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Abstract

Certain families of combinatorial objects admit recursive descriptions in terms of gen�
erating trees� each node of the tree corresponds to an object� and the branch leading to
the node encodes the choices made in the construction of the object� Generating trees lead
to a fast computation of enumeration sequences �sometimes� to explicit formulae as well�
and provide e�cient random generation algorithms� We investigate the links between
the structural properties of the rewriting rules de�ning such trees and the rationality�
algebraicity� or transcendence of the corresponding generating function�

� Introduction

Only the simplest combinatorial structures � like binary strings� permutations� or pure invo�
lutions �i�e�� involutions with no �xed point� � admit product decompositions� In that case�
the set �n of objects of size n is isomorphic to a product set� �n

�	 
�� e��� 
�� e���� � �� 
�� en��
Two properties result from such a strong decomposability property� �i� enumeration is easy�
since the cardinality of �n is e�e� � � � en �ii� random generation is e�cient since it reduces to a
sequence of random independent draws from intervals� A simple in�nite tree� called a uniform
generating tree is determined by the ei� the root has degree e�� each of its e� descendents has
degree e�� and so on� This tree describes the sequence of all possible choices and the objects
of size n are then in natural correspondence with the branches of length n� or equivalently
with the nodes of generation n in the tree� The generating tree is thus fully described by its
root degree �e�� and by rewriting rules� here of the special form�

�ei�� �ei��� �ei��� � � � �ei��� � �ei���
ei �

where the power notation is used to express repetitions� For instance binary strings� permu�
tations� and pure involutions are determined by

S � 
���� ���� ��� ����
P � 
���� f�k�� �k � ��kgk���
I � 
���� f��k � ��� ��k � ���k��gk����
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A powerful generalization of this idea consists in considering unconstrained generating
trees where any set of rules

� 	 
�s��� f�k�� �e��k� �e��k� � � � �ek�k�g� ���

is allowed� Here� the axiom �s�� speci�es the degree of the root� while the productions ei�k
list the degrees of the k descendents of a node labeled k� Following Barcucci� Del Lungo�
Pergola and Pinzani� we call � an ECO�system �ECO stands for �Enumerating Combinatorial
Objects��� Obviously� much more leeway is available and there is hope to describe a much
wider class of structures than those corresponding to product forms and uniform generating
trees�

The idea of generating trees has surfaced occasionally in the literature� West introduced it
in the context of enumeration of permutations with forbidden subsequences 
��� ��� this idea
has been further exploited in closely related problems 
�� �� ��� ���� A major contribution in
this area is due to Barcucci� Del Lungo� Pergola� and Pinzani 
�� �� who showed that a fairly
large number of classical combinatorial structures can be described by generating trees�

A form equivalent to generating trees is well worth noting at this stage� Consider the walks
on the integer half�line that start at point �s�� and such that the only allowable transitions are
those speci�ed by � �the steps corresponding to transitions with multiplicities being labeled��
Then� the walks of length n are in bijective correspondence with the nodes of generation n in
the tree� These walks are constrained by the consistency requirement of trees� namely� that
the number of outgoing edges from point k on the half�line has to be exactly k�

Example �� ����avoiding permutations

The method of �local expansion� sometimes gives good results in the enumeration of per�
mutations avoiding speci�ed patterns� Consider for example the set Sn����� of permuta�
tions of length n that avoid the pattern ���� there exist no integers i � j � k such that
��i� � ��j� � ��k�� For instance� � 	 ���� belongs to S������ but � 	 ���� does not� as
���� � ���� � �����

Observe that if � � Sn�������� then the permutation � obtained by erasing the entry
n�� from � belongs to Sn������ Conversely� for every � � Sn������ insert the value n�� in
each place that gives an element of Sn������� �this is the local expansion�� For example� the
permutation � 	 ��� gives ����� ���� and ����� by insertion of � in �rst� second and third
place respectively� The permutation ����� resulting from the insertion of � in the last place�
does not belong to S������� This process can be described by a tree whose nodes are the
permutations avoiding ���� the root is �� and the children of any node � are the permutations
derived as above� Figure ��a� presents the �rst four levels of this tree�

Let us now label the nodes by their number of children� we obtain the tree of Figure ��b��
It can be proved that the k children of any node labeled k are labeled respectively k �
�� �� �� � � � � k �see 
����� Thus the tree we have constructed is the generating tree obtained
from the following rewriting rules�


���� f�k�� ������ � � � �k � ���k��k � ��gk����

The interpretation of this system in terms of paths implies that ����avoiding permuta�
tions are equinumerous with �walks with returns� on the half�line� themselves isomorphic
to �Lukasiewicz codes of plane trees �see� e�g�� 
��� p� �������� We thus recover a classic
result 
���� ����avoiding permutations are counted by Catalan numbers more precisely�
jSn�����j 	

��n
n

�
��n� ��� �
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Figure �� The generating tree of ����avoiding permutations� �a� Nodes labeled by the per�
mutations� �b� Nodes labeled by the numbers of children�

We shall see below that �certain� generating trees correspond to enumeration sequences
of relatively low computational complexity and provide fast random generation algorithms�
Hence� there is an obvious interest in delineating as precisely as possible which combinatorial
classes admit a generating tree speci�cation� Generating functions condense structural infor�
mation in a simple analytic entity� We can thus wonder what kind of generating function can
be obtained through generating trees� More precisely� we study in this paper the connections
between the structural properties of the rewriting rules and the algebraic properties of the
corresponding generating function�

We shall prove several conjectures that were presented to us by Pinzani and his coauthors
in March ����� Our main results can be roughly described as follows�

� Rational systems� Systems satisfying strong regularity conditions lead to rational gen�
erating functions �Section ��� This covers systems that have a �nite number of allowed
degrees� as well as systems like ���a�� ���b�� ���c� and ���d� below where the labels are
constant except for a �xed number of labels that depend linearly and uniformly on k�

� Algebraic systems� Systems of a factorial form� i�e�� where a �nite modi�cation of the
set f�� � � � � kg is reachable from k� lead to algebraic generating functions �Section ���
This includes in particular cases ���f� and ���g��

� Transcendental systems� One possible reason for a system to give a transcendental series
is the fact that its coe�cients grow too fast� so that its radius of convergence is zero�
This is the case for System ���h� below� Transcendental generating functions are also
associated with systems that are too �irregular�� An example is System ���e�� We shall
also discuss the holonomy of transcendental systems �Section ���
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Example �� A zoo of rewriting systems
Here is a list of examples recurring throughout this paper�


���� f�k� � ���k���k � ���k � ���k � ��g� ���a�

���� f�k� � ���k����k � ��g� ���b�

���� f�k� � ���k���� � �k mod ����k � ��g� ���c�

���� f�k� � ���k����� �k mod ����k � ��g� ���d�

���� f�k� � ���k����� 
�p �k 	 �p���k � ��g� ���e�

���� f�k� � ������ � � � �k � ���k��k � ��g� ���f�

���� f�k� � ������ � � � �k � ���k � ��g� ���g�

���� f�k� � �������k � ��k��g� ���h�

�In ���e�� we make use of Iverson�s brackets� 
P � equals � if P is true� � otherwise�� �

