prove that ����� is complete for models based on the simple frame of two
connected worlds �and which will be called ��� We will prove� that� as a consequence�
the IpL fragment ����� is in fact the same as the ����� fragment of the three valued
Heyting logicH�� The construction of the exact models for Hn

� � the fragments of H�

with atoms restricted to the set fp�� � � � � png� serves as an example to show that the
technique of semantic types is also applicable in intermediate logics�

First however� we will compute the number of equivalence classes in �����n� using
the Exm��������n� from the previous subsection� Recall from fact ������� that the
model Exm��������n� is isomorphic to the diagram of �����n� without the bottom
element�
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�	�	�	��	 Theorem�

jDiag������n� �
nX

k
�

�
n

k

�
���

k

! �� 
 ��

Proof� If S � fp�� � � � � png and jSj � k� then there are �n�k sets U � in such a way that
S � U � fp�� � � � � png� Excluding the combination of S and hS� �i� this implies that
there are ��

n�k

! � semantic types t in �������n� with j��t� � S� As a consequence�
we have

jDiag������n� �
nX

k
�

�
n

k

�
���

n�k

! �� 
 ��

Now use
�

n

n�k

	
�
�
n

k

	
to obtain the formula in the theorem� a

Let us �rst prove that ����� is complete for ��models� that is for models based
on the frame �� In fact the theorem we will prove in the sequel is somewhat stronger
and states that �����n is complete for the n�models based on ��

As a bridge between IpL models and ��models we �rst de�ne terminal models�

�	�	�	��	 Definition� If K is a �nite IpL model K and k� l 
 K we call hk� li a
terminal submodel if l is a terminal node in K and k � l�

Obviously a terminal submodel de�ned in K is a Kripke model in its own right as a
submodel� of K�

�	�	�	��	 Lemma� Let � be a ����� formula� k a node in a �nite IpL model K and
hk� li a terminal submodel in K� If K � � then hk� li � ��

Proof� By induction on the length of �� If � is atomic or a conjunction the proof
is obvious� Note that in case � � ��� we may infer from k � �� that the terminal
node l will not force �� But the terminal node l above k in K and l in hk� li force
the same formulas� Hence hk� li � ��� a

�	�	�	��	 Lemma� Let � be a ����� formula� k a node in a �nite IpL model K� If
k � � then for some terminal submodel hk� li in K� hk� li � ��

Proof� By induction on the length of �� The atomic and conjunction cases are easy�
In case � � ��� we may infer from k � �� that some terminal node l  k must force
�� Now any terminal model with this l will meet the condition from the lemma� a

�	�	�	��	 Theorem� The IpL fragment ����� is complete for ��models�

�Although not necessarily a generated submodel� as there may be anm � �k such thatm �� hk� li�
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Proof� By combining lemma �������� and ��������� a

Let us brie�y introduce the three valued Heyting logic� H�� The most concise def�
inition of H� would be	 H� is the logic of the ��models� If we use �� for forcing
in ��models� � �� � if for all k in a ��model k �� � implies k �� �� and �� for
derivability in H�� then H� being the logic of ��models comes down to	

� �� � � � �� ��

An alternative� and more traditional� de�nition of H� introduces �� by truth
tables for the connectives	

� f " t � f " t � f " t �
f f f f f f " t f t t t f t
" f " " " " " t " f t t " f
t f " t t t t t t f " t t f

It is left to the reader to check that these matrices correspond to the behavior of the
connectives� according to the de�nition of forcing in IpL models� on the following
��model� Here the set f�� �g represents the truth value t� f�g the value " and the
empty set corresponds to the value f�

u

u

�

�

There are several alternative axiomatizations of the three valued Heyting logic�

�	�	�	��	 Fact� H� can be axiomatized by adding one of the following formulas as
an axiom to the axioms of IpL�

�� �p� q� � �p� r� � �p� s� � �q � r� � �q � s� � �r� s��
�� p � �p�q� � �q�
�� ���p����q�r��q��q���p��p� � ��p�q� � �q�p���
�� ��p�q��r�����s�p��r��r��

The �rst of these axioms is G�odels formula expressing that there are only three truth
values �G�odel ���� The second is a simpli�ed version of Hosoi�s p��p��p�q���q�r�
in �Hosoi ���� The �rst conjunct of � is the �once� iterated Peirce formula which
is true exactly in the frames of depth less than two ��Gabbay ����� The second
conjunct is Dummett�s axiom for the intermediate logic LC� the logic of linearly
ordered frames�Gabbay ���� In combination these formulas axiomatize the logic of
linearly ordered frames of depth less than two� that is the frame � �and its subframe
with only one world��

Formula � stems from Thomas �Thomas ���� More details can be found
in �Troelstra ����

The de�nition of semantic types in Hn
� will not come as a surprise�
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�	�	�	��	 Definition� Let k be a node in a ��model� The semantic type of k in
Hn

� is de�ned by	

	n�k� �

���
��
hatomn�k�� �i if �l � k�atomn�k� � atomn�l�

hatomn�k�� f	n�l� j k � lgi otherwise�

The order of semantic types t and t� in Hn
� is de�ned by

t � t� � t � t� or t� 
 j��t��

De�ne the type� �n�k�� of k in Hn
� by	

�n�k� �

����������
���������

�nCpL�k� if j��	
n�k�� � �

V
j��	

n�k���V
f��p j p 
 j��	

n�l��g�V
f�p j p 
 fp�� � � � � png n j��	

n�l��g�V
fp� q j p� q 
 j��	

n�l�� n j��	
n�k��g if j��	

n�k�� � f	n�l�g�

Observe that in particular 	n�k� � hatomn�k�� �i if k is a terminal node� Moreover�
if t is a semantic type in Hn

� and j��t� �� �� then j��t� � ft
�g and j��t

�� � ��
Observe also� that if k � l in a ��model� then 	n�k� � 	n�l��
As can be veri�ed easily� the de�nition of �n�k� assures that k � �n�k� for k a

node in a ��model� Note that if k is a terminal node then �n�k� � �nCpL�k��
Now we are ready to prove� like we did in lemma ������� for �������n� that the

types and semantic types introduced for Hn
� behave like one would expect� In the

sequel of this subsection we will use Thn�k� for the theory of formulas in Hn
� forced

by k�

�	�	�	��	 Lemma� Let k and l be nodes in ��models� Then the following statements
are equivalent	

�� l � �n�k��
�� 	n�k� � 	n�l��
�� Thn�k� � Thn�l��
�� �n�l� � �n�k��

Proof� We will prove �� �� �� �� ��
� � �	 We have to prove that either 	n�k� � 	n�l� or l is a terminal node and

j��	
n�k�� � f	n�l�g�
In case l and k are both terminal nodes �n�k� is a CpLn type and obviously

l � �n�k� implies 	n�k� � 	n�l�� If l is a terminal node and k is not� let k� be
the terminal node above k� We will prove 	n�l� � 	n�k��� For p 
 atomn�k�� infer
from the de�nition of the type of k that �n�k� � ��p� As l � �n�k� this assures
us that p 
 atomn�l�� Hence atomn�k�� � atomn�l�� Likewise� if p �
 atomn�k��
then �n�k� � �p and hence p �
 atomn�l�� Which proves atomn�k�� � atomn�l�
and� as both are terminal nodes� 	n�k� � 	n�l�� Note that if k is a terminal node
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l � �nCpL�k� obviously implies that j��	
n�l�� � � and hence 	n�k� � 	n�l�� So

suppose both j��	
n�l�� �� � and j��	

n�k�� �� �� Then there is an l� � l such that
l� � �n�k�� Again we may infer that 	n�k�� � 	n�l�� for the terminal node k� above
k� Clearly atomn�k� � atomn�l� and to prove atomn�l� to be a subset of atomn�k��
let p 
 atomn�l�� Now either p 
 atomn�k�� or p 
 atomn�k�� n atomn�k� or p is
not in atomn�k��� In the �rst case we are ready and in the third case �n�k� � �p�
contradicting p 
 atomn�l�� If p 
 atomn�k�� n atomn�k�� note that� as j��	

n�l�� �� �
there is a q 
 atomn�l�� n atomn�l�� As atomn�l�� � atomn�k�� we will have �n�k� �
p�q� contradicting p 
 atomn�l��

� � �	 Assume 	n�k� � 	n�l�� If j��	
n�k�� � �� then obviously k �

�
��l

and Thn�k� � Thn�l�� On the other hand� if j��	
n�k�� � f	n�k��g� then either

	n�l� � 	n�k�� or j��	
n�l�� � f	n�l��g� 	n�l�� � 	n�k�� and atomn�k� � atomn�l��

As k� is a terminal node� from 	n�l� � 	n�k�� we may conclude l �
�
��k� and hence

Thn�k� # Thn�k�� � Thn�l�� In case j��	
n�l�� � f	n�l��g� we conclude from

	n�l�� � 	n�k��� that l� �
�
��k�� As also atomn�k� � atomn�l�� we may infer that k �

�
��l

and hence Thn�k� � Thn�l��
� � �	 As in the proof of theorem ������� we conclude from the previous steps

that in general �n�m� is an axiom of Thn�m�� Hence from Thn�k� � Thn�l� we
conclude that �n�l� � �n�k��

�� �	 As observed earlier l � �n�l� is a simple consequence of de�nition ���������
Hence trivially� �n�l� � �n�k� implies l � �n�k�� a

Now de�ne Exm�Hn
� � as the ordered set of semantic types in Hn

� � Obviously
Exm�Hn

� � is a Kripke model if we take atomn�t� � j��t� as its valuation� Note
that Exm�Hn

� � will again be a ��model�

As Exm�Hn
� � realizes all semantic types in Hn

� with lemma �������� one easily
proves that the model is complete for Hn

� � Moreover� for every node k 
 Exm�Hn
� �

we have a type formula �n�k� such that ���n�k��� � �k� As closed subsets in Exm�Hn
� �

correspond to disjunctions of these type formulas we may conclude that Exm�Hn
� �

is the exact Kripke model of Hn
� �

�	�	�	�
	 Theorem� The model Exm�H�� de�ned above is the exact Kripke model
of Hn

� �

u u u

u u u u u

u

�
�
�

�
�

�

�

p

� �

q

�
p q

�

�
p

�

�
q

�

��	 Figure� The exact Kripke model of H�
��

The irreducible formulas in H�
� are	
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�� p � ��q �� p � q ���p � ��q
����p � �p� q� ����p � �q ���p � q
����p � q �� p � �q ���p � �q

Note that� in contrast to in IpL� not all ������ formulas are irreducible in H��
For example �as can be proved using the exact Kripke model ofH�

��	 ��p���q �
���p � �p� q�� � �p � ��q� � ���p � q��

The model above has been used to calculate the diagram of H�
�� A listing of all

��� equivalence classes can be found in appendix B���
From the structure of the exact Kripke model ofHn

� one can calculate the number

of elements in Exm�H�� as
Pn

k
� �
k�
�
n

k

	
and the number of classes in Diag�Hn

�� as	

nY
k
�

���
k�� 
 ���

n

k��

����� The 	����
 fragments

The ������ fragments have rather simple and regular diagrams� The expressive
power of these fragments is too limited to be of very much interest� but each ������n

fragment �almost� has an exact model� For formulas in ������n we have an obvious
normal form�

�	�	�	��	 Fact� �The ������n normal form� Each formula in ������n is equiva�
lent to a formula of the form

V
P �

V
f��q j q 
 Qg where both P and Q are subsets

of fp�� � � � � png� P �Q �� � and P �Q � ��

To characterize the semantic types for ������n� let us introduce a special type of
IpL models� n�maximal models �

�	�	�	��	 Definition� A �nite n�model K is called n�maximal if each k 
 K forces
at least n! � atoms�

�	�	�	��	 Theorem� If � and � formulas in ������n such that � � � then there is
a node k in an n�maximal model such that k � � and k � ��

Proof� Let
V
P �

V
f��q j q 
 Qg be the normal form of � and

V
R�

V
f��q j q 
 Sg

the normal form of �� From � � � we may infer that either there is an r 
 R such
that r �
 P or there is an s 
 S such that s �
 P �Q�

In the �rst case� let atomn�k� contain all atoms but r and k � l such that
atomn�l� � fp�� � � � � png� Obviously k � � but k � ��

In the second case� let k be a node forcing all atoms in fp�� � � � � png ex�
cept s� Let k have two successors l� and l�� with atomn�l�� � fp�� � � � � png and
atomn�l�� � atomn�k�� Again k will force � but not �� a

�	�	�	��	 Corollary� The fragment ������n is complete for n�maximal models�
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Recall the de�nition of Ter�k� from de�nition ������� as the set of all terminal nodes
above the node k� The proof of theorem �������� motivates the following de�nition
of semantic type �in ������n� for a node in an n�maximal model�

�	�	�	��	 Definition� Let k be a node in an n�maximal model� Then 	n�k�� the
semantic type of k in ������n is de�ned by	

	n�k� �

���
��
hatomn�k�� �i if �l � k� atomn�l� � atomn�k�

hatomn�k�� f	n�l� j l 
 Ter�k�gi otherwise�

For semantic types t and t� in ������n de�ne	

t � t� � t � t� or t� 
 j��t� or �j��t� � j��t
�� and � �� j��t

�� � j��t���

�	�	�	��	 Definition� A node k in an n�maximal model is called a proper node� if
j��	

n�k�� �� ��

Inspection of the proof of the theorem �������� reveals the following fact�

�	�	�	��	 Fact� If � and � formulas in ������n such that � � � then there is a
proper node k in an n�maximal model such that k � � and k � ��

Note that the ordered set of semantic types of proper nodes for ������n� n disjoint
��models� is not a Kripke model realizing all the semantic types in ������n� By
adding terminal nodes with semantic type hQ� �i where jQj  n! �� the ordered set
of types becomes an n�maximal model�

�	�	�	��	 Definition� The model Umod�������n� is the ordered set of semantic
types in ������n�

To prove that Umod�������n� is a universal model for ������n we will show that it
is the Kripke completion of the exact model of the fragment ������	�n� that is the
fragment ������n with the formula 	 added�

In the proof we will need the �formula� types in ������n�

�	�	�	��	 Definition� If k a proper node in an n�maximal Kripke model� then
�n�k�� the type of k in ������n� is de�ned as	

�n�k� �
V
j��	

n�k�� �
V
f��q j q 


T
fj��t� j t 
 j��	

n�k��gg�

�	�	�	�
	 Theorem� The model Umod�������n� de�ned above is a universal model
for ������n and the ordered set of semantic types in ������n is an exact model for
������	�n�

Proof� Umod�������n� clearly is complete for ������n and minimal in realizing all
the semantic types of proper nodes in ������n�

Hence our main task will be to prove that we realy need all semantic types in
������n� First note that if k is a node in the intended universal model with a
semantic type in ������n� then k � �n�k�� From the de�nition of �n�k� it is also



���� The ������� fragments ��

clear that in Umod�������n� it is true that l � �n�k� i� k � l� Hence� for k such
that 	n�k� is a semantic type in ������n we have ���n�k��� � �k�

Suppose k�� � � � � km is a close subset in the submodel of the proper nodes in
Umod�������n�� Let � be the formula

� �
VTm

i
�j��	
n�ki�� �

V
f��p j p 


Tm
i
�



fj��t� j t 
 j��	

n�ki�gg�

Note that if k�� � � � � km is the set of all proper nodes in Umod�������n�� then � � 	
�which is not a ������n formula��

To prove that ����� � �fk�� � � � � kng� let k 
 fk�� � � � � kng� Then
Tm

i
�j��	
n�ki�� �

j��	
n�k�� and

Tm
i
�

T
fj��t� j t 
 j��	

n�ki�gg �
T
fj��t� j t 
 j��	

n�k�gg� From which
we may infer that k � ��

On the other hand� if k � �� suppose k is a terminal node in Umod�������n��
If atomn�k� � fp�� � � � � png� then clearly ki � k for all ki� If jatomn�k�j � n ! ��
then there is exactly one l in Umod�������n� such that l � k� Let q 
 fp�� � � � � png n
atomn�k�� then l 
 fk�� � � � � kmg i� � � ��q� Hence� from k � � we conclude � � ��q
and hence k 
 �fk�� � � � � kmg� In case k is a proper node of Umod�������n�� for
q 
 fp�� � � � � png n atom

n�k� we have � � q � k 
 fk�� � � � � kmg� From k � �� we
infer that � � q and hence k 
 fk�� � � � � kmg�

Hence� we proved that the ordered set of semantic types in ������n is an exact
model for ������	�n� a

�	�	�	��	 Corollary� The exact model of ������	�n is isomorphic with n disjoint
copies of � 
disregarding the valuation in Umod�������n���

Hence the fragment ������	�n has �n ! � equivalence classes�
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��	 Figure� The diagram of ������� and the Kripke completion of its exact model

with the added terminal nodes encircled��

����� The 	������
 fragments

The construction of the exact model of ��������n from the irreducible formulas in
this fragment is rather straightforward�
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�	�	�	��	 Lemma� The irreducible formulas in ��������n are 
modulo logical equiv�
alence� of the form

V
Q����� where Q is some subset of fp�� � � � � png and � is some

formula in �����n�

Proof� If � �
V
Q � ��� and � � �� then � is ��irreducible by ���������� If

� 
 ��������n� it is not di�cult to prove � to be equivalent to a disjunction of
formulas of the form

V
Q � ���� Hence� if � is irreducible� � is equivalent to a

formula of the form
V
Q � ���� a

�	�	�	��	 Corollary� �The ��������n normal form� Every formula in ��������
is equivalent to a disjunction of formulas of the form

V
Q � ��� where Q is some

subset of fp�� � � � � png and � is a formula in �����n�

With exception of the fragment with only one atom� these exact models are not
exact Kripke models� as can be seen from the example of ����������
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��	 Figure� The diagram of ��������� and the Kripke completion of its exact
model 
the encircled nodes have been added��

The formulas in the diagram of ���������	
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�� p � q �� ���p � q� ��� ��q
�� p � ��q �� �p � q� � ��q ��� ��p � q
�� ��p � q ��� ��p � �p � ��q� ��� p � ��q
�� p ��� p � q ��� ��p � ��q
�� ���p � q� � �p � q� ��� ���p � q� � ��q ��� ���p � q�
�� q ��� ��p
�� ��p � �p � q� ��� �p � ��q� � ���p � q�

To �nd the semantic types in ��������n the normal form of the irreducible formulas
suggests the following de�nitions�

�	�	�	��	 Definition� A �nite IpL model K is called a proper ��������n model
if for no terminal node l it is true that atomn�l� � � and for every k 
 K which is
not a terminal node� there is a terminal l � k with atomn�l� � fp�� � � � � png�

�	�	�	��	 Definition� For k a node in a proper ��������n model de�ne 	n�k�� the
semantic type of k in ��������n� as	

	n�k� �

���
��
hatomn�k�� �i if �l � k� atomn�l� � atomn�k�

hatomn�k�� f	n�l� j l 
 Ter�k�gi otherwise

For semantic types t and t� in ������n de�ne	

t � t� � t � t� or t� 
 j��t� or �j��t� � j��t
�� and � �� j��t

�� � j��t���

De�ne �n�k�� the type of k in ��������n� as	

�n�k� �
V
j��	

n�k�� � ��
W
f
V
j��t� j t 
 j��	

n�k��g

Observe that for each k in a proper ��������n model which is not a terminal node�
we have k � �n�k��

To prove that each irreducible formula of ��������n is a �n�k� for some non�
terminal node k in a proper ��������n model� �rst note that in the normal form
of irreducible formulas in ��������n the part in the scope of �� is a formula of
����� and hence needs for its realization terminal nodes l with atomn�l� �� �� A
second observation we need is that for � 
 �����n it is always true that ���� �V
fp�� � � � � png� � ����
So we may infer that ��������n is complete for proper ��������n models� as

every irreducible formula in the fragment can be realized in one of these models�

�	�	�	��	 Fact� The fragment ��������n is complete for proper ��������n models�

The ordered set of semantic types in ��������n will provide us with an exact model
of ��������n�

�	�	�	��	 Definition� Let Umod���������n� be the Kripke model constructed from
the ordered set of semantic types hQ� T i� such that Q � fp�� � � � � png and T a
set of semantic types hU� �i� such that hfp�� � � � � png �i 
 T � The valuation in
Umod���������n� is de�ned by atomn�t� � j��t��



�� Chapter �� Exact Models in IpL

Obviously this model is a proper ��������n model realizing all semantic types in
the fragment and hence it is complete for ��������n� However� as an exact model
Umod���������n� is too large� More precisely we do not need the terminal nodes
in this model� as observed earlier� Note that the semantic type hfp�� � � � � png� �i�
corresponding to the type

V
fp�� � � � � png� will only be realized in the model as the

type of a terminal node� However as this type acts as a bottom element in the
diagram of the fragment� it is not needed in the exact model as it will correspond to
the empty set�

�	�	�	��	 Theorem� The model Umod���������n� without its terminal nodes is
the exact model of ��������n�

Proof� As we have seen� every non�terminal element hQ� T i in Umod���������n�
corresponds to a type

V
Q � ��

W
f
V
j��t� j t 
 Tg and every irreducible formula in

��������n is equivalent to such a type� The only thing we still have to prove is that
di�erent semantic types indeed have di�erent type formulas� This we may infer from
the fact that for t and t� semantic types in ��������n and �t and �t� the correspond�
ing type formulas it is true that t � t� � �t� � �t� The proof of this last fact is
straightforward from the de�nitions and is left to the industrious reader� a

����� The 	���
 fragments

As was already mentioned before� a fragment �����n has an exact model� For n � �
this is not an exact Kripke model� as we will see�

The fragment �����n is a subfragment of �������n� for which we already de�ned
semantic types and constructed an exact Kripke model� As the irreducible formulas
in �����n are also irreducible in �������n we have already met the �semantic� types
in �����n	 those types in �������n which are equivalent to a formula in �����n �and
the corresponding semantic types��

Of course the only irreducible formulas in �����n are the atomic formulas and
the negations� Note also that conjunctions of negations are equivalent to negations
of disjunctions �i�e� �p � �q � ��p � q��� and thus are part of the fragment�

Recall that semantic types in �������n are of the form	

	n�k� �

���
��
hatomn�k�� �i if �l � k� atomn�l� � atomn�k�

hatomn�k�� f	n�l� j l 
 Ter�k�gi otherwise

The corresponding type �n�k� was de�ned as	

�n�k� �

�����
����

�nCpL�k� if �l � k� atomn�l� � atomn�k�

V
j��	

n�k���
��
W
f�nCpL�l� j 	

n�l� 
 j��	
n�k��g otherwise

If a formula type �n�k� in �������n corresponds to a formula in �����n then
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�� atomn�k� is either empty or a singleton�
�� k if atomn�k� �� � and n � � then k is not a terminal node�

Note that in the �rst case� where �n�k� is equivalent to an atomic formula p� we haveW
f�nCpL�l� j 	

n�l� 
 j��	
n�k��g � p� Hence� for all Q 
 fp�� � � � � png such that p 
 Q�

there is a t 
 j��	
n�k�� with j��t� � Q� Otherwise� we would have k � ��nQ� which

contradicts �n�k� � p� as p � ��nQ�
As it is not di�cult to see that every formula in �������� is equivalent to a

formula in ������ �see �gure ��� the two fragments have the same diagram� In the
sequel of this subsection we will assume n � �� without making this exception explicit
every time we should�
The observations above inspired the de�nition of a semantic type in �����n�

�	�	�	��	 Definition� Let k be a node in a �nite IpL model� Then k is a proper
�����n node if atomn�k� � � or atomn�k� � fpg for some p 
 fp�� � � � � png and for
every Q � fp�� � � � � png such that p 
 Q there is an l 
 Ter�k� with atomn�l� � Q�

If k is a proper �����n node� then 	n�k�� the semantic type of k in �������n is
the semantic type of k in �����n and �n�k�� the type formula of k in �������n� is
the type formula of k in �����n�

Let Thn�k� in the sequel of this subsection be the �����n theory of k� Thn�k� � f� 

�����n j k � �g�

To see that �n�k� is a formula in �����n note that either atomn�k� � fpg for
some atom p or else �n�k� is a negation�

�	�	�	�
	 Lemma� If k and l are nodes in �nite Kripke models and k and l have
semantic types in �����n� then	

	n�k� � 	n�l� � Thn�k� � Thn�l� � l � �n�k�

Proof� The lemma is an application of lemma �������� in the special case where k
and l have semantic types in �����n and the theories Thn�k�� Thn�l� and the formula
�n�k� are in �����n� a

By ordering the semantic types in �����n� adding the terminal nodes which have no
type in �����n� we get a Kripke completion of the exact model of �����n as we will
see�

�	�	�	��	 Definition� Let Umod������n� � hT��� j�i be the Kripke model con�
structed from the set T of both semantic types in �����n and types of the form hQ� �i�
where Q a nonempty subset of fp�� � � � � png� The order relation between these types
is de�ned as

t � t� � t � t� or t� 
 j��t� or �j��t� � j��t
�� and � �� j��t

�� � j��t���

The valuation in Umod������n� is de�ned by atomn�t� � j��t��

From the de�nitions and observations above the following fact is a simple conse�
quence�
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�	�	�	��	 Fact� The model Umod������n� realizes each semantic type in �����n�

�	�	�	��	 Theorem� The model Umod������n� is a universal model for the frag�
ment �����n and the ordered set of semantic types in �����n is the exact model of
�����n�

Proof� The irreducible formula classes of �����n correspond exactly to the semantic
types in �����n� If X is an upwardly closed subset of types f	n�k��� � � � � 	

n�km�g�
this X will correspond to the formula

W
f�n�k��� � � � � �

n�km�g �where
W
� � ���

To realize the semantic types in �����n one obviously needs the terminal
nodes forcing non�empty sets of atoms� As these are the only elements added in
Umod������n�� this model is a minimal Kripke completion of the exact model� a

