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Abstract

Two combinatorial statistics, the pyramid weight and the number of
exterior pairs, are investigated on the set of Dyck paths. Explicit for-
mulae are given for the generating functions of Dyck paths of prescribed
pyramid weight and prescribed number of exterior pairs. The proofs are
combinatorial and rely on the method of g-grammars as well as on two
new g-analogues of the Catalan numbers derived from statistics on non-
crossing partitions. Connections with the combinatorics of Motzkin paths
are pointed out.

1 Introduction

The subject matter of this paper falls in the area of enumeration according
to combinatorial statistics and g-analogues. In this setting, given a set X
of combinatorial objects, one considers a function s: X — N and the series
F(X59):=> ,cx ¢*®). F(X;q) is the generating function of the objects in X
enumerated according to the value of the statistic s. When X is finite, F'(X;q)
is referred to as a g-analogue of the integer | X| = F(X;1). In an analogous
manner one may consider several statistics on X simultaneously and their join-
t distribution, thus obtaining a generating function in several variables and a
“multi-¢” -analogue.

One motivation for the study of g-analogues (or multi-g-analogues) is that
they provide a refined enumeration, according to natural statistics of combina-
torial interest. The relationship between different statistics — revealed either
by the combinatorics of the objects involved, or by the generating functions —
and relations of combinatorial statistics with problems in other fields (such as
analysis or physics) contribute to the general interest in g-enumeration.
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There is an extensive literature on g-enumeration of permutations, integer
partitions, set partitions, lattice paths, and many other combinatorial objects.
This includes a number of ¢- and multi-g-analogues of the Catalan numbers,
Cc, = #(27?)’ obtained from statistics defined on various sets of the Catalan
family (that is, sets whose cardinalities are given by the numbers in the Cata-
lan sequence 1,2,5,14,42,132,...). By way of a limited number of examples of
previous work, we mention the enumeration of binary trees [27]; planar maps
[7], [8]; skew Ferrers diagrams counted according to their perimeter [19], area
[11], area and number of columns [14]; Dyck words counted according to inver-
sions [4], [5], [12], and according to major index [1], [16]; staircase polyominoes
counted according to area and number of columns [12].

In this paper we investigate two related statistics on the set of Dyck paths,
which belongs to the Catalan family. These statistics are called the pyramid
weight and the number of exterior pairs, and our main results, Theorems 2.3,
3.1 and 4.1, provide explicit formulae for the joint distributions of the path
length and each of these two statistics. Our results are obtained through a
combination of enumerative methods: Schiitzenberger’s DSV method [21], its
recent g-analogue called the method of q-grammars, due to M. Delest and J.M.
Fédou [9], and new g-analogues of the Catalan numbers resulting from statistics
on non-crossing partitions.

Our results settle in the affirmative two conjectures formulated in [12]. As
might be expected, the present work has connections with a number of others
which feature the Catalan numbers or the method of g-grammars. Very briefly,
our results can be reformulated in the language of Motzkin paths which play a
central role in Viennot’s powerful combinatorial theory of moments of orthogo-
nal polynomials [26], and the questions which we address stem from an overview
[12] of the applicability of the method of g-grammars to the distribution of a va-
riety of statistics on Dyck paths, some of which coincide with previously studied
g-analogues of Catalan numbers [4], [5], [16].

This paper is organized as follows. Section 2 contains the definitions and
notation used throughout the paper, together with a brief background on the
key tools used in our proofs: the method of g-grammars and the notion of
non-crossing partition. This section also includes Theorem 2.3, whose proof il-
lustrates the usefulness of the method of g-grammars and constitutes the point
of departure for later results. Sections 3 and 4 focus on the main results, The-
orems 3.1 and 4.1, and several combinatorial consequences derived from these.

2 Definitions, notation, and preliminary results

2.1 Dyck paths, pyramid weight, and exterior pairs

A Dyck path is a path in the first quadrant, which begins at the origin, ends at
(2n,0), and consists of steps (+1, +1) (North-East) and (41, —1) (South-East).
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Figure 2.1: Example of a Dyck path and its associated Dyck word

We will refer to n as the length of the path, denoted I(p).

Let D be the set of all Dyck paths and D; the set of Dyck paths whose length
is I. It is well-known (see, for example, [6]) that |D;| = C; = H%(%l), the [th
Catalan number, and thus
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Among the many sets of combinatorial objects whose cardinalities are also given
by the Catalan numbers, the most classical example is that of complete paren-
thesis systems [6]. North-East and South-East steps in a Dyck path correspond
to left and right parentheses, respectively. Equivalently, we may encode each
North-East step by a letter  and each South-East step by a letter Z, thus ob-
taining the frequently used encoding of Dyck paths by Dyck words. Figure 2.1
shows an example of a Dyck path and its associated Dyck word. In the sequel,
we will at times use interchangeably a Dyck path p and its Dyck word w. If w
is a word on the alphabet {z,Z}, the symbol |w|, (Jw|z, respectively) stands for
the number of occurrences of the letter z (Z, respectively) in w. Obviously, if p
is a Dyck path with associated Dyck word w, then |w|, = |w|z = I(p).

A non-empty Dyck word w is called primitive if |w'|, > |w'|z for every fac-
torization w = w'w” with w' and w"” non-empty. In terms of paths, primitivity
means that the only intersections of the path with the x-axis are the initial and
final points of the path. The notion of primitive Dyck path is helpful in estab-
lishing grammar rules for the formal language of Dyck words, which permit —in
turn — the derivation of generating functions. More on this will appear in our
discussion of the DSV method and subsequent sections.