Notations� From now on� we adopt functional notations for rewriting rules� systems will
be of the form


�s��� f�k�� �e��k�� �e��k�� � � � �ek�k��g�
where s� is a constant and each ei is a function of k� Moreover� we assume that all the values
appearing in the generating tree are positive� each node has at least one descendent�

In the generating tree� let fn be the number of nodes at level n and sn the sum of the
labels of these nodes� By convention� the root is at level �� so that f� 	 �� In terms of walks�
fn is the number of walks of length n� The generating function associated with the system is

F �z� 	
X
n��

fnz
n�

Remark that sn 	 fn��� and that the sequence �fn�n is nondecreasing�
Now let fn�k be the number of nodes at level n having label k �or the number of walks of

length n ending at position k�� The following generating functions will be also of interest�

F �z� u� 	
X
n�k��

fn�kz
nuk and Fk�z� 	

X
n��

fn�kz
n�

We have F �z� 	 F �z� �� 	
P

k�� Fk�z�� Furthermore� the Fk�s satisfy the relation

Fk�z� 	 
k 	 s�� � z
X
j��

�j�kFj�z�� ���

where �j�k 	 jfi � j � ei�j� 	 kgj denotes the number of one�step transitions from j to k�
This is equivalent to the following recurrence for the numbers fn�k�

f��k 	 
k 	 s�� and fn���k 	
X
j��

�j�kfn�j� ���

that results from tracing all the paths that lead to k in n� � steps�
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Counting and random generation� The recurrence ��� gives rise to an algorithm that
computes the successive rows of the matrix �fn�k� by �forward propagation�� to compute
the �n � ��th row� propagate the contribution fn�j to fn���ei�j� for all pairs �i� j� such that
i � j� Assume the system is linearly bounded � this means that the labels of the nodes that
can be reached in m steps are bounded by a linear function of m� �All the systems given
in Example �� except for ���b�� are linearly bounded more generally� systems where forward
jumps are bounded by a constant are linearly bounded�� Clearly� the forward propagation
algorithm provides a counting algorithm of arithmetic complexity that is at most cubic�

For a linearly bounded system� uniform random generation can also be achieved in poly�
nomial time� as shown in 
��� We present here the general principle�

Let gn�k be the number of walks of length n that start from label k� These numbers are
determined by the recurrence gn�k 	

P
i gn���ei�k�� that traces all the possible continuations

of a path given its initial step� Obviously� fn 	 gn�s� � with s� the axiom of the system� As
above� the gn�k can be determined in time O�n�� and O�n�� storage� Random generation
is then achieved as follows� In order to generate a walk of length n starting from state k�
pick up a transition i with probability gn���ei�k��gn�k� and generate recursively a walk of
length n�� starting from state ei�k�� The cost of a single random generation is then O�n�� if
a sequential search is used over the O�n� possibilities of each of the n random drawings the
time complexity goes down to O�n logn� if binary search is used� but at the expense of an
increase in storage complexity of O�n�� �arising from O�n�� arrays of size O�n� that binary
search requires��

� Rational systems

We give in this section three main criteria �and a variation on one of them� implying that the
generating function of a given ECO�system is rational�

Our �rst and simplest criterion applies to systems in which the functions ei are uniformly
bounded�

Proposition � If �nitely many labels appear in the tree then F �z� is rational�

Proof� Only a �nite number of Fk�s are nonzero� and they are related by linear equations
like Equation ��� above�

Example �� The Fibonacci numbers

The system 
���� f�k�� �k�k����k mod �����g� can be also written as 
���� f���� ���� ����
������g�� Hence the only labels that occur in the tree are � and �� Eq� ��� gives F��z� 	
� � zF��z� and F��z� 	 z�F��z� � F��z��� Finally�

F �z� 	
�

�� z � z�
	
X
n��

fnz
n 	 � � z � �z� � �z� � �z� � � � � �

the well�known Fibonacci generating function� �

None of the systems of Example � satisfy the assumptions of Proposition �� However� the
following criterion can be applied to systems ���a� and ���b��
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Proposition � Let ��k� 	 e��k� � e��k� � � � � � ek�k�� If � is an a�ne function of k say
��k� 	 �k � � then the series F �z� is rational� More precisely�

F �z� 	
� � �s� � ��z

� � �z � �z�
�

Proof� Let n � � and let k�� k�� � � � kfn denote the labels of the fn nodes at level n� Then

fn�� 	 sn�� 	 ��k� � �� � ��k� � �� � � � �� ��kfn � ��

	 �sn � �fn 	 �fn�� � �fn�

We know that f� 	 � and f� 	 s�� The result follows�

Example �� Bisection of Fibonacci sequence

The system 
���� f�k� � ���k���k � ��g� gives F �z� 	 ��z
���z�z� 	 � � �z � �z� � � � �� the

generating function for Fibonacci numbers of even index� �Changing the axiom to �s�� 	 ���
leads to the other half of the Fibonacci sequence�� Some other systems� like


���� f�k�� ���k����k�g��

���� f�k�� ���k����� �k mod ����k � �k mod ���g��

���� f�k�� ���k����� 
k is prime���k � 
k is prime��g��

lead to the same function F �z� since ��k� 	 �k�� and s� 	 �� However� the generating trees
are di�erent� as are the bivariate functions F �z� u�� �

Example �� Prime numbers and rational generating functions
Amazingly� it is possible to construct a generating tree whose set of labels is the set of prime
numbers but that has a rational generating function F �z�� This is a bit unexpected� as
prime numbers are usually thought �too irregular� to be associated with rational generating
functions� For n � �� let pn denote the nth prime hence �p�� p�� p�� � � �� 	 ��� �� �� � � ���
Assume for the moment that the Goldbach conjecture is true� every even number larger than
� is the sum of two primes� Remember that� according to Bertrand�s postulate� pn�� � �pn
for all n �see� e�g�� 
��� p� ������

For n � �� the number �pn � pn�� � � is an even number larger than �� Let qn and rn
be two primes such that �pn � pn�� � � 	 qn � rn� In particular� q� 	 r� 	 �� Consider the
system


���� f�pn�� �pn����qn��rn����
pn��g��

It satis�es the criterion of Proposition �� with ��k� 	 �k � �� Hence� the generating function
of the associated generating tree is

F �z� 	
�� �z

�� �z � �z�
	

�

�

�
�

�� z
�

�

�� �z

�
�

Consequently� the number of nodes at level n is simply fn 	 ��� �n���� This can be checked
on the �rst few levels of the tree drawn in Figure ��

Now� one can object that the Goldbach conjecture is not proved however� it is known
that every even number is the sum of at most six primes 
���� and a similar example can be
constructed using this result�

�
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Figure �� A generating tree with prime labels and rational generating function�

Proposition � can be adapted to apply to systems that �almost� satisfy the criterion of
Proposition �� like System ���c� or ���d�� Let us consider a system of the form

�s��� �k�� e
��	
� �k�� � � � � e

��	
k �k� if k is even�

�k�� e
��	
� �k�� � � � � e

��	
k �k� if k is odd�

Assume� moreover� that�
�i� the corresponding functions �� and �� are a�ne and have the same leading coe�cient