The structure of the exact model of �����n might also be described as that of the
ordered set of all non�contradictory negations where the atomic formulas are added�

The set of non�contradictory negations is isomorphic to the diagram of the classi�
cal diagram �����nCpL without the tautology and hence also with the �n�dimensional
hypercube without a top�

Hence the universal model of �����n will be an n�dimensional hypercube without
a top� where at n corners there have been added nodes that force just one atom and
which have been connected to the �n ! � terminal nodes outside the exact model�

As an illustration� �gure �� shows the universal model of �������

uPP
PPP

	
	
	
		

uPP
PPP

	
	
	
		

uPP
PPP

	
	
	
		

uPP
PPP

	
	
	
		

uPPPPP	
	
	
		u

u

uPPPPP	
	
	
		u

u

uPPPPP	
	
	
		u

u

uPPPPP	
	
	
		u

u

u

u

u

u

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
���

�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

p

p

q

q

p� q
h

h

h

��	 Figure� The universal model of ������� 
The encircled nodes have been added
to the exact model��

Using this model one can compute the diagram of ������ which has ��� equivalent
classes�
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����� The 	����
 fragments

With exception of �������� the fragments ������n will not have an exact model�
Note that the minimal elements in the diagram of ������n are the atomic formulas
and for n � � there will not be a bottom in Diag�������n�� Hence the diagram of
������n is not a lattice�

But by adding � to ������n we will have a fragment with an exact Kripke model
as we will see�

The fragment ������� has a simple diagram �two classes� p and ��p� and has an
exact model �with ���p� as its only element and p corresponding to the empty set�
which is not an exact Kripke model� In the sequel of this subsection we will assume
n � ��

There is a simple normal form in ������n which we will use in the construction
of this exact Kripke model of ��������n�

�	�	�	��	 Fact� �The ������n normal form� Every formula in ������n is equiva�
lent to a disjunction of formulas that are either atomic or of the form ���� where
� is a disjunction of atomic formulas�

This fact can be straightforwardly proved by induction on the length of the formula�
To characterize the semantic types in ������n we will introduce a special type of

IpL models� as we did previously for ������n�

�	�	�	��	 Definition� A �nite n�model K is called n�minimal if each node in K

forces at most one atom and each terminal node forces at least one atom�

�	�	�	��	 Theorem� If � and � are formulas in ������n such that � � � then there
is a node k in an n�minimal model such that k � � and k � ��

Proof� Let
W
P �

W
��
W
Qi be the normal form of � and

W
R �

W
��
W
Sj the normal

form of � �where P�Qi� R and the Sj are subsets of fp�� � � � � png�� As � � � we have
either some p 
 P which is not an element of R or some Qi which is not a subset of
any of the Sj�

In the �rst case a simple model of one node k such that atomn�k� � fpg is
su�cient as a counter�example n�minimal model�

In the second case� let K be the n�minimal model with a root k� such that
atomn�k�� � � and terminal nodes kq for every q 
 Qi� Then k� � ��

W
Qi but

k� �
W
R and also for every Sj� as Qi is not a subset of Sj� we will have k� � ��

W
Sj�

Hence k� � � and k� � � as required� a

�	�	�	��	 Corollary� The fragment ������n is complete for n�minimal models�

As we may con�ne our attention to n�minimal models in constructing an exact Kripke
model for ��������n we will use them in the de�nition of semantic types in ������n�

�	�	�	��	 Definition� Let k be a node in an n�minimal model� Then 	n�k�� the
semantic type of k in �������n is the semantic type of k in ������n and �n�k�� the
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type formula of k in �������n is the type of k in ������n� The order of the semantic
types in ������n is de�ned by	

t � t� � t � t� or t� 
 j��t� or �j��t� � j��t
�� and � �� j��t

�� � j��t���

Note that for types in ������n we will have 	n�k� � 	n�l� if atomn�k� � atomn�l�
or atomn�k� � � and hatomn�l�� �i 
 j��	

n�k���
In the de�nition of �n�k�� the type of k in ������n one will recognize the normal

form of the irreducible elements in the fragment�
Note that as k is a node in an n�minimal model �n�k� is either equivalent to an

atomic formula or to ��
W
Q where Q is the set of atoms forced in the terminal nodes

above k� Hence modulo equivalence �n�k� is indeed a formula in ������n�
Let in this subsection Thn�k� be the notation for the formulas in ������n forced

by k�

�	�	�	��	 Lemma� If k and l are nodes in n�minimal models then	

	n�k� � 	n�l� � Thn�k� � Thn�l� � l � �n�k��

Proof� That 	n�k� � 	n�l� implies Thn�k� � Thn�l� is a straightforward application
of lemma �������� on n�minimal models� As k � �n�k�� obviously� Thn�k� � Thn�l�
implies l � �n�k�

To prove that l � �n�k� implies 	n�k� � 	n�l�� let l � �n�k�� As a simple
consequence we have j��	

n�k�� � j��	
n�l��� Hence� if atomn�k� � fqg� then also

atomn�l� � fqg� as both k and l are nodes in n�minimal models� As a consequence�
atomn�k� � fqg implies 	n�k� � 	n�l�� So� assume atomn�k� � �� by the de�nition of
an n�minimal model� k cannot be a terminal node� Observe� that �n�k� is a negation�
equivalent to ��

W
f�n�m� j m 
 Ter�k�g�

If atomn�l� � fqg� then� as l is a node in an n�minimal model� 	n�l� � hfqg� �i and
from l � �n�k� we may conclude l �

W
f�n�m� j m 
 Ter�k�g and hence l � �n�m��

for some m 
 Ter�k�� This proves that 	n�l� 
 j��	
n�k���

On the other hand� if atomn�l� � �� then l cannot be �bisimular to� a termi�
nal node in an n�minimal model� Hence j��	

n�l�� �� �� To prove that j��	
n�l�� �

j��	
n�k��� and hence 	n�k� � 	n�l�� let m 
 Ter�l�� Suppose atomn�m� � fqg�

then� as m � �n�k�� �n�k� � �q� From the de�nition of �n�k� infer that there is a
k� 
 Ter�k� with atomn�k�� � fqg� Hence� 	n�m� � 	n�k�� 
 j��	

n�k��� So� we have
atomn�k� � atomn�l� and � �� j��	

n�l�� � j��	
n�k��� Which� by de�nition� implies

	n�k� � 	n�l�� a

By ordering the semantic types in ������n we construct a n�minimal model
Exm���������n� which consists of n terminal nodes� each forcing one of the atoms
in fp�� � � � � png and non�terminal nodes that force no atomic formulas but are char�
acterized by their set of terminal nodes�

Note that for n � � we added � to the fragment to have a formula corresponding
to the empty set in the exact model�
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��	 Figure� The diagram of ��������� and its exact Kripke model�

The formulas in the diagram of ���������	

�� � �� q �� p � q �� ��p � q �� ��p � ��q
�� p �� ��p �� ��q �� p � ��q ��� ���p � q�

�	�	�	�
	 Theorem� The model Exm���������n� is the exact Kripke model of the
fragment ��������n�

Proof� Because Exm���������n� realizes all semantic types in ������n�� the model
is complete for the fragment� As we have seen� every semantic type corresponds to
a type formula in ��������n� and hence every non�empty closed subset corresponds
exactly to a disjunction of these type formulas in ��������n� For the empty set the
formula � was added� a

The construction of Exm���������n� shows that the non�terminal nodes correspond
to non�empty subsets of fp�� � � � � png ordered by inclusion� Hence Exm���������n�
is isomorphic to the the n�dimensional hypercube without a top� where the n max�
imal elements are connected to terminal nodes each forcing one of the atoms in
fp�� � � � � png�
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As an example� we give the type formulas of ����������
�� p �� ��q �� ���q � r�
�� q �� ��r ��� ���p � q � r�
�� r �� ���p � q�
�� ��p �� ���p � r�

Recall from subsection ��� that D�k� is the k�th Dedekind number�

�	�	�	��	 Theorem�

jDiag���������n�j �
nX

k
�

�
n

k

�
�D�k� 
 ���

Proof� Observe that every formula in ��������n is equivalent to a disjunction of
atoms and formulas of the form ��

W
R �where

W
� � ��� Let Q � fp�� � � � � png

and jQj � k� It is not di�cult to see that the set of formulas of the form ��
W
R�

with R �� � and R � fp�� � � � � png� ordered by �� is isomorphic to Diag����n� �or
equivalently Diag������� Hence� the number of equivalence classes in ��������n

with a representative of the form
W
Q � ��

W
R with R nQ �� � equals D�n! k��

As there are
�
n

k

	
subsets Q � fp�� � � � � png with jQj � k� we have� taking in

account the cases where R � �	

jDiag���������n�j �
nX

k
�

�
n

k

�
�D�n! k� 
 ���

Now use
�
n

k

	
�
�

n

n�k

	
to obtain the formula of the theorem� a
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��� The ������� fragments

The diagrams of ������� fragments have been studied by De Bruijn using exact
models in �Bruijn ��a� as a special case of ����� fragments�� Brie�y stated the
�������n fragment is like a �����n�� fragment� where one of the atoms is treated
as � �and hence pn���

V
fp�� � � � � png will be true��

Using semantic types we may start with the ������� fragments as the more
�natural� fragment�

Note that it is not trivial that the diagram of �������n is a �nite distributive
lattice� Diego proved in �Diego ��� that the �����n fragments are �nite �and from
the proof one could also infer that the diagram would be distributive�� Using the
above cited enbedding of �������n into �����n�� this implies that also �������n

will have a �nite diagram�
As for the lattice operations in the diagram of �������n� it will be obvious

how � will act as �� but for � there is no simple operation in �������n as � is not
de�nable in terms of f�����g� Hence in the following subsections the reader should
be cautious in not taking the irreducible formulas in �subfragments of� �������n as
��irreducible formulas�

To de�ne the semantic types in ������� fragments we will restrict our models
to the ��independent models�

�	�	
	�	 Definition� Let K be a �nite IpL�model model and k 
 K� k is ��
independent if k is a terminal node or	

atom�k� ��
T
fatom�l� j k � lg�

A �nite IpL�model K is ��independent if every node k 
 K is ��independent�

Observe that� in a ��independent n�model� k � l implies atomn�k� �� atomn�l��
As is not di�cult to see� ��independentness is preserved under taking submodels�

�	�	
	�	 Definition� Let K be a �nite IpL�model� The ��independent reduction
of K is the model K�� with the ��independent nodes of K as its worlds and its
accessibility relation inherited from K�

Note that� as ��independentness is preserved by taking submodels� the ��
independent reduction is an ��independent model�

�	�	
	�	 Theorem� Let K be a �nite IpL�model and k 
 K� then for all formulas
� 
 �������	

k � � � ��k�� � ��

Proof� By induction on ��k�� If ��k� � �� then the theorem is trivial� So assume
��k� � m 
 � and apply induction on the length of �� The only interesting case is
� � ��� �including negation as a special case��

�This was also the approach in �Hendriks ���
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For the proof in the ��direction� let k � ���� To prove ��k�� � ���� let
l 
 ��k�� and ��l�� � �� By the induction hypothesis� l � �� As k � l� we conclude
l � � and� again by the induction hypothesis� ��l�� � �� Which proves ��k�� � ���

For the proof in the ��direction� let ��k�� � ���� To prove k � ���� let k � l

and l � �� By the induction hypothesis� ��l�� � � and as obviously ��l�� � ��k���
��l�� � � and� again by the induction hypothesis� l � �� Which proves k � ���� a

The converse of theorem ������� also holds� as theorem �������� below proves�

�	�	
	�	 Theorem� The ������� fragment is complete for ��independent IpL mod�
els�

Proof� Obvious using theorem �������� a

Now we are ready to de�ne the semantic types for �������n of nodes in ��
independent IpL�models�

�	�	
	�	 Definition� For k a node in a �nite ��independent n�model� we de�ne
	n�k�� the semantic type of k in �������n as	

	n�k� � hatomn�k�� f	n�l� j k � lgi�

If t and t� are semantic types in �������n then de�ne t � t� if t � t� or t� 
 j��t��

The de�nition is sound� as in ��independent n�models k � l implies atomn�k� ��
atomn�l� and hence� it is excluded that 	n�k� 
 j��	

n�k��
The following simple lemma proves that semantic types in �������n indeed be�

have as expected�

�	�	
	�	 Lemma� For nodes k and l in �nite ��independent n�models� de�ne k � l

if 	n�k� � 	n�l�� Then � is a bisimulation�

Proof� That k � l implies atomn�k� � atomn�l� is trivial� As the other conditions
in de�nition ������� are symmetric� we only prove one of them� Let k � k� then� by
de�nition� 	n�k�� 
 j��	

n�k��� From j��	
n�k�� � j��	

n�l�� infer that there is a l� � l

such that 	n�k�� � 	n�l��� a

�	�	
	�	 Corollary� If k and l are nodes in �nite ��independent n�models then
	n�k� � 	n�l� implies Thn�k� � Thn�l��

Proof� If 	n�k� � 	n�l� then we have k �
�
��n

l and hence Thn�k� � Thn�l�� Otherwise�
from 	n�l� 
 j��	

n�k�� infer that there is a k� � k such that 	n�k�� � 	n�l� and hence
Thn�k� � Thn�k�� � Thn�l�� a

We are almost ready now to introduce the exact Kripke model of �������n as the
ordered set of semantic types in �������n�

First however we have to prove that there are only �nitely many semantic types
in �������n� To do so we use the following lemma�
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�	�	
	�	 Lemma� If t is a semantic type in �������n� then there is a node k in a
�nite ��independent n�model such that 	n�k� � t and ��k� � n! jj��t�j�

Proof� By a simple induction on d � n ! jj��t�j� For d � � observe that j��t� �
fp�� � � � � png� As t has to be a semantic type of a node in an ��independent n�model�
we may infer that j��t� � ��

If d � � then by induction hypothesis every t� 
 j��t� is realizable by a node kt�
with depth at most d! � �again using the fact that t must be a type of a node in an
��independent n�model�� Of course if a node k with atomn�k� � j��t� is put below
all of these kt� �with t� 
 j��t��� then 	n�k� � t and ��k� � d� a

�	�	
	�	 Corollary� There are �nitely many semantic types in �������n�

Proof� Note that there are only �nitely many ��independent n�models with depth
less or equal than n and every semantic type in �������n can be realized in one of
these models� a

�	�	
	�
	 Definition� If T is the set of semantic types in �������n then de�ne
Exm��������n� � hT��� j�i�
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��	 Figure� The diagram of �������� and the model Exm�����������

Note that we somewhat prematurely baptized the model de�ned as an exact model�
but we will prove this claim in due course� First there are some simple facts to
be arrested� If � a formula in �������n� then ����� will be the valuation of � in
Exm��������n� �hence ����� � fk 
 Exm��������n� j k � �g��

�	�	
	��	 Facts�

�� Exm��������n� is a �nite ��independent n�model�

�� if t a semantic type in �������n then 	n�t� � t in Exm��������n��
�� Exm��������n� is complete for �������n	 if � and � in �������n we have

� � � � ����� � ������
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The �rst two of these facts are established by a close inspection of the construction
of Exm��������n� from the semantic types in �������n� The last one is a simple
consequence of the lemmas above�

To prove Exm��������n� to be the exact model of �������n� we need a for�
mula in �������n for every closed subset of Exm��������n�� Unfortunately there
is no known simple construction for such a formula� which is independent of the
construction of the exact model� However� there is an easy way out�

�	�	
	��	 Lemma� The diagram of �������n is �nite�

Proof� Observe that the equivalence class of a �������n formula � corresponds to
����� in Exm��������n�� That is � � � i� ����� � ������ As Exm��������n� is �nite�
there are only �nitely many equivalence classes in �������n� a

De Bruijn proved the �niteness of Diag��������n� in �Bruijn ��a�� Diego and
Urquhart independently proved that Diag����n� is �nite �see �Diego ��� and
�Urquhart ����� from which the �niteness of Diag��������n� is a simple corollary�
Observe� that using p � q�r � s � �p��q�r�� � �p��q�s��� we can prove that
every formula in �������n is a conjunction of formulas in �����n� As obviously
jDiag������n�j � jDiag����n���j� the �niteness of Diag����n� �for each n� implies
that Diag��������n� is �nite�

�	�	
	��	 Corollary� For every node k in a �nite ��independent n�model there
are� up to equivalence� only �nitely many formulas of �������n in Thn�k��

The corollary justi�es the following de�nitions�

�	�	
	��	 Definition� For a node k in a �nite ��independent n�model de�ne�
�n�k�� the type of k in �������n as

�n�k� �
V
Thn�k��

As stated earlier� this is an easy way out and we will return to the construction of type
formulas in the sequel� Obviously �n�k� is an axiom for Thn�k� and 	n�k� � 	n�l�
then l � �n�k��

�	�	
	��	 Lemma� Let k and l be nodes in �nite ��independent n�models� If l �
�n�k� then 	n�k� � 	n�l��

Proof� Assume l � �n�k�� To prove 	n�k� � 	n�l� we will use induction on ��l�� the
depth of l� If ��l� � � then k � ��nCpL�l� and hence there is a k� � k such that
k� � �nCpL�l�� In a ��independent n�model we may infer that k� has to be a terminal
node and hence 	n�k�� � 	n�l�� Which proves 	n�k� � 	n�l��

If ��l� � �� let l� � l� Then l� � �n�k� and ��l�� � ��l�� According to the induction
hypothesis we will have 	n�k� � 	n�l��� This proves that j��	

n�l�� � j��	
n�k��� As

obviously the assumption implies that atomn�k� � atomn�l�� this proves 	n�k� �
	n�l�� a
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�	�	
	��	 Corollary� If k and l are nodes in �nite ��independent n�models then	

	n�k� � 	n�l� � Thn�k� � Thn�l� � l � �n�k��

Proof� Corollary ������� takes care of 	n�k� � 	n�l� � Thn�k� � Thn�l�� As
�n�k� is the axiom of Thn�k�� obviously Thn�k� � Thn�l� implies l � �n�k�� Finally�
l � �n�k� � 	n�k� � 	n�l� by lemma ��������� a

With corollary �������� we are ready to prove that Exm��������n� is indeed the
exact Kripke model we were looking for�

�	�	
	��	 Theorem� The model Exm��������n� de�ned above is the exact Kripke
model of �������n�

Proof� As noted before� Exm��������n� is complete for �������n and we have to
prove that every closed subset X in this model corresponds to a formula in �������n�

To do so we apply essentially use the same trick that was used to de�ne the
types of nodes in �������n� Let �n�X� �

VT
fThn�k� j k 
 Xg� Then clearly� by

de�nition� it will be true that X � ���n�X����
To prove the inclusion in the other direction� suppose that k � �n�X�� With

induction on ��k�� the depth of k� we will prove that k 
 X� If ��k� � � then k is a
terminal node and apparently it is the case that for some l 
 X we had l � ��nCpL�k��
As otherwise �n�X� would imply ��nCpL�k�� Hence for some l 
 X there is a l� � l

with l� � �nCpL�k�� As Exm��������n� is a ��independent n�model� this l� has to be
a terminal node� As the semantic types in Exm��������n� are unique� we conclude
that k � l�� From l 
 X and l � k infer that k 
 X as X is a closed subset of
Exm��������n��

If ��k� � � then for k� � k we conclude from k� � �n�X� and the induction
hypothesis that k� 
 X� As Exm��������n� is a ��independent n�model� there is a
q 
 atomn�k� n

T
fatomn�l� j k � lg� Note that for k � l we have l � �n�k��q but

k � �n�k��q� Now suppose that l 
 X and l � �n�k� then by lemma �������� we
have k � l� Hence ��n�k��q� 
 X i� k �
 X� As k � �n�X� infer that k 
 X� a

The model Exm��������n� can stagewise be constructed as the minimal ��
independent n�model realizing all semantic types in �������n� Let us de�ne the
n 
 � stages En

i needed in the construction� Recall that P��X� is the set of closed
subsets in X�

�	�	
	��	 Definition� De�ne En
� as the set of �n terminal nodes with semantic type

hQ� �i such that Q � fp�� � � � � png�
Now inductively de�ne	

En
m�� � En

m � fhQ� Si j S 
 P
��En

m� and Q #
T
fj��t� j t 
 Sg �� Qg�

The order in En
m is the order of types in �������n�

Note that the construction of En
m is only possible for m � n�
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�	�	
	��	 Facts� From the construction of En
n the following facts are obvious	

�� En
n is a �nite ��independent n�model�

�� Every semantic type of �������n is realized in En
n exactly once�

�� En
n � Exm��������n��

Let us return to the type formulas in �������n� Recall the de�nition of �n�k� in
de�nition ���������

�	�	
	�
	 Definition� Let k be a node in a �nite ��independent n�model and X �
fp�� � � � � png� De�ne	

�� Newatomn�k� � fq j q 

T
fatomn�l� j k � lg n atomn�k�g�

�� $X �
V
fp�q j p� q 
 Xg�

�� �n�k� �

���
��
��nCpL�k� if ��k� � �

�n�k��q� where q 
 Newatomn�k� otherwise�

The proper de�nition of �n�k� of course requires a choice of q 
 Newatomn�k�� As
this choice will not make any di�erence in the sequel� one may take for example the
pi with the least i such that pi 
 Newatomn�k��

�	�	
	��	 Lemma� If k and l are nodes in �nite ��independent n�models then	

l � �n�k� � 	n�l� � 	n�k��

Proof� If k is a terminal node� the lemma is rather trivial� So� assume ��k� � ��
To prove l � �n�k� � 	n�l� � 	n�k�� let l � �n�k�� As �n�k� � �n�k��q�
this implies� for some l�  l� that l� � �n�k� and l� � q� where q 
 Newatomn�k��
According to corollary ��������� l� � �n�k� implies 	n�k� � 	n�l��� In �nite ��
independent models� it is not di�cult to prove that if 	n�k� $ 	n�m� �i�e� 	n�k� �
	n�m� but 	n�k� �� 	n�m��� then m � q� for q 
 Newatomn�k�� As l� � q and
obviously from l � t� we may conclude that 	n�l� � 	n�l��� we have 	n�l� � 	n�l�� �
	n�k��

To prove 	n�l� � 	n�k� � l � �n�k�� observe that by de�nition k � q� So� if
	n�l� � 	n�k�� then l � �n�k� would imply� by corollary ��������� that k � �n�k�� As
k � �n�k�� we would have k � q� a contradiction� Hence� we conclude l � �n�k�� a

We are now ready for a characterization of �n�k�� the type of k in �������n�
An analogous characterization was used� as a de�nition� in �De Jongh ��� �also
in �De Jongh ���� �De Jongh ��� and �JHR ����� We will use the exact model of
�������n in the characterization� Note that as for every semantic type in a �nite
��independent n�model� there is a node in the exact model with the same semantic
type� theorem �������� is more generally applicable�
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�	�	
	��	 Definition� If k is a node in Exm��������n� and q 
 Newatomn�k�
then de�ne	

&n�k� �

����������
���������

�nCpL�k� if ��k� � �

V
atomn�k� �$Newatomn�k��V
f�n�l��q j k �� lg�V
f�n�m� j not �m � k� andT
fatomn�l� j k � lg � atomn�m�g if ��k� � ��

�	�	
	��	 Theorem� If k is a node in Exm��������n� then �n�k� � &n�k��

Proof� If k is a terminal node� then it is rather obvious that �n�k� � �nCpL�k� and
hence the theorem is true by de�nition� So assume ��k� � ��

To prove �n�k� � &n�k� we show that k � &n�k�� That k �
V
atomn�k� �

$Newatomn�k�� is rather obvious� For k � l we have l � q and k � �n�l� by
lemma ��������� According to the same lemma k � �n�m� if not m � k� which
proves that k will also force the last of the conjunctions in &n�k��

For the proof of the other direction� assume l � &n�k�� We will show that as a
consequence k � l and hence l � �n�k�� As Exm��������n� is the exact model of
�������m� this proves &n�k� � �n�k��

Suppose Newatomn�k� � atomn�l�� Then� using the last part in the conjunction
of &n�k�� not k � l implies &n�k� � �n�l�� As l � �n�l�� infer that k � l and hence
l � �n�k�� If Newatomn�k� is not a subset of atomn�l�� then l � q for every q 

Newatomn�k� �because l � $Newatomn�k��� Hence if k �� k

� then� using the third
conjunct in &n�k�� we have l � �n�k��� By lemma �������� this implies that l � k��
Hence atomn�l� will be included in atomn�k� � Newatomn�k�� From atomn�k� �
atomn�k�� and Newatomn�k� � atomn�l� � � infer that atomn�l� � atomn�k� and
hence 	n�k� � 	n�l�� As semantic types are unique in Exm��������n�� we conclude
k � l and trivially l � �n�k�� a
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This model has � ��� upwards closed subsets� corresponding to the � ��� equivalence
classes of ���������

The type formulas in �������� are	

�� p � q �� �q�p� � ��q�p� � ���q�q�
�� p � ��q ��� �p� q� � ��p
�� p � �q ��� �p�q� � ��p�q� � ���p�p�
�� q � �p �����q�p�
�� q � ��p ��� ���p�q� � ����p�p��q�
����q � ��p�q��p� �����p � ��q�p��q�
�� ���q�p� � ����q�q��p� ����p � �q
����p�q�
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��	 Figure� Part of the model Exm����������� The � ��� nodes k with
atomn�k� � � have been omitted� The order in the model is from the outside in�
wards�

We may now use the exact model of the fragment �������n to prove the converse
of theorem �������� This was suggested �rst by Albert Visser�

�	�	
	��	 Theorem� If � is an IpL formula such that for every node k in a �nite
Kripke model	

k � � � ��k�� � �
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then � is equivalent to a formula in �������n�

Proof� Let � be a formula in IpLn with the property that for every Kripke model
K and every node k 
 K� k � � � ��k�� � �� Let � 
 �������n be the formula
with ����� � ����� in Exm��������n�� For a node k in a �nite ��independent model
we have� using lemma �������	 k � � � k � ��

As � is a formula in �������n� by theorem �������� k � � � ��k�� � �� Hence
we have	

k � � � ��k�� � � � ��k�� � � � k � ��

Which proves � � �� a

����� The 	���
 fragments

To calculate the diagram of �����n we have to use the exact Kripke model of
�������n� as Diag������n� for n � � is not a lattice and hence does not have
an exact model of its own�

�	�	�	��	 Lemma� Every formula in �������n is equivalent to a conjunction of
formulas in �����n

Proof� We proceed by induction on the length of �� Only the cases in which �

is a negation or an implication are non�trivial� If � � ��� then according to the
induction hypothesis � is a conjunction of formulas in �����n� Now apply the IpL
theorem ��A � B� � A��B to show that � is equivalent to a formula in �����n�

In the case that � � ���� we use the induction hypothesis �rst to infer that � is
equivalent to a conjunction of formulas of the form ���i� where � �

V
�i and every

�i is a formula in �����n� Again applying both the induction hypothesis and the
theorem A �B�C � A��b�C�� we conclude that � is equivalent to a conjunction
of formulas in �����n� a

�	�	�	��	 Lemma� An IpL formula � is equivalent to a formula in �����n i� � �
�� or � � ��p� for some � 
 �������n and p 
 fp�� � � � � png�

Proof� That every formula � 
 �����n is equivalent to either a negation or a formula
��p with � 
 �������n and p 
 fp�� � � � � png can easily be proved by induction on
the length of �� If � � ���� note that by the induction hypothesis � � ��p and
hence � � � � ��p�

For the other direction of the lemma� note that if � � ��p with � 
 �������n�
then � is� according to lemma �������� equivalent to a conjunction of formulas in
�����n� Now apply A � B�C � A��B�C�� a

For the calculation of the number of classes in Diag������n�� it is more convenient
to work with the complement of ����� in Exm��������n��
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�	�	�	��	 Definition� Let ����� be the valuation of formulas in Exm��������n��
De�ne �n��� � Exm��������n� n ������

�	�	�	��	 Lemma� Let � and � be formulas in �������n� Then

�� �n��� � �n��� � � � ��
�� �n�� � �� � �n��� � �n����
�� �n����� � ���n��� n �n�����
�� �n���� � ��Exm��������n� n �n�� � �������

Proof� The proofs of the �rst two propositions in the lemma are straightforward�
The last part of the lemma is a simple corollary of the third�

For proof of the third statement in the lemma� observe that by the de�nition of
�n	 k 
 �n����� i� for some l  k both l � � and l � �� Hence k 
 �n�����
i� for some l  k we have l 
 �n��� n �n���� But the latter is equivalent to
k 
 ���n��� n �n����� a

�	�	�	��	 Definition� For a formula � in �������n we de�ne ucvn���� the upper
carrier of �� as the set of maximal elements in �n����

The upper carrier valuation was introduced in �Bruijn ��a�� Using the dual of our
exact models� De Bruijn� called it the lower carrier valuation� Observe that �n��� �
�ucvn��� and ucvn��� is the smallest subset in Exm��������n� with this property�

�	�	�	�
	 Lemma� For � 
 �������n let Ann��� be the set of equivalence classes in
�������n that have a representative of the form ���� with � 
 �������n� Then

jAnn���j � jP�ucvn����j � �jucv
n���j�

Proof� As �n����� � ���n��� n �n���� � ��ucvn��� n �n����� every ��� 

�������n corresponds to a subset in ucvn����

For every subset X # ucvn��� there is a formula � 
 �������n such that
�n��� � ��ucvn��� nX�� because Exm��������n� is the exact model of �������n�
Infer that �n����� � �X and hence every subset of ucvn��� corresponds to an
equivalence class representable by a formula of the form ���� a

The following theorem is a simple generalization of the technique used in �Bruijn ��a�
to calculate the number of equivalence classes in �����

�	�	�	��	 Theorem� Let N�n� �� � � and N�n� k� � �j
T
fucvn�pi�ji�kgj for k � ��

Moreover� let M�n� �� � �jucv
n�	�j and M�n� k� � �jucv

n�	��
T
fucvn�piji�kgj� Then	

jDiag������n�j � M�n� �� 

nX

k
�

�!��k��
�
n

k

�
�N�n� k�!M�n� k���

Proof� According to lemma �������� and lemma �������� every formula in �����n

corresponds exactly to a subset of ucvn��� or ucvn�p� for some p 
 fp�� � � � � png� In
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general these upper carrier valuations are not disjoint� So� in order to count their
subsets� we have to use the rule jP�A��P�B�j � jP�A�j
 jP�B�j ! jP�A � B�j� So	

jDiag������n�j � jP�ucvn����j


j
S
fP�ucvn�pi�� j i � ngj !

jP�ucvn���� �
S
fP�ucvn�pi�� j i � ngj

Using the symmetry in Exm��������n�� we have

j
S
fP�ucvn�pi�� j i � ngj �

nX
k
�

�!��k��
�
n

k

�
N�n� k�

and

jP�ucvn���� �
S
fP�ucvn�pi�� j � � i � ngj �

nX
k
�

�!��k
�
n

k

�
M�n� k��

From which the equation follows� a

�	�	�	��	 Corollary� The number of elements in ������ is	

�� 
 ���� ! ���! ��� ! �� � ����

Proof� In Exm���������� �see �gure ��� we have ucv���� � f�� �� �� ��g� ucv��p� �
f�� �� �� �� �� �� ��� ��g and ucv��q� � f�� �� ��� ��� ��� ��� ��� ��g� So we can calcu�
late ucv���� � ucv��p� � f�� ��g� ucv��p� � ucv��q� � f��� ��g and ucv���� �
ucv��p� � ucv��q� � f��g� According to theorem ��������� then jDiag�������j �
�� 
 ���� ! ���! ��� ! �� a

The ��� elements of the diagram of ������ have been calculated using the model
Exm��������n�� They are listed in appendix B���

Applying the method of theorem �������� on Exm����������� Renardel de
Lavalette calculated the cardinality of Diag���������

�	�	�	��	 Fact� jDiag��������j � ���� ��� ! ���

����� The 	������
 fragments

The fragment ��������n does have an exact model which is not an exact Kripke
model� This is even true if n � �� see �gure ��� where the irreducible classes in
the diagram correspond to the formulas ��p and ��p�p� The exact model needs a
Kripke completion to force ��p in the appropriate node�
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��	 Figure� The diagram of ��������� and its universal model� 
The encircled
node has been added��

As we will see� for each n there is universal model for ��������n that is a simple
Kripke extension of the exact model of ��������n�

As ��������n is a subfragment of �������n� the following fact is a simple con�
sequence of theorem ��������

�	�	�	��	 Fact� The fragment ��������n is complete for �nite ��independent n�
models�

Obviously� a node k in a �nite ��independent n�model with atomn�k� � fp�� � � � � png
will force every formula in ��������n�

�	�	�	��	 Definition� A �nite ��independent n�model K is a proper ��������n

model if for every k 
 K with ��k� � �� there is a l � k such that atomn�l� �
fp�� � � � � png

In this subsection Thn�k� will denote the set of formulas in ��������n forced by k�

�	�	�	��	 Lemma� The fragment ��������n is complete for proper ��������n

models�

Proof� We will prove that for �� � 
 ��������n such that � � �� there is a k in a
proper ��������n model with k � � and k � ��

Let �� � 
 ��������n and � � �� According to fact ��������� there is a k in
a ��independent n�model with k � � and k � �� By induction on the depth of k
we will prove that we can extend the submodel �k to a proper ��������n model�
without changing the ��������n theory of k�

If ��k� � �� then �k is already a proper ��������n model� For the induction step�
add a terminal node kn to �k� such that atomn�kn� � fp�� � � � � png and for all l  k

with l �
 Ter�k�� l � kn� Using induction on the length of formula � 
 ��������n

it is straightforward to prove that k � � i� k forces � in the extended model� From
which we conclude that the ��������n theory of k in both models is the same� a

The semantic types in ��������n will be de�ned as the semantic types of �������n

restricted to proper ��������n models�

�	�	�	��	 Definition� Let k be a node in a proper ��������n model then 	n�k��
the semantic type of k in ��������n is de�ned by	

	n�k� � hatomn�k�� f	n�l� j k � lgi�
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If t and t� are semantic types in �������n then de�ne t � t� if t � t� or t� 
 j��t��

The proofs of the following facts are the same as in section ����

�	�	�	��	 Facts� Let k and l be nodes in proper ��������n models�

�� 	n�k� � 	n�l� � k �
�
��

n
l�

�� 	n�k� � 	n�l� � Thn�k� � Thn�l��

Let us now de�ne the model Umod���������n�� that will be proved in the sequel
to be the universal model for ��������n�

�	�	�	��	 Definition� We de�ne Umod���������n� � hT��� j�i� where T is the
set of semantic types in ��������n�

�	�	�	�
	 Facts�

�� Umod���������n� is a proper ��������n model�
�� if t a semantic type in ��������n then 	n�t� � t in Umod���������n��
�� Umod���������n� is complete for ��������n	 if � and � in ��������n we

have
� � � � ����� � ������

As proper ��������n models are �nite ��independent n�models� we may use
Newatomn�k�� $Newatomn�k� as de�ned in de�nition ��������� Observe that� as
Diag���������n� is obviously �nite� the following de�nition is allowed�

�	�	�	��	 Definition� For a node k in a proper ��������n model de�ne �n�k��
the type of k in ��������n as	

�n�k� �
V
Thn�k��

�	�	�	��	 Lemma� Let k and l be nodes in proper ��������n models� If l � �n�k�
then 	n�k� � 	n�l� or atomn�l� � fp�� � � � � png�

Proof� Assume l � �n�k� and atomn�l� �� fp�� � � � � png� To prove 	n�k� �
	n�l� we will use induction on ��l�� the depth of l� If ��l� � � then k �V
atomn�l� � $Newatomn�l��

V
fp�� � � � � png and hence there is a k� � k such that

k� �
V
atomn�l� � $Newatomn�l� and k� �

V
fp�� � � � � png� In a proper ��������n

model we may infer that k� has to be a terminal node and hence 	n�k�� � 	n�l��
Which proves 	n�k� � 	n�l��

If ��l� � �� let l� � l� Then l� � �n�k� and ��l�� � ��l�� According to the induc�
tion hypothesis we will have 	n�k� � 	n�l��� This proves that j��	

n�l�� � j��	
n�k���

As obviously the assumption implies that atomn�k� � atomn�l�� we may infer that
	n�k� � 	n�l�� a

�	�	�	��	 Corollary� Let k and l be nodes in proper ��������n models� then	

	n�k� � 	n�l� � Thn�k� � Thn�l� � l � �n�k��
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To prove Umod���������n� to be an universal model for ��������n we will use
the next lemma� We will write kn to refer to the node in Umod���������n� with
atomn�kn� � fp�� � � � � png�

�	�	�	��	 Lemma� Let X be a closed subset in Umod���������n�� containing kn�
De�ne �n�X� �

VT
fThn�l� j l 
 Xg� Then for every node k in Umod���������n�	

k 
 X � k � �n�X��

Proof� That k 
 X implies k � �n�X� is clear from the de�nition of �n�X�� For
the other direction� like in theorem �������� we proceed by induction over ��k�� the
depth of k�

So assume k � �n�X�� If ��k� � �� then $Newatomn�k� � p�q for every
p and q in fp�� � � � � png� Either k � kn and k 
 X by de�nition� or �n�X� �V
atomn�k� � $Newatomn�k��

V
fp�� � � � � png� Suppose k �� kn� Then for some

l 
 X there is a l�  l such that l� � �n�X� �
V
atomn�k� � $Newatomn�k� and

l� �
V
fp�� � � � � png� As Umod���������n� is a proper ��������n model� this implies

that l� is a terminal node and atomn�k� � atomn�l�� As semantic types are unique
in Umod���������n�� infer that k � l�� The set X was supposed to be closed� so�
from l � k we conclude that k 
 X�

If ��k� � � then for k� � k we conclude from k� � �n�X� and the induction
hypothesis that k� 
 X� As Umod���������n� is a proper ��������n model� there
is a q 
 atomn�k� n

T
fatomn�l� j k � lg� Note that for k � l we have l � �n�k��q

but k � �n�k��q� Now suppose that l 
 X and l � �n�k� then by lemma ��������
we have k � l� Hence ��n�k��q� 
 X i� k �
 X� As k � �n�X� infer that k 
 X� a

�	�	�	��	 Theorem� Umod���������n� is a universal model for ��������n��

Proof� Umod���������n� is a complete model for ��������n� according to fact ��
By lemma �������� we have an exact correspondence between equivalence classes
in ��������n and closed subsets of Umod���������n� that include the node kn�
Deleting kn from Umod���������n� and assigning the empty set to

V
fp�� � � � � png�

we have an exact correspondence between members of Diag�� and closed subsets in
the resulting model� Clearly Umod���������n� is a minimal complete model for
��������n� a

�	�	�	��	 Corollary� The exact model of ��������n is 
isomorphic to�
Umod���������n�� after deleting kn�
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��	 Figure� The model Umod���������n�� The encircled node has been added to
the exact model of ����������

The exact model has ��� upward closed subsets� corresponding to the ��� equivalence
classes of ����������

The type formulas in ��������� are	

�� p � ��q ����q � ��p�q��p� �� �q���p���p � q�
�� p � ���q�q� �� ���q��p � q���p� ��� ���p��p � q���q�
�� q � ���p�p� �� �p���q���p � q� �����p � ��q�p��q�
����p � q �� �p�q� � �q�p� � ��p ��� ��q�p����p���p � q�

����� The 	����
 fragments

The diagram of ������n is not a lattice �it does not have a bottom element� if n � ��
For n � � we have� of course� Diag��������� �� Diag����������� �see �gure ����

To calculate the diagram of �����n we will use the universal model of ��������n�

�	�	�	��	 Lemma� Every formula in ��������n is equivalent to a conjunction of
formulas in ������n

Proof� The proof is much like that of lemma ��������� We proceed by induction on the
length of �� Only the cases in which � is a double negation or an implication are non�
trivial� If � � ���� then according to the induction hypothesis � is a conjunction
of formulas in ������n� Now apply the IpL theorem ���A � B� � ��A��B� to
show that � is equivalent to a formula in �����n�

In the case that � � ���� the proof runs like in ��������� a

�	�	�	��	 Lemma� An IpL formula � is equivalent to a formula in ������n i�
� � ��p for some � 
 ��������n and p 
 fp�� � � � � png�

Proof� The proof is essentially the same as that of lemma ��������� Observe that
double negations can be treated as implications� using ��� � ���������� a



�� Chapter �� Exact Models in IpL

As in subsection ������ for the calculation of the number of classes in Diag�������n�
it is more convenient to work with the complement of ����� in Umod���������n��

�	�	�	��	 Definition� Let ����� be the valuation of formulas in Umod���������n��
De�ne �n��� � Umod���������n� n ������

The proof of the following facts is exactly the same as for lemma ���������

�	�	�	�
	 Facts� Let � and � be formulas in ��������n� Then

�� �n��� � �n��� � � � ��
�� �n�� � �� � �n��� � �n����
�� �n����� � ���n��� n �n�����
�� �n����� � �Umod���������n� n ��Umod���������n� n dar�n���� �
�Umod���������n� n �������

�	�	�	��	 Definition� For a formula � in ��������n we de�ne ucvn���� the upper
carrier of �� as the set of maximal elements in �n����

Observe that the element kn in Umod���������n�� with atomn�kn� � fp�� � � � � png�
is in ����� for every � 
 ��������n and hence in no �n��� or ucvn����

�	�	�	��	 Lemma� For � 
 ��������n let Ann��� be the set of equivalence classes
in ��������n that have a representative of the form ��� with � 
 ��������n�
Then

jAnn���j � jP�ucvn����j � �jucv
n���j�

Proof� The proof is essentially the same as for lemma ��������� a

�	�	�	��	 Theorem�

jDiag�������n�j �
nX

k
�

�!��k��
�
n

k

�
N�n� k��

where N�n� k� � �j
T
fucvn�pi�ji�kgj�

Proof� The proof is a simpli�ed version of the proof of theorem ��������� using the
symmetry in Umod���������n�� a

�	�	�	��	 Corollary� The number of elements in ������� is	

���
 ! �� � ����

Proof� In Umod���������n �see �gure ��� we have ucv��p� � f�� �� �� �� �� �� ��g
ucv��q� � f�� �� �� �� ��� ��� ��g� So we have ucv��p� � ucv��q� � f�� ��g� According
to theorem ��������� then jDiag�������j � ���
 ! �� a

Applying the method of theorem �������� on Exm����������� Renardel de Lavalette
calculated the cardinality of Diag����������

�	�	�	��	 Fact� jDiag���������j � ���	�� ! ���
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��� The ����� fragments

The �����n fragments of IpL are much like the �������n fragments��
As we will see� the only di�erence between the semantic types in �������n and

�����n is that in the later the semantic types with j��k� � fp�� � � � � png are redun�
dant� Observe that a node with such a semantic type �i�e� where all the atoms hold��
forces all formulas in �����n�

�	�	
	�	 Definition� A �nite ��independent n�model K is a proper �����n model
if for no k 
 K we have atomn�k� � fp�� � � � � png�

Any ��independent n�model can easily be turned into a proper �����n model�

�	�	
	�	 Definition� Let K be a ��independent n�model� Then K� is the model
resulting from K after leaving out all nodes k with atomn�k� � fp�� � � � � png�

�	�	
	�	 Lemma� Let K be a �nite ��independent n�model and k 
 K�� Then for
all � 
 �����n	

k �K � � k �K� ��

Proof� Let us use �� for forcing inK� in contrast to � for forcing inK� We proceed by
induction on the length of �� The cases where � is either atomic or a conjunction are
trivial� So let � � ���� Suppose k � � and let l 
 K� such that k � l and l �� ��
Using the induction hypothesis we conclude that l � � and hence l � �� Again by the
induction hypothesis� we infer that l �� �� Which proves �l  k�l �� � � l �� ���
i�e� k �� ��

Now suppose k �� � and l 
 K with both k � l and l � �� If atomn�l� �
fp�� � � � � png then l forces all formulas of �����n and hence also l � �� Otherwise� we
have l 
 K�� By the induction hypothesis l �� � and� as k �� �� also l �� �� Again
with the induction hypothesis� we conclude l � �� Which proves k � �� a

The following theorem justi�es our de�nition of proper �����n models�

�	�	
	�	 Theorem� The fragment �����n is complete for proper �����n models�

Proof� Let � and � be formulas in �����n� such that � � �� As �����n is a sub�
fragment of �������n� by application of theorem �������� there is a node k in a
��independent n�model K with k � � and k � �� From k � � infer that k 
 K��
As K� is a proper �����n model and according to lemma ������� k � � and k � � in
K�� a

�	�	
	�	 Definition� For a node k in a proper �����n model de�ne the semantic
type of k in �����n as	

	n�k� � hatomn�k�� f	n�l� j k � lgi�

�As an alternative notation of �������n we could have taken �������n�
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Semantic types in �����n are a special case of semantic types in �������n and they
are ordered in the same way� Obviously there are only �nitely many semantic types
in �����n�

For the proof of the following facts one only has to modify slightly the corre�
sponding proofs in section ���� Obviously Thn�k� in this section means the theory
of node k in �����n�

�	�	
	�	 Facts� Let k and l be nodes in proper �����n models�

�� 	n�k� � 	n�l� � k �
�
��n

l�

�� 	n�k� � 	n�l� � Thn�k� � Thn�l��

�	�	
	�	 Definition� If T is the set of semantic types in �����n� then de�ne
Exm������n� � hT��� j�i�
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��	 Figure� The fragment ������ and the model Exm������n��

The formulas in Diag��������	
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�� p � q ��� q�p

�� p ��� �p�q��q

�� �p�q� � �q�p� ��� ���p�q��p��p� � ���q�p��q��q�
�� q ��� �q�p��p

�� �p�q��p ��� p�q

�� ��p�q��q��p ��� ��q�p��q��q

�� ��p�q��q� � ��q�p��p� ��� ��p�q� � �q�p���p

�� ��q�p��p��q ��� ��p�q��p��p

�� �q�p��q ��� p�p

As in section ��� the following facts are rather simple consequences of the de�nition
of Exm������n��

�	�	
	�	 Facts�

�� Exm������n� is a proper �����n model�
�� for t a semantic type in �����n we have 	n�t� � t in Exm������n��
�� Exm������n� is complete for �����n	 for � and � in �����n we have

� � � � ����� � ������

As Diag������n� is �nite� the following de�nition is allowed�

�	�	
	�	 Definition� For a node k in a proper �����n model de�ne �n�k�� the type
of k in �����n as

�n�k� �
V
Thn�k��

�	�	
	�
	 Lemma� Let k and l be nodes in proper �����n models� If l � �n�k� then
	n�k� � 	n�l��

Proof� Assume l � �n�k�� We will use induction on ��l�� the depth of l�
If ��l� � � then l is a terminal node� We may conclude that the formulaV
atomn�l��

V
fp�

V
fp�� � � � � png j p 
 fp�� � � � � png n atom

n�l�g does not belong to
Thn�k�� Hence for some terminal node k� with k � k� we have atomn�k�� � atomn�l��
which proves 	n�l� � 	n�k��

If ��l� � �� let l� � l� Then l� � �n�k� and ��l�� � ��l�� According to the induction
hypothesis we will have 	n�k� � 	n�l��� This proves that j��	

n�l�� � j��	
n�k��� As

the assumption implies that atomn�k� � atomn�l�� this proves 	n�k� � 	n�l�� a

�	�	
	��	 Corollary� If k and l are nodes in proper �����n models then	

	n�k� � 	n�l� � Thn�k� � Thn�l� � l � �n�k��

�	�	
	��	 Theorem� The model Exm������n� de�ned above is the exact Kripke
model of �����n�

Proof� Exm������n� is complete for �����n according to fact �������� We still have
to prove that every closed subset X in this model corresponds to a formula in �����n�
The proof is very much like that of theorem ���������
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Let �n�X� �
VT
fThn�k� j k 
 Xg� Then clearly� by de�nition� it will be true

that X � ���n�X����
To prove the inclusion in the other direction� suppose that k � �n�X�� With

induction on ��k�� the depth of k� we will prove that k 
 X� If ��k� � � then k is
a terminal node and apparently it is the case that for some l 
 X we had l � &�k��
where &�k� �

V
atomn�k��

V
fp�

V
fp�� � � � � png j p 
 fp�� � � � � png n atom

n�k�g�
As in the proof of lemma �������� infer that for some l 
 X there is a terminal

node l� � l with atomn�l� � atomn�k�� As the semantic types in Exm������n� are
unique� we conclude that k � l�� From l 
 X and l � k infer that k 
 X as X is a
closed subset of Exm������n��

If ��k� � � then for k� � k we conclude from k� � �n�X� and the induction
hypothesis that k� 
 X� As Exm������n� is a proper �����n model� there is a
q 
 atomn�k� n

T
fatomn�l� j k � lg� Note that for k � l we have l � �n�k��q but

k � �n�k��q� Now suppose that l 
 X and l � �n�k� then by lemma �������� we
have k � l� Hence ��n�k��q� 
 X i� k �
 X� As k � �n�X� infer that k 
 X� a

Like Exm��������n�� the model Exm������n� can stagewise be constructed as the
minimal proper �����n model realizing all semantic types in �����n� Let us de�ne
the n
� stages En

i needed in the construction� Recall that P��X� is the set of closed
subsets in X�

�	�	
	��	 Definition� De�ne En
� as the set of �n terminal nodes with semantic type

hQ� �i such that Q # fp�� � � � � png �� Q�
Now inductively de�ne	

En
m�� � En

m � fhQ� Si j S 
 P
��En

m� and Q #
T
fj��t� j t 
 Sg �� Qg�

Where the order in En
m is the order of types in �����n�

Note that the construction of En
m is only possible for m � n� From the construction

of En
n the following facts are obvious	

�	�	
	��	 Facts�

�� En
n is a proper �����n model�

�� Every semantic type of �����n is realized in En
n exactly once�

�� En
n � Exm������n��

Let us return to the type formulas in �����n�

�	�	
	��	 Definition� Let k be a node in a proper �����n model and X #
fp�� � � � � png� De�ne	

�� Newatomn�k� � fq j q 

T
fatomn�l� j k � lg n atomn�k�g�

�� $X �
V
fp�q j p� q 
 Xg�

�� �n�k� � �n�k��q� where q 
 Newatomn�k��

�� �n�k� �

���
��

�n�k��
V
fp�� � � � � png if ��k� � �

�n�k��q� where q 
 Newatomn�k� otherwise�
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The proper de�nition of �n�k� of course requires a choice of q 
 Newatomn�k�� As
this choice will not make any di�erence in the sequel one may take for example the
pi with the least i such that pi 
 Newatomn�k�� If k is a terminal node� by de�ningT
� � fp�� � � � � png� we have Newatomn�k� � fp�� � � � � png n atom

n�k��

�	�	
	��	 Lemma� If k and l nodes in proper �����n models then	

l � �n�k� � 	n�l� � 	n�k��

Proof� If k is a terminal node� the lemma is rather trivial� So� assume ��k� � ��
To prove l � �n�k� � 	n�l� � 	n�k�� let l � �n�k�� As �n�k� � �n�k��q�
this implies� for some l�  l� that l� � �n�k� and l� � q� where q 
 Newatomn�k��
According to corollary ��������� l� � �n�k� implies 	n�k� � 	n�l��� In �nite ��
independent models� it is not di�cult to prove that if 	n�k� $ 	n�m� �i�e� 	n�k� �
	n�m� but 	n�k� �� 	n�m��� then m � q� for q 
 Newatomn�k�� As l� � q and
obviously from l � t� we may conclude that 	n�l� � 	n�l��� we have 	n�l� � 	n�l�� �
	n�k��

To prove 	n�l� � 	n�k� � l � �n�k�� observe that by de�nition k � q� So� if
	n�l� � 	n�k�� then l � �n�k� would imply� by corollary ��������� that k � �n�k�� As
k � �n�k�� we would have k � q� a contradiction� Hence� we conclude l � �n�k�� a

We are now ready for a characterization of �n�k�� the type of k in �������n�
An analogous characterization was used� as a de�nition� in �De Jongh ��� �also
in �De Jongh ���� �De Jongh ��� and �JHR ����� We will use the exact model of
�����n in the characterization�

�	�	
	��	 Definition� If k is a node in Exm������n� and q 
 Newatomn�k� then
de�ne	

&n�k� �

����������
���������

V
atomn�k� �$Newatomn�k� if ��k� � �

V
atomn�k� �$Newatomn�k��V
f�n�l��q j k �� lg�V
f�n�m� j not �m � k� andT
fatomn�l� j k � lg � atomn�m�g if ��k� � ��

�	�	
	��	 Theorem� If k is a node in Exm������n� then �n�k� � &n�k��

Proof� If k is a terminal node� �rst observe that trivially k � &n�k� as Exm������n�
is a proper �����n model� If l 
 Exm������n� and l � &n�k� then clearly
atomn�k� � atomn�l� and� again because Exm������n� is a proper �����n model�
for no l�  l it will be true that l� � p for some p �
 atomn�k�� Hence l has to be a
terminal node with atomn�l� � atomn�k�� which proves 	n�k� � 	n�l�� so k � l�

So assume ��k� � �� To prove �n�k� � &n�k� we show that k � &n�k�� That
k �

V
atomn�k� � $Newatomn�k�� is rather obvious� For k � l we have l � q and

k � �n�l� by lemma ��������� According to the same lemma k � �n�m� if not m � k�
which proves that k will also force the last of the conjunctions in &n�k��
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For the proof of the other direction� assume l � &n�k�� We will show that as
a consequence k � l and hence l � �n�k�� As Exm������n� is the exact model of
�����m� this proves &n�k� � �n�k��

Suppose Newatomn�k� � atomn�l�� Then� using the last part in the conjunction
of &n�k�� not k � l implies &n�k� � �n�l�� As l � �n�l�� infer that k � l and hence
l � �n�k��

If Newatomn�k� is not a subset of atomn�l�� then l � q for every q 

Newatomn�k� �because l � $Newatomn�k��� Hence if k �� k� then� using the
third conjunction in &n�k�� we have l � �n�k��� By lemma �������� this implies
that l � k�� Hence atomn�l� will be included in atomn�k� � Newatomn�k�� From
atomn�k� � atomn�k�� and Newatomn�k� � atomn�l� � � infer that atomn�l� �
atomn�k� and hence 	n�k� � 	n�l�� As semantic types are unique in Exm������n��
we conclude k � l and l � �n�k�� a

We may now use the exact model of the fragment �����n to prove a characterization
of the ����� formulas in IpL� Recall the de�nition of K� from de�nition ��������

�	�	
	��	 Theorem� If � is an IpL formula� then � is equivalent to a ����� for�
mula if for every node k in a �nite Kripke model	

k � � � ���k���� � ��

Proof� For � 
 ����� we have by theorem ������� that k � � � ��k��� � �� Using
theorem ������� we may infer that k � � � ���k���� � ��

To prove the other direction� let � be a formula in IpLn with the property that
for every �nite Kripke model K and every node k 
 K� k � � � ���k���� � ��
Let � 
 �������n be the formula with ����� � ����� in Exm������n�� For a node k in
a proper ����� model we have� using fact ���������	 k � � � k � �� Hence we
have	

k � � � ��k�� � � � ��k�� � � � k � ��

Which proves � � �� a

����� The 	�
 fragments

The ��� fragments are the most expressive fragments in IpL with only one connec�
tive� For example ���� has �� ��� ��� equivalence classes� whereas the fragments
with three atoms and exactly one of the other connectives in f��������g all have
less then �� classes�

To calculate the diagram of ���n we have to use the exact Kripke model of
�����n� for example� as Diag����n� for n � � is not a lattice and hence does not
have an exact model of its own�
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��	 Figure� The diagram of �����

The formulas in Diag������	
�� p �� �q�p��q ��� ��q�p��q��q

�� q �� q�p ��� ���p�q��q��p��p

�� �p�q��p �� �p�q��q ��� ��p�q��p��p

�� ��p�q��q��p �� �q�p��p ��� p�p

�� ��q�p��p��q ��� p�q

To calculate the number of classes inDiag����n� we will proceed much like in subsec�
tion ������ The proofs of the following lemma�s� preparing for theorem ��������� are
omitted� as they are essentially the same as for the lemma�s �������� up to ���������

�	�	�	�
	 Lemma� Every formula in �����n is equivalent to a conjunction of for�
mulas in ���n

�	�	�	��	 Lemma� An IpL formula � is equivalent to a formula in ���n i� � � ��p

for some � 
 �����n and p 
 fp�� � � � � png�

As in subsection ������ in the calculation of the number of equivalence classes in
�����n it is more convenient to work with the dual of ����� in Exm������n��

�	�	�	��	 Definition� Let ����� be the valuation of formulas in Exm������n�� De�
�ne �n��� � Exm������n� n ������



�� Chapter �� Exact Models in IpL

�	�	�	��	 Lemma� Let � and � be formulas in �����n� Then

�� �n��� � �n��� � � � ��
�� �n�� � �� � �n��� � �n����
�� �n����� � ���n��� n �n�����

�	�	�	��	 Definition� For a formula � in �����n we de�ne ucvn���� the upper
carrier of �� as the set of maximal elements in �n����

�	�	�	��	 Lemma� For � 
 �����n let Ann��� be the set of equivalence classes in
�����n that have a representative of the form ���� with � 
 �����n� Then

jAnn���j � jP�ucvn����j � �jucv
n���j�

�	�	�	��	 Theorem� The number of equivalence classes in ���n is	

nX
k
�

�!��k��
�
n

k

�
N�n� k�

where N�n� k� � �j
T
fucvn�pi�ji�kgj�

Proof� As in the case of theorem ��������� we have to calculate the number of di�er�
ent subsets in the ucvn�pi�� a union of non�disjunct subsets� The summation above
uses the symmetry in Exm������n�� a

�	�	�	��	 Corollary� The number of elements in ���� is	

����� ! ���� 
 ��� � �� ��� ����

Proof� Use Exm�������� and determine ucv��p�� ucv��q� and ucv��r� and their in�
tersections� to calculate N��� �� � ��� N��� �� � � and N��� �� � �� The corollary is
a result of the substitution of these values in the formula of theorem ��������� a

Applying theorem �������� on Exm��������� Renardel de Lavalette calculated the
cardinality of Diag�������

�	�	�	��	 Fact� jDiag������j � �	�� 		� �	� ��� ��� ! �� ��� ���



Chapter �

Restricted nesting of implication in IpL

��� Introduction

In Chapter � we introduced fragments of modal logic with restricted nesting of � and
showed how in the hierarchy of fragments Kn

m the types and semantic types of nodes
in �nite Kripke models could be de�ned� Semantic types were used to construct
exact Kripke models of the fragments Kn

m�

In IpL we will introduce a similar strati�cation of fragments IpLn
m to obtain

exact Kripke models� With the exception of IpL� �and IpL�� which is the trivial
fragment of the classes 	 and ��� an exact model for IpLn cannot exist �fact ��������
in Chapter ���

In the sequel we will show that restricting the nesting of implication to a maxi�
mum of m and con�ning the propositional variables to the fp�� � � � � png yields frag�
ments IpLn

m with a �nite exact Kripke model�

��� Preliminaries

�	�	
	�	 Definition� The level of nesting of the implication� ����� of an IpL for�
mula � is de�ned inductively as	

� ��p� � � if p is an atomic formula�

� ��� � �� � maxf����� ����g if � 
 f���g�

� ����� � ���� 
 ��

� ������ � maxf����� ����g
 ��

The fragment IpLn
m is de�ned as the fragment of IpL formulas � with propositional

variables restricted to fp�� � � � � png� such that ���� � m�

��
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��� Semantic types in IpLn
m

The de�nition of a semantic type in IpLn
m much resembles the de�nition in modal

logic in Chapter ��

�	�	
	�	 Definition� Let K be a �nite IpL Kripke model� For k 
 K de�ne in�
ductively	

�� 	n� �k� � hatom
n�k�� �i��

�� 	nm���k� � hatom
n�k�� f	nm�l� j k � lgi�

As in previous chapters� we de�ne Thnm�k� � f� 
 IpL
n
m j k � �g�

�	�	
	�	 Theorem� Let K and L be �nite IpL Kripke models� If k 
 K and l 
 L

then	
	nm�k� � 	nm�l� � Thnm�k� � Thnm�l��

Proof� By induction on m� �	 Form � � the proof is obvious as we have atomn�k� �
atomn�l� i� for all � 
 IpLn

� 	 k � � � l � �� �Note that the fragment IpLn
� is

the fragment �����n in the previous chapter��
Assume the theorem to be true for m and let 	nm���k� � 	nm���l�� To prove

Thnm���k� � Thnm���l� we will show for all � 
 IpLn
m�� we have k � � � l � ��

Apply induction on the length of �� In case � is atomic� a conjunction or a
disjunction the proof that k � � � l � � is straightforward� So let � � ��� and
assume k � ���� Note that both � and � will be formulas in IpLn

m�
Let l � h and h � �� As by de�nition 	nm�h� 
 j��	

n
m���l�� and j��	

n
m���k�� �

j��	
n
m���l��� for some h� such that k � h� we have 	nm�h� � 	nm�h

��� From the �rst
induction hypothesis �	nm�k� � 	nm�l� � Thnm�k� � Thnm�k�� infer that h� � �� As
k � ��� and k � h� also h� � �� Again by the �rst induction hypothesis we may
conclude that h � �� From which we conclude l � ����

By interchanging the role of k and l this proof can also be used to prove the other
direction	 l � � � k � ��

As the case that � is a negation is treated likewise� this completes the proof that
for all � 
 IpLn

m�� we have k � � � l � ��

�	 Assume for all � 
 IpLn
m�� that k � � � l � �� We will again apply

induction on m to prove 	nm���k� � 	nm���l�� Obviously atomn�k� � atomn�l� and
hence the case that m � � is simple�

For the induction step� assume k � h� So we may infer that 	nm�h� 
 j��	
n
m���k���

We will prove that for some h� such that l � h� it is true that 	nm�h� � 	nm�h
��� In

this way we show that j��	
n
m���k�� � j��	

n
m���l��� As the proof for the inclusion in

the other direction is in fact the same �interchanging k and l� and as atomn�k� �
atomn�l�� this proves 	nm���k� � 	nm���l��

As L is a �nite model� let fl�� � � � � lrg be the �nite set of successors of l �including
l itself�� For each li such that 	nm�li� �� 	nm�h�� there is� by the induction hypothesis�
some formula �i 
 IpL

n
m such that h � �i or l � �i but not both�

De�ne & �
V
f�i j h � �ig and % �

W
f�i j h � �ig� Clearly &�% 
 IpLn

m��� If
	nm�h� would be di�erent from all 	nm�li� then we would have l � &�%� So by our



���� Semantic types in IpLn
m ��

assumption that l and k force the same IpLn
m formulas� also k � &�%� But this

would imply h � &�%� As obviously h � & and h � % this is a contradiction� Hence
we may conclude that for some li will have the same n�m�type as h� a

�	�	
	�	 Definition� De�ne the order � between n�m�types as	

�� 	n� �k� � 	n� �l� if atom
n�k� � atomn�l��

�� 	nm���k� � 	nm���l� if 	
n
m���k� � 	nm���l� or 	

n
m�l� 
 j��	

n
m���k���

�	�	
	�	 Corollary� Let K and L be �nite IpL models such that k 
 K and l 
 L�
Then 	nm�k� � 	nm�l� implies Thnm�k� � Thnm�l��

Proof� Let k� be a new node� having k and l �and hence their successors� as its
successors� Moreover let atomn�k�� � atomn�k�� Note that as 	nm�k� � 	nm�l� also
atomn�k� � atomn�l� and hence we may take �k� as a new Kripke model� Obviously
	nm���k

�� � 	nm���k� and Thnm���k
�� � Thnm���l�� Theorem ������� assures us that

Thnm���k
�� � Thnm���k�� a

Before de�ning the type formulas �nm�k� in IpL
n
m let us draw some conclusions from

this theorem for the structure of the exact Kripke model of IpLn
m and give an exam�

ple�

Let T n
m be the set of n�m�types in IpLn

m and let Thnm�k� � f� 
 IpL
n
m j k � �g�

Obviously T n
m is �nite�

�	�	
	�	 Definition� De�ne Exm�IpLn
m� as the Kripke model with T n

m as its do�
main� � as its accessibility relation and atomn�t� � j��t� as its valuation�

�	�	
	�	 Theorem� Exm�IpLn
m� is the exact Kripke model of IpLn

m�

Proof� Obviously Exm�IpLn
m� is a �nite IpL n�model� By induction on m is easily

proved that if t 
 T n
m is an n�m�type� in Exm�IpLn

m� we have 	nm�t� � t� Hence
Exm�IpLn

m� is a model realizing exactly all n�m�types in IpLn
m� a

�	�	
	�	 Corollary� The exact Kripke model of IpLn
m is unique up to isomor�

phism�

Proof� If M is some exact Kripke model of IpLn
m the mapping 	nm 	 M ��

Exm�bfIpLn
m� is an isomorphism� a
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��	 Figure� Exm�IpL�
��� the exact Kripke model of IpL�

��

The irreducible formulas in the exact model of IpL�
� are	

�� p � q �� p �� q ��� p�p

�� p � �q �� �q ��� q�p

�� �p � �q �� p� q ��� ��p � q�
�� �p � q �� �p ��� p�q

The exact model of IpL�
� was �rst constructed by Zwanenburg� using the subset

of ��irreducible formulas in the set of ��irreducible formulas of IpL�
� as a �skele�

ton� �Zwanenburg ����
The exact model can be used to calculate the �� equivalence classes in the diagram

of IpL�
�� as listed in appendix B���

The exact model of IpL�
� has ��� elements�

��� The n�m�types in IpL

As in case of modal logic we will introduce formulas �nm�k� for the n�m�type of a
node k in a �nite Kripke model� We �rst will de�ne the �nm�k� and then prove that
such a formula is indeed an axiom of Thnm�k�� the theory of n�m�formulas forced by
the node k�

�	�	
	�	 Definition� For a node k in a �nite IpL model� de�ne �nm�k� inductively
as	

�� �n� �k� �
V
atomn�k��

�� �nm���k� �V
f�nm�l��

W
f�nm�h� j k � h and �nm�l� � �

n
m�h�g j 	

n
m���k� �� 	nm���l�g�

�	�	
	�	 Lemma� Let K and L be �nite IpL Kripke models� Assume that k 
 K

and l 
 L� Then 	nm�k� � 	nm�l� implies Thnm�k� � Thnm�l�

Proof� The case m � � is obvious� For m � �� by the de�nition of � we have
	nm�k� � 	nm� So apply corollary �������� a
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�	�	
	�	 Theorem� Let K and L be �nite IpL Kripke models such that k 
 K and
l 
 L� Then	

l � �nm�k� � 	nm�k� � 	nm�l��

Proof� By induction on m� The case m � � is simple�
So assume l � �nm���k� and let 	nm���k� �� 	nm���l�� From the induction hypothesis

we know that l � �nm�l�� By de�nition of �nm���k�� infer that l �
W
f�nm�h� j k �

h and �nm�l� � �
n
m�h�g�

Hence for some h such that k � h we have l � �nm�h� and l � �nm�h�� This
is a contradiction as l � �nm�h� implies �nm�l� � �nm�h�� To prove this� take g a
node in some IpL Kripke model such that g � �nm�l�� By induction hypothesis
	nm�l� � 	nm�g�� So� by the previous lemma� conclude that g � �nm�h�� Hence� by the
completeness theorem for IpL� it follows that �nm�l� � �

n
m�h�� So l � �nm���k� implies

	nm���k� � 	nm���l��
For the other direction� assume that 	nm�� � 	nm���l�� We will use the previous

lemma and show k � �nm���k� to prove that l � �nm���k��
Let k � h� If h � �nm�l� then� by induction hypothesis� we know 	nm�l� � 	nm�h��

Assume �nm�l� � �nm�h�� Then l � �nm�h� and so� again by induction hypothesis�
	nm�h� � 	nm�l�� Hence we would have Thnm�h� � Thnm�l� and by the theorem in the
previous section� 	nm�h� � 	nm�l�� Obviously this implies 	nm�k� � 	nm�l��

Hence h � �nm�h� and �nm�l� � �
n
m�h�� So� for 	

n
m���k� �� 	nm���l� we have	

k � �nm�l��
W
f�nm�k� j k � h and �nm�l� � �

n
m�k�g�

Which we had to prove� a

�	�	
	�	 Corollary� For a node k in a �nite IpL Kripke model K the formula
�nm�k� is an axiom of the theory Thnm�k��

Proof� Let � 
 Thnm�k� and assume for some node l in a �nite IpL Kripke model L
that l � �nm�k�� By the theorem above we have 	nm�k� � 	nm�l� and so l � �� a

�	�	
	�	 Corollary� If �nm�k� � �nm�l� then 	nm�k� � 	nm�l��

Proof� Obvious� as Thnm�k� � Thnm�l�� a





Chapter �

Exactly provable L formulas

��� Introduction

In this chapter we will study the exactly provable formulas in fragments of prov�
ability logic L �GL in �Boolos ���� PRL in �Smory"nski ����� According to Solovay�s
theorem �Solovay ��� on provability interpretations the theorems of the provability
logic L are precisely those modal formulas that are provable in PA under arbitrary
arithmetical interpretations �interpreting � as the formalized provability predicate
in PA�� The logic L is also known to be the logic of the diagonizable algebras�
recently also called Magari algebras� Here� we are concerned with the �nitely gener�
ated Magari algebras that are embeddable in the Magari algebra of Peano Arithmetic�
Shavrukov �Shavrukov ��� characterized these subalgebras� which are recursively enu�
merable� as having the so�called strong disjunction property�

In the context of the present work the terminology of propositional theories �i�e�
sets of propositional modal formulas closed under modus ponens and necessitation�
is more convenient�

Let us introduce a new derivability relation to distinguish between the usual
modal theories �closed under modus ponens� and the modal theories that are in
addition closed under necessitation�

�	�	
	�	 Definition� Let � and � be modal formulas� De�ne	

� �� � � � � �� � ��

A propositional theory in L will here be a set of propositional formulas closed under
�� � Rephrased in the terminology of propositional theories� we study those theories T
over L in a �nite number of propositional variables that are �faithfully� interpretable
in PA� Theories correspond to 	 ��lters in the free Magari algebras and interpretabil�
ity to embeddability as a subalgebra� Interpretable theories T in p�� � � � � pn are those
propositional theories in p�� � � � � pn for which there is a sequence of arithmetical sen�
tences A�� � � � �An such that an L formula � is an �� consequence of T i� �� is a
theorem of PA in the arithmetical interpretation " in which the atomic formula pi is

��
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interpreted as Ai �see e�g� �Solovay ���� �Boolos ��� or �Smory"nski ����� Written out	
T axiomatizes an arithmetically interpreted theory	

f� j T �� �g � f� j �PA ���A�� � � � � An�g�

The faithfully interpretable propositional theories T in Ln �i�e�� L restricted to
the language of p�� � � � � pn� are according to Shavrukov the consistent recursively
enumerable �r�e�� theories that satisfy the strong disjunction property	 T �� �� ���
implies T �� � or T �� �� �Parenthetically	 interpretable theories in in�nitely many
propositional variables need not be r�e�� The strong disjunction property may be
thought of as being composed out of the simple disjunction property	 T �� �� ���
implies T �� �� or T �� ��� and ��consistency	 T �� �� implies T �� ��

An older concept to which this can be related is the concept of exact provability
introduced in �De Jongh ��� �see also �JC ����	 in the terminology used here� a
formula can be de�ned to be exactly provable if it axiomatizes an interpretable
theory� That means that an exactly provable formula of L is a formula � which
axiomatizes an arithmetically interpreted propositional theory	

f� j � �� �g � f� j �PA ���A�� � � � � An�g�

One of the objects of our research is to get an overview of exactly provable for�
mulas of low complexity aided by computerized calculations� For that purpose the
semantic characterizations in terms of Kripke�models and �semantic� types developed
in the previous chapters will be applied to interpretable theories and exactly provable
formulas� It turns out that an important role is played by maximal exactly provable
formulas� i�e� exactly provable formulas that are not implied by any other exactly
provable formula� and� more in general� by maximal theories with the strong disjunc�
tion property� The characterizations of these concepts discussed in this chapter make
heavy use of the relationship between exactly provable formulas in provability logic
and sets of �nite types of modal formulas as introduced in Chapter ��

This chapter is built up as follows� After a preliminary section ���� characteriza�
tions of interpretable theories and exactly provable formulas are given in section ����
Maximal exactly provable formulas are discussed in section ���� In the last section
���� it is shown how the theory was applied to calculate the �� exactly provable for�
mulas in one propositional variable of modal complexity �� and the � maximal ones
among them�

��� Preliminaries

The provability logic L is the modal propositional logic with as its axioms the ones of
classical propositional logic as well as all formulas of the forms ��������������
and ����������� and the inference rules modus ponens and necessitation� As

�In �HJ ��� exactly provable formulas were called exact formulas� In the present context this
terminology might suggest a connection with exact models which does not exist�
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usual 
� is de�ned as ����� and we will use the abbreviation �� for the formula
� ���� Note that in L � �� � is equivalent to �� � ��

We say �� is interderivable with �� and write � � � for the conjunction of � �� �
and � �� �� Note that this implies that always � � ��� We reserve the terminology
�� is equivalent to �� for � �� ��

Propositional theories in Ln will here be sets of propositional formulas closed
under �� � Such a propositional theory T is called consistent if T ���

By its completeness theorem� L is the logic of all �nite� transitive and irre�exive
Kripke�models �a proof can be found in �Boolos ��� and �Smory"nski �����

Recall from Chapter � the de�nition of 
���� the modal degree of a formula ��
The de�nition of semantic types and type formulas in Ln

m will be essentially the same
as in Kn

m �see Chapter ���

�	�	
	�	 Definition� Let k be a node in a �nite� transitive and irre�exive Kripke
model� Then� 	nm�k�� the n�m�type of k 
in L� is de�ned by	

� 	n� �k� � hatom
n�k�� � i�

� 	nm���k� � hatom
n�k�� f 	nm�l� j kRlgi�

The set of all such n�m�types is written T n
m� De�ne �

n
m�k�� the L

n
m type of k induc�

tively as	

� �n� �k� � �nCpL�k�

� �nm���k� � �nCpL�k� �
V
f
�nm�l� j kRlg � �

W
f�nm�l� j kRlg

One easily veri�es that the n�m
��type of k� 	nm���k� uniquely determines the n�m�
type of k� If t is an n�m
 ��type� let us write t�m for the corresponding n�m�type�
The following fact will be useful in the sequel of this chapter�

�	�	
	�	 Fact� Let k be a node in a �nite� transitive and irre�exive Kripke model�
If m � l then 	nm�k� � 	nl �k��m�

As in that chapter was done for K� the fragment Ln
m will be the fragment of for�

mulas � in Ln such that 
��� � m� It can be proved that there exists an exact model

for each Ln
m�
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��	 Figure� The construction of ExL�
� and ExL
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For the in�nite fragment Ln there is no such exact model� but as in case of K in
Chapter �� there is a canonical �in�nite� model ExLn which is n�complete� It gives
considerable insight into the free Magari algebra over n generators�

It is convenient to us to execute most of our constructions inside this model�
Many of these constructions are applicable more generally� however�
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Let us write ��� � � and �n��� � ��
n�� The following facts about the nodes

of ExLn will be useful in the sequel�

�	�	
	�	 Facts�

�� ��k� � m � k � ��m� ��m����
�� If ��k�� ��l� � m and 	nm�k� � 	nm�l�� then k � l�
�� If ��k� � m and l � �nm�k� � ��

m� � �m���� then k � l�

These facts suggest a kind of normal form for the irreducible formulas corresponding
to the elements of ExLn�

�	�	
	�	 Definition� Let k 
 ExLn and assume ��k� � m�
Then �n�k� � �nm�k� � ��

m� ��m����

From the n�completeness of ExLn we conclude that for k
ExLn the �n�k� are the
irreducible elements in Ln�

��� Exactly provable formulas in Ln

As stated in the introduction� Shavrukov�s theorem in �Shavrukov ��� gives a char�
acterization of the exactly provable formulas in L�

�	�	
	�	 Fact� A formula �
L is exactly provable i� � is not a contradiction and
has the strong disjunction property �is s�d��	

��� �
L �� �� �� � �� � � �� � or � �� ���

The property in this fact is called steady by Shavrukov �Shavrukov ���� Whether
a formula �
Ln

m is steady or not� Shavrukov �Shavrukov ��� also proved� depends
only on its behavior with regard to other formulas in Ln

m	

�	�	
	�	 Fact� A formula � 
 Ln
m is exactly provable i� � is not a contradiction

and is s�d� for formulas in Ln
m	

��� �
Ln
m�� �

�
�� � �� � � �� � or � �� ��

For a simple proof of this last fact see �Zambella ���� We will transform this char�
acterization of exact provability into a semantic one� This characterization does not
work if we are not only interested in exactly provable formulas� but want to study
interpretable theories in general �see �HJ �����

�	�	
	�	 Definition� �n��� � fk
ExLn j k � ��g�
If T is a propositional theory in Ln� then �n�T � � fk 
ExLn j k � Tg�

Obviously �n��� and �n�T � will always be closed upwards in the sense that� if e�g�
k 
�n��� and k � l� then l
�n����

�	�	
	�	 Theorem� A formula �
Ln is exactly provable i� �n��� is non�empty and
downwards directed� i�e� �k� l
�n��� �h
�n��� � h � k ' h � l ��
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Proof� �	 Let � be an exactly provable formula in Ln� As � unequals the con�
tradiction by de�nition� we have �n��� �� � by the completeness of ExLn� To
prove the second condition� let k� l
�n���� and �n�k�� �n�l� be �representatives of�
the irreducible classes in Ln corresponding to k and l� Assume that� if h
�n���
and h�k� then h �� l� Then� again by the completeness of ExLn� we would have
� �� 
�n�k�����n�l�� or equivalently � �� ���n�k� � ���n�l�� As � is supposed to
be exactly provable� � would either prove ��n�k� or ��n�l�� in contradiction with the
assumption that k� l
�n���� Hence� there should be an h
�n��� such that h�k

and h� l�
�	 Let �� �
Ln and � �� ������ and assume there are k� l
�n��� such that k � �

and l � �� By the last condition of the theorem� there is an h
�n��� such that h�k

and h� l� As we would then have h � �� � ��� we obtain a contradiction� Hence�
we proved that � �� � or � �� �� a

By the completeness of L non�interderivable � and � give rise to distinct �n��� and
�n���� This is in general not so for theories� An example is the theory axiomatized
by p on the one hand� and the theory T� axiomatized by �m��p for each m� on
the other� The sets ���p� and ���T�� are the same� consisting of all nodes that
together with all their successors force p� but clearly the theories are not	 p is not
a consequence of T�� Similarly� the theory T� � �

m���p � ��p for each m can
be shown to have the strong disjunction property� But not all pairs of nodes in
���T�� have a common predecessor in ExL�� because ���T�� consists of those nodes
that together with all their successors force p and those nodes that together with
all their successors don�t force p� This shows that the semantic characterization of
exact provability does not generalize to interpretability of non��nitely axiomatizable
theories� at least if one doesn�t freely use in�nite models� For a restricted class of
theories that does respect the characterization see �HJ ����

Note that the �n��� of an exactly provable �
Ln is in�nite by the conditions of
the characterization� On the other hand there is a simple correspondence between
such an in�nite set and a �nite set of n�m�types in ExLn	

�	�	
	�	 Definition� Let � be an Ln formula�
Then T n

m��� � f	
n
m�k� j k 
ExL

n� k � ��g�

�	�	
	�	 Lemma� Let � and � be Ln
m formulas�

Then T n
m��� � T n

m��� i� � � ��

Proof� For the non�trivial direction� from left to right� let T n
m��� � T n

m���� and as�
sume k � ��� Then 	nm�k�
T

n
m����T n

m���� Hence 	nm�k� � 	nm�k
�� for some k� that

forces ��� So� k� � � and� since � 
Ln
m� k � �� The rest is evident� a

�	�	
	�	 Lemma� Let � be an Ln
m�k formula�

Then T n
m��� � ft�m j t 
 T n

m�k���g�

Proof� Obvious� considering fact �������� a
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�	�	
	�	 Lemma� For each Ln formula � and each m there is a �nite upwardly
closed subset K of �n��� such that the elements of K exactly realize T n

m���� i�e��
T n
m����f	

n
m�k�j k 
Kg�

Proof� Just take any �nite subset of �n��� such that its elements exactly realize
T n
m���� The upward closure of this set will do� because its elements also force ���a

To �nd the sets of n�m�types suitable for exactly provable formulas �� we have to
translate the conditions on the �n��� of exactly provable � into conditions on the
underlying set of n�m�types� For example� for a �nite T n

m��� to correspond to an
in�nite �n���� it is necessary that some type in T n

m��� can have itself as a successor�
To describe this kind of re�exivity we introduce the notion of a re�exive type�

�	�	
	�	 Definition� A type t
T n
m�� is called re�exive if t�m
 j��t��

The following theorem is related to lemma ���� of �Shavrukov ����

�	�	
	�
	 Theorem� A formula �
Ln
m with m� � is exactly provable i� there is a

type t
T n
m��� such that j��t��T n

m������ which� of course� makes t a re�exive type�

Proof� �	 Let �
Ln
m be an exactly provable formula� Note that T n

m����� is
a �nite set of types� Let K #�n��� be �nite and closed upwards such that
f	nm�k� j k
Kg�T n

m���� as guaranteed to exist by lemma �������� According to theo�
rem ������� we can �nd an h
�n��� below all of the elements ofK� By lemma �������
this h must have a type as required�
�	 Assume � and t to ful�ll the conditions given� As T n

m��� ��� � also �
n��� �� � � Sup�

pose k� l
�n���� Let K be a �nite upwardly closed subset of �n��� such that k� l
K
and f	nm���k

�� j k� 
Kg�T n
m����� �compare lemma ��������� Consider a world h just

below this K such that fp
P n jh � pg � j��t�� It will be clear that 	nm�h�� t and
�since � is assumed to be an Ln

m formula� this proves h
�n���� Of course� h�k

and h� l� so the conditions of theorem ������� apply to �n���� a

The theory developed in this chapter and in Chapter � has enabled us to calculate
the exactly provable formulas in L�

�� This will be explained in more detail in the last
section� It will be shown that already in this very �rst small fragment there are ��
non�interderivable members� It turned out that it was worthwile to single out the �
maximal elements of these ���

��� Maximal exactly provable formulas

This section will be devoted to maximal exactly provable formulas� First we will
have to sharpen our semantic characterization of exactly provable formulas� Let us
exploit the relationship between irreducible formulas and semantic types to write
�nm�t� for the �

n
m�k� with 	nm�k� � t�

�	�	
	�	 Definition� Let C be a set of n�m�types�
Then �nm�C� �

W
f�nm�t� j t 
 Cg�
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Recall that T n
m��� � f	

n
m�k� j k � ��g�

�	�	
	�	 Lemma� If �
Ln
m� then � � �nm�T

n
m�����

Proof� Immediate from lemma ������� as soon as one realizes that
T n
m��

n
m�T

n
m������T n

m���� a

�	�	
	�	 Lemma� If C �T n
m 
m� ��� then C �T n

m��� for an exactly provable for�
mula �
Ln

m i�

�� There is a �nite upwards closed K �ExLn such that
C � f	nm�k� j k
Kg 
we will call C upwards closed realizable�

�� There is t
C such that �t� 
C �t���m!��
 j��t��� Such a type t will be called
an enveloping type for C�

Moreover� in that case � � �nm�C��

Proof� �	 If �
Ln
m is exactly provable� then T n

m��� will have the required property
� by the de�nition of T n

m���� property � by theorem ��������� and satis�es the �nal
requirement by lemma ��������
�	 We prove that �nm�C� is an exactly provable formula� To apply theorem ��������
to �nm�C�� we have to �nd an appropriate re�exive n�m�type� By the assumption
on C� there is an n�m�type t
C such that �t� 
C �t���m!��
 j��t��� Let K be the
upwardly closed realization of the types in C as assumed in the �rst conditon of
this lemma� Note that K realizes precisely the n�m!��types in ft���m!�� j t� 
Cg
�compare lemma ��������� Let k be a �new� root immediately below K such that k
forces exactly the elements of j��t�� Then 	nm�k�� t� So� k � ��nm�C� and� hence� t
is a member of T n

m��
n
m�C���C and a type appropriate for the application of theo�

rem ��������� a

We will prove that the maximal exactly provable formulas in Ln correspond to what
we will call tail models in ExLn� Clearly this is a result that is� to a large extent�
bound to the particular model ExLn�

�	�	
	�	 Definition� K #ExLn is called a tail model i�	

�� K is closed upwards�
�� there is an m
� such that fk 
K j ��k� mg is linearly ordered by � and all

nodes of this set force the same atoms�

If k 
ExLn� then we write �k� for the tail model consisting of �k and a tail descend�
ing from k with the forcing of the atoms as in k�

Our de�nition of tail model slightly di�ers from the one in �Visser ��� in that Visser�s
tail models are equipped with a minimal �in�nite�depth� element�

�	�	
	�	 Lemma� If �
Ln
m� k
�n��� and k has a re�exive n�m�type� then

�k���n����
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Proof� First note that all elements of the tail have the same n�m�type as k� Hence�
all these nodes force �� and consequently ��� a

�	�	
	�	 Lemma� If K #ExLn is a tail model� then K ��n��� for some � in Ln�

Proof� Let K be �k�� k having depth m� and let 
 be the conjunction of the propo�
sitional variables and negations of propositional variables as they are forced on k�
Then K ��n��� for � de�ned as the conjunction of �m����

W
f�n�k�� jk� k�g and

��m���� 
 � 
�n�k�� a

�	�	
	�	 Lemma� If �
Ln and �n��� is a tail model� then � is maximal exactly
provable�

Proof� Assume �n��� is a tail model and �
Ln
m� Since �

n��� is in�nite and T n
m�����

�nite it is obvious that the tail has to contain elements appropriate for an applica�
tion of theorem ��������� This shows that � has to be exactly provable� Assume �
to be an exactly provable formula such that � �� �� i�e�� such that �n�����n����
Then� because �n��� is non�empty and downwards directed it has to contain the tail
elements from a certain node downwards� and� because it it is closed upwards it has
to contain all other elements of �n���� which means that � and � are interderivable�
Hence� � is maximal exactly provable� a

�	�	
	�	 Lemma� If �
Ln� then there exists a formula � 
Ln such that
�n�����n��� and �n��� is a tail model�

Proof� Let �
Ln and assume t
T n
m��� is a re�exive type with the properties guar�

anteed to exist by theorem ��������� Now� take as in the proof of lemma ����������
k 
�n��� with n�m�type t such that 	nm��k��T n

m���� By lemma �������� �k���n����
By lemma �������� there exists a � with �n�����k���n���� a

From lemma ������� it follows immediately that any Ln formula � is determined
uniquely �up to interderivability� by the maximal exactly provable Ln formulas that
imply it� Certainly this does not generalize to interpretable theories� The s�d� theory
T� axiomatized by �n��p for each n that was introduced after theorem �������
provides a counter�example� Its only maximal s�d� extension is the one axiomatized
by p� Also� lemma ������� does not� in general imply that � is equivalent to a �nite
disjunction of maximal exactly provable formulas �each preceded by ��� although
that may very well be the case� A counter�example is provided by the formula 	�

�	�	
	�	 Theorem� If �
Ln� then � is maximal exactly provable in Ln i� �n��� is
a tail model in ExLn�

Proof� The direction from right to left follows from lemma �������� The other direc�
tion from ������� using the simple fact that� if one tail model is part of another� they
have to be equal� a
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From lemma ������� and theorem ������� it is clear that there is a one�one correspon�
dence between maximal exactly provable formulas and tail models�

Also from theorem �������� it follows that maximal exactly provable formulas in p

cannot be symmetric with regard to p and �p as the tail is always asymmetric� We
follow with some additional properties and problems concerning maximal exactly
provable formulas�

�	�	
	�
	 Theorem� If a formula �
Ln
m is maximal exactly provable� then there is

precisely one re�exive type t in T n
m���� Moreover� T n

m����� � j��t��

Proof� The last part follows immediately from theorem ��������� Assume �
Ln
m with

m� � is maximal exactly provable� Assume s and s� to be two distinct n�m�types in
T n
m���� If k and k� in �n��� realize s and s� respectively� then� by lemma �������� �k�

and �k�� are two distinct tail models within �n���� This contradicts the fact that
�n��� is a tail model� a

Examples of non�maximal exactly provable L�
� formulas with exactly one re�exive

�� ��type will be given in the table in the last section�

�	�	
	��	 Definition� An exactly provable Ln
m formula � is called n�m�maximal

exactly provable i�� for all exactly provable � 
Ln
m such that � �� �� � � ��

It will turn out in the last section that the �� ��maximal exactly provable formulas
in L� are maximal exactly provable� In general� however� not all the n�m�maximal
exactly provable formulas in Ln

m are maximal exactly provable� To construct counter�
examples the following insight derived from lemma ������� and the fact that� by
lemma �������� Ln

m formulas are� up to �� determined by their n�m�types was used�

�	�	
	��	 Fact� The m�maximal exactly provable Ln
m�formulas are the ones with

a set of types C that contains exactly one re�exive n�m�type t and for which C is
minimal upwardly closed realizable� in the sense that� C is upwardly closed realizable�
but this is not the case for any proper subset of C containing t�

The simplest counter�example we found uses a set of �� ��types with exactly one min�
imal enveloping type in the sense of the previous fact� Such a set of �� ��types will
correspond to a �� ��maximal exactly provable formula� The following two models�
both built using only this set of types� show there is a real choice in ordering it�
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��	 Figure� Two models built from the set of �� ��types corresponding to a �� ��
maximal exactly provable formula�

The models above can be extended to tail models corresponding to di�erent maximal
exactly provable L�

� formulas� From both of these formulas the �� ��maximal exactly
provable formula corresponding to the set of �� ��types is derivable� Hence this �� ��
maximal exactly provable formula is clearly not maximal exactly provable�

A further conjecture is that the set of n�m�types of an arbitrary exactly provable
Ln
m formula � is the union of the sets of types of the n�m�maximal exactly provable

Ln
m formulas from which � is derivable� That such a union always is the set of

types of an exactly provable formula if a common enveloping type is present� follows
immediately from the next lemma�

�	�	
	��	 Lemma� If C is the union of sets C�� � � � � Ck of n�m types corresponding
to exactly provable Ln

m formulas ��� � � � � �k with an enveloping type t for all of C�
then there exists a �
Ln

m such that T n
m����C�

Proof� It su�ces to note that� if K�� � � � � Kk are upwards closed realizations of
C�� � � � � Ck� then K� � � � � � Kk is an upwardly closed realization of C� and then
to apply lemma �������� a

It is certainly not true that any union of types of n�m�maximal exactly provable
formulas is the set of n�m�types of some exactly provable Ln

m formula� A counter�
example is provided by the sets of types belonging to p and to �p� both �� ��maximal
exactly provable formulas� which cannot be combined to an exactly provable formula�
even for m��� A common enveloping type is needed� and is obviously not available
for p and �p �see section �����

��� Calculating exactly provable formulas

In this section the calculation of the exactly provable formulas in L�
� will be discussed�

It will be shown that already in this very �rst small fragment there are �� non�
interderivable members with � maximal elements� Of the next fragment L�

� even the
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cardinality of the set of maximal exactly provable elements has eluded us so far� The
fragment L�

� is de�nitely too large to attack in this manner�
To calculate the exactly provable formulas in L�

� we use sets of �� ��types� The
�� ��types can be ordered into an exact Kripke model Exm�L�

��	
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��	 Figure� An exact Kripke model of L�
��

This exact model corresponds to the �rst two layers �ExL�
� and ExL�

�� in the con�
struction of ExL�� In ordering the types into an exact model other choices could
have been made� resulting in di�erent models� In fact� in the calculation of exactly
provable formulas the choice of the exact model is arbitrary� In the sequel we will
denote the �� ��types by their number in the exact model above�
In the previous section we proved that �
L�

� is exactly provable i�

�� T �
� ��� is upwards closed realizable�

�� there is a t
T �
� ��� such that �t� 
T �

� ����t
���
 j��t���

These criteria are easily translated into a test on a set of �� ��types C� The �rst
condition of this test requires C to be upwards closed realizable �in ExL� not nec�
essarily in the model above� and the second condition demands an enveloping type
in C� Let �
L�

� and C � T �
� ���� Then � is exactly provable i�

�� if �
C or �
C� then �
C
if � 
 
C or �
C� then �
C
if �
C or �
C� then C � f�� �� �g �� � and C � f�� �� �g ����

�� �
C or �
C or C � f�� �g or C � f�� �g�

The sets of �� ��types corresponding to exactly provable formulas in L� can be found
in applying the above test to the ��� non�empty subsets of T �

� � We prefer however
to calculate the exactly provable formulas together with their corresponding sets of
�� ��types� To do so� the exact model above will be used to calculate all L�

� formulas
in the following manner�

Our computer program generates a list of formulas and sets� It starts with the
formulas � and p and the sets ����� � � and ��p�� � f�� �� �� �g �where ����� � fk 

Exm�L�

�� j k � �g��
The list of formulas � and sets ����� is extended by systematically applying the

connectives ����������� and the corresponding set operations� adding a pair con�
sisting of a formula and its set only if the set does not yet occur in the list� In this
way we ensure that no two distinct interderivable formulas will occur in the list�
Note that this computation of the Lindenbaum algebra of an exact Kripke model is
similar to the calculation described in Chapter ��
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In generating the list of formulas and sets the test de�ned above is applied to
distinguish the exactly provable formulas in L�

��
The exactly provable formulas in L�

� have been listed in appendix B���
To �nd the �� ��maximal exactly provable formulas � in the list� one has to look

for the minimal sets T �
� ��� �i�e� those that do not occur as a proper subset of some

T �
� ��� in the list��
The sets of types of this kind are	

�� f�� �g �� f�� �� �g �� f�� �� �g �� f�� �� �g
�� f�� �g �� f�� �� �g �� f�� �� �g �� f�� �� �g

It turns out that each of these �� ��maximal exactly provable formulas is maximal
exactly provable� The corresponding tail models can be found� using the model
below� by extending the submodels �k downward with a tail of copies of k for each
of the numbered elements�
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�
	 Figure� Extending ExL�
� to �nd tail models�

We will give these maximal exactly provable formulas in L�
� a more informative form	

�� p
�� �p
�� ��p���� � ���p���� � ��p���p�
�� ��p���� � ���p���� � �p��p�
�� p� 
�p � ��
�� p� ��p
�� p� ��p
�� p� ��p � ���

Formulas � and � correspond to provable and refutable sentences in PA� Formulas
� and � can be �faithfully� interpreted by G�odel�sentences and their duals in PA�
Similarly� formulas � and � correspond to Rosser�sentences and their duals in PA�
The only small surprise is formed by formula � and its dual �� It is easy to see that �
is interderivable with p� ������� and thus� of course� � with p� ���������
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These two formulas are not L�
�� but can apparently interderivably be given as such�

Note also that� by the �xed point theorem of L �see e�g�� �Smory"nski ���� �Boolos �����
there is no surprise in the fact that in the equivalences of � and � the p in the right
hand side can be eliminated in favor of the �� but only in the fact that by using p
instead of � one can push down the complexity�





Chapter �

A family of propositional testers

��� Introduction

The common origin of the theorem testers treated here is the semantic tableau
method introduced by Beth in ���� �Beth ���� Beth de�ned semantic tableaux both
for classical and intuitionistic �predicate� logic� Restricting these methods to proposi�
tional formulas yields decision procedures for the classical propositional logic �CpL�
and the intuitionistic propositional logic �IpL�� By appropriately changing the rules�
the semantic tableau method can also be used in modal logic�

Algorithms to decide for a given logic L and a given formula A whether �L A

are called formula testers here� whereas the �usual� term theorem prover is reserved
for algorithms that produce a proof �for example in natural deduction style� if the
given formula is a theorem� In �Hendriks ��� for example� a theorem prover is given�
based on the tableau method for CpL�

��� Preliminaries

A tableau is an ordered set of sequents L � R� where L and R are structures of
sequences of formulas� A tableau method de�nes what shall be considered as a sequent
and gives a set of rules to derive new sequents from a given sequent �thus de�ning
the order of the tableau�� In those cases where application of a rule results in more
than one sequent� the tableau is said to branch into subtableaux�

A sequent L � R is closed if L � R �� �� Here we used the intersection of L and
R as if they were sets� In the sequel we will treat L and R as sets if in the context
there is no risk of confusion� Let us write (X for the number of elements in X and
Sub�X� for the set of subformulas of formulas in X�

The rules of a tableau method resemble a system of derivation rules for sequents
in a system of sequent calculus� Treatment of a sequent results in a �nite directed
acyclic graph� If all terminal sequents are closed� the resulting tableau is a proof�
but upside down� as the tableau method started with the conclusion of the proof and

���
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the closed sequents correspond to axioms�
All formula testers presented here are based on a tableau method� In the rest of

this chapter we will use the following convention of writing	

p an atomic formula
A�B�C formulas
K�M�N� S� T� U sequences of formulas� not containing duplicates
L�R ordered pairs of sequences of formulas

To test whether or not the formula A is derivable� one starts with a sequent �A and
applies the rules� until all sequents are either closed or no rule can be applied� If
enough sequents close� the tableau is said to close and A is derivable� Otherwise the
tableau is said to stay open and A is not derivable� In the description of the tableaux
algorithms we will use rewriting rules on socalled split sequents L�R� where L and R
are �nite sequences of �nite sequences of formulas� separated by additional symbols
�like � and ��� If L�R is a split sequent� A�L�R is the split sequent where A is added
on the left hand side of the leftmost sequence in L� Also we will write L � R�A for
adding A to the right of R� However� we will assume that before adding a formula
A to a sequence X in a split sequent� a check is performed whether A is already an
element of X� So� if A 
 X then A�X and X�A are equal to X�

��� CpLtest	 a CpL tester

The simplest member of our family is CpLtest� a formula tester for CpL�
The split sequents of CpLtest are of the form M �N � S�T � To test whether A

is derivable� one starts with the split sequent � �A�� Hence A is a formula in S�
the sequence of righthand side formulas to be treated� The CpLtest rules below are
applied to a split sequent by treating the leftmost formula of S or the rightmost
formula of N � If N � S � � treatment stops� In treating a formula A subformulas
of A are placed in S or in N � A formula in S �N� is placed in sequence T �M� to
facilitate recognition of a closure� i�e� a formula A occurring both in L and in R�

The rules of the tester CpLtest are	

�pR�
L � p� R

L � R� p
�pL�

L� p � �T

p� L � �T

��R�
L � �A�R

L�A � R��A
��L�

L��A � �T

�A�L � A�T

��R�
L � A �B�R

L � A�R�A �B L � B�R�A �B
��L�

L�A � B � �T

A �B�L�A�B � �T
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��R�
L � A �B�R

L � A�B�R�A � B
��L�

L�A �B � �T

A �B�L�A � �T A �B�L�B � �T

��R�
L � A�B�R

L�A � B�R�A�B
��L�

L�A�B � �T

A�B�L � A�T A�B�L�B � �T

None of the CpLtest rules is applicable to a closed split sequent�
Note that all L�rules require that S � �� So for each split sequent at most one rule

is applicable and hence the algorithm CpLtest is deterministic� We de�ne measures
of complexity that will strictly decrease with each application of a CpLtest rule�

�	�	
	�	 Definition� Let X be a set of split sequents�

�� ��p� � ��
�� ���A� � ��A� 
 ��
�� ��A �B� � ��A� 
 ��B� 
 � if � 
 f�����g�
�� ��M �N � S�T � � )f��A� 
 � j A 
 Ng
 )f��A� 
 � j A 
 Sg�
�� ��M �N � S�T � � (Sub�N� 
 (Sub�S��
�� ��X� � )f���L�R� % ��L �R� j L �R 
 Xg�

�	�	
	�	 Lemma� If L � R is a split sequent then ��L � R�  �� If L � R is a
split sequent derived from split sequent L� � R� by application of one of the CpLtest
rules� then

��L � R� � ��L� � R��

If X is a set of split sequents then ��X�  �� If X � is a set of split sequents derived
from X by application of one of the CpLtest rules 
replacing the split sequent treated
by the result
s� of the application of the CpLtest rule�� then

��X �� � ��X�

Proof� By checking the rules� a

The measure ��X� provides us with an upper bound to the number of steps it may
take CpLtest to treat all split sequents in X �and the resulting sequents and so on�
until no rule of CpLtest is applicable �hence N � S � ���

�	�	
	�	 Definition� A split sequent L � R is open if it is not closed and no
CpLtest rule is applicable� A split sequent L � R is closing if it is closed or if a
CpLtest rule is applicable and the resulting split sequent
s� are closing� We will write
L � R if L � R is closing�

Note that the de�nition of closing is sound because the algorithm is terminating�

�	�	
	�	 Lemma� L � R is closing i� L �
W
R�
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Proof� If L � R is closed then of course L �
W
R� If L � R is open� de�ne a modelM

by taking M j� p � p 
 L for atomic formulas p� Using the fact that all formulas
in N and S in the split sequent are treated by one of the rules� one proves M j�

V
L

and M �j�
W
R�

As the tableau for a split sequent is a �nite tree of split sequents� we can proceed
by induction on the depth of the sequent �closed split sequents having depth zero��

By checking the CpLtest rules� observe that they correspond to equivalent state�
ments about the derivability relation ofCpL as stated in lemma �������� For example
for the �L�rule one can prove

A � B � C � A � B�A � C and A � B�B � C

in CpL� a

We now present CPLtest as a pseudo�code program� called Ctest� In the pseudo�
code language the notation of the sequence operation A�X introduced earlier� will be
replaced by hA�Xi� writing A for hA� �i and hA�B�Xi for hA� hB�Xii� Ctest�� � �� ��
the program Ctest� with as its input the formula �� will return the value true if
�CpL � and the value false otherwise�

Ctest�M�N� S� T 	 sequence of formula� 	 bool
if S �� �
then let S � hA� S �i

if A 
M �N then true
else in case A

atomic � Ctest�M�N� S �� hA� T i�
�B � Ctest�M� hB�Ni� S �� hA� T i�
B � C � if Ctest�M�N� hB� S �i� hA� T i�

then Ctest�M�N� hC� S �i� hA� T i�
else false

B � C � Ctest�M�N� hB�C� S �i� hA� T i�
B�C � Ctest�M� hB�Ni� hC� S �i� hA� T i�

else if N �� �
then let N � hA�N �i

if A 
 T then true
else in case A

atomic � Ctest�hA�Mi� N �� � T �
�B � Ctest�hA�Mi� N �� B� T �
B � C � Ctest�hA�Mi� hA�B�N �i� � T �
B � C � if Ctest�hA�Mi� hB�Ni� � T �

then Ctest�hA�Mi� hC�Ni� � T �
else false

B�C � if Ctest�hA�Mi� N�B� T �
then Ctest�hA�Mi� hC�Ni� � T �
else false

else false
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To calculate an upper bound to the amount of time needed to calculate Ctest�� � �� ��
we can make use of the measure � de�ned above� as ��f� � �� g� is an upper bound
to the number of calls to the Ctest procedure�

�	�	
	�	 Fact� Let j�j be the length of formula �� i�e� the number of atoms and
connectives in �� Then

�� ���� � j�j�
�� ��� � �� � � j�j�
�� ��� � �� � � j�j�
�� ��� � �� � � j�j��j�j�

Next we need an upper bound to the time it takes to respond to a call of Ctest� In
the worst case the procedure Ctest involves the following steps	

�� determine whether S � � and N � ��
�� splitting a sequence X as hA�X �i�
�� determine whether a formula is in M �N or T �
�� decompose a formula A into its principal subformulas�
�� concatenating a formula A and a sequence X into hX�Ai� which should result

in the sequence X if A is already a member of X�

We assume that placing a �new� call to Ctest will take a small constant amount of
time� Let us assume that X is the largest sequence and D is the longest formula in
the Ctest call we are dealing with�

The �rst step will only take a small constant amount of time� as will the second
step if sequences are represented as linked lists for example�

To determine equality of two formulas A and B will cost� at the most�
minfjAj� jBjg steps� Hence� as an upper bound for the third step we can use (X%jDj�

Step four can be done in a number of steps linear in the length of the formula
treated� Step �ve may occur thrice and each time we may use (X%jDj as an upper
bound�

From the rules of Ctest it is clear that the original � from the input is the longest
formula appearing in any of the consecutive calls to Ctest� Hence in the formulas
above we can replace D by �� Also� from the rules of Ctest we can �nd as an
upper bound for the largest sequence of subformulas in the input formula �� Hence
(X � j�j� As a result we have found an upper bound

��j�j� 
 c��j�j
 c�

for the time needed to answer one call to Ctest as part of the calculation of
Ctest�� � �� �� c� and c� being �implementation dependent� constants�

By combining the two upper bounds calculated above� we found the upper bound
to the amount of time needed in the calculation of Ctest�� � �� � as a whole to be of
the order ��j�j���j�j�
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As for the upper bound to the space needed in calculating Ctest�� � �� �� note
that in the worst case a call to Ctest is replaced by two other calls plus a command
to process the results� As the number of calls is ��f� � ��� g� and a call will take
�(X % jDj on the stack at the most �as each occurence of a subformula of � will
occur at most twice in the split sequent� an upper bound for the stack is ��j�j���j�j�
We assume that to calculate a call to Ctest one needs to keep the initial sequences
in the memory� As we also have to produce �at most� three new sequences and need
some space for �at most� three formulas� a fair upper bound for the space needed in
one call is ��(X % jDj
 ��jDj or ��j�j� 
 ��j�j� Hence the order of space needed to
calculate Ctest�� � �� � is ��j�j���j�j�

��� IpLtest	 an IpL tester

The split sequents of IpLtest are of the formK�M �N � S�T �U orK�M �N & S�T �U �
As in the previous section� we will use the abbreviations L and R in describing the
rules of IpLtest� Here L � K�M �N and R � S�T �U � The notation L � R will be
used to denote either L � R or L & R�

Testing the derivability of formula A starts with the split sequent � � � A� ��
Formulas to be treated are placed in N or S� those already treated are placed in K

or U �and kept to facilitate the recognition of closure of a sequent�� In IpLtest we
have to take special care of implications and negations� Treatment on the righthand
side �i�e� if implications or negations appear in S� is postponed� the implications and
negations are placed in T � Formulas in T will only be treated if everything else fails�

On the lefthand side implications and negations may have to be treated more
than once� After being treated� implications and negations are not moved from N to
K� but to M � If N � S � �� then IpLtest may try all formulas in M again �by the
RL�rule�� To avoid IpLtest to go on with repeating the formulas in M inde�nitely�
there is a mechanism to keep track of the changes in the set of atoms on the lefthand
side of the split sequent� We will write L � R if there have not been introduced
new atoms on the lefthand side since the last treatment of a formula in T � After
the introduction of a �new� atomic formula on the lefthand side� the split sequent is
written as L & R� L & R becomes L� � R� via the RL�rule�

As in case of CpLtest a split sequent L � R is closed if L �R �� �� As before we
will assume that no IpLtest rules are applicable to a closed split sequent� Let p be
an atomic formula� The rules of IpLtest are	

�pR�
L � p� R

L � R� p
�pL��

L� p& �T �U

p� L& �T �U

��pL��
L� p � �T �U

L � �T �U
p 
 L �pL��

L� p � �T �U

p� L& �T �U
p �
 L

��R�
L � �A� S�T �U

L � S�T��A�U
��L�

K�M �N��A � �T �U

K��A�M �N � A�T �U
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��R�
L � A � B�R

L � A�R�A �B L � B�R�A � B
��L�

L�A � B � �T �U

A �B�L�A�B � �T �U

��R�
L � A �B�R

L � A�B�R�A � B
��L�

L�A � B � �T �U

A � B�L�A � �T �U A � B�L�B � �T �U

��R�
L � A�B� S�T �U

L � S�T�A�B�U

��L�
K�M �N�A�B � �T �U

K�A�B�M �N � A�T �U K�A�B�M �N�B � �T �U

RL
K�M � & �T �U

�K�M � �T �U

�RR
K�M � � ��A� T �U

K�M �A � � � K�M � � �T �U

�RR
K�M � � �A�B� T �U

K�M �A � B� � K�M � � �T �U

IpLtest� like CpLtest� has an L� and an R�rule for each of the connectives� �R and
�R postpone the treatment of negations and implications until all other rules but
�RR or �RR have failed� The RR�rules are special in that they may decrease
the number of formulas in the split sequent� The RL�rule enforces treatment of all
implications and negations on the lefthand side of the split sequent� The RL�rule
causes the sequence M �the implications and negations to be repeated� to make up
the new sequence N �of formulas to be treated��

Note that for each split sequent at most one of the IpLtest rules is applicable�
Hence the algorithm IpLtest is deterministic� To prove IpLtest to terminate on every
split sequent we again de�ne a measure of complexity on split sequents� as we did
for CpLtest� This time however the de�nition is more complex�

�	�	
	�	 Definition� Let p be an atomic formula A an IpL formula� L � R a split
sequent 
such that L � K�M �N and R � S�T �U� and X a set of split sequents�

�� ��p� � ��
�� ���A� � ��A� 
 ��
�� ��A "B� � ��A� 
 ��B� 
 � if " 
 f���g�
�� ��A�B� � ��A� 
 ��B� 
 ��
�� ��L � R� � )f��A� 
 � j A 
 Ng 
 )f��A� 
 � j A 
 Sg


)f��A� 
 � j A 
 Tg�
�� ��L & R� � ��L � R� 
 ��
�� ��L � R� � )f��A� 
 � j �A � B�C or A � �B� and A 
 Sub�L � R�g�
�� ��L � R� � (Sub�M �N� 
 (Sub�S� 
 (Sub�T ��
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�� n�L � R� � (fp atomic j p 
 Sub�L �R�g�
��� m�L � R� � (fp atomic j p 
 Kg�
��� ��L � R� � �n�L � R�!m�L � R�����L � R� 
 ��L � R��
��� ��X� � )f���L�R� % ��L �R� j L �R 
 Xg�

�	�	
	�	 Lemma� If L � R a split sequent then ��L � R�  �� If L � R is derived
from split sequent L� � R� by application of one of the IpLtest rules� then

��L � R� � ��L� � R��

If X a set of split sequents then ��X�  �� If X � a set of split sequents derived from
X by application of one of the IpLtest rules 
replacing the split sequent treated by
the result
s� of the application of the IpLtest rule� then

��X �� � ��X�

Proof� By checking the rules� In most cases application of a rule wille decrease the
� of the split sequent� Only the RL�rule increases the �� However� for a given split
sequent the pL��rule can only be applied n ! m�times �as n is the total number
of atoms in the split sequent and m the number of atoms in K�� Hence� also the
RL�rule can only be applied n ! m times� The number �� as de�ned above� is an
upper bound on the increase of � by an application of the RL�rule� a

�	�	
	�	 Definition� A split sequent L �R is closing 
L � R� if

�� L �R is closed 
i�e� L �R �� ���
�� one of the RR�rules is applicable and one of the resulting split sequents is

closing�
�� one of the other rules is applicable and its resulting split sequent
s� is 
are�

closing�

To prove IpLtest to be sound and complete we will prove

L � R � L �
�
R

In order to do so� we need the following de�nition and some facts�

�	�	
	�	 Definition� A split sequent L � R is reduced if it is not closed and no
other rules but the RR�rules are applicable� If L � R a split sequent that is not
closing� application of the IpLtest rules� with the exception of the RR�rules� will
result in one or more reduced split sequents that will be called reductions of L �R�

Note that a split sequent is reduced if not closed and N � S � ��

�	�	
	�	 Fact� If L �R is a reduced split sequent then	
�� A � B 
 L � A 
 L and B 
 L�
�� A � B 
 L � A 
 L or B 
 L�
�� �A 
 L � A �
 L�
�� A�B 
 L � A �
 L or B 
 L�
�� A � B 
 R � A 
 R or B 
 R�
�� A � B 
 R � A 
 R and B 
 R�
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The truth of this fact can be established by observation of the IpLtest rules� No rule
changes the monotone increase of the set of formulas L and only with the RR�rules
do formulas disappear from R� Note that a reduced split sequent is always of the
form K�M � ��T �U �

�	�	
	�	 Lemma� L � R implies L �
W
R 
in IpL��

Proof� For a closed split sequent the lemma is obvious� As the tableau for a split
sequent is a �nite tree of split sequents� we can proceed by induction on the depth
of the sequent �closed split sequents having depth zero��

According to the IpLtest rules L � A � B�R i� both L � A�R�A � B and
L � B�R�A � B� By induction hypothesis we may infer L � A � �A � B� �

W
R

and L � B � �A � B� �
W
R� Hence in IpL one can derive L � �A � B� �

W
R�

All IpLtest rules can be treated in the same way� For the RR�rules observe that
only one of the consequents of the rules has to be closing�

For the RR��rule for example	 if L�A � B then by induction hypothesis L�A � B
and hence L � A�B� Otherwise if L � R and hence L �

W
R� then of course also

L � A�B �
W
R� For the RR��rule� in case R � �� note that

W
� � �� a

To prove L � R is not closing implies L �
W
R� we will extract from the non�closing

tableau a Kripke model K forcing all formulas in L and none of those in R� In the
de�nition of the Kripke model we will make use of the concept of the leftmost non�
closing reduction of a split sequent� In �nding this reduction one chooses to follow
the leftmost non�closing conclusion of each IpLtest rule�

�	�	
	�	 Definition� Let L�R be a non�closing split sequent� The Kripke model K
associated with L �R is de�ned as the ordered set of 
leftmost� non�closing reduced
split sequents	

�� the leftmost non�closing reduction of L �R is the root of K�

�� if kl 
 K corresponds to the split sequent L���A�B� T �U and T �� �� then the
leftmost non�closing reductions of L�� A�B� � and L���T �U are nodes of K� say
respectively km and kn� such that kl � km and kl � kn�

�� if kl 
 K corresponds to the split sequent L���A�B� T �U and T � �� then the
leftmost non�closing reduction of L�� A �B� � is a node of K� say km� such that
kl � km�

�� if kl 
 K corresponds to the split sequent L����A� T �U and T �� �� then the
leftmost non�closing reductions of L�� A�� � and L���T �U are nodes of K� say
respectively km and kn� such that kl � km and kl � kn�

�� if kl 
 K corresponds to the split sequent L����A� T �U and T � � then the
leftmost non�closing reduction of L�� A�� � is a node of K� say km� such that
kl � km�

�� the order relation � is re�exive and transitive�

�� if kl 
 K is the node corresponding to L� �R�� then kl � p for atomic formulas
p i� p 
 L�
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�	�	
	�	 Lemma� If L&R is a non�closing split sequent and K its associated Kripke
model� with root k�� then for each formula A we have A 
 L � k� � A and
A 
 R � k� � A�

Proof� First observe that if L� �R� is the leftmost non�closing reduction of L�R� and
for each formula A we would have A 
 L� � k� � A and A 
 R� � k� � A�
then the lemma is a consequence of the IpLtest rules �all except the RR�rules are
reversible��

With induction on the length of formula A we will prove that if kl 
 K corre�
sponds to the reduced split sequent L� � R�� then A 
 L� implies kl � A and A 
 R�

implies kl � A�
The cases where A is atomic� a conjunction or a disjunction are obvious �using

fact ���������
Let A � B�C and A 
 L�� Let kl � km and km 
 K correspond to a reduced

split sequent L�� � R�� and km � B� As formula A has been treated in the derivation
of L�� � R��� there is a kn 
 K� km � kn and kn � B or kn � C such that km and
kn force the same atoms� This is due to the fact that the RL�rule would have been
applied between the sequents of kn and km if there was a di�erence in the atoms
forced� By a simple lemma on Kripke models km and kn force the same formulas and
hence km � C� which proves kl � B�C�

Let A � B�C and A 
 R�� Note that A 
 T and the split sequent L�� B � C� �
�appearing after one or more applications of an RR�rule� will not be closing� Hence�
if km corresponds to the leftmost non�closing reduction of L�� B �C� �� by the induc�
tion hypothesis km � A� As we have kl � km we infer that kl � A� a

�	�	
	�	 Theorem� A split sequent L & R is closing� using the IpLtest rules� i�
L �

W
R�

Proof� By combining the previous two lemmas� a

The following pseudo�code program� Itest is an implementation of the IpLtest al�
gorithm� For the language conventions see the Ctest program in the previous sec�
tion� To test whether a formula � is a theorem of IpL� one calls the program
Itest�� � � �� � � false�� where the input corresponds to the initial sequent � � � �� � for
IpLtest�
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Itest�K�M�N� S� T� U 	 sequence of formula� d 	 bool� 	 bool
if S �� �
then let S � hA� S �i

if A 
 K �M �N then true
else in case A

atomic � Itest�K�M�N� S �� T� hA�Ui� d�
�B � Itest�K�M�N� S �� hA� T i� U� d�
B � C � if Itest�K�M�N� hB� S �i� T� hA�Ui� d�

then Itest�K�M�N� hC� S �i� T� hA�Ui� d�
else false

B � C � Itest�K�M�N� hB�C� S �i� T� hA�Ui� d�
B�C � Itest�K�M�N� S �� hA� T i� U� d�

else if N �� �
then let N � hA�N �i

if A 
 T � U then true
else in case A

atomic � if A �
 K

then Itest�hA�Ki�M�N �� � T� U� true�
else Itest�K�M�N �� � T� U� d�

�B � Itest�K� hA�Mi� N �� B� T� U� d�
B � C � Itest�hA�Ki�M� hA�B�N �i� � T� U� d�
B � C � if Itest�hA�Ki�M� hB�N �i� � T� U� d�

then Itest�hA�Ki�MhC�N �i� � T� U� d�
else false

B�C � if Itest�K� hA�Mi� N �� B� T� U� d�
then Itest�K� hA�Mi� hC�N �i� � T� U� d�
else false

else if d then Itest�K� �M� � T� U� false�
else if T �� �

then let T � hA� T �i
in case A
�B � if Itest�K�M�B� � � � d� then true

else Itest�K�M� � � T �� U� d�
B�C � if Itest�K�M�B�C� � � d� then true

else Itest�K�M� � � T �� U� d�
else false

��� Ktest	 a tester for K

In this section and the following we will introduce tableaux testers for modal propo�
sitional logic�

The �rst tester to be described is Ktest� a tester for the modal logic K� that
will act as the minimal system for the modal logics in this section� The axioms of
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K are those of classical propositional logic CpL plus ��A�B����A��B� and
necessitation �� A � � �A� as an extra derivation rule�

Split sequents of Ktest are of the form K�M �N �S�T �U � The rules for Ktest are
the rules of CpLtest� with rules added to deal with � and 
	

�pR�
L � p� R

L � R� p
�pL�

L� p � �T �U

p� L � �T �U

��R�
L � �A�R

L�A � R��A
��L�

L��A � �T �U

�A�L � A�T �U

��R�
L � A � B�R

L � A�R�A � B L � B�R�A � B
��L�

L�A �B � �T �U

A �B�L�A�B � �T �U

��R�
L � A � B�R

L � A�B�R�A �B
��L�

L�A � B � �T �U

A � B�L�A � �T A � B�L�B � �T �U

��R�
L � A�B�R

L�A � B�R�A�B
��L�

L�A�B � �T �U

A�B�L � A�T A�B�L�B � �T �U

��R�
L � �A� S�T �U

L � S�T��A�U
��L�

K�M �N��A � �T �U

K��A�M �N � �T �U

�
R�
K�M �N � 
A� S�T �U

K���A�M �N � S�T �U�
A
�
L�

L�
A � �T �U


A�L � �T���A�U

The NW�rule

K�M � � ��A� T �U

� �M� � A� � K�M � � �T �U
where M� � fB j �B 
 Mg

The NW�rule �the new world rule� plays the same role as the RR�rules in IpLtest� If
the algorithm is regarded as a method of systematically constructing a Kripke model
�that is a counterexample to the formula tested and failure of which proves that it
is a theorem is true� this rule forces the introduction of a new world in the model
construction�

The rules in Ktest for the possibility operator di�er from the other rules �in Ktest�
IpLtest or CpLtest�� as in treating the formula
A� we not only use the subformula A�
but in the result of the 
�rules there appears a formula��A� This is best understood
as treating 
 as an abbreviation of ���� In this way we somewhat restricted the
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number of rules� From the rules above it can be proved that we get an equivalent
system by adding a new 
NW�rule	

K�M�
A� � � �U

� �M�� A � � � K�M � � � �U
where M� � fB j �B 
Mg

and replacing the 
 rules above by	

�
R�
L � 
A� S�T �U

L � S�T�
A�U
�
L�

K�M �N�
A � �T �U

K�
A�M �N � �T �U

De�ne a Ktest split sequent L � R to be closed if L�R �� �� None of the Ktest rules
is applicable to a closed split sequent�

The rules of Ktest are named according to the kind of formula treated and its
position� Hence we have a pL� and a pR�rule� an �L� and an �R�rule and so on�

Note that at most one rule is applicable to any split sequent and hence the
algorithm Ktest is deterministic� To prove the algorithm Ktest to terminate on each
split sequent� we de�ne a measure of complexity on a set X of split sequents� ��X�
that will strictly decrease with each application of a Ktest rule on a member of X�
Application of a Ktest rule to X has as its result a new set of split sequents X ��
where the split sequent treated in X is replaced by the result from the application
of the Ktest rule�

�	�	
	�	 Definition� Let p be an atomic formula� A a K formula L � R a split
sequent 
such that L � M �N and R � S�T � and X a set of split sequents�

�� ��p� � ��
�� ���A� � ��A� 
 ��
�� ��A �B� � ��A� 
 ��B� 
 � if � 
 f�����g�
�� ���A� � ��A� 
 ��
�� ��
A� � ��A� 
 ��
�� ��L � R� � )f��A� 
 � j A 
 Ng 
 )f��A� j A 
Mg


)f��A� 
 � j A 
 Sg
 )f��A� j A 
 Tg�
�� ��L � R� � (Sub�M� 
 (Sub�N� 
 (Sub�S� 
 (Sub�T ��
�� ��X� � )f���L�R� % ��L �R� j L �R 
 Xg�

�	�	
	�	 Lemma� If L � R a split sequent then ��L � R�  �� If L � R is a split
sequent derived from split sequent L� � R� by application of one of the Ktest rules�
then

��L � R� � ��L� � R��

If X a set of split sequents then ��X�  �� If X � a set of split sequents derived from
X by application of one of the Ktest rules 
replacing the split sequent treated by the
result
s� of the application of the Ktest rule� then

��X �� � ��X�
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Proof� By simply checking the rules� a

�	�	
	�	 Definition� A split sequent L �R is closing 
L � R� if

�� L �R is closed�
�� the NW�rule is applicable and one of the resulting split sequents is closing�
�� the �R�� �L� or �L�rule is applicable and both the resulting split sequents are

closing�
�� one of the other rules is applicable and its resulting split sequent is closing�

To prove Ktest to be sound and complete we will prove

L � R � L �
�
R

But to do so we need the following de�nition and facts�

�	�	
	�	 Definition� A split sequent L � R is reduced if it is not closed and N �
S � � 
no other rules but the NW�rule are applicable�� If L�R is a split sequent that
is not closing� application of the Ktest rules� with the exception of the NW�rule� will
result in one or more reduced split sequents that will be called reductions of L �R�

A fortiori a split sequent is reduced if it is not closed and no Ktest rule applies to it�

�	�	
	�	 Fact� If L �R is a reduced split sequent then	
�� A � B 
 L � A 
 L and B 
 L�
�� A � B 
 L � A 
 L or B 
 L�
�� �A 
 L � A 
 R�
�� A�B 
 L � A 
 R or B 
 L�
�� A � B 
 R � A 
 R or B 
 R�
�� A � B 
 R � A 
 R and B 
 R�
�� �A 
 R � A 
 L�
�� A�B 
 R � A 
 L and B 
 R�

The truth of this fact can be established by observation of the Ktest rules� Observe
that only the NW�rule changes the monotonic increase of the sets of formulas L and
R�

�	�	
	�	 Lemma� If a split sequent L�R is closing 
by the Ktest rules� then L �
W
R


in K��

Proof� For a closed split sequent the lemma is obvious� As the tableau for a split
sequent is a �nite tree of split sequents� we can proceed by induction on the depth
of the sequent �closed split sequents having depth zero��

According to the Ktest rules L � A � B�R i� both L � A�R�A � B and
L � B�R�A�B� By the induction hypothesis we may infer L � A�A�B �

W
R and

L � B � A �B �
W
R� Hence in K one can derive L � A � B �

W
R�

All Ktest rules can be treated in the same way� For the NW�rule observe that
only one of the consequents of the rule has to be closing�
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As M contains only boxed formulas� from M� � A infer �by necessitation� that
M � �A� Hence we may conclude that K�M � �A �

W
T �

W
U � If on the other

hand it should be the case that K�M �
W
T �

W
U then obviously we would have

K�M � �A �
W
T �

W
U � a

To prove that if L�R is not closing� then L �
W
R we will extract from the non�closing

tableau a Kripke model K forcing all formulas in L and none of those in R� In the
de�nition of the Kripke model we will make use of the concept of the leftmost non�
closing reduction of a split sequent as we did for IpLtest� In �nding this reduction
one chooses to follow the leftmost non�closing conclusion of each Ktest rule for which
there is a choice�

�	�	
	�	 Definition� Let L � R be a non�closing split sequent� The Kripke model
K associated with L � R is de�ned as a set of 
leftmost� non�closing reduced split
sequents� with an irre�exive relation �	

�� the leftmost non�closing reduction of L �R is the root of K�
�� if kl 
 K corresponds to the split sequent K�M � ��T �U and T �
f�A�� � � ��Atg �� � then the leftmost non�closing reductions of � �M� � Ai� �

where M� � fB j �B 
 Mg and �Ai 
 T � are nodes of K� say respectively
l�� � � � � lt� such that for all i such that � � i � t	 kl � li�

�� if kl 
 K corresponds to the split sequent K�M � �� �U 
hence T � �� then kl is
a terminal node in K�

�� if kl 
 K is the node corresponding to L� �R�� then kl � p for atomic formulas
p i� p 
 L�

�	�	
	�	 Lemma� If L�R is a non�closing split sequent and K its associated Kripke
model� with root k�� then for each formula A we have A 
 L � k� � A and
A 
 R � k� � A�

Proof� First observe that if L� �R� is the leftmost non�closing reduction of L�R� and
for each formula A we would have A 
 L� � k� � A and A 
 R� � k� � A�
then the lemma is a consequence of the Ktest rules �all except the NW�rule are
reversible��

With induction on the length of formula A we will prove that if kl 
 K corre�
sponds to the reduced split sequent L� � R�� then A 
 L� implies kl � A and A 
 R�

implies kl � A�
The cases where A is atomic� a conjunction� a disjunction or an implication are

obvious �using fact ���������
Let A � �B and A 
 L�� As L� � R� is reduced A will be a member of M � Let

kl � km and km 
 K correspond to a reduced split sequent L�� � R��� Then L�� � R��

will be a result of the application of the NW�rule and hence we will have B 
 L���
By induction hypothesis conclude that km � B� Which proves that kl � �B� Note
that if kl is a terminal node then� as K has been de�ned in such a way that it is
irre�exive� trivially kl � �B�

If A � �B and A 
 R� then A will be in T and application of the NW�rule �and
reduction� will result in a node km corresponding to a reduced split sequent L�� �R��
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such that kl � km and B 
 R��� Using the induction hypothesis we conclude km � B

and hence kl � �B� a

�	�	
	�	 Theorem� A split sequent L � R is closing� using the Ktest rules� i� L �W
R�

Proof� By combining the previous two lemmas� a

Like we did previously for CpLtest and IpLtest� we will give a pseudo�code trans�
lation of the algorithm KMtest�

KMtest�K�M�N� S� T� U 	 sequence of formula� 	 bool
if S �� �
then let S � hA� S �i

if A 
 J �K �M �N then true
else in case A

atomic � KMtest�K�M�N� S �� T� hA�Ui�
�B � KMtest�K�M� hB�Ni� S �� T� U�
B � C � if KMtest�K�M�N� hB� S �i� T� hA�Ui�

then KMtest�K�M�N� hC� S �i� T� hA�Ui�
else false

B � C � KMtest�K�M�N� hB�C� S �i� T� hA�Ui�
B�C � KMtest�K�M� hB�Ni� hC� S �i� T� hA�Ui�
�B � KMtest�K�M�N� S �� hA� T i� U�

B � KMtest�K�M�N� S �� h�B� T i� U�

else if N �� �
then let N � hA�N �i

if A 
 T � U then true
else in case A

atomic KMtest�hA�Ki�M�N �� � T� U�
�B � KMtest�hA�Ki�M�N �� B� T� U�
B � C � KMtest�hA�Ki�M� hA�B�N �i� � T� U�
B � C � if KMtest�hA�Ki�M� hB�Ni� � T� U�

then KMtest�hA�Ki�MhC�Ni� � T� U�
else false

B�C � if KMtest�hA�Ki�M�N�B� T� U�
then KMtest�hA�Ki�M� hC�Ni� � T� U�
else false

�B � KMtest�K� hA�Mi� N� � T� U�

B � KMtest�K�M�N� � hT�Ai� U�

else if T �� �
then let T � h�A� T �i and M� � fB j �B 
Mg

if KMtest�� �M�� A� � � then true
else KMtest�K�M� � � T� U�

else false
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��� Other testers for modal propositional logic

Testers for other modal propositional logics can be derived from Ktest by changing
some of the rules �mainly the NW�rule�� In this section we will indicate for several
modal logics how a tester algorithm may be obtained�

����� Ttest� a T tester

The modal logic T has as its axioms and rules those of K plus the axiom ����� T
is complete for �nite re�exive Kripke models �a proof can be found in �HC �����

To obtain Ttest� a tester for the modal logic T� we only have to change the
�L�rule in Ktest�

�	�	�	�	 Definition� The tester Ttest has the same rules as Ktest� except for the
�L�rule that is replaced by	

�T�L�
K�M �N��A � �T �U

K��A�M �N�A � �T �U
�

�	�	�	�	 Theorem� A split sequent L � R is closing� using the Ttest rules� i� L �W
R�

Proof� The proof is essentially as for theorem �������� using amended versions of
lemma ������� and lemma ��������

As for lemma �������� note that in T� using �A � A� from L��A�A �
W
R we

may infer L��A �
W
R�

To prove an amended version of lemma �������� we have to change the de�nition
of an associated Kripke model� de�nition �������� in such a way that the resulting
model is always re�exive� Note that the change in the �L�rule re�ects the axiom
���� of T� If L � R is a split sequent and �A 
 L� then in the leftmost non�closing
reduction of L � R� by the �L�rule� we will have A 
 L� This is exactly what we
need to change the proof of lemma ������� to apply to T� a

����� K�test� a K� tester

The modal logicK� has as its axioms and rules those ofK plus the axiom�������
A proof that K� is complete for �nite transitive Kripke models can be found
in �HC ���� For the de�nition of K�test� a tester for the modal logic K�� we
will extend the split sequents of Ktest� A split sequent of K�test is of the form
K�M �N �w�W � S�T �U � where K�M �N � S�T �U is a split sequent of Ktest� w a
world� a tuple hX� Y i� with X and Y sets of formulas� and W a sequence of worlds�

The algorithm of K�test� given below� is obtained by amending the rules of Ktest
for the split sequents of K�test� changing the NW�rule and adding a new rule re�
stricting the applicability of the K�test rules�
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The K�NW�rule is

K�M � �w�W � ��A� T �U

�M �M� �w��W�w� A� � K�M � �w�W � �T �U

where M� � fB j �B 
 Mg�
This rule re�ects the transitivity of the frames where the axiom ������ is

valid� by repeating all boxed formulas that have appeared on the left�hand side of
the reduced split sequent�

The new rule of non�applicability declares that for a sequent L�w�W �R with
w 
 W no rule of K�test is applicable� In particular this may be the result of the
K�NW�rule� if the world w� � hM �M�� fAgi already occures in the list W�w of
worlds that appeared above this split sequents in its construction from the starting
split sequents� using the K�test�rules�

For the rules of K�test we use the same conventions as for Ktest and we will
abbreviate K�M �N �w�W � S�T �U by L �w�W � R�

�pR�
L �w�W � p� R

L �w�W � R� p
�pL�

L� p �w�W � �T �U

p� L �w�W � �T �U

��R�
L �w�W � �A�R

L�A �w�W � R��A
��L�

L��A �w�W � �T �U

�A�L �w�W � A�T �U

��R�
L �w�W � A � B�R

L �w�W � A�R�A �B L �w�W � B�R�A � B

��L�
L�A �B �w�W � �T �U

A �B�L�A�B �w�W � �T �U
��R�

L �w�W � A � B�R

L �w�W � A�B�R�A � B

��L�
L�A � B �w�W � �T �U

A � B�L�A �w�W � �T A �B�L�B �w�W � �T �U

��R�
L �w�W � A�B�R

L�A �w�W � B�R�A�B

��L�
L�A�B �w�W � �T �U

A�B�L �w�W � A�T A�B�L�B �w�W � �T �U

��R�
L �w�W � �A� S�T �U

L �w�W � S�T��A�U
��L�

K�M �N��A �w�W � �T �U

K��A�M �N �w�W � �T �U

�
R�
K�M �N �w�W � 
A� S�T �U

K���A�M �N �w�W � S�T��A�U
�
L�

L�
A �w�W � �T �U

L �w�W � �T���A�U
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The K�NW�rule

K�M � �w�W � ��A� T �U

�M �M� �hM �M�� fAgi�W�w� A� � K�M � �w�W � �T �U

where M� � fB j �B 
 Mg�

Note that the top sequent of the K�NW�rule will be called closing if one of the
resulting split sequents is closing�

�	�	�	�	 Lemma� The algorithm K�test is deterministic and terminates on the input
of any split sequent�

Proof� To see that K�test is deterministic� it can be veri�ed that for each split sequent
at most one rule of K�test is applicable�

To prove that K�test terminates on every split sequent� we can de�ne a measure
of complexity� ��X�� on a set X of split sequents� like we did for Ktest in de�ni�
tion �������� We will not spell out this de�nition here� but the only di�erence with
the one for Ktest will be a contribution for the �w�W � part in the split sequent�

Let the initial sequent be L�w�W �R� The worlds that may appear in the ap�
plication of the K�test rules to this sequent �and its resulting sequents� are tuples
hM�Ai� where M � A is a set of subformulas in the initial sequent L�w�W �R� If
m is the number of these world�like tuples that may be made out of L�w�W �R and
n the number of worlds in W in the initial sequent� then for every split sequent
L��w��W ��R� that may be developed out of L�w�W �R we have measure

��L��w��W ��R�� � m
 n!(W � 
 �

that is strictly decreasing after each non�closing application of the K�NW�rule�
Taking this � into account� one can construct a strictly decreasing measure of

complexity on a set of split sequents� as in de�nition �������� a

To prove the counterpart of theorem ������� for K�test� we proceed as in section ����

�	�	�	�	 Lemma� If a split sequent L�w�W �R is closing 
by the K�test rules� then
L �

W
R 
in K���

Proof� For a closed split sequent the lemma is obvious� As the tableau for a split
sequent is a �nite tree of split sequents� we can proceed by induction on the depth
of the sequent �closed split sequents having depth zero��

All K�test rules can be treated as in the proof of lemma �������� except for the
rule K�NW�

If K�M � �w�W � �T �U is closing then� by the induction hypothesis� K�M �W
T �

W
U � Then obviously also K�M � �A �

W
T �

W
U �

On the other hand� if �M �M� �hM � M�� fAgi�W�w� A� � is closing� then� by
the induction hypothesis� M�M� � A� Applying the necessitation rule� infer that
M � �A� as M � f�B j B 
M�g and by the K� axiom M � �

V
M � a

For the proof of the following lemma� we will� as in section ���� associate a Kripke
model to a non�closing split sequent L�w�W �R�
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�	�	�	�	 Definition� Let L�w�W �R be a non�closing split sequent� The Kripke
model K associated with L�w�W �R is de�ned as a set of 
leftmost� non�closing
reduced split sequents� with a transitive relation �	

�� the leftmost non�closing reduction of L�w�W �R is the root of K�

�� if kl 
 K corresponds to the split sequent K�M � �w�W ��T �U and T �
f�A�� � � ��Atg �� � then the leftmost non�closing reductions of �M �M� � Ai� �

where M� � fB j �B 
 Mg and �Ai 
 T � are nodes of K� say respectively
l�� � � � � lt� such that for all i such that � � i � t	 kl�li�

�� if L�w�W �R is non�closing because of w 
 W and w was introduced in W by
application of the K�NW�rule to L��w�W ��R�� then� if L��w�W ��R corresponds
to kl and L�w�W �R corresponds to km� we identify kl and km�

�� if kl 
 K corresponds to the split sequent K�M � �w�W �� �U 
hence T � �� then
kl is a terminal node in K�

�� if kl 
 K is the node corresponding to L��w�W �R�� then kl � p for atomic
formulas p i� p 
 L�

�	�	�	�	 Lemma� If L�w�W �R is a non�closing split sequent and K its associated
Kripke model� with root k�� then for each formula A we have A 
 L � k� � A

and A 
 R � k� � A�

Proof� First observe that if L��w�W �R� is the leftmost non�closing reduction of
L�w�W �R� and for each formula A we would have A 
 L� � k� � A and
A 
 R� � k� � A� then the lemma is a consequence of the Ktest rules �all
except the K�NW�rule are reversible��

With induction on the length of formula A we will prove that if kl 
 K corre�
sponds to the reduced split sequent L��w�W �R�� then A 
 L� implies kl � A and
A 
 R� implies kl � A�

The cases where A is atomic� a conjunction� a disjunction or an implication are
obvious �using fact ���������

Let A � �B� A 
 L� and �as L��w�W �R� is reduced� L� � K ��M ��� Observe that
A will be a member of M � and application of the K�NW�rule will result in a leftmost
split sequent containing both A and B� Repeated applications of the K�NW�rule
hereafter will result in �leftmost� spliting sequents with the same property�

Let kl�km and let km 
 K correspond to a reduced split sequent L���w���W ���R���
Now either w� 
 W � or L���w���W ���R�� is the result of �repeated� application of the
K�NW�rule� From the observation above infer that in either case B 
 L��� By
induction hypothesis conclude that km � B� Which proves that kl � �B�

Note that if no K�test rule is applicable for L��w�W �R� and w �
 W � then kl is
an irre�exive terminal node and trivially kl � �B�

If A � �B and A 
 R� then A will be in T and application of the K�NW�rule
�and reduction� will result in a node km corresponding to a reduced split sequent
L���w���W ���R�� such that kl � km and B 
 R��� Using the induction hypothesis we
conclude km � B and hence kl � �B� a
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�	�	�	�	 Theorem� A split sequent L�w�W �R is closing� using the K�test rules� i�
L �

W
R�

Proof� By combining the previous two lemmas� a

For the di�erences between K�test and Ktest one may compare the pseudo�code of
KMtest with following pseudo�code program� K�Mtest� for the algorithm K�test�

K�Mtest�K�M�N� S� T� U 	 sequence of formula
w 	 world� W 	 sequence of world�	 bool

if S �� �
then let S � hA� S �i

if A 
 J �K �M �N then true
else in case A

atomic � K�Mtest�K�M�N� S �� T� hA�Ui� w�W �
�B � K�Mtest�K�M� hB�Ni� S �� T� U� w�W �
B � C � if K�Mtest�K�M�N� hB� S �i� T� hA�Ui� w�W �

then K�Mtest�K�M�N� hC� S �i� T� hA�Ui� w�W �
else false

B � C � K�Mtest�K�M�N� hB�C� S �i� T� hA�Ui� w�W �
B�C � KMtest�K�M� hB�Ni� hC� S �i� T� hA�Ui� w�W �
�B � K�Mtest�K�M�N� S �� hA� T i� U� w�W �

B � K�Mtest�K�M�N� S �� h�B� T i� U� w�W �

else if N �� �
then let N � hA�N �i

if A 
 T � U then true
else in case A

atomic K�Mtest�hA�Ki�M�N �� � T� U� w�W �
�B � K�Mtest�hA�Ki�M�N �� B� T� U� w�W �
B � C � K�Mtest�hA�Ki�M� hA�B�N �i� � T� U� w�W �
B � C � if K�Mtest�hA�Ki�M� hB�Ni� � T� U� w�W �

then K�Mtest�hA�Ki�MhC�Ni� � T� U� w�W �
else false

B�C � if K�Mtest�hA�Ki�M�N�B� T� U� w�W �
then K�Mtest�hA�Ki�M� hC�Ni� � T� U� w�W �
else false

�B � K�Mtest�K� hA�Mi� N� � T� U� w�W �

B � K�Mtest�K�M�N� � hT�Ai� U� w�W �

else if T �� �
then let T � h�A� T �i and M� � fB j �B 
Mg

and w� � hM �M�� fAgi
if w� 
 W � fw�g then K�Mtest�K�M� � � T� U� w�W �
else K�Mtest��M�M�� A� � � w�� hw�W i�

else false
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����� S�test� an S� tester

The modal logic S� has as its axioms and rules those of K� plus the axiom of T�
����� A proof that S� is complete for �nite re�exive and transitive Kripke models
can be found in �HC ���� The tester S�test is obtained by replacing the �L�rule in
K�test by the Ttest�rule de�ned above�

�	�	�	�	 Definition� The tester S�test has the same rules as K�test� except for the
�L�rule that is replaced by the T�L�rule�

�	�	�	�	 Theorem� A split sequent L�w�W �R is closing� using the S�test rules� i�
L �

W
R�

Proof� The proof is essentially as for theorem �������� The de�nition of the Kripke
model associated with a non�closing sequent has to be changed in such a way that the
model is always re�exive� Note that the change in the �L�rule re�ects the addition
of the T axiom and the re�exivity of the associated models� a

����� Ltest� an L tester

The modal logic L has as its axioms and rules those of K� plus the L�ob axiom
���A�A���A� As in L the theorem �A � ��A is derivable� L is an extension
of K�� A proof that L is complete for �nite� transitive reverse well�founded Kripke
models can be found in �Smory"nski ��� and �Boolos ���� The split sequents of the L
tester Ltest will be of the same form as those for K�

�	�	�	�
	 Definition� The tester Ltest has the same rules as Ktest� except for the
NW�rule that is replaced by the LNW�rule	

K�M � � ��A� T �U

�M �M���A � A� � K�M � �w��W�w� �T �U

where M� � fB j �B 
Mg�

�	�	�	��	 Lemma� The algorithm Ltest is deterministic and terminates on the input
of any split sequent�

Proof� The proof is essentially the same as for K�test in lemma �������

�	�	�	��	 Lemma� If a split sequent L�R is closing 
by the Ltest rules� then L �
W
R


in L��

Proof� For a closed split sequent L �R the lemma is obvious�
As the tableau for a split sequent is a �nite tree of split sequents� we can proceed

by induction on the depth of the sequent �closed split sequents having depth zero��
All Ltest rules can be treated as in the proof of lemma �������� except for the rule

LNW� for which we can proceed as in the proof of lemma �������� a

For Ltest we de�ne the Kripke model associated with a non�closing split sequent as
in de�nition �������� omitting the looping back rule ��
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�	�	�	��	 Lemma� If L�R is a non�closing split sequent and K its associated Kripke
model� with root k�� then for each formula A we have A 
 L � k� � A and
A 
 R � k� � A�

Proof� First observe that if L� �R� is the leftmost non�closing reduction of L�R� and
for each formula A we would have A 
 L� � k� � A and A 
 R� � k� � A�
then the lemma is a consequence of the Ktest rules �all except the LNW�rule are
reversible��

With induction on the length of formula A we will prove that if kl 
 K corre�
sponds to the reduced split sequent L� � R�� then A 
 L� implies kl � A and A 
 R�

implies kl � A�
The cases where A is atomic� a conjunction� a disjunction or an implication are

obvious �using fact ���������
Let A � �B� A 
 L� and �as L� � R� is reduced� L� � K ��M ��� Observe that�

as in case of the K�NW�rule� A will be a member of M � and application of the
LNW�rule will result in a leftmost split sequent containing both A and B� Repeated
applications of the LNW�rule hereafter will result in �leftmost� spliting sequents with
the same property�

Hence� for the proof of this lemma we can proceed as in the proof of lemma �������
�omitting the case where w� 
 W ��� a

The pseudo�code program LMtest for the algorithm Ltest only di�ers slightly from
the program K�Mtest in subsection ������
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LMtest�K�M�N� S� T� U 	 sequence of formula�	 bool
if S �� �
then let S � hA� S �i

if A 
 J �K �M �N then true
else in case A

atomic � LMtest�K�M�N� S �� T� hA�Ui�
�B � LMtest�K�M� hB�Ni� S �� T� U�
B � C � if LMtest�K�M�N� hB� S �i� T� hA�Ui�

then LMtest�K�M�N� hC� S �i� T� hA�Ui�
else false

B � C � LMtest�K�M�N� hB�C� S �i� T� hA�Ui�
B�C � KMtest�K�M� hB�Ni� hC� S �i� T� hA�Ui�
�B � LMtest�K�M�N� S �� hA� T i� U�

B � LMtest�K�M�N� S �� h�B� T i� U�

else if N �� �
then let N � hA�N �i

if A 
 T � U then true
else in case A

atomic LMtest�hA�Ki�M�N �� � T� U�
�B � LMtest�hA�Ki�M�N �� B� T� U�
B � C � LMtest�hA�Ki�M� hA�B�N �i� � T� U� �
B � C � if LMtest�hA�Ki�M� hB�Ni� � T� U�

then LMtest�hA�Ki�MhC�Ni� � T� U�
else false

B�C � if LMtest�hA�Ki�M�N�B� T� U�
then LMtest�hA�Ki�M� hC�Ni� � T� U�
else false

�B � LMtest�K� hA�Mi� N� � T� U�

B � LMtest�K�M�N� � hT�Ai� U�

else if T �� �
then let T � h�A� T �i and M� � fB j �B 
Mg

if LMtest��M� h�A�M�i� A� � � then true
else LMtest�K�M� � � T� U�

else false
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Computer programs

A�� Preliminaries

The computer programs in this appendix� written in the programming language C�
all make use of a module that contains the types� functions and procedures that are
common to the mkDiag program described in section ��� and the family of testers
treated in Chapter �� Parts of this module� supporting the understanding of the
C�programs in the sequel� are listed below�

In the computer programs in this appendix formulas are represented by �pointers
to� structures of the form	

struct formType

� char type� �� ��������L�M else the atom ��

struct formType �an�

struct formType �co�

unsigned treated � 	�

unsigned revisit � 	�


�

typedef struct formType �formula�

The type of a formula is denoted by its main connective� The list of possible
connectives �� �� �� �� L� M corresponds with the list ����������
� If the
type character is not in this list� the formula is assumed to be atomic�

If a formula is not atomic� the main subformula�s� is �are� represented in the
structure by a pointer to this �these� formula�s�� The �ags �treated� and �revisit� are
used in the programs to mark the formulas as treated or as to be revisited�

Lists of formulas are represented by simple linked lists	

struct flistType

� formula element�

struct flistType �next�


�

typedef struct flistType �formlist�

���
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The utility module de�nes procedures for making and printing formulas �either
on screen or in a �le�� For example the procedures mkatom� mkNegation� mkCon�
junction and mkNecessarily� to make atomic formulas� negations� conjunctions and
necessitations are de�ned as	

formula mkAtom� char c �

� formula form 
 newForm���

form��type 
 findAtom� c ��

form��an 
 NULL�

form��co 
 NULL�

form��treated 
 	�

return form�




formula mkNegation� formula x �

� formula form 
 newForm���

form��type 
 ����

form��an 
 x�

return form�




formula mkConjunction� formula x� formula y �

� formula form 
 newForm���

form��type 
 ����

form��an 
 x�

form��co 
 y�

return form�




formula mkNecessarily� formula x �

� formula form 
 newForm���

form��type 
 �L��

form��an 
 x�

return form�




The function newForm allocates for a pointer the memory to be used to store the
apointed formula structure� The function findAtom assigns a numeric character to
the type of an atomic formula� This is not really needed for the programs described
in this appendix�

A�� The mkDiag program

A description of themkDiag program can be found in section ���� The programmakes
use of a representation of a Kripke model K and an IpL fragment F to compute the
equivalence classes in the fragment in the theory of the model� Hence two formulas
� and � are equivalent if

K � �� ��

In the program� the IpL fragment F is given by the values of the con�
stants NEG� DNEG� CON� DIS� IMP and MaxMu� corresponding to the connectives
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���������� and the maximum level of nesting of the implication in F � The value
of a connective�constant will be one or zero� depending on whether the corresponding
connective is or is not in F �

The information on the Kripke model K is encoded in the constants
NE� NEM� ALL�� ALLl and in the functions	

eset comp� eset x��

eset neg� eset x��

The constants NE� NEM� ALL� and ALLl all are involved in the representation of
sets of worlds in K� The constants NE and NEM are related	 NE � NEM 
 �� A subset
in K is called an eset �element set� in the program and is represented by an array
of NE integers �r��� to r�NEM��� each a binary encoding of a part of the model K�
For � � i � NEM we have ALL� as an upper bound� � � r�i� � ALL�� For the last
part we have � � r�NEM� � ALLl� In general it will be the case that ALL� � ALL��

With this information comp	s
� the complement of an eset s� can simply be
calculated�

The order in K �the accessibility relation� is encoded in the function neg� com�
puting the complement of the predecessor set as de�ned in de�nition �������� In
section ��� it has been explained how the interior of a set in an IpL model can be
calculated using complements and predecessor sets�

Apart from these procedures and those in the utility module �as described in the
previous section�� the program makes use of the following procedures	

void classTest� char s� unsigned an� unsigned co� unsigned mu ��

unsigned noSet� eset x ��

eset meet� eset x� eset y ��

eset join� eset x� eset y ��

unsigned Inc� eset x� eset y��

void fprintSet� FILE �f� eset x ��

void fprintVal� void ��

The procedure classTest makes a new formula� computes the set of worlds in K
where this formula is forced and tests �using the function noSet� whether or not this
set already exists �in the list of formulas and sets E�� The functions meet and join

compute the meet and join of two sets and Inc	x� y
 checks whether or not the set
x is a subset of y� The procedure fprintSet prints a set �in a readable format� into
a �text� �le�

The result of the program mkdiag is an array E of pairs of sets and formulas
de�ned as	

struct � eset set�

formula form�

unsigned mu�


 E�Dnr��

where mu can be used to calculate the nesting of the implication in the formulas and
Dnr is the maximal number of classes E can contain� The number of classes in E is
denoted by the variable Emax�
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The output of the program is

�� a text �le recording the equivalence classes found and their corresponding sub�
sets in the model�

�� a �le with formulas� Depending on one of the run�time parameters for the
program� either the formulas in Diag�F � or the representatives of the join�
irreducible classes in the diagram are printed in this �le�

�� a �le describing the order of either the diagram or the set of join�irreducible
elements in the diagram �again depending on a run�time parameter��

The last two �les are made by the procedure fprintVal �not reprinted here��
The procedure main below is the main routine in the program mkDiag� Its

listing is followed by the listings of the most important procedures used in main �i�e�
classTest� noSet� meet� join and Inc��

main��

� unsigned i� j� mu�

char c�

DiagramStart 
 	 � NEG�

if � init�� �

� for � mu
�� mu �
 MaxMu� mu�� �

� printf� ���������������n mu
 �d �n��������������n�� mu ��

fprintf� out� ���������������n mu
 �d �n��������������n�� mu ��

for � i
DiagramStart� i �
 Emax� i���

if � E�i��mu 

 mu �

� printf� ���d �� i ��

printForm� E�i��form ��

printf� ��n� ��

fprintf�out� ���d �� i ��

fprintForm� out� E�i��form ��

fprintSet� out� E�i��set ��




for � j 
 �� j �
 Emax� j�� �

� if � NEG �� E�j��mu 

 mu � 	 � classTest����� j� i� mu��

if � DNEG �� E�j��mu 

 mu � � � classTest��d�� j� i� mu��

for � i 
 �� i � j �� Emax � Dnr� i�� �

� if � E�j��mu 

 mu �

� if � �Inc�E�i��set� E�j��set� �

� if � IMP �� E�i��mu � mu � classTest� ���� i� j� mu ��

if � �Inc�E�j��set� E�i��set� �

� if � CON � classTest� ���� i� j� mu ��

if � DIS � classTest� ���� i� j� mu ��










else

� if � IMP �

� if � E�i��mu 

 mu�	 �� �Inc�E�i��set� E�j��set��

classTest� ���� i� j� mu ��

if � �Inc�E�j��set� E�i��set�

�� � E�i��mu 

 mu �� E�j��mu 

 mu�	 � �



A��� The mkDiag program ���

classTest� ���� j� i� mu ��
















fclose�out��

fprintVal���







void classTest� char s� unsigned an� unsigned co� unsigned mu �

� unsigned counter� i� n 
 Emax � 	�

eset nset�

void �oldheaptop 
 getHeapTop���

�� may be the form made is not needed� so remember HeapTop ��

unsigned buz 
 	� more� less�

formula form� fan 
 E�an��form� fco 
 E�co��form�

if � n 

 Dnr �

� printf� �there are too much classes� MaxHeap is too small�n� ��

fprintf� out�

�there are too much classes� MaxHeap is too small�n� ��

fclose�out��

exit����




switch � s �

� case ��� � form 
 mkNegation� fan ��

nset 
 neg� E�an��set �� break�

case �d� � form 
 mkNegation�mkNegation� fan � ��

nset 
 neg�neg� E�an��set ��� break�

case ��� � form 
 mkConjunction� fan� fco ��

nset 
 meet� E�an��set� E�co��set �� break�

case ��� � form 
 mkDisjunction� fan� fco ��

nset 
 join� E�an��set� E�co��set �� break�

case ��� � form 
 mkImplication� fan� fco ��

nset 
 neg�comp�join� comp�E�an��set��

E�co��set���� break�




if � noSet�nset� �

� E�n��form 
 form�

E�n��set 
 nset�

E�n��mu 
 mu�

Emax 
 n�

printf� ���d �� n ��

printForm� form ��

printf� ��n� ��

fprintf�out� ���d �� n ��

fprintForm�out� form ��

fprintSet�out� nset ��

fprintf�out� ��n� ��
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else �� we don�t need form anymore ��

setHeapTop� oldheaptop ��




unsigned noSet� eset x �

� unsigned i� j� res
	�

for �i
�� i�NE �� res� i��� res 
 x�r�i� 

 ��

if � res � return E����mu � MaxMu�

res 
 	�

for �i
�� i�NEM �� res� i��� res 
 x�r�i� 

 ALL��

if � res �� x�r�NEM� 

 ALLl � return E�	��mu �
 MaxMu � � � 	�

res 
 ��

for � i
�� i �
 Emax �� �res� i�� �

� res 
 	�

for � j
�� j � NE �� res � j��� res 
 �E�i��set�r�j� 

 x�r�j���




return �res�




eset meet� eset x� eset y �

� eset res�

unsigned i�

for �i
�� i � NE� i��� res�r�i� 
 x�r�i� � y�r�i��

return res�




eset join� eset x� eset y �

� eset res�

unsigned i�

for �i
�� i � NE� i��� res�r�i� 
 x�r�i� � y�r�i��

return res�




unsigned Inc� eset x� eset y�

� unsigned i�

for �i
�� i�NE �� x�r�i� 

 �x�r�i� � y�r�i��� i����

if �i�NE� return ��

else return 	�




A�� A simple CpL tester

In chapter � we calculated the complexity of the algorithm Ctest� For comparison
we specify an algorithm Cval based on truth tables and calculate its complexity�
This algorithm assumes a representation of atoms pi such that calculating i from pi
is simple �i�e� linear in the size of pi��
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For natural numbers i and N � i 
 N means that if N is taken as a binary number
representing some subset S of f�� � � � � n! �g� that i 
 S�

We will assume that the indices of the atoms in a formula to be tested form some
sequence f�� � � � � n! �g�

Global N 	 IN
Cval�A 	 formula� 	 bool

Calculate n the number of atoms in A

N � �
while N � �n and SubV al�A�

N 	� N 
 �
if N � �n then false else true

SubV al�A 	 formula� 	 bool
in case A

pi � if i 
 N then true
else false

�B � if SubV al�B� then false
else true

B � C � if SubV al�B� then SubV al�C�
else false

B � C � if SubV al�B� then true
else SubV al�C�

B�C � if SubV al�C� then true
else if SubV al�C� then false

else true

To calculate Cval��� for some formula � note that	

�� the main part of Cval needs storage for � and three numbers�
�� the number of atoms in � can be calculated in time and space both linear in
j�j�

�� in SubV al the formula is to be split in its principal subformulas� which takes
time in the order of j�j�

�� SubV al needs space to store three formulas�
�� the number of atoms in � is at most j�j and hence there will be at most �j�j

calls to SubV al �which is also an upperbound of the number of items on stack�

Disregarding the small constants this amounts in an upper bound on the time
needed to calculate Cval��� of order j�j��j�j� Likewise the upper bound on the
amount of space needed is of the order ��j�j��j�j�
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A�� The IpLtest program

The IpLtest program is a rather straightforward implementation of the algorithm
IpLtest �and the pseudo�code program Itest� in Chapter ��

Many of the utilities used in this program do exactly what one would expect
them to do�

For example copy does make a copy of a formula and notDisjunct checks whether
or not two formula lists have a common formula� Both putRight and putLeft add
a formula to a formula list� but in the procedure putLeft� if the added formula is
atomic and does not occurs in the list as an already treated formula� the global �ag
LeftChange is set �compare the rule pL� in the de�nition of IpLtest in Chapter ��
Note that we use a variable oldvalue to keep the previous value of LeftChange in
store if needed�

The procedure markRevisit marks the formulas in a list as to be revisited and the
function untreatedFormula takes an untreated formula out of a formula list �taking
value NULL if there is no such formula in the list�� In the same way revisitLeftside

has as its result the list of all formulas marked to be revisited� out of a given formula
list� And the function revisitRightside takes a formula marked to be revisited
out of a formula list �again� with value NULL if there is no such formula in the list��

The main procedure� refutable� has as its input two lists of formulas� left
and right and returns the value zero i� none of the formulas in the list right is a
consequence �in IpL� of the formulas in the list left�

If necessary the program writes error messages to an output �le �for which a
pointer out is used��

�� FUNCTIONS ��

int refutable� formlist left� formlist right �

�formula form� cform�

formlist flist�

int oldval 
 LeftChange� res�

if � notDisjunct� left� right � � res 
 ��

else

� if � form 
 untreatedFormula� right �� form �

� form��treated 
 	�

switch� form��type �

� case ��� � form��revisit 
 	�

res 
 refutable� left� right ��

form��revisit 
 ��

break�

case ��� � res 
 refutable�left� putRight�form��an�right��

� 	

� refutable�left� putRight�form��co�right���

break�

case ��� � res 
 refutable�left�

putRight�form��an�

putRight�form��co� right����

break�

case �
� � res 
 refutable�left�

putRight�



A��� The IpLtest program ���

mkConjunction�

mkImplication�form��an� form��co��

mkImplication�form��co� form��an��

right� ��

break�

case ��� � form��revisit 
 	�

res 
 refutable� left� right ��

form��revisit 
 ��

break�




form��treated 
 ��




else

� if � form 
 untreatedFormula� left �� form �

� form��treated 
 	�

switch� form��type �

� case ��� � form��revisit 
 	�

res 
 refutable�left�

putRight�copy� form��an ��right���

form��revisit 
 ��

break�

case ��� � res 
 refutable�putLeft�form��an�

putLeft�form��co� left��� right��

break�

case ��� � res 
 refutable�putLeft�form��an� left�� right�

� 	

� � LeftChange 
 oldval�

refutable�putLeft�form��co� left�� right�

��

break�

case �
� � res 
 refutable�

putLeft�

mkConjunction�

mkImplication�form��an� form��co��

mkImplication�form��co� form��an���

left��

right ��

break�

case ��� � if � refutable�putLeft�form��co�left�� right� �

res 
 	�

else

� LeftChange 
 oldval�

form��revisit 
 	�

res 
 refutable�left�

putRight�copy� form��an��

right���

form��revisit 
 ��




form��revisit 
 ��

break�




form��treated 
 ��




else
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� flist 
 revisitLeftside� left ��

if � flist �

� LeftChange 
 ��

res 
 refutable� left� right ��

LeftChange 
 	�

markRevisit� flist ��




else

� form 
 revisitRightside� right ��

if � form �

� form��revisit 
 ��

switch� form��type �

� case ��� � if � refutable�putLeft�form��an� left�� NULL� �

� LeftChange 
 oldval�

res 
 refutable�left� right ��




else res 
 ��

break�

case ��� � if � refutable�putLeft�form��an�left��

putRight�form��co�NULL�� �

� LeftChange 
 oldval�

res 
 refutable�left� right��




else res 
 ��

break�




form��revisit 
 	�




else res 
 	�













LeftChange 
 oldval�

return res�




A�� Testers for modal logic

The modal testers described in Chapter � have been implemented in one module�
Depending on the setting of the constants T� K�� S�� L and Grz the module is
compiled as a tester for K� T� K�� L� S�� S� or Grzegorczyk�s logic K�Grz �the
last two not treated in this thesis��

�define T � �� Lp��p ��

�define K� � �� Lp��LLp S� 

 T � K� ��

�define S� � �� S� 

 	 
� S� 

 	 ��

�define L � �� L�Lp��p���Lp� L 

 	 
� K� 

 	 ��

�define Grz � �� L�L�p��Lp���p���p� Grz 

 	 
� K� 

 	 ��

Many of the procedures in the program for the modal testers are the same �at
least in principle� as in the IpLtest program above� Some noteworthy exceptions are
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put� simply adding a formula to a formula list� and the procedures dealing with �lists
of� worlds� Both for worlds and lists of worlds we use pointers	

struct worldType

� formlist wleft�

formlist wright�


�

typedef struct worldType �world�

struct wlistType

� world element�

struct wlistType �next�


�

typedef struct wlistType �worldlist�

The structure of worlds and their r!ole in the algorithm K�test has been explained
in subsection ������

The procedures newWorld and newWorldList allocate memory needed to store
the data of appointed world structures and worldlist structures� To add worlds
to a list of worlds� there is a procedure addWorld and to �nd out whether a given
world is in a given list of worlds� there is a procedure memberworld�

Again� the main procedure for the program for the formula tester�s� is
refutable	left� right� worlds
� returning the value � i� there is a Kripke model
starting with the list of worlds worlds� forcing all the formulas in the list left and
no formula in the list right�

formlist revisitLeftside� formlist x �

� formlist res 
 NULL�

formula an� el�

if � LeftChange�

� while � x �

� el 
 x��element�

if � el��revisit �

� an 
 el��an�

if ��member�an� res�� �� K ��

res 
 add� copy�an�� res ��

�if K� 

 	

if ��member�el� res��

res 
 add� copy�el�� res ��

�endif

�if K� 

 	

else res 
 put�mkPossibly�el�� res��

�endif




x 
 x��next�







return res�
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formula revisitRightside� formlist x �

� formula res 
 NULL�

while � �res �� x �

� if � �x��element���revisit � res 
 x��element�

else x 
 x��next�




return res�




formlist addModal� formula f� formlist x�

� formula g�

formlist l� y�

l 
 x�

y 
 add�f��an� NULL��

while � l �

� g 
 l��element�

if � g��revisit �� g �
 f � y 
 add�g� y��

l 
 l��next�




return y�




int refutable� formlist left� formlist right� worldlist worlds �

� formula form�

cform�

formlist flist�

glist�

int oldval 
 LeftChange�

putback�

res 
 	�

world nwworld�

worldlist nwworlds� �� wlist to debug ��

if � notDisjunct� left� right � � res 
 ��

else

� if � form 
 untreatedFormula� right �� form �

� form��treated 
 	�

switch� form��type �

� case ��� � res 
 refutable� put�form��an� left�� right� worlds ��

break�

case �L� � form��revisit 
 	�

res 
 refutable� left� right� worlds ��

form��revisit 
 ��

break�

case �M� � res 
 refutable�

put� mkNecessarily�mkNegation�form��an��� left ��

right� worlds ��

break�

case ��� � res 
 refutable�left� put�form��an� right�� worlds�

� 	

� refutable�left� put�form��co� right�� worlds��

break�

case ��� � res 
 refutable�left� put�form��an�



A��� Testers for modal logic ���

put�form��co� right��� worlds��

break�

case �
� � res 
 refutable� left� put�

mkConjunction�

mkImplication�

form��an�

form��co��

mkImplication�

form��co�

form��an���

right�� worlds ��

break�

case ��� � res 
 refutable� put�form��an� left��

put�form��co� right�� worlds ��

break�




form��treated 
 ��




else

� if � form 
 untreatedFormula� left �� form �

� form��treated 
 	�

switch� form��type �

� case ��� � res 
 refutable�left� put�copy� form��an �� right�

� worlds��

break�

�if T 

 	

case �L� � LeftChange 
 	�

form��revisit 
 	�

res 
 refutable�put�form��an� left�� right� worlds��

form��revisit 
 ��

break�

�else

case �L� � LeftChange 
 	�

form��revisit 
 	�

res 
 refutable�left� right� worlds��

form��revisit 
 ��

break�

�endif

case �M� � res 
 refutable�

left�

put�mkNecessarily�mkNegation�form��an���

right�� worlds ��

break�

case ��� � res 
 refutable� put�

form��an�

put�form��co� left���

right� worlds ��

break�

case ��� � res 
 refutable� put�form��an� left�� right� worlds �

� 	

� � LeftChange 
 oldval�

refutable� put�form��co� left�� right� worlds ���

break�

case �
� � res 
 refutable� put�
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mkImplication�form��an� form��co��

put�

mkImplication�form��co� form��an��

left���

right� worlds��

break�

case ��� � if � refutable�put�form��co� left�� right� worlds ��

res 
 	�

else

� LeftChange 
 oldval�

�� form��revisit 
 	� ��

res 
 refutable�left� put�copy�form��an�� right��

worlds��




break�




form��treated 
 ��




else

� if �LeftChange�

� form 
 revisitRightside� right ��

if �form�

� form��revisit 
 ��

�if T 

 	

res 
 member�form��an� right��

�� if res then the branch will stay open ��

if ��res�

�

�endif

flist 
 revisitLeftside� left ��

LeftChange 
 ��

glist 
 put�form��an� NULL��

�if S� 

 	

glist 
 addModal�form� right��

�endif

�if L 

 	

if ��member�form� flist�� flist 
 add�copy�form�� flist��

�endif

�if K� 

 � �� L 

 	

res 
 refutable�flist� glist� worlds��

�else

nwworld 
 newWorld���

nwworld��wleft 
 flist�

nwworld��wright 
 glist�

res 
 memberworld�nwworld� worlds��

�� if res then the branch will stay open ��

if ��res�

� nwworlds 
 addWorld�nwworld� worlds��

res 
 refutable�flist� glist� nwworlds��




�endif

�if Grz 

 	

else res 
 ��

�endif
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�if T 

 	




�endif

if �res�

� LeftChange 
 oldval�

res 
 refutable�left� right� worlds��




else res 
 ��

LeftChange 
 	�

form��revisit 
 	�




else res 
 	�




else res 
 	�










LeftChange 
 oldval�

return res�








Appendix B

Output of computer programs

B�� The diagram of the IpL fragment ������

The fragment �����n was treated in subsection ������ The diagram of ������� listed
below� was computed using the exact Kripke model of �������� �compare �gure ���	
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B�� The diagram of H�
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The logic H� was introduced in subsection ������ In the computation of the diagram
of the fragment H�

� the exact model of this fragment was used	
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��	 Figure� The exact model of H�
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Listed are the formulas in H�
� and their valuations in this model�
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B�� The diagram of the fragment IpL�
�

The fragment IpLn
m with restricted nesting of implication was treated in Chapter ��

The diagram of IpL�
�� listed below� was computed using the exact Kripke model of

the fragment �compare �gure ���	
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B�� The exactly provable formulas in L�
�

The exactly provable formulas in L�
� where computed using the exact model	
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An explanation of the calculation of the list below can be found in section ���
For each formula the corresponding set of �� ��types is given on the right� Note

that for the bracketing the priority of � is higher than � and �� Likewise � has a
higher priority than ��
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Appendix C

Table of fragments in IpL

For each fragment F of IpL in the table below� the number of equivalence classes
of F �� F �� F � and F � have been calculated �if possible�� In some cases only a lower
bound of the number of elements in the diagram could be given�
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Most of the numbers for F �� F � and F � in the tables above can also be found
in �JHR ���� Exceptions are jDiag��������j and Diag�j��������j� which have been
calculated by G� Renardel� and jDiag�����������j which has been computed by one
of the programs of the author�

The number G �which approximately equals �	 ��� and has � ��� digits� was cal�
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Samenvatting

Dit proefschrift doet verslag van een onderzoek naar de semantiek van de
intu��tionistische en de modale propositielogica� Dit onderzoek is voor een belangrijk
deel ge��nspireerd en mogelijk gemaakt door het experimenteren met computerpro�
gramma�s�

De oudste van deze computerprogramma�s zijn zogenaamde stellingtesters� pro�
gramma�s waarmee kan worden uitgerekend of uit een bewering A de bewering B

logisch volgt� Daarbij wordt alleen gebruik gemaakt van de vorm van de beweringen
A en B� De computer hoeft dan geen verstand te hebben van sterrenkunde� om uit
de bewering �De Maan is niet van groene kaas� af te leiden	 �Als de Maan van groene
kaas is� dan draait Venus om de Aarde�� In Hoofdstuk � worden diverse programma�s
beschreven om� voor verschillende logische systemen� te berekenen of B uit A volgt�
De belangrijkste onderdelen van deze programma�s zijn opgenomen in Appendix A�

Door de formele taal van de propositielogica� waarin de beweringen kunnen wor�
den geformuleerd� voldoende te beperken krijgt men een zogenaamd fragment waarin
slechts eindig veel logisch verschillende beweringen mogelijk zijn� Voorbeelden van
de beperkingen die men kan opleggen zijn het toelaten van slechts eindig veel basis�
beweringen en het verbieden van een of meerdere van de connectieven �voegwoorden�
uit de rij �en� ���� �of� ���� �als � � � dan� ���� �niet� ���� �mogelijk� �
� en �noodza�
kelijk� ���� Daarbij maakt het ook nogal wat verschil welke logische a�eidingsregels
men in het fragment toelaat� Zo heeft ����������CpL� het fragment uit de klassieke
propositielogica logica met precies "e"en basisbewering en met als connectieven �����
en �� vier echt verschillende beweringen �A� �A� A � �A en A�A�� Maar het frag�
ment ����������IpL in de intu��tionistische propositielogica� IpL� telt oneindig veel
verschillende beweringen� Dit geldt voor alle fragmenten in IpL die zowel � als �
bevatten�

Als er maar eindig veel verschillende beweringen in een fragment zijn� kunnen we�
in principe� alle echt verschillende beweringen uit het fragment berekenen� met be�
hulp van een computerprogramma dat kan uitmaken of een bewering A gelijkwaardig
is met de bewering B� Ook de onderlinge relaties tussen deze beweringen �wat volgt
er uit wat� kunnen we op die manier in kaart brengen� Zo�n kaart van een fragment�

���
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met daarop alle beweringen uit het fragment en hun onderlinge relaties� noemen we
in dit proefschrift een diagram�

Hieronder is een voorbeeld van zo�n diagram getekend� in dit geval van het frag�
ment �������� in de intu��tionistische propositielogica� met basisbewering p	
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In dit voorbeeld kan het diagram nog met de hand worden berekend� Voor di�
agrammen met meer dan twintig beweringen is dat al haast niet meer doenlijk
en moet bijvoorbeeld een beroep gedaan worden op een van de eerder genoemde
stellingtesters� Uit de eerste experimenten met het berekenen van diagrammen met
deze stellingtesters� eind jaren zeventig en begin jaren tachtig� bleek al snel dat zo
alleen �kleine� fragmenten �met hooguit zo�n honderd echt verschillende beweringen�
in redelijke tijd in kaart te brengen zijn�

Exacte modellen

Gelukkig bestaat er ook een alternatief voor de stellingtesters� namelijk pro�
gramma�s die gebruik maken van exacte Kripke�modellen� Kripke�modellen zijn in
de intu��tionistische en modale logica bekende hulpmiddelen om bijvoorbeeld situaties
�en hun onderlinge relaties� mee te beschrijven waarin een bepaalde bewering A geldt
en de bewering B juist niet� Dat geeft dan een tegenvoorbeeld tegen de bewering
dat B uit A volgt�

Een exact Kripke�model van een fragment beschrijft precies alle tegenvoorbeelden
die we nodig hebben om voor een fragment uit te maken voor welke beweringen geldt
dat B uit A volgt� Elke bewering uit het fragment heeft in het exacte Kripke�model
een gebied waar deze bewering geldig is� Als het gebied waar A geldig bevat is in
het gebied waar B geldt� dan is B blijkbaar een logisch gevolg van A�

Het berekenen van diagrammen van fragmenten met behulp van exacte modellen
gaat vele malen sneller dan met behulp van de eerder genoemde stellingtesters� Lang
niet alle fragmenten hebben echter een exact Kripke�model �de situatie in IpL is
weergegeven in �guur � in hoofdstuk ��� Daar staat tegenover dat we veel fragmenten
kunnen beschouwen als onderdeel van een fragment dat wel een exact model heeft�
Voorbeelden van de berekeningen van diagrammen met behulp van exacte modellen
zijn opgenomen in Appendix B�
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Hoofdstuk � van dit proefschrift is gewijd aan de berekening van de diagrammen
van de eindige fragmenten in de intu��tionistische propositie logica� Daarbij wordt
niet alleen gebruik gemaakt van exacte Kripke�modellen� bij de fragmenten die zich
daarvoor lenen wordt ook aangegeven hoe deze exacte modellen kunnen worden
geconstrueerd� Zoals uit de tabel in Appendix C blijkt worden de diagrammen van
eindige fragmenten van IpL al bij een klein aantal basisbeweringen in het algemeen
al snel astronomisch groot� Het werkelijk laten berekenen van de formules die bij de
verschillende beweringen uit de fragmenten horen is in dat geval praktisch uitgesloten
en het inzicht in de structuur van de exacte Kripke�modellen is dan vooral van
theoretisch belang�

In de modale logica levert� ook met een eindig aantal basisbeweringen� het
beperken van de gebruikte voegwoorden in het algemeen nog geen eindige frag�
menten op� Een bekende ingreep om toch te komen tot eindige diagrammen is
het beperken van de mate waarin het �mogelijk� en �noodzakelijk� in een bewering
gestapeld voorkomen� Bij een grens van "e"en zou bijvoorbeeld de bewering ��A �het
is noodzakelijk dat het noodzakelijk is dat A�� niet meer tot het fragment horen�

In Hoofdstuk � van dit proefschrift wordt iets soortgelijks gedaan voor de
intu��tionistische propositielogica� Door het beperken van de stapeling van � leidt
het samenspel van �of� ��� en �als � � � dan� ��� ook in IpL niet langer tot oneindig
veel verschillende beweringen� Aangetoond wordt hoe voor deze fragmenten met
beperkte stapeling van de implicatie exacte Kripke�modellen geconstrueerd kunnen
worden�

Semantische typen

Om de exacte modellen voor fragmenten van propositielogica�s te kunnen bereke�
nen is nader onderzocht welke situaties en relaties nodig zijn om alle gewenste tegen�
voorbeelden in een Kripke�model te kunnen weergeven� Wat maakt� met andere
woorden� een bewering geldig in een bepaalde situatie in een Kripke�model* Het
antwoord op deze vraag hangt af van de logica en van het fragment binnen die logica
waarmee we werken� In het algemeen kunnen we een volledig beeld geven van een
situatie met behulp van een opsomming van de basisbeweringen die er gelden� samen
met een overzicht van de andere situaties die vanuit deze situatie �denkbaar� zijn��
De combinatie van deze opsommingen noemen we een semantisch type�

Situaties die voor een bepaald fragment van een propositielogica hetzelfde se�
mantische type hebben� gedragen zich logisch gezien eender en er gelden dezelfde
beweringen uit het fragment� Het opsporen van de semantische typen voor een
bepaald fragment blijkt een heel geschikte methode om een Kripke�model te maken
waarin alle voor een fragment nodige tegenvoorbeelden voorhanden zijn� Vaak is
zo�n model te groot om een mooi exact Kripke�model te zijn� maar als basis voor een
computerprogramma om een diagram mee te berekenen voldoet het prima�

�Wat �denkbaar� is� welke relaties de situaties in een model kunnen hebben� hangt van de logica
in kwestie af�
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In Hoofdstuk � van dit proefschrift wordt de theorie over de semantische typen
uiteengezet en in verband gebracht met een aantal reeds bekende resultaten over
modellen en beweringen uit de klassieke� de intu��tionistische en de modale proposi�
tielogica�

Formele rekenkunde

In Hoofdstuk � van het proefschrift wordt de theorie van de semantische typen
toegepast op een probleem uit de formele rekenkunde� de Peano�rekenkunde PA� In
de rekenkundige taal zelf kunnen we de bewering formuleren dat een rekenkundige
zin bewijsbaar is� Als A een rekenkundige bewering is� dan wordt de rekenkundige
bewering �bewijsbaar A� ook wel geschreven als �A� De regels die voor deze vorm
van �bewijsbaarheid� gelden vormen een bijzondere modale propositielogica� de be�
wijsbaarheidslogica L�

Nemen we voor een basisbewering p in de bewijsbaarheidslogica een bepaalde
rekenkundige zin �bijvoorbeeld �� heeft �� verschillende delers��� dan noemen we
de verzameling beweringen die we kunnen maken in het fragment van L met "e"en
basisbewering en die geldig zijn in de rekenkunde als we voor de basisbewering een
rekenkundige zin nemen� de L��theorie van die rekenkundige zin�

Een L��theorie heeft als axioma de bewering A� als A zelf een bewering uit de
theorie is en alle andere beweringen in de theorie logische gevolgen zijn van A�

Zelfs bij een beperking van het fragment van L waarbij alleen beweringen worden
toelaten waarin � maar "e"en keer gestapeld mag voorkomen �de stapelgrens in dit
fragment is dus ��� was tot voor kort niet bekend hoeveel verschillende axioma�s voor
L�
��theorie�en er zijn�
Zoals in Hoofdstuk � wordt aangetoond �en uiteindelijk met de computer kon

worden berekend� zijn er precies �� verschillende axioma�s voor dit soort theorie�en�

Net als bij het berekenen van het aantal verschillende beweringen in de eindige
fragmenten van IpL is zo�n getal als uitkomst uiteindelijk niet het belangrijkste�
Wat telt is dat we zoveel inzicht hebben gekregen in de structuur van fragmenten
van propositielogica�s dat we computerprogramma�s kunnen maken om dergelijke
berekeningen uit te voeren�
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