We will be interested in two statistics on Dyck paths, whose definitions
require the notion of pyramid. This was introduced and used by Vauchaussade
de Chaumont and Viennot [25] to solve an enumeration problem in molecular
biology. It will be obvious that this is a geometrically natural statistic for Dyck
paths, though its definition is most conveniently stated in terms of Dyck words.

Definitions 2.1 A pyramid in a Dyck word is a factor of the form z"z". We



Figure 2.2: Maximal pyramids and exterior pairs in a Dyck path

refer to h as the height of the pyramid.

A pyramid in a Dyck word w is maximal if, as a factor in w, it is not immediately
preceded by an x and immediately followed by an T.

The pyramid weight of a Dyck path p is the sum of the heights of its maximal
pyramids, and is denoted P(p).

Definitions 2.2 An exterior pair in p is a pair consisting of an x and its match-
ing T (when viewed as parentheses) which do not belong in any pyramid. The
number of exterior pairs of a Dyck path p is denoted by E(p).

Clearly, the sum of P(p) and E(p) equals the length of the path p. Figure
2.2 illustrates the maximal pyramids and exterior pairs in a Dyck path for which
I(p) =8, P(p) =6 and E(p) = 2.

The notion of pyramid can be viewed in a different context. If we regard
x and Z as inverse elements in a group, then a Dyck word w is equal to the
identity. Finding and eliminating the maximal pyramids constitutes then one
stage in the reduction of w to the identity. The resulting shorter word is Dyck
as well, and corresponds to the path obtained by erasing the plateaux created
by the elimination of maximal pyramids from the path of w. Vauchaussade and
Viennot [25] defined the “order of a Dyck word” w as the number of stages
required for its complete simplification, a combinatorial statistic related to the
biologists’ notion of order of a secondary RNA structure. In [25], Dyck words are
enumerated according to the “order” statistic giving rise to Strahler numbers,
and their generating function is expressed in terms of Chebyshev polynomials of
the second kind. The distribution of the number of exterior pairs is expressible
in terms of Chebyshev polynomials as well, in a manner which appears in [12].
We include a brief discussion of this connection with Chebyshev polynomials
following the proof of Lemma 4.3.

In yet another setting, pyramids and pyramid weight appear in Zeilberger’s
article [29]. A maximal pyramid in a Dyck word corresponds bijectively to a
maximal hanging branch in an ordered tree. In fact, the set of Dyck words of
length | and pyramid weight & is in bijective correspondence with the set of
ordered trees on [ vertices and in which the sum of the lengths of the maximal
hanging branches is k.



Based on the pyramid weight and number of exterior pairs, we have two
refinements of the enumeration of Dyck paths:

F(g,t):= > ¢"PH® and G(g,t):= Y PP @),

pED peD

Our goal is to establish explicit formulae for the generating functions of Dyck
paths counted according to length for fixed pyramid weight and, in turn, fixed
number of exterior pairs. That is, we aim to find explicit expressions for the
coefficients of ¢* in F(q,t) and G(q,t),

fe®):=>_|{p € Di: P(p) = k}|t'

1>0

and

ge():=>_ |{p € Di: E(p) = k}|¢'.

>0

These are the generating functions for the sequences of numbers in the columns
of the tables in Figures 2.3 and 2.4.

We will take advantage of explicit formulae for F(q, t) and G(q,t) which were
obtained in [12] through an application of the method of ¢-grammars. In the
interest of self-containment, these are presented in the next subsection.

2.2 The DSV and g-grammar methods

The DSV method, introduced by M.P. Schiitzenberger [21], uses theoretical
computer science notions related to algebraic or context-free languages. Let
X = {x1,22,...,2,} be an alphabet and X* be the free monoid generated by
X; thus, X* is the set of all finite-length words over X, including the empty
word. A language over the alphabet X is a subset L of X*. The generating func-
tion in non-commutative variables of the language L, denoted L, is the formal
sum of all words in L,
L= Z w.

weL

Let a be the homomorphism which permutes the letters in X. Then £ = a(L) is
the generating function of the language L, with the words enumerated according
to their length,

_ L S S 5 i
L(x1,X2,...,2,) = E Nigsigsoin L1 TS L X0

i1y02,.eyin >0

where A;, 4,,...s, is the number of words in L consisting of i; letters x1, i» letters
Za, ..., i letters . The DSV method allows the derivation of this generating
function starting from an unambiguous grammar for L, if L is context-free.



Consider the language D of Dyck words, which provides a simple preliminary
illustration of the DSV method. The language D is generated by the context-free
grammar

D — e+2D3D,

where € is the empty word, and which gives in a sense a recursive definition
of the language: every word is constructible by successive applications of the
grammar rules. For example, the word xZzzZZ is generated as follows:

D — xDzD — 22D — zzxDxD — zzxx Dz DD
— zZxxzDEZD — xTrxxZxD — cTraxIT.
Since each word can be derived in only one way, the grammar is unambiguous.

From the grammar we deduce an equation (in general, a system of equations)
for the generating function in noncommutative variables, D, of the language D:

D=1+2zDzD.
Hence, the generating function D of the language is a solution of
D(z,7) = 1 + 27D?.
If we let d(t): = D(t, 1), then
d(t) = 1+ td?

and we obtain
1—+/1—4t
2t

whose expansion around ¢ = 0 gives the Catalan numbers as coefficients.

The DSV method featured in Cori’s enumeration of planar maps [7], and
served to solve a number of combinatorial problems (see, e.g., [25] [11]). Viennot
presents in [27] an overview of applications of the DSV method as of 1985, and
a survey of more recent results on the enumeration of polyominoes in [28].

d(t) =

The method of g-grammars, formalized by Delest et Fédou [9] [10], comes
into play when one wants to enumerate the words of a context-free language L
according to length and a second combinatorial statistic.