�� say ���k� 	 �k � �� and ���k� 	 �k � ��
�ii� exactly m odd labels occur in the right�hand side of each rule� for some m � ��

Proposition � If a system satis�es properties �i� and �ii� above then

F �z� 	
� � �s� � ��z � �s� � �s� � ���z

�

�� �z � ��z� �m��� � ���z�
�

Of course if �� 	 �� we recover the generating function of Proposition ��

Proof� The proof is similar to that of Proposition �� The only new ingredient is the fact
that� for n � �� the number of nodes of odd label at level n is mfn���

System ���c� satis�es properties �i� and �ii� above with � 	 �� �� 	 ��� �� 	 �� m 	 ��
s� 	 � and s� 	 �� Consequently� its generating function is F �z� 	 ��z

���z�z��z� � System ���d��
although very close to ���c�� does not satisfy property �ii� above� so that Proposition � does
not apply� However� another minor variation on the argument of Proposition �� based on the
fact that the number on of odd labels at level n satis�es on 	 ��fn�� � on���� proves the
rationality of F �z��

Alternatively� rationality follows from the last criterion of this section� which is of a
di�erent nature� We consider systems 
�s��� f�k� � �e��k���e��k�� � � � �ek�k��g� that can be
written as


�s��� f�k�� �c��k���c��k�� � � � �ck�m�k���k � a���k � a�� � � � �k � am�g� ���

where � � a� � a� � � � � � am and the functions ci are uniformly bounded� Let C 	
maxi�kfs�� ci�k�g�
Proposition � Consider the system ��� and let �j�k 	 jfi � j � ei�j� 	 kgj� If all the seriesX

j��

�j�k t
j

for k � C are rational then so is the series F �z��

�



Proof� We form an in�nite system of equations de�ning the series Fk�z� by writing Eq� ���
for all k � �� In particular� for k 	 C� we obtain

Fk�z� 	 z
mX
�
�

Fk�a��z��

with Fj�z� 	 � if j � �� This part of the system is easy to solve in terms of F�� � � � � FC �
Indeed� for k � Z�

Fk�z� 	
CX
i
�

Pi�k�z�Fi�z� ���

where the Pi�k are polynomials in z de�ned by the following recurrence� for all i � C�

Pi�k�z� 	

���������
� if k � ��

k 	 i� if � � k � C�

z
mX
�
�

Pi�k�a��z� if k 	 C�
���

Using ���� we �nd

F �z� 	
X
k��

Fk�z� 	
CX
i
�

�	Fi�z�X
k��

Pi�k�z�


� �
According to ���� for all i � C� the series

P
k�� Pi�k�z�t

k is a rational function of z and t� of
denominator ��z

P
� t

a� � At t 	 �� it is rational in z� Hence� to prove the rationality of F �z��
it su�ces to prove the rationality of the Fi�z�� for i � C�

Let us go back to the C �rst equations of our system using ���� we �nd� for k � C�

Fk�z� 	 
k 	 s�� � z
CX
i
�

�	Fi�z�X
j��

Pi�j�z��j�k


� �
Again�

P
j�� Pi�j�z��j�kt

j is a rational function of z and t �the Hadamard product of two
rational series is rational�� Thus the series Fk�z�� for k � C� satisfy a linear system with
rational coe�cients� they are rational themselves� as well as F �z��

Examples ���a�� ���c�� ���d� and ���e� have the form ���� The above proposition implies
that the �rst three have a rational generating function� System ���e� will be discussed in
Section �� and proved to have a transcendental generating function�

� Factorial walks and algebraic systems

In this section� we consider systems that are of a factorial form� By this� we mean informally
that the set of successors of �k� is a �nite modi�cation of the integer interval f�� �� � � � � kg�
As was detailed in the introduction� ECO�systems can be rephrased in terms of walks over
the integer half�line� We thus consider the problem of enumerating walks over the integer
half�line such that the set of allowed moves from point k is a �nite modi�cation of the
integer interval 
�� k�� We shall mostly study modi�cations around the point k �although
some examples where the interval is modi�ed around � as well are given at the end of the

�



section�� Precisely� a factorial walk is de�ned by a �nite �multi�set A 	 Z and a �nite set
B 	 N

�� where N� 	 f�� �� �� � � �g� specifying respectively the allowed supplementary jumps

�possibly labeled� and the forbidden backward jumps� In other words� the possible moves from
k are given by the rule�

�k�� 
�� k � �� n �k �B� 
 �k �A�� ���

Observe that these walk models are not necessarily ECO�systems� �rst because we allow labels
to be zero � but a simple translation can take us back to a model with positive labels � and
second because we do not require �k� to have exactly k successors�

We say that an ECO�system is factorial if a shift of indices transforms it into a factorial
walk� Hence the rules of a factorial ECO�system are of the form

�k � r�� 
r� k � r � �� n �k � r �B� 
 �k � r �A��

that is�
�k�� 
r� k � �� n �k �B� 
 �k �A� for k � r � �� ���

The generating function F �z� for such an ECO�system� taken with axiom �s��� equals the
generating function for the walk model ���� taken with axiom �s� � r�� However� remember
that the rewriting rules de�ning a generating tree have to obey the additional condition that
a node labeled k has exactly k successors� Taking k 	 r in ���� this implies that r 	 jAj�
Taking k 	 r �maxB� this implies that r � jBj 	 jAj� so that �nally B 	 �� Hence� strictly
speaking� either one has a �fake� factorial ECO�system �that is some of its initial rules are
not of the factorial type�� either one has a �real� factorial ECO�system and then it is given
by rules of the form

�k�� 
r� k � �� 
 �k �A� for k � r � ��

where A is a multiset of integers of cardinality r� For instance� Systems ���f� and ���g� are
factorial� We shall prove that all factorial walks have an algebraic generating function� The
result naturally applies to factorial ECO�systems�

We consider again the generating function F �z� u� 	
P

n�k�� fn�kz
nuk� where fn�k is the

number of walks of length n ending at point k� We also denote by Fk�z� the coe�cient of
uk in this series� and by fn�u� the coe�cient of zn� The �rst ingredient of the proof is a
linear operator M � acting on formal power series in u� that encodes the possible moves� More
precisely� for all n � �� we will have�

M 
fn��u� 	 fn���u��

The operator M is constructed step by step as follows�

� The set of moves from k to all the positions �� �� � � � � k � � is described by the operator
L� that maps uk to u� � u� � � � �� uk�� 	 ��� uk����� u�� As L� is a linear operator�
we have� for any series g�u��

L�
g��u� 	
g��� � g�u�

�� u
�

�



� The fact that transitions near k are modi�ed� with those of type k � � �with � � A�
allowed and those of type k � � �with � � B� forbidden� is expressed by a Laurent
polynomial

P �u� 	
aX

k
�b
pku

k 	 A�u��B�u� with A�u� 	
X
��A

u� and B�u� 	
X
��B

u���

The degree of P is a �	 maxA� the largest forward jump and b �	 max����B��A�
is largest forbidden backward jump or the largest supplementary backward jumps �we
take b 	 � if the set B is empty��

The operator
L
g��u� �	 L�
g��u� � P �u�g�u�

describes the extension of a walk by one step�

� Finally� the operator M is given by

M 
g��u� 	 L
g��u� � fu��gL
g��u��

where fu��gh�u� is the sum of all the monomials in h�u� having a negative exponent�
Hence M is nothing but L stripped of the negative exponent monomials� which corre�
spond to walks ending on the nonpositive half�line� Observe that� for any series g�u��
the only part of L
g��u� that is likely to contain monomials with negative exponents is
P �u�g�u�� Consequently�

M 
g��u� 	 L
g��u� � fu��g
P �u�g�u��

and if g�u� 	
P

k gku
k� then

fu��g
P �u�g�u�� 	
bX

i
�

i��X
k
�

gkp�i uk�i 	
b��X
k
�

gkrk�u�� ���

Assume for simplicity that the initial point of the walk is � other cases follow the same
argument� The linear relation fn���u� 	 M 
fn��u�� together with f��u� 	 �� yields

F �z� u� 	 � � zM 
F ��z� u�

	 � � z

�
F �z� �� � F �z� u�

�� u
� P �u�F �z� u� � fu��g
P �u�F �z� u��


�

Thanks to ���� we can write

fu��g
P �u�F �z� u�� 	
b��X
k
�

rk�u�Fk�z��

where rk�u� is a Laurent polynomials �de�ned by Equation �� whose exponents belong to

k � b����� Thus� F �z� u� satis�es the following functional equation�

F �z� u�

�
� �

z

�� u
� zP �u�


	 � �

zF �z� ��

�� u
� z

b��X
k
�

rk�u�Fk�z�� ����

��



Let us take an example� The moves

�k�� ������ � � � �k � ���k � ���k � ���k��k � ���k � ���

lead to A�u� 	 u� � u� � u� and B�u� 	 u�� � u��� Moreover�

fu��g
B�u�F �z� u�� 	 �u�� � u���F��z� � �u�� � u���F��z� � u��F��z� � u��F��z��

so that the functional equation de�ning F �z� u� is

F �z� u�

�
� �

z

�� u
� z�� � u� � u� � u�� � u���


	

� �
zF �z� ��

�� u
� z�u�� � u���F��z� � z�u�� � u���F��z� � zu��F��z� � zu��F��z��

The second ingredient of the proof� sometimes called the kernel method � seems to belong
to the �mathematical folklore� since the �����s� It has been used in various combinatorial
problems 
��� ��� ��� and in probabilities 
���� See also 
�� �� ��� for more recent and system�
atic applications� This method consists in cancelling the left�hand side of the fundamental
functional equation ���� by coupling z and u� so that the coe�cient of the �unknown� quantity
F �z� u� is zero� This constraint de�nes u as one of the branches of an algebraic function of z�
Each branch that can be substituted analytically into the functional equation yields a linear
relation between the unknown series F �z� �� and Fk�z�� � � k � b� If enough branches can be
substituted analytically� we obtain a system of linear equations� whose solution gives F �z� ��
and the Fk�z� as algebraic functions� From there� an expression for F �z� u� also results in the
form of a bivariate algebraic function�

Let us multiply Eq� ���� by ub��� u� to obtain an equation with polynomial coe�cients
�remind that we take b 	 � if the set B of forbidden backward steps is empty�� The new
equation reads K�z� u�F �z� u� 	 R�z� u�� where K�z� u� is the kernel of the equation�

K�z� u� 	 ub��� u�

�
� �

z

�� u
� zP �u�


�

	 ub��� u� � zub � z�� � u�
X
��A

u��b � z��� u�
X
��B

ub��� ����

This polynomial has degree a� b� � in u� and hence� admits a � b� � solutions� which are
algebraic functions of z� The classical theory of algebraic functions and the Newton polygon
construction enable us to expand the solutions near any point as Puiseux series �that is� series
involving fractional exponents see 
����� The a� b� � solutions� expanded around �� can be
classi�ed as follows�

� the �unit� branch� denoted by u�� is a power series in z with constant term �

� b �small� branches� denoted by u�� � � � � ub� are power series in z��b whose �rst nonzero
term is 
z��b� with 
b � � 	 �

� a �large� branches� denoted by v�� � � � � va� are Laurent series in z��a whose �rst nonzero
term is 
z���a� with 
a � � 	 ��

��



In particular� all the roots are distinct� �It is not di�cult to check �by hand� the existence
of these solutions� for instance� plugging z 	 tb and u 	 tw�t� in K�z� u� 	 � con�rms the
existence of the b small branches�� Note that there are exactly b�� �nite branches� the unit
branch u� and the b small branches u�� � � � � ub� As F �z� u� is a series in z with polynomial

coe�cients in u� these b � � series ui� having no negative exponents� can be substituted for
u in F �z� u�� More speci�cally� let us replace u by ui in ����� the right�hand side of the
equation vanishes� giving a linear equation relating the b � � unknown series F �z� �� and
Fk�z�� � � k � b� Hence the b� � �nite branches give a set of b� � linear equations relating
the b�� unknown series� One could solve directly this system� but the following argument is
more elegant�

The right�hand side of ����� once multiplied by ub��� u�� is

R�z� u� 	 ub��� u�

�
� �

z

�� u
F �z� �� � z

b��X
k
�

rk�u�Fk�z�

�
�

By construction� it is a polynomial in u of degree b� � and leading coe�cient ��� Hence� it
admits b � � roots� which depend on z� Replacing u by the series u�� u�� � � � � ub in Eq� ����
shows that these series are exactly the b� � roots of R� so that

R�z� u� 	 �
bY

i
�

�u� ui��

Let pa �	 
ua�P �u� be the multiplicity of the largest forward jump� Then the coe�cient of
ua�b�� in K�z� u� is paz� and we can write

K�z� u� 	 paz
bY

i
�

�u� ui�
aY
i
�

�u� vi��

Finally� as K�z� u�F �z� u� 	 R�z� u�� we obtain

F �z� u� 	
�Qb

i
��u� ui�

ub��� u� � zub � zub��� u�P �u�
	 � �

paz
Qa

i
��u� vi�
� ����

We have thus proved the following result�

Proposition � The generating function F �z� u� for factorial walks de�ned by ��� and starting
from � is algebraic� it is given by ���� where u�� � � � � ub �resp� v�� � � � � va� are the �nite �resp�

in�nite� solutions at z 	 � of the equation K�z� u� 	 � and the kernel K is de�ned by �����
In particular the generating function for all walks irrespective of their endpoint is

F �z� �� 	 ��

z

bY
i
�

��� ui��

and the generating function for excursions i�e� walks ending at � is for b � ��

F �z� �� 	
����b

z

bY
i
�

ui�

�for b 	 � the relation becomes F �z� �� 	 ����b

��z�p�z
Qb

i
� ui��

��



These results could be derived by a detour via multivariate linear recurrences� and the present
treatment is closely related to 
�� ��� however� our results were obtained independently in
March ���� 
���

The asymptotic behaviour of the number of n�step walks can be established via singularity
analysis or saddle point methods� The series ui have �in general� a square root singularity�
yielding an asymptotic behaviour of the form A�nn����� We plan to develop this study in a
forthcoming paper�

Example �� Catalan numbers
This is the simplest factorial walk� �k� � ������ � � � �k��k � ��� which corresponds to the
ECO�system ���f�� The operator M is given by

M 
f ��u� 	
f���� f�u�

�� u
� �� � u�f�u��

The kernel is K�z� u� 	 �� u� z� z��� u��� � u� 	 �� u� zu�� hence u��z� 	
��p���z

�z � so
that

F �z� �� 	 ��� u�
z

	
�� �z �p

�� �z

�z�
	
X
n��

�
�n

n

�
zn��

n� �
�

the generating function of the Catalan numbers �sequence M������� This result could be
expected� given the obvious relation between these walks and �Lukasiewicz codes� �

Example �� Motzkin numbers

This example� due to Pinzani and his co�authors� is derived from the previous one by forbid�
ding �forward� jumps of length zero� The rule is then

�k�� ��� � � � �k � ���k � ���

The operator M is

M 
f ��u� 	
f���� f�u�

�� u
� uf�u��

The kernel is K�z� u� 	 �� u� z � zu��� u� 	 � � z � u�� � z� � zu�� leading to

F �z� �� 	
�� z �p

�� �z � �z�

�z�
	 � � z � �z� � �z� � �z� � ��z �O�z���

the generating function for Motzkin numbers �sequence M������ �

Example �� Schr�oder numbers

This example is also due to the Florentine group� The rule is �k�� ��� � � � �k� ���k��k�����
From Proposition �� we derive

F �z� �� 	
�� �z �p

�� �z � z�

�z�
	 � � �z � ��z� � ��z� � ���z� �O�z��

The coe�cients are the Schr oder numbers �M����� Schr oder�s second problem�� We give
in Table � at the end of the paper a generalization of Catalan and Schr oder numbers� corre�
sponding to the rule �k�� ��� � � � �k� ���k��k ���m� This generalized rule has recently been
shown to describe a set of permutations avoiding certain patterns 
���� �

�The numbersMxxxx are identi�ers of the sequences in The Encyclopedia of Integer Sequences �����

��



The above examples were all quadratic� However� it is clear from our treatment that
algebraic functions of arbitrary degree can be obtained� it su�ces that the set of �exceptions�
around k have a span greater than �� Let us start with a family of ECO�systems where
supplementary forward jumps of length larger than one are allowed�

Example 	� Ternary trees dissections of a polygon and m�ary trees
The ECO�system with axiom �s�� 	 ��� and rule

�k�� ������ � � � �k��k � ���k � ��

is equivalent to the walk
�k�� ������ � � � �k��k � ���k � ���

The kernel is K�z� u� 	 �� u� zu�� and the generating function

F �z� �� 	
X
n��

�
�n

n

�
zn��

�n� �

counts ternary trees �M������
More generally� the system with axiom �m� and rewriting rules

�k�� �m� � � � �k��k � ���k � �� � � � �k �m� ��

yields the m�Catalan numbers�
�mn
n

�
���m � ��n � ��� that count m�ary trees� The kernel

is � � u � zum and the generating function F �z� �� satis�es F �z� �� 	 �� � zF �z� ���m � In
particular� the ��Catalan numbers

��n
n

�
���n��� appear in 
��� �sequence M���	� and count

dissections of a polygon�
�

In the above examples� all backward jumps are allowed� In other words� each of these
examples corresponds to an ECO�system� Let us now give an example where backward
jumps of length � are forbidden�

Example �
�

Consider the following modi�cation of the Motzkin rule�

�k�� ��� � � � �k � ���k � ���

The kernel is now K�z� u� 	 u�� � u� � zu � z�� � u��u� � ��� and� according to ����� the
series F �z� 	 F �z� �� is given by F �z� 	 ��
z�v� � ���� where v� satis�es K�z� v�� 	 � and is
in�nite at z 	 �� Denoting G 	 zF �z�� we �nd that the algebraic equation de�ning G is�

G 	 z
� � �G�G� �G�

� �G
�

�

��



So far� we have only dealt with walks for which the set of allowed moves was obtained by
modifying the interval 
�� k� around k� One can also modify this interval around �� we shall
see � in examples � that the generating function remains algebraic� However� it is interesting
to note that in these examples� the kernel method does not immediately provide enough
equations between the �unknown functions� to solve the functional equation�

Let us �rst explain how we modify the interval 
�� k� around �� The walks we wish to count
are still speci�ed by a multiset A of allowed supplementary jumps and a set B of forbidden
backward jumps� But� in addition� we forbid backward jumps to end up in C� where C is a
given �nite subset of N � In other words� the possible moves from k are given by the rule

�k�� 
�� k � �� n �C 
 �k �B�� 
 �k �A��

Again� we can write a functional equation de�ning F �z� u��

F �z� u� 	 � � z

��F �z� �� � F �z� u�

�� u
� P �u�F �z� u� �

b��X
k
�

rk�u�Fk�z��
X
��C

u�G��z�

�A � ����

where� as above�

P �u� 	
X
��A

u� �
X
��B

u�� and rk�u� 	
X

��k� ��B
uk���

the new terms in the equations being

G��z� 	 F �z� �� �
�X

k
�

Fk�z��
X
��B

F����z��

Observe that the �rst three terms are the same as in the case C 	 �� The equation� once
multiplied by ub��� u�� reads K�z� u�F �z� u� 	 R�z� u� where K�z� u� is given by ���� and

R�z� u� 	 ub��� u�

��� �
zF �z� ��

�� u
� z

b��X
k
�

rk�u�Fk�z�� z
X
��C

u�G��z�

�A �

The kernel is not modi�ed by the introduction of C� As above� it has degree a�b�� in u� and
admits b� � �nite roots u�� � � � � ub around z 	 �� However� R�z� u� now involves b � � � jCj
unknown functions� namely F �z� ��� the Fk�z�� � � k � b and the G��z�� � � C� The degree
of R in u is no longer b � � but b � c � �� where c 	 maxC� The b � � roots of K that
can be substituted for u in Eq� ���� provide b � � linear equations between the b � jCj � �
unknown functions� Additional equations will be obtained by extracting the coe�cient of uj

from Eq� ����� for some values of j� In general� we have�

Fj�z� 	 
j 	 �� � z
X
��A

Fj���z� � z
j �� C�

��F �z� �� �
jX

k
�

Fk�z��
X
��B

Fj���z�

�A � ����

It is possible to construct a �nite subset S 	 N such that the combination of the b � �
equations obtained via the kernel method and the equations ���� written for j � S determines
all unknown functions as algebraic functions of z � more precisely� as rational functions of z
and the roots u�� � � � � ub of the kernel� However� this is a long development� and these classes
of walks play a marginal role in the context of ECO�systems� For these reasons� we shall
merely give two examples� The details on the general procedure for constructing the set S
can be found in 
���

��



Example ���

This example is obtained by modifying the Motzkin rule of Example � around the point ��
Take A 	 C 	 f�g and B 	 �� The rewriting rule is