A g-grammar is defined in terms of the notion of attribute, introduced by
Knuth [17]. To each word w in a context-free language L, we associate a mono-
mial o(w) € (X U {q})* in which the number of occurrences of g encodes the
value of a combinatorial statistic of interest on L. For example, let L = {a, b}*,
where we consider a < b, and the following problem: enumerate the words in L
according to length and the number of inversions. An inversion is a subword ba
and, for instance, the word w = ababbab has 4 inversions.



We can proceed by defining the unambiguous grammar L — € + aL + bL
which generates L, and
ple) =1
plaw) = ap(w)
p(bw) = bglep(w).
Thus, p(w) = wqg™ (@) With a and b playing the role of variables or alphabet
elements clear from the context, we define the ¢g-generating function

l(q, a, b) = Z a|w|ab\W\bqinv(w) )
welL

It is shown in [10] that from the grammar for L and ¢, we can obtain the
equation

whence
I( b) = 1 +Ll( b)
Q7a7 _1_a 1_a Q7aq7bn
=2 T (e —aP) (O a)

We can then obtain fi(q,t):= Il(q,t,t), the generating function of the words
in L counted by length and number of inversions. One easily recognizes that
fr(g,t) is the generating function for Ferrers diagrams counted by number of
rows and number of cells (details appear in [10]).

With the aid of the method of g-grammars, Fédou [14], [15] carried out the
enumeration of certain polyominoes in terms of g-analogues of Bessel functions,
while Bousquet-Mélou [2], [3] solved a previously open problem in the enumer-
ation of convex polyominoes.

We now turn to the following Theorem which is the starting point of our
subsequent results. Its proof uses the method of g-grammars.

Theorem 2.3 Let F' = F(q,t) be the generating function for Dyck paths count-
ed according to the pyramid weight and length, F(q,t) = ZpeD gF@®) | Then
F(q,t) satisfies the equation

t(1 —tq)F? — (1 +t —2tq)F + (1 — tq) = 0,

hence,

Cl+t—2qt—/(1—-4t)(1—qt)? +t(1—q)(2 +t — 3qt)
Fla.t) = 2t(1 — qt) '

If G(q,t) is the generating function for Dyck paths counted according to the
number of exterior pairs and length, then we also have
C l4qgt—2t— /(1 —4gt)(1 — )2 + t(q — 1)(2 + qt — 3t)

Glg,t) = 2t (1D :




Pwylo|1]2] 3| 4] 5| 6 7 8 9 | 10
I(w)

0 1

1 011

2 010]2

3 0j0|1] 4

4 01015 8

5 0101} 7 18 16

6 01019 34 56 32

7 0|0 (1]11 | 55 | 138 | 160 64

8 010 (1]13| 8 | 275 | 500 432 128

9 00| 1] 15| 112 | 481 | 1205 | 1672 | 1120 | 256

10 0|01 |17 | 148 | 770 | 2471 | 4797 | 5264 | 2816 | 512

Figure 2.3: Enumeration of Dyck paths according to length and pyramid weight

Ew) | 0 | 1 2 3 4 | 5|6 |7]8
I(w)

0 1

1 1

2 2

3 4 1

4 8 5 1

5 16 18 7 1

6 32 56 34 9 1

7 64 160 138 55 11 1

8 128 | 432 500 275 81 13 1

9 256 | 1120 | 1672 | 1205 | 481 112 15 1

10 512 | 2816 | 5264 | 4797 | 2471 | 770 | 148 | 17 | 1

Figure 2.4: Enumeration of Dyck paths according to length and number of
exterior pairs



Proof. To prove this result, we begin with a g-grammar which will lead to the
generating function F(q,t) = Y ., ¢"@ ') of Dyck paths counted by pyramid
weight and length.

To this end we consider four interrelated formal languages over the alphabet
{z,Z}: D, the language of all Dyck words; D* = D — {¢}, the language of all
nonempty Dyck words; IT: = {z"z": h > 0}, the language of nonempty pyramids;
and N:= DT — II, the language of all nonempty Dyck words which are not
pyramids.

With this notation, we have the following unambiguous algebraic grammar
which generates the Dyck words:

D s e+ Dt

Dt 511+ N

N — zNzD + 11Dt
II — z% + «IlZ.

We now define the mapping ¢ on Dyck words as ¢(w) = ¢* if w has pyramid
weight P(w) = k. Thus,

ple) =1

p(zuzv) = p(u)p(v) if we N,ve D
p(uv) = p(u)p(v) if well,ve Dt
p(er) =4

p(zuz) = qp(u) if well

With the aid of the resulting g-grammar which generates the Dyck language
with the pyramid weight as an attribute, we obtain relations among the gener-
ating functions Fp, Fp+, Fi1, and Fiy of the words in the languages D, DT, II,
and N, respectively. Each of these generating functions is a function of three
variables, «,Z,q, and a Dyck word w contributes the monomial wgP(®). We
have:

FD = 1+FD+
Fp+ =Fn+ Fyn

= _ _xz
Iy = z3q + xTqFy =121

_ zZqF 4+
T (I-zzq)(l—xz—xTFp4)"

Fny =x2ZFNFp + FuFp+
Consequently,

TITq xZqFp+

T 1-ziq + (1 —zzq)(1 — xx — xTFp+)
and the desired formula follows from
2z(1 — z2q)F}y — (1 — 22)(1 — 222q) Fp+ + 27q(1 — 27) = 0

by using Fp+ = Fp — 1 and setting x = t, Z = 1 in Fp(z,Z) to obtain F(q,t)
as claimed.



Figure 2.5: The graphical representation of the non-crossing partition
158/23/4/67

The formula for G(q,t) follows from the remark that for each Dyck path
p, we have P(p) + E(p) = I(p). This implies that G(q,t) = F(q !, qt), so the
formula for G(g,t) follows. g

2.3 Non-crossing partitions

Our formulae for fi(t) and gi(¢t) will be proved combinatorially, using non-
crossing partitions.

A partition of the set [n]:= {1,2,...,n} is, as usual, a collection of non-
empty, pairwise disjoint subsets B; called blocks, whose union is [n]. We can
write a partition into k blocks as B;/Bs/ ... /By, with the blocks indexed in
increasing order of their minima.

We will be interested in partitions which enjoy an additional property.

Definition 2.4 A partition of [n] is called non-crossing if for every four ele-
ments 1 < a <b<c<d<n, the following condition is satisfied: if a and c lie
in the same block, and b and d lie in the same block, then all four elements lie
in the same block.

For example, the partition 1 58 /23 /4 / 6 7 of [8] is non-crossing, while
in the partition 158 / 2 3 /4 6 7 the blocks By and Bj cross.

It is often convenient to represent a non-crossing partition by a diagram such
as in Figure 2.5, in which the integers 1 through n are placed as on the real axis
and two successive elements of the same block are joined by and arc which runs
above the axis. The non-crossing property is then reflected in the fact that such
a representation is possible with no crossing between arcs.

The set NC(n) of all non-crossing partitions of [n] has cardinality C,,. Let us
remark that NC(n) has been investigated as a partially ordered set in [13], [18],
[23], and that g-analogues of Catalan and Narayana numbers were obtained from
set-partition statistics [22]. Non-crossing partitions arise as well in the context
of hypermaps, as maps with one face having genus zero [7].

In the proofs of our main results, we will use non-crossing partitions as a
convenient alternate combinatorial model for the Catalan numbers. The non-
crossing partitions will be suitably weighted and, on one occasion, colored ac-
cording to certain rules. To facilitate the exposition, we will refer to blocks
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Figure 2.6: A non crossing partition with the “filler” points indicated as white
dots

whose cardinality is 1 as singletons, and we call trivial the partition all of whose
blocks are singletons. The following additional terminology will be used in the
proof of Lemma 3.3.

Definition 2.5 Let m € NC(n), n > 1. A point i € {2,3,...,n} is called a
filler of 7 if either (i) i — 1 and i are in the same block and i is the largest
element of its block, or (ii) i forms a singleton block and i — 1 is not the largest
element in its block.

For example, if 7 = 1 6 11 12 13/2/3/4 5/7 8 10/9, then m has 4 fillers,
namely 2, 5,9, 13, as shown in Figure 2.6

3 Dyck words counted according to the pyramid
weight

This section is devoted to the derivation of an explicit formula for fi(t), followed
by consequences of the result and its method of proof.

Theorem 3.1 Let fi(t) be the generating function for Dyck paths of pyramid
weight k, counted according to their length. Then fo(t) =1 and

k 1k , (1Y (i
f,g(t):(l_tt),H ! (lt ) +Z(_1)a—1M<k j 1>Ck_j_1

- t
Jj>1
if k> 1.

The proof will be carried out in two stages, presented in lemmas 3.2 and
3.3. The first lemma establishes, by means of the DSV method, that the series
fr(t) is a rational function and gives the recurrence relation whose solution
is the polynomial Py (t):= fi(t)(1 — t)*~1/t*. The second lemma establishes
the desired formula for Pj(t) through a combinatorial proof resorting to an
interpretation of Py () as the enumerator of weighted non-crossing partitions.

For simplicity in notation we will suppress, on occasion, the argument ¢ of
the functions f; and Pg.



P(t)= 1

P(t)= 2 —t

P(t)= 4 -3t +t2

P(ty= 8 —6t  +4? —t3

Ps(t)= 16 =8 +10t2 —53  +t!

Ps(t) = 32 +2062 —15¢2 46t P
Pr(t)= 64 +48t +40t> -35t> 421t —7t5  +16
(t)

Py(t) = 128 4224t +112t2 —70t3 +56t* —28t5 486 —¢7
Figure 3.7: Table of the polynomials Py(t) for 1 <k <8

Lemma 3.2

fo=1

tk
fi=

(1 —t)k-1

where Py, is the polynomial given by the recurrence relation

P, if k>1,

P =1
k—1 )
Pe=(1-t"1"+> (1 =t)'Po—i +tPPpy) if k> 1

i=1

Proof. 1t is easy to formulate rules for an unambiguous context-free grammar
generating the formal language consisting of the Dyck words of pyramid weight
k. We have already described such a grammar in the Subsection 2.2, but here
it is more convenient to formulate grammar rules invoking the primitive Dyck
words rather than pyramid words as was done earlier. From this grammar one
then obtains, by the DSV method, the following system of equations

fo=1
k-1

fk:Ek‘f‘ZEifkfi if k>1
i=1
Ep=t" +t(fr —t*) if k>1,

where Ej(t) is the generating function for primitive Dyck paths of pyramid
weight k, counted by length. The reader will recognize the source of these
equations: the second equation describes the Dyck paths of pyramid weight
k > 0 via their unique factorization p = p'p” with p’ being the maximal left
primitive factor of p, and uses the observation that P(p) = P(p') + P(p");
the third equation comes from separating the path which is one single pyramid
from the other primitive paths under considerations and which are in bijective
correspondence with arbitrary paths of length one unit less, via the pyramid

12



weight preserving addition of an initial North-East step and a final South-East
step.
The substitution of the third equation in the second one leads to

fo=1
(L—t)kt

T fi =@ -tk

k—1
(1 _ t)k—l (1 _ t)k_2 )
+ E [775’“4 i+ = fifw—i] if k>1,
i=1

and the desired conclusion now follows by induction on k. O

The proof of Theorem 3.1 will be completed by the next lemma.