�k�� ��������� � � � �k � ���k � ���

The functional equation reads

��� u� z � zu�� � u��F �z� u� 	 �� u� zF �z� �� � zu�� � u�G��z�� ����

with G��z� 	 F �z� �� � F��z�� F��z�� The kernel has a unique �nite root at z 	 ��

u� 	
� � z �p

�� �z � �z�

�z
�

whereas the right�hand side of Eq� ���� contains two unknown functions� Writing Eq� ����
for j 	 � and j 	 � yields

F��z� 	 � � z�F �z� �� � F��z�� and F��z� 	 zF��z��

These two equations allow us to express F� and F�� and hence G�� in terms of F �z� ���

G��z� 	 ��� z�F �z� �� � ��

This equation relates the two unknown functions of Eq� ����� We replace G��z� by the above
expression in ����� so that only one unknown function� namely F �z� ��� is left� The kernel
method �nally gives�

F �z� �� 	
�� �z� � �z� � �� � z�

p
�� �z � �z�

���� z � z� � z� � z��
	 � � z � �z� � �z� � �z� � ��z �O�z���

�

Example ���

Let us choose A 	 f�g� B 	 f�g et C 	 f�g� The rewriting rule is now�

�k�  ��������������� � � � �k � ���k � ���k � ���

The functional equation readsh
u���� u� � zu� � zu���� u� � z��� u�

i
F �z� u�

	 u���� u� � zu�F �z� �� � z��� u� 
F��z� � uF��z��� zu���� u�G��z�� ����

with G��z� 	 F �z� �� � F��z� � F��z� � F��z� � F��z�� Only three roots� u�� u�� u� can be
substituted for u in the kernel� while the right�hand side of the equation contains four unknown
functions� F �z� ��� F��z�� F��z� and G��z�� Writing ���� for j 	 �� � and � yields

F��z� 	 � � z 
F �z� �� � F��z� � F��z�� �
F��z� 	 zF��z� � z 
F �z� �� � F��z�� F��z�� F��z�� �
F��z� 	 zF��z��

��



The second equation is not of much use but� by combining the �rst and third one� we �nd

F��z� 	
� � z 
F �z� �� � zF��z��

� � z
�

Replacing F��z� by this expression in ���� gives�h
u���� u� � zu� � zu���� u� � z��� u�

i
F �z� u� 	 u����u��z�� � u�

� � z

�zF �z� ��

�
u� �

z��� u�

� � z

�
� z��� u�F��z�

�
u� z�

� � z

�
� zu���� u�G��z�� ����

We are left with three unknown functions� related by three linear equations obtained by
cancelling the kernel� Solving these equations would give F �z� �� as an enormous rational
function of z� u�� u� and u�� symmetric in the ui� This implies that F �z� �� can also be
written as a rational function of z and v � v�� the fourth and last root of the kernel� In
particular� F �z� �� is algebraic of degree at most ��

In order to obtain directly an expression of F �z� �� in terms of z and v� we can proceed
as follows� Let R��z� u� denote the right�hand side of Eq� ����� Then R��z� u� is a polynomial
in u of degree �� and three of its roots are u�� u�� u�� Consequently� as a polynomial in u� the
kernel K�z� u� divides �u� v�R��z� u��

Let us evaluate �u � v�R��z� u� modulo K�z� u�� we obtain a polynomial of degree � in
u� whose coe�cients depend on z� v� F �z� ��� F��z� and G��z�� This polynomial has to be
zero� this gives a system of four �dependent� equations relating the three unknown functions
F �z� ��� F��z� and G��z�� Solving the �rst three of these equations yields

F �z� �� 	
� � z � z� � �z � ��zv � �z � ��zv� � z�v�

�� z� � z��� z��v � z�v�

	 � � z � �z� � �z� � �z� � ��z � ��z� � ��z� � ���x� �O�z���

Eliminating v between this expression and K�z� v� 	 � gives a quartic equation satis�ed by
F �z� ��� �

� Transcendental systems

��� Transcendence

The radius of convergence of an algebraic series is always positive� Hence� one possible reason
for a system to give a transcendental series is the fact that its coe�cients grow too fast� so
that its radius of convergence is zero� This is the case for System ���h�� as proved by the
following proposition�

Proposition � Let b be a nonnegative integer� For k � � let m�k� 	 jfi � ei�k� � k � bgj�
Assume that�

�� for all k there exists a forward jump from k �i�e� ei�k� 	 k for some i�
�� the sequence �m�k��k is nondecreasing and tends to in�nity�

Then the �ordinary� generating function of the system has radius of convergence ��

��



Proof� Let s� be the axiom of the system� Let us denote by hn the product m�s�� b�m�s��
�b� � � �m�s� � nb�� Let us prove that the generating tree contains at least hn nodes at level
n�b���� At level nb� take a node v labeled k� with k � s� �nb� Such a node exists thanks to
the �rst assumption� By de�nition of m�k�� this node v has m�k� sons whose label is at least
k � b� As m is non decreasing� v has at least m�s� � nb� sons of label at least s� � �n� ��b�
Iterating this procedure shows that� at level nb� i� at least m�s���n� i���b� � � �m�s��nb�
descendents of v have a label larger than or equal to s���n� i�b� for � � i � n� In particular�
for i 	 n� we obtain at level n�b� �� at least hn descendents of v whose label is at least s��

Hence fn�b��� � hn� But as hn�hn�� 	 m�s� � nb� goes to in�nity with n� the seriesP
n hnz

n�b��� has radius of convergence �� and the same is true for F �z� 	
P

n fnz
n�

In particular� this proposition implies that the generating function of any ECO�system in

which the length of backward jumps is bounded has radius of convergence �� Many examples
of this type will be given in the next subsection� in which we shall study whether the corre�
sponding generating function is holonomic or not� The following example� in which backward
jumps are not bounded� was suggested by Nantel Bergeron�

Example ��� A fake factorial walk

Consider the system with axiom ��� and rewriting rules f�k�� ������ � � � ��k�g� Proposition �
applies with b 	 � and m�k� 	 � � bk��c� Note that the radius of convergence of F �z� is
zero although all the functions ei are bounded� and indeed constant� ei�k� 	 �i for all k � i�
The series F �z� is of course transcendental� Note� however� that F �z� u� satis�es a functional
equation that is at �rst sight reminiscent of the equations studied in Section ��

F �z� u� 	 u� zu�
F �z� �� � F �z� u��

�� u�
�

�

The following example shows that Proposition � is not far from optimal� an ECO�system
in which all functions ei grow linearly can have a �nite radius of convergence�

Example ���

The system with axiom ��� and rules �k�� �dk��e�k���k � �� leads to a generating function
with a positive radius of convergence�
Let us start from the recursion de�ning the numbers fn�k� We have f��� 	 � and for n � ��

fn���k 	 fn�k�� � ��k � ��fn��k � ��k � ��fn��k���

The largest label occurring at level n in the tree is n � �� Let us introduce the numbers
gn�k 	 fn�n�k��� for k � n� The above recursion can be rewritten as�

gn���k 	 gn�k � ��n� �k � ��gn��k�n�� � ��n� �k � ��gn��k�n��� ����

We have gn�k 	 � for k � �� Hence Eq� ���� implies that for k � �� the sequence �gn�k�n is
nondecreasing and reaches a constant value g�k� as soon as n � �k � � �see Table ���

Going back to the number fn of nodes at level n� we have

fn 	
nX

k
�

gn�k �
nX

k
�

g�k��

��



n k � � � � � �

� �

� 
 �

� � 
 �

� � � 
 �

� � � � 
 �

� � � 	 � 
 �

n k � � � � � �

� �

� � 


� � 
 �
� � 
 � �
� � 
 � � �
� � 
 � 	 � �

Table �� The numbers fn�k and gn�k� Observe the convergence of the coe�cients�

But X
n��

zn
nX

k
�

g�k� 	
�

�� z

nX
k
�

g�k�zk �

and hence it su�ces to prove that the generating function for the numbers g�k� has a �nite
radius of convergence� that is� that these numbers grow at most exponentially�

Writing ���� for n� � 	 �k � i� for � � i � k� we obtain�

g�k�i�k 	 g�k�i���k � ��k � �i� ��g�k�i���i�� � ��k � �i�g�k�i���i���

Iterating this formula for i between � and k yields

g�k� 	 g�k���k 	
kX
i
�


��k � �i� ��g�k�i���i�� � ��k � �i�g�k�i���i���

�
kX
i
�


��k � �i� ��g�i � �� � ��k � �i�g�i � ��� 	
k��X
i
�

��k � �i� ��g�i��

This inequality� together with the fact that g��� 	 �� implies that for all k � �� g�k� � eg�k��
where the sequence eg�k� is de�ned by eg��� 	 � and eg�k� 	 Pk��

i
� ��k � �i � ��eg�i� for k 	 ��
But the series

P
k eg�k�zk is rational� equal to �� � z����� � �z � �z� � z��� and has a �nite

radius of convergence� Consequently� the numbers eg�k� and g�k� grow at most exponentially�
�

Algebraic generating functions are strongly constrained in their algebraic structure �by
a polynomial equation� as well as in their analytic structure �in terms of singularities and
asymptotic behaviour�� In particular� they have a �nite number of singularities� which are
algebraic numbers� and they admit local asymptotic expansions that involve only rational
exponents� A contrario� a generating function that has in�nitely many singularities �e�g�� a
natural boundary� or that involves a transcendental element �e�g�� a logarithm� in a local
asymptotic expansion is by necessity transcendental see 
��� for a discussion of such tran�
scendence criteria� In the case of generating trees� this means that the presence of a condition
involving a transcendental element is expected to lead to a transcendental generating function�
This is the case in the following example�

Example ��� A Fredholm system

We examine System ���e�� in which the rules are irregular at powers of ��

�s�� 	 ���� �k�� ���k����� 
�p �k 	 �p���k � ��� k � ��

��



This example will involve the Fredholm series h�z� �	
P

p�� z
�p � which is well�known to admit

the unit circle as a natural boundary� �This can be seen by way of the functional equation
h�z� 	 z� � h�z��� from which there results that h�z� is in�nite at all iterated square�roots of
unity�� According to Eq� ���� we have� for k 	 �� Fk�z� 	 zFk���z�� so that

Fk�z� 	 zk��F��z� for k � ��

Now� writing Eq� ��� for k 	 � gives

F��z� 	 � � z
X
k��

�k � ��Fk�z� � z
X
p��

F�p�z�

	 � �
z

��� z��
F��z� � zF��z� � F��z�

�
h�z�

z�
� �


	 � � zF��z� � F��z�

�
z

��� z��
�
h�z�

z�
� �


�

For k 	 �� we obtain�

F��z� 	 zF��z� � z
X

k��� k �
�p

Fk�z�

	 zF��z� � F��z�

�
�

�� z
� h�z�

z�


�

Solving for F��z� and F��z�� then summing �F �z� 	 F��z� � F��z���� � z��� we obtain�

F �z� 	
��� z��h�z�

��� �z��� � z��h�z�� z�
	 � � �z � �z� � ��z� � ��z� � ���z �O�x���

The functions h�z� and F �z� are rationally related� so that F �z� is itself transcendental� The
series h has radius �� but the denominator of F vanishes before z reaches � � actually� before
z reaches ���� Hence the radius of F is the smallest root of its denominator� Its value is
easily determined numerically and found to be about ��������� �

��� Holonomy

In the transcendental case� one can also discuss the holonomic character of the generating
function F �z��

A series is said to be holonomic� or D��nite 
���� if it satis�es a linear di�erential equation
with polynomial coe�cients in z� Equivalently� its coe�cients fn satisfy a linear recurrence
relation with polynomial coe�cients in n� Consequently� given a sequence fn� the ordinary
generating function

P
n fnz

n is holonomic if and only if the exponential generating functionP
n fnz

n�n! is holonomic� The set of holonomic series has nice closure properties� the sum or
product of two of them is still holonomic� and the substitution of an algebraic series into an
holonomic one gives an holonomic series� Holonomic series include algebraic series� and have
a �nite number of singularities� This implies that Example ��� for which F �z� has a natural
boundary� is not holonomic�

We study below �ve ECO�systems that� at �rst sight� do not look to be very di�erent�
In particular� for each of them� forward and backward jumps are bounded� Consequently�

��



Proposition � implies that the corresponding ordinary generating function has radius of con�
vergence zero� However� we shall see that the �rst three systems have an holonomic generating
function� while the last two have not� We have no general criterion that would allow us to
distinguish between systems leading to holonomic generating functions and those leading to
nonholonomic generating functions�

Among the systems with bounded jumps� those for which ei�k� � k belongs to f��� �� �g
for all i � k have a nice property� the generating function for the corresponding excursions

�walks starting and ending at level �� can be written as the following continued fraction 
����

�

�� b�z � a�c�z
�

�� b�z � a�c�z
�

�� b�z � a�c�z
�

� � �

�

where the coe�cients ak� bk and ck are the multiplicities appearing in the rules� which read
�k�� �k � ��ak �k�bk�k � ��ck �

Example ��� Arrangements

The system �k�� �k��k � ��k�� with axiom �s�� 	 ��� generates a sequence that starts with
�� �� �� ��� ��� ��� �M���	�� It is not hard to see that the triangular array fn�k�� is given by
the arrangement numbers k!