Lemma 3.3 For every k > 0, the polynomial Py (t) is given by the formula

P(t) = ﬂ + Z (_l)j—lﬂ (k _j: - 1) Ch_j_1.

t . t
jz1

Proof. The plan of the proof is the following: first we will give a combinatorial
interpretation of the claimed formula as the enumerator of non-crossing parti-
tions weighted by a certain weight function; then we will prove, with the aid of
this interpretation, that the formula satisfies the same recurrence as Py (t) was

shown to satisfy in Lemma 3.2.
Let

_(1—pk (1=t [k—i—
Pk*(t)i:i1 (lt 2 +Z(—1)]_171 ) <k j 1>Ck—j—1

: t
izl
and define a weight function on NC'(k — 1) as follows:

OO pr =172/ k-1
w(r):= ; 2] [k =1;
tm(M=1 " otherwise,
where m(m) is the number of “fillers” of m (recall Definition 2.5 from Section
2). For example, if 7 =1 6 11 12 13/2/3/4 5/7 8 10/9, then m(w) = 4, as
illustrated after the definition 2.5, and w(7w) = #3.

We claim that
Prty= Y wn).
TENC(k—1)

To prove our claim, notice that the sum in the expression defining P} (t)
lends itself naturally to the following preliminary combinatorial interpretation:
starting from an arbitrary non-crossing partition on k — j — 1 elements (counted
by the Catalan number), we construct a non-crossing partition on [k — 1] by

13



inserting j additional points in any of (k_;:_l) ways. We interpret this bino-
mial coefficient as the number of insertions of the j points so that each new
point follows immediately after a point of the original partition on k — j — 1
points. Each of the j additional points will become a “filler” according to the
following rule: if a new point is added immediately after the largest element
of a block, then this new point is adjoined to that block; otherwise, the new
point constitutes a singleton block. This produces a non-crossing partition on
[k — 1] with a positive number of “fillers,” in which j > 0 of the fillers are dis-
tinguished. The expression defining P;(t) suggests assigning to such an object

the weight (—l)j_l%_t)j. Now, a partition 7 € NC(k — 1) having m(m) > 0
“filler” points will arise a total of 2(™) — 1 times, once for each choice of j > 0
distinguished “fillers.” A simple calculation shows that the total weight of the

2"(™) _ 1 partitions associated with 7, namely Z;”:(f) (m;“))(—l)j_l%_t)j,

is just t™(M) =1 A special case is the trivial partition of [k — 1]. This partition
is assigned weight (1 — (1 —¢)¥)/t and it is easy to check that it is the only
non-crossing partition for which m = 0.
Hence, P} (t) = ZneNC(k—l) w(m) as claimed. From this interpretation of
Pi(t), it is obvious that Pf(t) = 1 = P;(t) and we will now prove that
k—1 '
Pit) = (1= + Py (8) + ) (1= t)' + P (8) Pr(8),
=2
that is, P (t) and Py(t) satisfy the same recurrence relation.

Among the partitions in NC(k — 1), those in which 1 constitutes a singleton
block have a total weight of (1 — t)k¥=! 4+ P¢ | (t), because w(1/2/3/.../k —
1) = (1 -8t +w2/3/.../k — 1), while w(r) = w(r') if 7 = 1/7" and
w' #2/3/.../k—1. Thus, it remains to show that

k—1 '
Yo wm =Y (-0 +tPHP,

TENC(k—1) =2
1 not singleton

or, equivalently, that

k—2
> w(r) =Y PHA -t +tP; ).
ﬂENC(k—l) =1

1 not singleton

Observe that (1 — t)¥=% +tPr ,(t) = Y cENC(k—i1) t™(@)_ This observation
leads us to define a modification, w, of the weight w on non-crossing partitions,
namely @(7): = t™(?), Thus, we must show that

k—2

Yoo owm=Y( Y w@)( Y o w®).

TENC(k—1) i=1 aeNC(i—1) BENC(k—i—1)
1 not singleton
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Ideally, one would like to argue that a partition 7= counted by the left hand
side is constructed from a pair of partitions a and S from the right hand side,
where ¢ +1 is the smallest element (other than 1) which lies in the same block of
7 as 1, and that w(w) = w(a)w(H). The first part of this statement is true, but
there are partitions 7 for which the desired relation on weights does not hold.
Therefore, we will examine the error §(7): = w(r) — w(a)w(F) as « and S run
over their ranges of summation, and we will complete the proof of the Lemma
by showing that the total error is zero.

First we consider the case i = 1. In this case, (Y w(a))(X®w(8)) =
Prt)(1 —t)* 1 +tP; (). On the other hand, the total weight of the par-
titions 7 in this case is Y w(r) = [t(Py_,(t) — =9=0"2y L 1) 4 [Py (1) —
(Pr_,(t)+ (1 —t)k=2)]. The expression in the first bracket corresponds to those
7 in which the elements 1 and 2 form a block of cardinality 2, thereby making
the element 2 contribute to m(7); note also that if the partition induced on
{3,4,...,k— 1} has only singleton blocks, then the total weight of 7 is equal to
1. Similarly, the expression in the second bracket corresponds to those 7 under
consideration in which the block containing 1 and 2 has cardinality 3 or more.
In this case, w(r) = w(B), but 2 must not form a singleton block in 4. All
B’s in NC(k — 2) in which 2 is a singleton block have total w-weight equal to
Py ,(t) + (1 —¢)*=2, and thus we subtract this quantity from P;_, ().

Therefore, the total error over the partitions 7 with ¢ = 1 is [t(PF ,(t) —

k—2
) H 1 B (0= (B () + (L0 2] =[Py () (=) 1Py =
(L= )Py () = Pry(t) — (1= )*2).

When i > 2, the error §(m) = w(n) —w(a)w(F) = 0 if 2 is not a singleton in
a and (3 is arbitrary. However, §(7) # 0 in three remaining situations. We look
at each in turn.

When o =2/3/.../iand f=i+1/i+2/.../k—1,then §(r) =1—-[(1-(1-
0/ 1.

A partition 7 under consideration for which « = 2/3/.../i and 8 # i +
1/i+2/.../k — 1, has weight w(r) = tw(f) = w(H). Hence, in this case,
S 0(m) = [Py (1) + (1= 0 — 1] = EE=EpPy () + (1 1)F 7 - 1)
When a # 2/3/ ... /i but has 2 as a singleton block, we have w(n) = tw(a)w(3)
because 2 contributes to the weight of m though it does not contribute to
the weight of a. The total error in this case is ), d(m) = (¢t — 1)[P,(¢) —

=00 e (1) + (1 — 1],

A routine calculation simplifies the sum of the errors from all the different
cases to

k—2
Yo b = A=t [P () —(1=)* 2= (P () + (1= t))) Py _;(1)].
TENC (k—1) j=1

Inductively, this completes the proof since the expression in the bracket is zero
by the recurrence relation for P;_, (t). O
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m

1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 3.8: Illustration to the proof of Remark 3.4: the non-crossing partition
with precisely one “filler”point, corresponding to the subset {5,10,13,15,17}.

A different proof of the fact that the polynomials satisfying the recurrence
of Lemma 3.2 are given by the expression of Lemma 3.3 was found by F.W.
Schmidt [20] by means of generating functions. Schmidt’s proof uses the fact
stated below as Remark 3.7-b, which we include among other consequences of
our combinatorial interpretation of the polynomials Px(t) as 3~ c yox—1) w(T).
The other remarks, suggested by the table of Figure 3.7 which shows the first
few polynomials Py (t), are made transparent by our combinatorial model.

Remark 3.4 For each k > 0, we have P;,(0) = 2*~1.

Upon setting ¢ = 0, the weight w will vanish on all non-crossing partitions
except for the trivial partition 1/2/.../k — 1, whose weight becomes k, and
for those partitions having m = 1, whose weight becomes 1. Thus, P, (0) =
k+ #{m € NC(k —1):m(w) = 1}. The non-crossing partitions of [k — 1] which
have exactly one “filler” (i.e., m = 1) are in bijective correspondence with the
subsets of [k — 1] whose cardinality is 2 or more.

To describe the correspondence, consider an arbitrary such subset a; <
az < ... < aj. In the corresponding partition, each element p < a; or p > a;
will form a singleton block. If j = 2, then we form one more block, namely
{a1,a1 +1,...,a2}. If j = 3, then we form the block {aj,a; +1,...,a2 —1,a3}
and let each of the other elements form a singleton block. If j > 3, then
a block {a1,a1 +1,...,a2 — 1,a;} is formed as in the case j = 3, and the
construction is completed recursively by constructing a non-crossing partition
of {az,a2 +1,...,a; — 1} based on the subset a» < az < ... < aj_1 (whose
cardinality is still 2 or more).

For example, let £ — 1 = 19. The partition shown in Figure 3.8,

1/2/3/4/5678917/10111215/13/14/16 /18 /19
corresponds to the subset {5,10,13,15,17}, and the partition
1/2/3/4/5678917/101112131415 /16 /18 / 19

corresponds to the subset {5,10,15,17}.
It is easy to see that the partitions arising from this construction are all the
partitions having m = 1 and that the correspondence is a bijection. Therefore,

il € NO(E—1): mim) = 1) = 7470 (1) =25 — &

J
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Remark 3.5 For each k > 0, we have Py(1) = Cy_1.

This is obvious, since setting ¢ = 1 makes the weight w(w) equal to 1 for all
me NC(k—1).

Remark 3.6 The degree of Py(t) is equal to k — 1 and the leading coefficient is
(~1)-

The degree and leading coefficient are determined by w(1/2/.../k — 1) =
g g y

k

71_(1;” since, no two “fillers” being consecutive points, all other partitions

in NC(k — 1) have weight t™~", for some m < L.

Remark 3.7 The Catalan numbers satisfy the relations

a) Yjor (F1 (") Oy =2 = = 1
and

b) Siso (C1 (") Cu s = 1.

These relations follow immediately from setting, in turn, t =0 and ¢ = 1 in
Lemma 3.3 and using Remarks 3.4 and 3.5 above, with n = k — 1.