�n
k

�
� so that the exponential generating function �EGF� of the

sequence is eF �z� u� 	
X

n���k��

fn�ku
k z

n

n!
	

u�ez

�� uz
�

This system satis�es the conditions of Proposition � with b 	 � and m�k� 	 k� Accordingly�
one has fn � e n!� so that the ordinary generating function F �z� has radius of convergence �
and cannot be algebraic� However� eF �z� �� 	 ez���� z� is holonomic� and so is F �z�� �

Example ��� Involutions and Hermite polynomials

The system �k� � �k � ��k���k � �� with axiom �s�� 	 ��� generates a sequence that starts
with �� �� �� �� ��� ��� �� �M������ These numbers count involutions� more precisely� one
easily derives from the recursion satis�ed by the coe�cients fn�k that fn�k is the number of
involutions on n points� k � � of which are �xed� Proposition � applies with b 	 � and
m�k� 	 k�

The corresponding EGF is

eF �z� u� 	
X

n���k��

fn�ku
k z

n

n!
	 u exp

�
zu�

z�

�

�
� ����

and its value at u 	 � is holonomic�
The polynomials fn�u� 	

P
k fn�ku

k counting involutions on n points are in fact closely
related to the Hermite polynomials� de�ned by�

X
n��

Hn�x�
tn

n!
	 exp

�
xt� t�

�

�
�

Indeed� comparing the above identity with ���� shows that fn�u� 	 u inHn��iu�� �

��



Example ��� Partial permutations and Laguerre polynomials
The rewriting rule �k�� �k � ��k���k � ��� taken with axiom ���� generates a sequence that
starts with �� �� �� ��� ���� ��� �M�	���� From the recursion satis�ed by the coe�cients fn�k�
we derive that fn�n�k is the number of partial injections of f�� �� � � � � ng into itself in which
k � � points are unmatched� From this� we obtain�

eF �z� u� 	
u�

�� uz
exp

�
u�z

�� uz

�
	 u�

X
n��

Ln��u��uz�
n

n!

where Ln�u� is the nth Laguerre polynomial� Again� eF �z� �� is holonomic� �

The next two systems� as announced� lead to nonholonomic generating functions�

Example �	� Set partitions and Stirling polynomials
Let us consider the system 
���� �k� � �k�k���k � ���� From the recursion satis�ed by the
coe�cients fn�k� we derive that fn�k�� is equal to the Stirling number of the second kind

�n
k

�
�

which counts partitions of n objects into k nonempty subsets� The corresponding EGF iseF �z� u� 	 u exp �u�exp z � ��� �

At u 	 �� this generating function specializes to

eF �z� �� 	 exp�exp�z�� ��� 	
X
n��

Bn
zn

n!
	 � � z � �

z�

�!
� �

z�

�!
� ��

z�

�!
� ��

z

�!
� ���

z�

�!
� � � �

This is the exponential generating function of the Bell numbers �M������ It is known that
logBn 	 n logn�n log log n�O�n� �see 
����� and this cannot be the asymptotic behaviour of
the logarithm of the coe�cients of an holonomic series �see 
��� for admissible types�� Hence�eF �z� ��� as well as F �z� ��� is nonholonomic� �

Example �
� Bessel numbers

We study the system with axiom ��� and rewriting rules

���� ������� �k�� �k � ���k�k���k � ��� k � �� ����

We shift the labels by � to obtain a walk model with axiom ��� and rules

���� ������� �k�� �k � ���k�k�k � ��� k � ��

The corresponding bivariate generating function F �z� u� satis�es the functional di�erential
equation

F �z� u�
�
�� z�u� u���

�
	 � � z��� u���F �z� �� � zu

F

u
�z� u��

which is certainly not obvious to solve� However� as observed in 
���� it is easy to obtain a
continued fraction expansion of the excursion generating function�

F �z� �� 	 ��z��z���z���z��� � � 	 �

�� z � z�

�� z � z�

�� �z � z�

�� �z � � � �

	
�

�� z � z�B�z�
�

��



where B�z� 	
P

nB
�
nz

n 	 � � z � �z� � �z� � ��z� � ��z � ���z� � � � � is the generating
function of Bessel numbers �M����� and counts non�overlapping partitions 
���� As F �z� ��
itself� the series B�z� has radius of convergence zero� The fast increase of B�

n entails


zn�F �z� �� � B�
n���

From 
���� we know that logB�
n 	 n logn � n log log n � O�n�� Again� this prevents F �z� ��

from being holonomic�
In order to prove that F �z� �� itself is nonholonomic� we are going to prove that its

coe�cients fn have the same asymptotic behaviour as the coe�cients of F �z� ��� Clearly�


zn�F �z� �� 	 fn�� �
X
k

fn�k 	 fn�

To �nd an upper bound for fn� we compare the system ���� �denoted �� below� to the system
�� with axiom ��� and rule �k�� �k�k���k ���� This system generates a tree with counting
sequence gn� The form of the rules implies that the �unlabeled� tree associated with �� is a
subtree of the tree associated with ��� Hence fn � gn� Comparing �� to the system studied
in the previous example shows that gn is the Bell number Bn��� the logarithm of which is also
known to be n logn�n log logn�O�n� �see 
����� Hence log fn 	 n logn�n log logn�O�n��
and this prevents the series F �z� �� from being holonomic� �

��



Axiom System Name Id� Generating Function

Rational OGF OGF

��� �k�� �k�k����k mod 	� 
 �� Ex� �� Fibonacci M��	 �
��z�z�

�	� �k�� �	�k���k 
 �� Ex� �� even Fibonacci M���� ��z
���z�z�

��� �k�� �	�k���k 
 �� Ex� �� odd Fibonacci M	��� �
���z�z�

Algebraic OGF OGF

��� �k�� ��� � � � �k � ���k 
 �� Ex� �� Motzkin numbers M���� ��z�
p
���z��z�
�z�

�	� �k�� �	� � � � �k��k 
 �� Ex� � Catalan numbers M���� ���z�
p
���z

�z�

��� �k�� ��� � � � �k��k 
 ��� Ex� �� Schr�oder numbers M	��� ���z�
p
���z�z�

�z�

��� �k�� ��� � � � �k��k 
 ��� � M��� ���z�
p
���z��z�

�z�

�m� �k�� �m� � � � �k��k 
 ��m�� � �
��mz�

p
���mz��m����z�

��m���z�

��� �k�� ��� � � � �k 
 	� Ex� �� Ternary trees M	�	 F � �� 
 zF ��

��� �k�� ��� � � � �k 
 �� Ex� �� Dissections of a polygon M���� F � �� 
 zF ��

�m� �k�� �m� � � � �k 
m� �� Ex� �� m�ary trees F � �� 
 zF �m

Holonomic EGF

transcendental OGF

��� �k�� �k 
 ��k Permutations M��� ����� z�
�	� �k�� �k��k 
 ��k�� Ex� �� Arrangements M���� ez���� z�

��� �k�� �k � ��k���k 
 �� Ex� ��� Involutions M�		� ez�
�

�
z�

�	� �k�� �k 
 ��k���k 
 	� Ex� ��� Partial permutations M���� ez����z����� z�

�	� �k�� �k � ��k���k��k 
 �� Switchboard problem M��� e�z�
�

�
z�

�	� �k�� �k � ��k���k 
 ��� Bicolored involutions M��� e�z�z
�

Nonholonomic OGF EGF

��� �k�� �k�k���k 
 �� Ex� ��� Bell numbers M���� ee
z��

�	� �k�� �k�k���k 
 ��� Bicolored partitions M�	 e��e
z���

�	� �k�� �k � ���k�k���k 
 �� Ex� 	�� Bessel numbers M��	 �

Table �� Some ECO�systems of combinatorial interest�

A small catalog of ECO�systems

To conclude� we present in Table � a small catalog of ECO�systems that lead to sequences
of combinatorial interest� Several examples are detailed in the paper others are due to West

��� ��� or Barcucci� Del Lungo� Pergola� Pinzani 
�� �� �� ��� or are folklore� Each of them is
an instance of application of our criteria�
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