Non-crossing partitions can be coded using colored Motzkin paths (as in
[26]) and the weight w(m) on NC(k — 1) can be described in lattice path terms:

Corollary 3.8 Let M(n) be the set of colored Motzkin paths which start at the
origin and end at the point (n,0), that is, lattice paths whose steps are (+1,+1)
(North-East), (+1,—1) (South-East), or (+1,0) (horizontal), and in which a
horizontal step is colored red if it is at zero abscissa and is colored either red or
blue if it is at a positive abscissa. To each such path p we associate its number,

s(p), of occurrences of two consecutive steps of the form (NE,red) or (blue,red)
or (blue, SE) or (NE,SE). Then

Z ts(p) _ Z(_l)J(l_t)J<nJ_J>CnJ

pEM(n) Jj=>0

Proof. The correspondence between colored Motzkin paths and non-crossing
partitions is as follows. The " step of the path, starting from the origin,
determines the block in which the point ¢ is placed in the partition: horizon-
tal red step: i forms a singleton block; NE step: i is the initial element of a
non-singleton block; SE step: i is adjoined as maximum element to the block
with largest minimum from among the blocks available that do not yet have
a maximum assigned; horizontal blue step: 7 is adjoined (as an “intermediate”
element) to the block with largest minimum from among the blocks available
that do not yet have a maximum assigned. It is easy to check that the resulting
partition is indeed non-crossing and that this correspondence is invertible.
Under this correspondence, “filler” points are precisely those produced by
the second of two consecutive steps of the form (NE,red) or (blue,red) or (blue,
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SE) or (NE,SE), the first two cases giving singleton “fillers” and the last two
cases giving “fillers” which are maxima in their blocks. Thus, the statistic s(p)
on a colored Motzkin path is equal to the number of “fillers” of the corresponding
non-crossing partition, and ZpEM(n) 5 =>. enc(myt™ m(7) This last sum, in
view of our proof of Lemma 3.3, is equal to (1 —¢)"** +¢Pr () = (1 —¢)" ™' +
tPn11(t). After substituting the expression of Lemma 3.3 for P11, a routine
calculation completes the proof. O

4 Dyck words counted according to the number
of exterior pairs

We now turn to the second statistic, the number of exterior pairs. The main
result of this section is the following theorem.

Theorem 4.1 Let gi(t) be the generating function for Dyck paths whose num-
ber of exterior pairs is k, counted according to their length. Then go(t) = %
and

tk+2

-1 . )
9k = (1= 20)2k+1 Z ( i )Ci“tl(l — 1)’

where C,, = m+1 (Qm) is the m*™ Catalan number.

The starting point of our proof will be to show, using Theorem 2.3, that
gr(t) is expressible in terms of a polynomial Ry (t) given by a certain recurrence
relation (Lemma 4.2). Then, in Lemma 4.3, we prove an explicit formula for
Ry (t) by means of a combinatorial interpretation in terms of weighted colored
non-crossing partitions.

Lemma 4.2

1-—1t
t) =
9o() 1-_ 9t
tk+2(1_t)

gk(t) = 7(1 — 2t)2k+1Rk if k> ].,

where Ry, is a polynomial satisfying the recurrence

Ri(t)=1
k—2

Rp(t) =t*(1— )Y RiRg_1_i+ (1 =2t +2")Rey if k> 1.
i=1

Proof. Recall from Theorem 2.3 that the generating function G(q,t) for Dyck
paths counted according to their number of exterior pairs and length is related to
the generating function F'(q, t) of Dyck paths counted according to their pyramid

18



Ri(t)= 1

R(t)= 1 —2t 42t

Ra(t)= 1 —4t 49 —10t>  +5¢*

Ra(t)= 1 —6t 421> —44t> +57t* —42t° 41448

Rs(t)= 1 -8t +38t> —116t> +240t" —336t> +308t5 —168t7 +42t°

Figure 4.9: Table of the polynomials R (t) for 1 <k <5
weight and length, by a simple change of variables: G = G(q,t) = F(q¢ !, qt).
Therefore, from the equation of Theorem 2.3 satisfied by F(q,t) we obtain
qt(1 —t)G? — (1 +qt —2t)G + (1 —t) = 0.
since G(g,t) = ;50 gx(t)g", this yields
k
=1 > gigrid™ =120 ged* -t g +1-1t =0,
k>0 i=0 k>0 k>0

whence we obtain

(1-2t)go—1+t=0

k—1
t(l — t) Zgigk_l_i — (1 — 2t)gk —tgr—1 = 0.
i=0

This can be restated as the recurrence

1t
D=1y )
1
t(1—t) t
— . T T e — _ >
9 =13 ;gzgk 1-i 7o (R21),
and the proof is easily completed by induction on k. O

Lemma 4.3 For every k > 0, the polynomial Ry (t) is given by the explicit
formula

= k-1
Ri(t) =) (_1)i< _ )Ci+1ti(1 — ),
i=0 L
where C,, = mLH(QnT) is the m*™ Catalan number.

Proof. As in the case of Lemma 3.3 where we treated the polynomials Py(t),
the proof will consist of first giving a combinatorial interpretation of the above
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expression for Ry (t) and then, using this interpretation, establishing that the
expression satisfies the recurrence relation of Lemma, 4.2.

We consider the set NC°(k) of non-crossing partitions of [k] whose points
p € [k] are colored purple or green as follows. Starting with # € NC(k), we
construct a colored non-crossing partition, ¢, by coloring independently each
singleton block {s}, s > 1, either purple or green, and coloring every other point
purple. Thus, if 7 has S singleton blocks whose elements are larger than 1, then
7 will give rise to 2° colored partitions. The weight of a point p € [k] is defined
to be

1 if p=1
w(p): = or p forms a singleton block colored green;
—t(1 —t) otherwise.

Finally, if 7€ is a colored non-crossing partition, then its weight is defined to be
w(m®): = [ e w(p), and we claim that

k—1

mir= Y we) =Y 0 (" ewda-or

reeNCe (k) i=0

Indeed, every n¢ € NC°(k) which has precisely 7 + 1 purple points arises in
exactly one fashion from an arbitrary non-crossing partition on ¢ + 1 elements
which will be colored purple (counted by the Catalan number), to which we
adjoin k — i — 2 singleton blocks colored green. As elements of [k], the i + 1
purple points must include 1, hence their placement in [k] is done in one of (kzl)
possible ways. The fact that 1 is always purple gives the correct range for .

We now show that R} (t) satisfies the recurrence of Lemma 4.3, hence R} (t) =
Ry (t), which will complete the proof.

Let #¢ € NC°(k). If 1 is not a singleton block in #¢, let j be the smallest
element other than 1 which is in the same block as 1. Suppose j > 2 and
consider the two partitions 7§ and 7§ induced by 7¢ on the sets {2,3,...,j -1}
and {j,7+1,...,k}, respectively. Note that if the element 2 is colored purple in
¢, then each of 7{ and 7§ is a non-crossing partition colored according to the
coloring scheme defined above, and that w(7¢) = w(7§)w(ws)[(—1)t(1—t)]%. The
last factor follows from the fact that 2 and j being purple points larger than
1 have nontrivial weight in 7¢ though they have trivial weight in #{ and «$,
respectively. The sum of the weights of all the colored non-crossing partitions
of this type is equal to

k
(1—t)>> Ri_oRj_j .
j=3

The remaining partitions 7¢, that is, those where 1 is a singleton block or where
1 and 2 are in the same block, can be obtained from the colored non-crossing
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partitions p° on the set {2,3,...,k} which we modify in either of three ways.
The first possibility is to adjoin 1 to p© as a singleton block. The second is to
adjoin 1 to the block of p¢ which contains 2. The third is to adjoin 1 to the block
of p° containing 2, and then separate the element 2 into a singleton block which
we color green. Since 1 must always be colored purple, the third modification
preserves the number of purple points, while the first two give a 7¢ with one
more purple point than p¢ has. Hence

w(r®) = w(p®)(—t(1 —t)) in the first two cases;
)= w(p®) in the third case.

Summing over all partitions p® contributes to Rj(t) a total of (—2¢(1 —t) +
DR,

Therefore, R} (t) satisfies the same recurrence as Ry, () for k > 2, and R}(t) =
1 = Ri(t), hence R} (t) = Ry(t) for all k. 0

Note that in the table of Figure 2.4 one identifies — with the aid of [24] — se-
quences of coefficients of Chebyshev polynomials, or linear combinations of such
coefficients. The generating function of the inverses of Chebyshev polynomials

of the first kind is 77! (z,y) = % (% + 1), and it can be shown that

T Hz,y) = 3,50 Ta(@)y?", where 7,(z) = % Thus, by Theorem 4.1,
we have

91(t) = gk (DR (1).

The relation between the Catalan numbers and orthogonal polynomials is
well-known. Indeed, a similar relation appears in [25] where the enumeration
of Dyck paths according to their order (as defined in section 2.1) gives rise to
the quotient of two inverse Chebyshev polynomials of the second kind. More
generally, it is in fact known (see [26]) that Dyck paths provide a combinatorial
interpretation of the moments of the Chebyshev polynomials of the second kind.

An examination of Figure 4.9 suggests several properties of the polynomials
Ry (t), stated in the next remarks. The combinatorial interpretation of Ry (t)
given in the proof of Lemma 4.3 provides easy explanations for these properties.

Remark 4.4 For each k > 0, R(0) = 1.

Indeed, Rj(0) counts the colored non-crossing partitions whose weight is
1, but the weight is equal to 1 if and only if all points except 1 are colored
green. This occurs for a unique coloring of the unique partition which has only
singleton blocks.

Remark 4.5 For all k > 0, R(1) = 1.

Setting ¢ = 1 annihilates the weight of all purple points, except for the point
1. Hence, the colored partition of the previous remark will also be the only one
contributing to Ry (1).
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Remark 4.6 The degree of the polynomial Ry (t) is equal to 2(k — 1), and the
leading coefficient of Ry (t) is equal to the Catalan number Cy.

The maximum power of ¢ occurs from the colored partitions all of whose points
are purple. There are C} such colored partitions, one from each non-crossing
partition on [k], and each has weight w(7¢) = [—#(1 — #)]F~1 = tF=1(t — 1)*~L.

We close with a reformulation of Lemma 4.3 in terms of colored Motzkin
paths.

Corollary 4.7 Let M(n) be the set of colored Motzkin paths, as defined in
Corollary 3.8. To each step of such a path p we assign a weight: the first step
always has weight 1, every horizontal red step (unless it is the first step of p)
has weight 1 4+ z, and every other step has weight z. If the weight of the path is
r(p), equal to the product of the weights of all the steps, then

Y ) = nf <”; 1) Ci12'.

pEM(n) i=0

Proof. Notice, as in the proof of Corollary 3.8, that the horizontal red steps in
colored Motzkin paths are those which correspond to singleton blocks in non-
crossing partitions. Thus, the argument is similar to that used in the proof
of Lemma 4.3 to establish the combinatorial interpretation of the polynomials

R (t). In that case, we had z = —t(1 — ¢t). O
By taking z = —1 in Corollary 4.7, we obtain an additional consequence of
Lemma 4.3.

Corollary 4.8 If NC*S{1}(n) denotes the collection of non-crossing partitions
of [n] in which at most the point 1 forms a singleton, and if NC*=%(n) denotes
the collection of non-crossing partitions of [n] with no singleton blocks, then

Ro(=w) = (~1)"" ' NC*E0) () = (—1)" 1 (NC*4 () + NC*=(n — 1)),
where w is a primitive cube root of unity.

Proof. Letting z = —1 in Corollary 4.7, gives the inclusion-exclusion expression
for NC*S{11}(n), up to a factor of (—1)®~'. On the other hand, z = —1 is
equivalent to t = —w in Lemma 4.3, while the second equality follows by a
simple counting argument. O
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